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Despite the impressive performance of Artificial Intelligence (AI) systems, their robustness remains elusive
and constitutes a key issue that impedes large-scale adoption. Besides, robustness is interpreted differently
across domains and contexts of AI. In this work, we systematically survey recent progress to provide a recon-
ciled terminology of concepts around AI robustness. We introduce three taxonomies to organize and describe
the literature both from a fundamental and applied point of view: (1) methods and approaches that address
robustness in different phases of the machine learning pipeline; (2) methods improving robustness in specific
model architectures, tasks, and systems; and in addition, (3) methodologies and insights around evaluating
the robustness of AI systems, particularly the tradeoffs with other trustworthiness properties. Finally, we
identify and discuss research gaps and opportunities and give an outlook on the field. We highlight the cen-
tral role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge they
can provide, and discuss the need for better understanding practices and developing supportive tools in the
future.
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1 Introduction

AI systems show potential and are expected to revolutionize existing workflows by combining
human- and non-human skills [21]. Yet, there is still little insight into how we should deal with the
tradeoffs of combining human and artificial agency, or the way in which these systems should be
assessed and held accountable [70]. Furthermore, concerns about bias [32], inscrutability [12], and
vulnerability [101] have also been raised. Consequently, several social actors, like the European
High-Level Expert Group, have highlighted the need for socio-political deliberation around the
design and governance of AI systems, and have defined principles for Trustworthy AI, i.e., the
Ethics Guidelines for Trustworthy AI [190].

One of the core principles of Trustworthy AI is robustness [70], defined in Machine Learning

(ML) as the insensitivity of a model’s performance to miscalculations of its parameters [158, 273]. Ex-
amples like Tesla’s Full Self-Driving mechanism erroneously identifying the moon as a yellow traf-
fic light,1 or Autopilot being fooled by stickers placed on the ground,2 show that AI systems might
be susceptible to errors and vulnerable to external attacks. This may result in undesired behavior
and decreased performance [255]. Given the application of AI systems in safety-critical areas (e.g.,
medical diagnosis [23]), it is paramount to design reliable systems, so that they can be properly and
safely integrated in the context of use. In response to this need, a growing body of literature focuses
on developing and testing robust AI systems. Methodologies toward robust AI have addressed ev-
ery phase of the ML pipeline, going from data collection and feature extraction, to model training
and prediction [255]. Such methodologies have also been applied to a wide range of tasks and ap-
plication areas, including (but not limited to) image classification [216] and object detection [44]
in Computer Vision, or text classification in Natural Language Processing (NLP) [116].

Considering the increasing efforts devoted to this field within Trustworthy AI, in this article, we
seek to analyze the progress made so far and give a structured overview of the suggested solutions.
Furthermore, we also aim to identify the areas that have received less attention, highlighting re-
search gaps, and projecting into future research directions. Our work differs from similar efforts in
three main ways. (1) As opposed to some previous work [37, 81, 255], we do not limit the scope of
our analysis to adversarial attacks. We argue that, as suggested by Drenkow et al. [64] or Liu et al.
[199], natural (i.e., non-adversarial) perturbations constitute a common real-world menace that
needs further attention. (2) As far as the application area is concerned, and contrary to surveys
solely focusing on tasks like Computer Vision [64] or architectures like Graph Neural Networks

(GNNs) [199], we do not limit our survey to any technology in particular. We rather conduct
our search in a task-agnostic way. Such an approach helps us identify the most prominent trends
within the field and compare the differences in effort and interest across applications as part of our
survey. (3) Most importantly, as opposed to previous work, which has predominantly focused on
surveying algorithm-centric solutions to AI robustness, we adopt a human-centered perspective
by additionally including terms like human computation or human knowledge (see Section 2.1) to
our search. We find that, even if there are already a few studies that implicitly involve humans

1https://www.autoweek.com/news/green-cars/a37114603/tesla-fsd-mistakes-moon-for-traffic-light/ (access 13 October
2022)
2https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf (access 13 Octo-
ber 2022)
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(e.g., crowdworkers, ML practitioners) in their pipelines (e.g., for ML diagnosis), these represent
a minority compared to algorithm-centric approaches. Furthermore, the studies that do include
humans in the loop tend to disregard the challenges that human-led approaches face in practice.
We, therefore, emphasize the potential that human-in-the-loop (HIL) approaches have for im-
proving AI robustness, while we highlight the need to understand human-led practices in order
to integrate robustness into existing workflows and tools. To inform such research opportuni-
ties, we advocate for a multidisciplinary approach and bring insights from human-centered fields,
such as explainable AI (XAI), crowd computing, or HIL ML. We, therefore, make the following
contributions:

(1) We summarize the main concepts around robust AI (Section 3). We consolidate the termi-
nology used in this context, disentangling the meaning and scope of different constructs.
We pay special attention to identifying the commonalities and differentiating aspects of the
used terms.

(2) We systematically summarize around 370 papers on robust AI and related concepts
(Section 2) and arrange them in three different taxonomies. First, we group papers that im-
prove robustness by addressing different aspects of the ML pipeline (Section 4). We iden-
tified three main aspects that the selected studies work on input data, in-model attributes,
and model post-processing aspects. Second, we discuss prior work that made progress in
improving robustness for specific architectures (e.g., GNNs), specific tasks (i.e., NLP and Cy-
bersecurity), and systems conceived within other fields of Trustworthy AI (i.e., explainable
and fairness-aware systems) (Section 5). We focus on these particular architectures, systems,
and fields as they have comparatively received little attention in previous surveys despite
the importance of robustness as a desired property. Third, we create a taxonomy related
to the assessment (e.g., through benchmarking or empirical studies) of robust AI systems
(Section 6).

(3) We identify and discuss disparate research efforts in each of the established fields and iden-
tify research gaps. Specifically, we make a special in-depth analysis of the opportunities
brought by one of the identified research gaps: the absence of human-centered work in ex-
isting methodologies (Section 7). We highlight the multidisciplinary nature of the robust AI
field and provide an outlook for future research directions, bringing insights from human-
centered fields (Section 8).

2 Survey Methodology: Paper Collection

In this chapter, we detail the process applied to collecting the final list of articles considered in
this literature review. This includes keyword collection and curation, querying multiple databases,
de-duplication, manual filtering, tagging, and analysis.

2.1 Collecting Papers

Defining Keywords. First, we curated the list of keywords to be used for querying articles. We
inspected key definitions of robustness and robust AI [39, 85, 174] in the context of Computer
Science and organized a preliminary list. We further enriched this list such that it covers aspects
related to the trustworthiness of AI systems and to human-centeredness (including human knowl-
edge) given the lack of a common viewpoint on robustness. Table 1 shows the complete list of
keywords used.

Querying Publication Databases. Secondly, we queried multiple bibliographical databases by gen-
erating all possible triples of keywords based on the groups we defined, e.g., “Robustness” AND
“Artificial Intelligence” AND “Explainability”, finally leading to 156 unique search queries. Articles

ACM Comput. Surv., Vol. 57, No. 6, Article 141. Publication date: February 2025.
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Table 1. The Groups of Keywords Considered in the Data Collection Process and the

Corresponding Keywords

Group Name Keywords

Fundamental Robustness, Robust
Scope Artificial Intelligence, Machine Learning, Neural Network

Context

Trustworthy, Stability, Resilience, Reliability, Accountability, Transparency, Reproducibility
Accuracy, Confidence, Performance, Design, Adversarial, Unknowns, Noise
Human Computation, Human Knowledge, Human-In-the-Loop, Human Interpretation, Knowl-
edge Base, Knowledge, Knowledge Elicitation, Reasoning
Explainability, Explanation, Interpretability, Interpretable

Fig. 1. Temporal distribution of the 35,800 unique papers published in the last 10 years. A growing trend of

published papers about Robust AI over the years was observed. The amount of papers collected in 2022 is

not to be considered relevant to this trend as the data was collected in July 2022.

have been collected in July 2022 through Publish or Perish3 by querying the following supported
bibliographical databases: Google Scholar, Scopus, Semantic Scholar, and Web of Science. More-
over, given the breadth of the literature on trustworthy and robust AI, we inspect literature from
the last 10 years, i.e., articles published between January 2012 and July 2022.

2.2 Filtering Papers

Pre-filtering. We collected about 100,000 papers distributed as follows: 31,000 from Google
Scholar, 18,450 from Scopus, 30,800 from Semantic Scholar, and 19,400 from Web of Science. Con-
sidering the breadth of the data collection, we sought to remove any duplicate entries in our results.
Papers that had the same title and authors were filtered out, resulting in 45,400 papers. Duplicates
that were undetected at this stage were discarded in the later ones. Then, papers published be-
fore the period of interest (January 2012 to July 2022) were filtered out, leading to 35,800 articles.
Figure 1 displays the time distribution of the collected papers. We observe a growing interest in
the considered topics over the years, which (partially) motivates the time constraints applied.

Further Inspecting Papers. At this stage, we manually inspected the abstracts of the collected pa-
pers to exclude the ones whose context or content require domain-specific expertise (e.g., health-
care), or deal with a notion of “robustness” that is not related to ML (e.g., signal processing). We
ended up with 1,800 papers. While inspecting papers, we marked them with specific keywords
(e.g., “Computer Vision” or “Loss Function”), to differentiate them in terms of content and type

3Harzing, A.W. (2007) Publish or Perish, available from https://harzing.com/resources/publish-or-perish

ACM Comput. Surv., Vol. 57, No. 6, Article 141. Publication date: February 2025.
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Fig. 2. Main concepts found through our analysis of the literature on Robust AI.

of publication (e.g., “Literature Review”). Consequently, we used those keywords to perform a fi-
nal filtering step in which the papers tagged with the least frequent keywords (i.e., appearing only
once) were excluded. Omitted keywords include: “audio signal” and “event detection”. Throughout
the entire process, we carefully analyzed the papers such that they contained significant or late
progress in the area. These include 94.1 % papers published in peer-reviewed venues, 1.9 % non-
archived peer-reviewed papers (i.e., accepted in workshops with no proceedings and published on
arXiv), and 4 % non-peer-reviewed papers (i.e., only published on arXiv). The non-peer-reviewed
papers in this survey have at least 50 citations if they were written before or in 2019 or at least 15 ci-
tations if they were written after 2019. In the end, this thorough inspection led to 560 papers that
were systematically analyzed, out of which around 370 papers were systematically summarized
and discussed.4 The list of collected, filtered, and summarized papers can be found on GitHub.5

We applied the same criteria when selecting and filtering additional papers for the discussion sec-
tions (Sections 7 and 8).

3 Overview of the Main Concepts Surrounding Robustness

From our collection of papers, we evinced that the notion of Robustness is ill-defined. A number of
ML sub-domains refer to robustness from different viewpoints. We clarify the relations between
these domains in Section 3.1. We also identify that a number of concepts directly related to robust-
ness are used in different ways across research papers (Figure 2). We disambiguate the interpre-
tation of related terms in Section 3.3. Finally, our analysis of the papers surfaced a few recurring
themes, introduced in Section 3.4, and used to organize our survey for which the structure and
primary references are summarized in Table 2.

3.1 The Various Definitions of Robustness

Given the broadness of the literature on robustness and the variety of contexts in which it is con-
sidered, addressed, and analyzed, we discuss and provide a common ground about the definitions
of robustness and its associated concepts. Particularly, robustness is generally defined as the insen-
sitivity of a model’s performance to miscalculations of its parameters [158, 273], with Nobandegani

4Due to space limit, we leave the discussions of some papers (about 30%) in the supplementary material.
5https://github.com/AndreaTocchetti/ACMReviewPaperPolimiDelft.git
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Table 2. Outline of the Article Structure and Corresponding References

Category Classification Sec. Topic References
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Im
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es
s

Processing the
Training Data 4.1 Generating Adversarial Attacks [1, 38, 38, 42, 45, 105, 105, 242, 252]

Augmenting Data for Adversarial
Robustness

[1, 4, 27, 41, 46, 56, 74, 118, 218, 226, 232,
240, 285]

& for Non-Adversarial Robustness [41, 74, 118, 157, 167, 173, 246, 277, 285]
Designing In-Model
Robustness Strategies

4.2 Improving Robustness through
Training

[48, 49, 86, 88, 134, 135, 155, 186, 215,
225, 230, 245, 253, 268, 289] (adversarial
training), [9, 14, 31, 40, 68, 92, 111, 113,
124, 126, 127, 137, 145, 151, 164, 184, 212,
222, 258, 260, 264, 287] (others)

Improving Robustness through Ar-
chitecture Design

[106, 108, 148, 256] (tweaking network
layers), [50, 133, 197] (inherent robust-
ness of networks), [57, 128, 135, 147]
(searching network architectures)

Leveraging Model
Post-Processing
Opportunities

4.3 Identifying Unnecessary or Unsta-
ble Model Attributes

[42, 73, 129]

Fusing Models [51, 172, 183, 218, 250, 266]

R
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u
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n
es

s
in

P
ra

ct
ic
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Fi

el
ds

Robustness for
Specific Architectures

5.1 Graph Neural Networks [29, 47, 71, 77, 107, 132, 168, 239, 276]
Bayesian Neural Networks [36, 142, 231]

Robustness for Specific
Application Areas

5.2 Robustness for Natural Language
Processing

[42, 66, 125, 172, 264, 284, 286]

Robustness for Cybersecurity [1, 2, 6, 8]
Robustness for Specific
Trustworthy AI Concepts

5.3 Robustness for Explainability [5, 13, 15, 60, 117, 153, 166, 237, 246, 278]
Robustness for Fairness [3, 15, 178, 244, 269]

R
ob

u
st

n
es

s
A

ss
es

sm
en

ts
&

In
si

gh
ts

Evaluation Strategies 6.1 Evaluation of Robustness [20, 65, 67, 76, 83, 91, 102, 116, 121, 122,
136, 185, 203, 205, 227, 247, 263, 265, 274,
280, 281]

Benchmarks [54, 58, 63, 82, 90, 139, 159, 169, 223, 283]
Metrics [35, 115, 203, 219, 249, 254, 263, 267]

(adv. robustness), [10, 24, 119, 162] (adv.
attacks)

Studies around
Proposed Robustness
Methods & Insights

6.2 Insights on Adversarial Robustness [103, 192] (comparisons), [195, 210,
228] (inner model), [116, 150, 189, 243]
(perturbations)

Insights on Natural Robustness [22, 288] (noise), [33, 59] (shifts)

Trade-Offs Between
Robustness and Other
Trustworthy AI Concepts

6.3 Trade-Off with Accuracy [144, 175, 216, 229]
Trade-Off with Fairness [26, 171, 257]
Trade-Off with Explainability [160, 252]

et al. [158] stating that robust models should be insensitive to inaccuracies of their parameters, with
little or no decline in their performance. Two main robustness branches have been identified: ro-
bustness to adversarial attacks or perturbations, and robustness to natural perturbations.

3.1.1 Adversarial Robustness. Adversarial Robustness refers to the ability of models to maintain
their performance under potential adversarial attacks and perturbations [283]. Adversarial pertur-
bations are imperceptible, non-random modifications of the input to change a model’s prediction,
maximizing its error [221]. The result of such a process is called an adversarial example, i.e., an
input x ′ close to a valid input x according to some distance metric (i.e., similarity), whose outputs
are different [38]. Such data is employed to perform adversarial attacks, whose objective is to find
any x ′ according to a given maximum attack distance [44]. The literature presents different classi-
fications of adversarial attacks: targeted and untargeted [43], and white-, grey-, or black-box [149].
Targeted attacks generate adversarial examples misclassified as specific classes, while untargeted
attacks generate misclassified samples in general. The main difference between white-, grey-, and
black-box attacks is the attacker’s knowledge about the model or the defense mechanism.

ACM Comput. Surv., Vol. 57, No. 6, Article 141. Publication date: February 2025.
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A similarity metric is often defined when generating attacks or evaluating robustness. Depend-
ing on the input domain, different metrics can be applied. These metrics are built as a function of a
parameter (usually denoted with the letter p) whose value influences its computation. For example,
Carlini et al. [38] define a generic p norm from which different metrics with different meanings are
derived. In their case, when p = 0 (L0 distance), the number of coordinates for which the valid and
perturbed input are different is measured; whenp = 2 (L2 distance), the standard Euclidean distance
between the valid and perturbed input is computed; when p = infinite (L∞ distance), the maximum
change to any coordinate is measured. A particular type of robustness is Certified Robustness that
guarantees a stable classification for any input within a certain range [52].

3.1.2 Natural Robustness. Natural Robustness (a.k.a. Robustness against natural perturbations)
is the capability of a model to preserve its performance under naturally-induced image corruptions
or alterations [64]. Natural Perturbations (a.k.a. Common Corruptions [90] or Degradations [79])
are introduced through different types of commonly witnessed natural noise [242] (e.g., Gaussian
noise in low lighting conditions [90]), and represent conditions more likely to occur in the real
world compared to adversarial perturbations [64]. Temporal Perturbations are natural perturba-
tions that hinder the capability of a model to detect objects in perceptually similar, nearby frames
in videos [194]. All these perturbations result in a condition where the distribution of the test set
differs from the one of the training set [112]. This condition is typically referred to in the literature
with overlapping concepts, namely distribution shift [59, 224], Out-of-Distribution (OOD) data
[80, 199], and data outside the training set [167].

3.2 Other Robustness-Related Terms

3.2.1 Generalization. Generalization is another widely used term in the robustness literature. In
general, it is defined as the model’s performance on unseen test scenarios [165] or as the closeness
between the population (or test error) to the training error, even when minimizing the training
error [156]. Two other types of generalization are also reported: adversarially robust [271] and
non-adversarial generalizations [80, 167, 251, 282]. While the first one refers to the capability of a
model to achieve high performance on novel adversarial samples, the second one is evaluated on
non-adversarial samples (e.g., natural perturbations [251, 282], distribution shifts [80, 167]).

3.2.2 Performance. Across the inspected literature, the term performance is employed with a
broad variety of meanings. Depending on the aspect of interest, it may refer to accuracy [64],
robustness [118], runtime [203], or precision [263]. Given such variety, the actual meaning of per-
formance will be addressed only when relevant to understand the concepts explained in the core
survey.

3.3 Domains Adjacent to Robustness

ML explainability, fairness, trustworthiness, and testing are four research domains recurring across
robustness literature. While there is no agreed upon definition of each of these fields and their
goals, and we acknowledge it is not possible and desirable in the scope of this survey to provide a
complete overview of these fields, we provide here explanations that are sufficient to understand
the relation these fields bear to robustness.

3.3.1 Explainability. ML explainability is the field interested in developing post-hoc (explain-
ability) methods and (inherently explainable) models that allow the internal functioning of ML
systems to be understandable to humans [39]. We identify three types of relations between the
explainability and robustness fields. A number of papers investigate how explainability methods
can be used in order to enhance the robustness of models (see Section 7.1.2). Another set of papers

ACM Comput. Surv., Vol. 57, No. 6, Article 141. Publication date: February 2025.
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investigates how robust existing explanability methods are to various types of perturbations (see
Section 5.3.1). A last set of papers instead studies how existing methods for enhancing robustness
trade off with the explainability of the models, and especially with the alignment between the
model features, and the features a human would expect the model to learn (see Section 6.3.3).

We also consider the field of (un)known unknowns [138] close to robustness, as they are typi-
cally caused by OOD samples. In this field, methods to identify and mitigate the presence of such
unknowns are developed and, while these methods typically fall within explainability [196, 233],
they are directly applicable to increase the robustness of a model.

3.3.2 Fairness. ML fairness in the broad sense is the field interested in making the outputs
of an ML model non-harmful to the humans who are subject to the decisions made based on
these outputs. Researchers in this field have developed a number of fairness metrics [236] and
methods for mitigating unfairness [140]. We identify two types of relations between this field and
robustness, similar to the relations between explainability and robustness: robustness of fairness
metrics and methods to different types of natural and adversarial perturbations (see Section 5.3.2)
and tradeoffs caused by the application of robustness methods (see Section 6.3.2).

3.3.3 Testing. ML testing [275] is a field emanated from software testing. It consists in devel-
oping methods and tools to identify and characterize any discrepancy between the expected and
actual behavior of an ML model. While this field bears a broader scope, since brittleness to different
perturbations represents one of the many types of unexpected behavior of a model, it is also narrow
as it is solely interested in detecting the issue, but not its mitigation. Naturally, methods developed
in this field could potentially be adapted in the future to better detect robustness-related issues.

3.4 Themes in Relation to These Robustness Definitions and Related Domains

Analyzing the collected publications through a thematic analysis approach [30], we iteratively and
collaboratively identified three primary themes and three recurring categories within each of these
themes (nine categories in total) that were deemed worth emphasizing (summarized in Figure 3).

3.4.1 Methods and Approaches for Improving Robustness. The most studied methods to achieve
robustness are described in Section 4. They are categorized according to the stage of the ML
pipeline to which they apply, that is either the processing of the training dataset, the model creation
stage, or the post-processing of the trained model. Within each of these stages, the approaches vary
across publications, and were further clustered into groups based on types of robustness (e.g., ad-
versarial or natural perturbations), and specific ML components (e.g., training procedure or model
architecture) they apply to. For each of the groups, we further delve into sub-groups based on
the types of transformation applied to the component (e.g., different loss functions or regulariz-
ers), and describe the main similarities and differences across transformations (e.g., in terms of
technical approach and performance).

3.4.2 Robustness in Practical Fields. While a majority of papers concentrate their studies and
the evaluation of their robustness methods around computer vision or do not mention a specific
field, we also identify a consequent number of papers that bear different focuses. We separated
these papers from the ones discussed above, because they present particularities that are worth
investigating. We categorize these papers broadly based on their research fields, and discuss them
in Section 5. Within each of the categories, we describe the most researched sub-types for which
we retrieved the most literature. Particularly, we identified focuses relating to specific model types
(GNNs and Bayesian Learning), specific application areas (NLP, and Cybersecurity), and specific
concepts within the trustworthy AI domain (explainability and fairness). The latter is particularly
interesting because it differs from other works in its objectives. Contrary to all other papers which
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Fig. 3. The three themes and their sub-categories that shape our survey.

investigate model performance under perturbations, it instead investigates the evolution of fair-
ness and explanations of a model under the effect of perturbations.

3.4.3 Robustness Assessment and Insights. The last theme we identified, described in Section 6,
revolves around the assessment of robustness of a system. Particularly, the importance of devel-
oping procedures (methodologies, benchmarks, and metrics) to evaluate robustness emerged from
the analysis and these procedures revealed to vary greatly across publications (be it publications
whose primary contribution is an evaluation procedure, or a robustness method that requires to
be evaluated through a defined procedure). We also identified a set of publications whose primary
objective is to perform studies to evaluate existing robustness methods and collect insights to fur-
ther characterize in which conditions each type of method performs best. Finally, the last recurring
theme was tradeoffs, as many papers that propose or evaluate robustness methods tackle tradeoffs
while striving to achieve other objectives, be it the model performance or the other trustworthy
AI concepts identified earlier. The publications in this section of the survey are typically falling
under the umbrella of computer vision publications, or of the different fields highlighted above.

4 Methods and Approaches for Improving Robustness

A large fraction of the literature is devoted to fundamental methods to improve the robustness
of AI models across their lifecycle: training data augmentation with malicious samples, ad-hoc
training procedures and architectures, and post-training pruning and model fusion.

4.1 Processing the Training Data

With the final aim of improving model robustness against adversarial attacks, noise, or com-
mon perturbations, several approaches focus on generating perturbations to perform data
augmentation.
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4.1.1 Generating Adversarial Attacks. A number of papers tackle the challenge of developing
methods to generate adversarial attacks that prove deep learning models brittle. The proposed
methods vary with regard to three main objectives. (a) The type of task targeted (e.g., NLP model
[42, 105], image classification [38], or object detection models [45]). (b) The type of constraints
imposed on the attack: attack on the physical space before capturing the digital data sample (e.g., by
sticking images patches on the physical object to be recognized [242], or by processing this digital
input sample [45]); general attack or attack that targets a particular component of the model (e.g.,
rationalizers of rationale models [42]); attacks that preserve certain properties of the input sample
such as human consistency (e.g., Jin et al. [105] talk about human prediction consistency, semantic
similarity, and text fluency with regard to the generated adversarial text samples), additionally to
satisfy the constraint on similarity to the original sample [105]. (c) The type of brittleness targeted:
the model makes a different (wrong) prediction when the transformed sample is inputted, or the
explanations of the prediction also becomes flawed (i.e., the identified important features are not
the correct ones) [252]. The works then differ by the approach taken to generate the attacks, be it
through different optimization instances (objective functions) they use to find adversarial instances
that fit the problem [38, 45], by leveraging Generative Adversarial Networks (GANs) [1], or
through a rule-based algorithmic approach [42, 105].

4.1.2 Augmenting Data for Adversarial Robustness. Most of the identified literature focuses on
transforming [27, 41, 226, 285], generating [4, 46, 118, 218, 240], or employing ready-to-use [56]
data and/or adversarial samples to extend or create datasets to train more robust models. Such a
data augmentation process can successfully improve adversarial robustness [41, 56, 118, 218, 226,
240, 285] and adversarial accuracy [4], while sometimes reducing time costs [41], and adversarial
attack success rate [27]. When defending against adversarial attacks, GAN-based solutions are
proven useful in achieving such an objective [1, 74, 218, 240]. In particular, they are employed
to generate adversarial samples [1], perturbations [240], and boundary samples [218] to defend
the networks against adversarial attacks. While most methods apply complex transformations to
improve robustness, simple transformations, like rotation [226] and image background removal
[232], are still proven effective. However, extending the training set is not always enough by itself.
Hence, ad-hoc training procedures [41, 46] must be set in place to select [46] and adapt [41] the
optimal training data to achieve adversarial robustness.

4.1.3 Augmenting Data for Non-Adversarial Robustness. Not all researchers aim to enhance mod-
els’ defense against adversarial robustness. Noise [173], non-adversarial perturbations [74, 118, 157,
285], spurious correlations [41, 246], and distribution shift [167, 277] hinder the performance and
resilience of models. In tackling such impairments, human rationale collection allows the gen-
eration of new datasets [167], counterfactual-augmented data [41] and the definition of proper
perturbation levels [157], consequently improving performance [41], and model [157], and distri-
butional shift [167] robustness. Custom [173] and pre-existing approaches are applied to perform
data augmentation, consequently improving noise robustness [173] and performance [173]. On the
other hand, data transformation [74, 285] and training [118] approaches are applied to improve
model robustness [74, 118, 285] and reduce training time [74].

4.2 Designing In-Model Robustness Strategies

4.2.1 Improving Robustness Through Training. Training plays an integral part in creating
ML models. Concerning robustness, Adversarial Training is the de-facto standard for building
robust models. The core intuition behind it is to complement natural data with perturbed one
such that models incorporate information about data that better represent real-world scenarios’
variability. In this section, we discuss adversarial training approaches that adaptively change
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the perturbation magnitude, allow for the learning of robust features, or include novel loss or
regularization functions. Finally, we discuss approaches alternative to adversarial training.

Adversarial Training. Adversarial Training has proven to be a fundamental tool to build robust
models and that is reflected in the amount of literature available for it: researchers have focused
on improving the whole process and proposed a plethora of algorithms [86, 135, 215, 225, 245], bor-
rowing different ML paradigms like self-supervised and unsupervised learning [155, 230], that are
applicable to a variety of tasks (e.g., content recommendation [253, 268]). In this context, Projected

Gradient Descent (PGD) [135] is a common white-box (i.e., the attacker knows everything about
the model) algorithm. On the same note, Terzi et al. [225] and Gupta et al. [86] propose extensions
of PGD by using Wasserstein distance in the adversarial search space, by replacing the initial adver-
sarial training stages with natural training, or by encouraging the logits from clean examples to be
similar to their adversarial counterparts, respectively. While training models with natural pertur-
bations was proven effective in improving robustness, researchers demonstrated that generating
and employing dynamic perturbations is another effective way of building robust models. Madaan
et al. [134] and Cheng et al. [49] propose methods to generate dynamic perturbations at the level of
single data instances that are then controlled by enforcing label consistency in the former case, and
smooth labels in the latter. Differently, Rusak et al. [186] devise a neural network-based adversarial
noise generator to tackle the online generation of perturbations. On the other hand, several works
focus on leveraging other types of information. For example, Zoran et al. [289] adversarially train
and analyze a neural model incorporating a human-inspired, visual attention component guided by
a recurrent top-down sequential process. Shifting to model outputs, works from Wang et al. [245]
and Stutz et al. [215] focus on differently treating misclassifications and rejecting low-confidence
predictions. Similarly, Haase-Schütz et al. [88] and Cheng et al. [48] deal with progressively tuning
labels starting from unlabelled data and through smoothing, respectively.

Beyond Adversarially Training. Other than directly employing enriched data to perform adver-
sarial training, researchers devised other methods to enhance model robustness. These include
techniques such as learning more robust feature representations, and training models through
adapted regularizers and loss functions. Scholars drove models to learn robust feature represen-
tations in multiple ways, from designing novel methods altogether [113] to employing additional
classifiers [14]. For example, Yang et al. [264] to apply perturbations on textual embeddings such
that the corresponding words would be drawn toward positive samples rather than adversarial
ones. Bai et al. [14] take a modelling approach to obtain robust features through the addition of
auxiliary models to identify which channels in convolutional neural networks (CNNs) are more
robust. Regularization is another tool that ML engineers can use when building models and, as such,
it has also been used to make them more robust. Li and Zhang [124] propose a PAC-Bayesian ap-
proach to tackle the memorization of training labels in fine-tuning. Chan et al. [40] suggest an ap-
proach that optimizes the saliency of classifiers’ Jacobian by adversarially regularizing the model’s
Jacobian to resemble natural training images. Concerning the usage of adapted loss functions for
robustness, various functions were used to incorporate specific objectives: triplet loss [137], mini-
mizing distance between true and false classes [127], mutual information [258], consistency across
data augmentation strategies [222], perturbation regularizers [260], adding maximal class separa-
tion constraints [151], combining multiple losses [111] (e.g., Softmax and Center Loss), or approx-
imating existing losses (e.g., Categorical Crossentropy) [68]. It is worth noting that loss functions
tailored for robustness are not exclusive to models trained in isolation, and robust and natural mod-
els (acting as regularizers) can be jointly trained [9]. Conversely to these methods, researchers
have studied alternative training procedures to adversarial training. Staib and Jegelka [212] has
analyzed the relationship between adversarial training and robust optimization, proposing a

ACM Comput. Surv., Vol. 57, No. 6, Article 141. Publication date: February 2025.



141:12 A. Tocchetti et al.

generalization of the former, which leads to stronger adversaries. Attention is also directed to
leveraging input and output spaces. Li et al. [126] consider training robust models by leveraging
the adversarial space of another model. Differently, Mirman et al. [145] and Rozsa et al. [184]
leverage abstract interpretation and evolution stalling, respectively. The former generates abstract
transformers to train certifiably robust models. The latter progressively tempers the contributions
of correct predictions toward the loss function. Finally, Mirman et al. [145], Zi et al. [287], and Pa-
pernot et al. [164] leverage Distillation (a knowledge transfer technique in which a smaller model
is trained to mimic a larger one) [31, 92] to obtain robust models.

4.2.2 Improving Robustness Through Architecture Design. Researchers have also investigated
ways to make neural models robust from an architectural perspective.

Tweaking Neural Network Layers. We identified that a considerable amount of effort is directed
toward Computer Vision applications, with many solutions aimed at integrating additional mech-
anisms of Convolutional Networks to enhance their robustness. Many adversarial attackers create
harmful data instances by injecting noise perturbations in the input of the model. In line with this,
many researchers have attempted to introduce mechanisms that take advantage of this informa-
tion or directly try to mitigate the repercussions of such perturbations. For example, Jin et al. [106]
introduce additive stochastic noise in the input layer of a CNN and re-parametrize the subsequent
layers to take advantage of this additional information. Alternatively, Momeny et al. [148] intro-
duce a CNN variant that is robust to noise by adapting dynamically both striding of convolutions
and the following pooling operations. Work by Xu et al. [256] operate on the classification layer
by constraining its weights to be orthogonal. Operating on network layers is not exclusive to the
aforementioned discriminative models, but it has also found applications for generative models.
For example, Kaneko et al. [108] propose a method to obtain GANs that do not require a large
amount of correctly-labeled instances but still maintain a consistent behavior. They do this by in-
tegrating a noise transition model that maps clean and noisy labels which leads to GANs that are
resilient to different magnitudes of label noise.

Leveraging the Inherent Robustness of Spiking Neural Networks (SNN). In parallel to such enhance-
ments at the architectural level, a growing trend is represented by SNN [133]. SNNs are a particular
type of neural network that mimics the behavior of biological neurons by incorporating the no-
tion of time and both operating with and producing sequences of discrete events (i.e., spikes). Con-
cretely, a neuron in a SNN transmits information only when its value surpasses a certain threshold.
This particular kind of neural network was found to be inherently robust to certain types of adver-
sarial attacks. Sharmin et al. [197] test SNNs directly against gradient-based (black-box) attacks
and find that such architectures perform better than non-spiking counterparts without any kind of
adversarial training. Inspired by neuroscience, Cheng et al. [50] formulate Lateral Interactions (i.e.,
intra-layer connections) for SNNs which provide both better efficiency when processing a series
of spikes as well as better resistance to injected Gaussian noise.

Searching Neural Architectures. Connected to handcrafting robust neural architectures, scholars
have started applying Neural Architecture Search (NAS) to such a problem. In general, NAS
is an automatic procedure aimed at discovering the best architecture (e.g., in terms of accuracy)
for a neural network for a specific task. Devaguptapu et al. [57] analyze the effects that a varying
amount of parameters have on adversarial robustness: while NAS can be an alternative to adver-
sarial training, handcrafted models are more robust on large datasets and against stronger attacks
like PGD [135]. Their insights motivate other works in this space, that focus on strengthening
NAS approaches by including different forms of regularization on the smoothness of the loss land-
scape [147], or the sensitivity of the network [61, 97]. A different take on using NAS is the one
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of Li et al. [128]: architecture search was blended with existing models (e.g., ResNet) to find the
minimal increase in model capacity allowing it to withstand adversarial attacks.

4.3 Leveraging Model Post-Processing Opportunities

Robustness can also be improved through methodologies applied after training the model.

4.3.1 Identifying Unnecessary or Unstable Model Attributes. Pruning (i.e., the act of removing
neurons and/or connections from a model) has become a popular compression approach that aims
at reducing the computational cost of training models [129]. Recent literature in Robust AI has
explored the use of pruning techniques or methodologies inspired by pruning to enhance model
robustness [42]. Chen et al. [42], for instance, design a methodology for selectively replacing ReLU
neurons that are identified as unstable (i.e., neurons that operate in the flat area of the function)
and insignificant with linear activation functions that help improve robustness at a minimal per-
formance cost. In a similar vein, additional mechanisms have been suggested for dealing with
unnecessary and/or unstable system attributes. For instance, Gao et al. [73] introduce DeepCloak,
a novel method to detect and remove unnecessary classification features in deep neural networks,
consequently reducing the capabilities of attackers to generate such attacks.

4.3.2 Fusing Models. Another approach for achieving post-model-training robustness consists
of plugging additional models into a trained model. These additional models can be used to identify
and deal with problematic data instances (e.g., OOD, mistaken [172], noisy [183], or adversarially
modified [266] occurrences). In the first case, in the context of NLP, Pruthi et al. [172] attach a task-
agnostic word recognition model to a classification model as a means to defend the main classifier
against spelling mistakes. In the context of Computer Vision, Ye et al. [266] use an additional classi-
fier to determine real vs. adversarially manipulated data instances. This additional classifier would
receive an overlap of the data instance and its saliency map. Furthermore, applying model fusion
to infected models allows comparing the robustness of small models with respect to compression
techniques [250]. A prominent line of work in this field consists in using GANs as auxiliary mod-
els. This strategy has been used for dealing with input data [218] and models [51]. For the former,
Sun et al. [218] use a Boundary Conditional GAN to generate boundary samples. These samples
have true labels and are near the decision boundary of a pre-trained classifier. For the latter, Choi
et al. [51] propose Adversarially Robust GAN (ARGAN) that trains the generator model to re-
flect the vulnerability of the target neural network model against adversarial examples and hence
optimizes its parameter values.

5 Robustness in Practical Fields

While in Section 4, we discussed literature that improved AI robustness by working on different
phases of the ML pipeline, in the current section, we discuss prior work that made progress in
improving robustness for specific model architectures, tasks, and systems. We found a number of
methods being tailored for specific AI architectures, addressing domain-specific needs (e.g., word
spelling for NLP), or bridging the gap with non-functional requirements of Fairness and Explain-
ability. These less explored settings are later discussed in 7.1.

5.1 Robustness for Specific Architectures

5.1.1 Graph Neural Networks. A number of papers investigate how to increase the robustness
of specific types of model architectures. One of the most prominent ones is GNNs, given their
high susceptibility to small adversarial perturbations. For example, on the problem of link predic-
tion on knowledge graphs, Pezeshkpour et al. [168] propose an attack strategy aimed at finding
the minimal perturbation necessary to produce a label change. Differently, the approach by Lou
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et al. [132] determines controllability and connectivity robustness (i.e., how well a system can keep
its connectedness and controllability against node- or edge-removal attacks) by compressing the
high-dimensional adjacency matrix before feeding it to a CNN to perform the robustness predic-
tion. Fox and Rajamanickam [71] investigate the impact of structural noise on the robustness of
GNN and find them to be weak to both local and global structural noise. Geisler et al. [77] focus
on particularly large graphs and devise both high-efficacy attack and low-memory footprint de-
fense strategies, enabling works on large networks at scale. Finally, attention has also been paid
to formally certifying the robustness of GNN [29, 239].

Interestingly, there have also been several proposals for new GNN frameworks with better ro-
bustness characteristics by design. For example, Jin et al. [107] establish a framework to jointly
learn clean graph structures from perturbed ones as well as the parameters for a GNN that is
robust to adversarial attacks by preserving selected low-rank, sparsity, and feature smoothness
properties. Instead, [47] devised a framework that leverages similarity metrics and adaptive reg-
ularization techniques to jointly learn graph structure and graph embeddings. Differently, Zhang
and Lu [276] introduce a framework where robustness to noise is achieved by means of an auxiliary,
(node-level) masked model for neighborhood aggregation.

5.1.2 Bayesian Neural Networks. Many adversarial attack strategies are based on identifying
directions of high variability. Since such variability can be intuitively linked to uncertainty in the
prediction, Bayesian Neural Networks (BNNs) are naturally of interest for robustness research.
Similarly, Carbone et al. [36] analyze BNN to show that they are robust to gradient-based attacks.
Vadera et al. [231] focus on different inference methods and attacks whose goal is leading the model
misclassifications, finding that Markov Chain Monte Carlo inference has excellent robustness to
a variety of attacks. Finally, Miller et al. [142] aim to evaluate robustness by extracting label un-
certainty from the object detection system via dropout sampling and find that the estimated label
uncertainty can be used to increase performance under open-set conditions.

5.2 Robustness for Specific Application Areas

5.2.1 Robustness for NLP. The robustness of NLP systems is paramount. Adversarial attacks
and training both represent active areas of research in recent years and aim to make NLP models
less susceptible to attacks (e.g., word-level perturbations). As such, a multitude of approaches have
been proposed specifically for this domain.

Zheng et al. [284] present an approach to study both where and how parsers make mistakes
by searching over perturbations to existing texts at the sentence and phrase levels. Furthermore,
they design algorithms to create such examples for white-box and black-box models. Instead, Yang
et al. [264] propose a method designed to tackle word-level adversarial attacks by pulling words
closer to their positive samples while pushing away negative ones. They find that their method
improves model robustness against a wide set of adversarial attacks while keeping classification ac-
curacy constant. Similarly, Du et al. [66] study the weakness of many state-of-the-art NLP models
against word-level adversarial attacks and propose Robust Adversarial Training to combine adver-
sarial training and data perturbation during training. Pruthi et al. [172] look to combat adversarial
misspellings by attaching a word recognition model to the classification model. They find that the
adversary can degrade the performance of a text classifier to the point where it is equivalent to ran-
dom guessing just by altering two characters per sentence. Concerning noisy text, Zhou et al. [286]
employ multi-task learning, where a transformer-based translation model is augmented with two
decoders with different learning objectives. Similarly, Li et al. [125] use adversarial, multi-modal
embeddings and neural machine translation to denoise input samples, making it effective against
adversarially obfuscated texts. Finally, Chen et al. [42] found promising (albeit highly variable)
results for models capable of generating rationales for their predictions.
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5.2.2 Robustness for Cybersecurity. As AI finds increased interest in the field of Cybersecurity,
the robustness of the overall system is crucial to achieving a satisfactory resistance to intelligent
attacks. A significant focus has been the robustness of malware detection. For instance, Abusnaina
et al. [2] improve malware classifier accuracy by augmenting training data with altered behavioral
Control Flow Graphs extracted from the attacked code. In this direction, more specific research
has been conducted around selected operating systems and platforms Anupama et al. [8] first use
the Fisher score to identify and select the most relevant attributes for a classifier and subsequently
develop three different adversarial attack generation approaches.

Beyond this, defenses against distributed denial-of-service (DDoS) attacks have been studied
through the lens of robustness as well. Abdelaty et al. [1] present an adversarial, GAN-based train-
ing framework to produce strong adversarial examples for the DDoS domain to exploit the weak-
nesses of Network Intrusion Detection Systems. Adversarial samples are produced by combining
GAN-generated and benign DDoS samples. Instead, Amarasinghe et al. [6] apply Layer-wise Rel-
evance Propagation to the trained anomaly detector, yielding relevance scores for each individual
feature.

5.3 Robustness for Specific Trustworthy AI Concepts

5.3.1 Robustness for Explainability. Robustness has been widely discussed in the context of
explainability methods as well [60, 117]. Explainability is regarded as a fundamental aspect to
foster trust in AI systems. However, explainers have been found to be as fragile as the models they
strive to describe [207]. Thus, research around robust explanations is critical for Trustworthy AI.

Zhang et al. [278] proposed an approach to explore the input space to compute the percentage
of inputs on which the prediction can be consistently explained by the height of the decision
tree used to explain a neural network’s prediction. However, their result is inconclusive as it may
seem tied to imbalances in the data used. In a similar vein, Nanda et al. [153] propose a scalable
framework using machine-checkable concepts to assess the quality of generated explanations with
respect to robustness, specifically their vulnerability to adversarial attacks. Instead, Alvarez-Melis
and Jaakkola [5] define a novel notion of robustness based on the point-wise, neighborhood-based
local Lipschitz continuity. Gradient- and perturbation-based interpretability methods are evalu-
ated, revealing the non-robustness of such practices and the high instability of perturbation-based
methods. Atmakuri et al. [13] focus on understanding the adversarial robustness of explanation
methods in the context of text modality. In particular, they utilize saliency maps to generate
adversarial examples to evaluate the robustness of the model of interest. They find the used
Integrated Gradient explanation method is weak against misspelling and synonym substitution
attacks.

Robustness for Counterfactual Explanations. Multiple works address the robustness of counter-
factual explanations for adversarial inputs. Virgolin and Fracaros [237] explore how to improve
robustness by giving a formal definition of what it means to be robust toward perturbations and
implementing this definition into a loss function. To test this definition, they release five datasets
in the area of fair ML with reasonable perturbations and plausibility constraints. They find that
robust counterfactuals can be found systematically if we account for robustness in the search pro-
cess. Furthermore, Pawelczyk et al. [166] explore counterfactual explanations by formalizing the
similarities between popular counterfactual explainers and adversarial example generators, iden-
tifying conditions when they are equivalent. On the other hand, Bajaj et al. [15] generate robust
counterfactual explanations on GNNs by explicitly modeling the common decision logic of GNNs
on similar input graphs. The robustness of the explanations is due to the common decision bound-
aries being derived from several, similar input graphs. Finally, the generation of robust text-based
counterfactual explanations has also been studied for NLP tasks [246].
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5.3.2 Robustness for Fairness. A key attribute of any system to be put into production is fair-
ness. The relationship between fairness and robustness, and how one contributes to the other, has
been receiving increased attention. Rezaei et al. [178] aim to make classifications that have robust
fairness without relying on previously labeled data, as these may carry some inherent biases. Wang
et al. [244] study the effect of relying on noisy protected group labels, providing a bound on the
fairness violation concerning the true group. Similarly, Yurochkin et al. [269] propose an adversar-
ial approach to fairness, using a distributionally robust approach to enforcing individual fairness
during training. Furthermore, there have also been efforts to improve the fairness of graph-based
counterfactual explanations. For example, Agarwal et al. [3] aim to establish a connection between
counterfactual fairness and graph stability by developing layer-wise weight normalization and en-
forcing fairness and stability in the objective function. They see increases in fairness and stability
without a decrease in performance.

6 Robustness Assessment and Insights

In parallel to developing novel methods to enhance model robustness, prior work devised evalua-
tion procedures, extensive benchmarks, and empirical studies to assess the robustness AI models.
Given the diversity of the suggested methods, in this section, we cover such efforts and high-
light the lessons learnt when Robustness intersects other Trustworthy AI concepts: Fairness and
Explainability.

6.1 Evaluation Strategies

6.1.1 Evaluation of Robustness. We found most methodologies around evaluating robustness to
either compute a safe radius [116, 185] or region [83] within which the model performs robustly,
or they compute complementary, error region [280]. Abstract Interpretation, i.e., a theory which
dictates how to obtain sound, computable, and precise finite approximations of potentially infinite sets
of behaviors [76], enables robustness evaluation when combined with techniques like constraint
solving [263] and importance sampling [136]. Other evaluation approaches reformulate the robust-
ness assessment problem from different perspectives. Tjeng et al. [227] formulate the verification
of the robustness against adversarial attacks as a mixed integer linear program by expressing prop-
erties like adversarial accuracy as a conjunction, or disjunction, of linear properties over some set
of polyhedra. Webb et al. [247] statistically evaluate robustness by estimating the proportion of
inputs for which a defined adversarial property (i.e., an adversarial condition associated to a func-
tion that evaluates its violation) is unsatisfied (i.e., there are no counterexamples violating such a
property). This reframing is useful to widen the variety of solutions that can be applied to assess
robustness, consequently improving their scalability [227, 247], computational speed [227, 265],
and enabling the application of pre-existing tools [91].

Evaluation of Certified Robustness. Much attention has also been devoted to evaluating certified
robustness [65, 102, 121, 122, 203, 205, 281]. To this end, researchers focus on the efficient
computation of robustness bounds [65, 121, 281] while also improving the training procedure
to achieve efficiently certifiable [281], or ready to certify [102], models. Deterministic [122]
and Random [67] Smoothing approaches have also proven to be effective in evaluating L1

[122] and L2 robustness. Nevertheless, overapproximation [203], orthogonalization relaxation
[205], and regularization [102] have also been successfully applied to improve the computation
of certifiable bounds in adversarial settings. Moreover, Zhang et al. [274] strive to generalize
certification techniques to non-piecewise linear activation functions. Finally, additional works
have focused on certifying robustness against random input noise from samples and geometric
robustness [20].
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6.1.2 Benchmarks. In addition to novel evaluation methods, some works also propose compre-
hensive benchmarks—encompassing approaches, datasets, and pipelines—to evaluate model ro-
bustness against selected sets of attacks. In Computer Vision, robustness against various types of
adversarial attacks [63, 82, 169] and common corruptions [90, 139], including noise [90, 283], has
been evaluated through benchmarking on datasets [90, 139, 169], with custom measures [63, 90],
or using comprehensive frameworks [223]. In the first case, pictures are altered through adversar-
ial or common perturbations (e.g., noise, blur) [90, 139, 223], and either generalizability [139] (i.e.,
whether the model can adequately classify newly perturbed pictures) or its behavior by means of
custom metrics [63, 90] are evaluated. A few benchmarks have also been applied in the context
of graph networks. For instance, Zheng et al. [283] develop scalable datasets to standardize the
process of attack and defence, covering graph modification and graph injection attacks.

While some benchmarks focus on evaluating the effectiveness of defence methods [63, 283],
others focus on the intrinsic robustness of the architecture [54, 223]. Tang et al. [223] benchmark
architecture design and training techniques against adversarial and natural perturbations, and
system noise through a comprehensive platform including pre-trained models and materials dedi-
cated designing robust DNNs. Instead, Croce et al. [54] focus on resource availability and organize
evaluation methods and robust models for researchers to use. Note that most benchmarks use well-
known datasets (e.g., MNIST or ImageNet). In this sense, some authors have argued that implicitly
assuming the data is correct should not be lightly accepted as it may influence the benchmarking
process and results [159]. From the broader perspective of Trustworthy AI, evaluating model ro-
bustness can be seen as a part of a process to evaluate fairness. Driven by such an objective, Ding
et al. [58] create a series of datasets to benchmark their fairness with respect to noise and data
distribution shifts.

6.1.3 Metrics. To evaluate model robustness, not only it is essential to choose the proper
method, but it is also fundamental to have metrics that properly represent model robustness, attack
efficacy, and computational costs. Most of the literature focuses on describing metrics to evaluate
the robustness of networks against adversarial attacks [249, 267]. These metrics are generated by
either treating the robustness analysis as a local Lipschitz constant estimation problem [249], or by
qualitatively interpreting the adversarial attack and defence efficacies through loss visualization
[267]. Particularly, the former [249] aims to disentangle the relationships between the evaluation
process and the model or attack employed, leading to model-agnostic and attack-agnostic metrics.
Besides, while most of the literature addresses robustness in Computer Vision, a small part of the
literature discusses robustness in other contexts. In NLP, extending robustness through a metric
aligned with linguistic fidelity has proven effective in improving performance on complex linguis-
tic phenomena [115]. Recent research [35] has denoted the lack of proper robustness metrics for
tree-based classifiers. Such scarce findings highlight the need for creating sound and robust met-
rics in less covered contexts. Another relatively unexplored research area revolves around prac-
tical, computational aspects like: enhancing methods’ precision in computing robustness bounds
[203, 263], reducing their computational complexity [219], or execution time [254].

Instead, other researchers focus on suggesting metrics for different aspects of adversarial attacks,
devising approaches for evaluating the convergence stability of adversarial examples generation
[119] and comparing adversarial attack algorithms [24]. Beyond the necessity for metrics to as-
sess model robustness, other metrics have proven useful in elucidating the relationships between
robustness and adversarial examples [10] and accuracy [162].

6.2 Studies Around Proposed Robustness Methods and Insights

6.2.1 Insights on Adversarial Robustness. Studying the adversarial robustness of different ML
techniques has been a persistent research focus in recent years.
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Based on Comparisons. Beyond formal methods and frameworks, there are several examples of
papers empirically evaluating robustness through comparison [103, 192]. For instance, Jere et al.
[103] compared the generalization capabilities of CNNs and their eigenvalues and further com-
pared what features are exploited by naturally trained and adversarially trained models. They
found that for the same dataset, naturally trained models exploit high-level human-imperceptible
features and adversarially robust models exploit low-level human-perceptible features. Another
example in this line is the work by Sehwag et al. [192] who inspected the transferability of the
robustness of classifiers trained on proxy distributions from generative model to real data distribu-
tion, discovering that the difference between the robustness of classifiers trained on such datasets
is upper bounded by the Wasserstein distance between them.

Based on the Investigation of Activation Function and Weights Perturbations. There have been sev-
eral works studying the robustness of models under perturbation of weights or due to changes in
activation functions. For example, Tsai et al. [228] studied the robustness of feed-forward neural
networks in a pairwise class margin and their generalization behavior under different types of
weight perturbation. Furthermore, they designed a novel loss function for training generalizable
and robust neural networks against weight perturbation. Song et al. [210] showed that adversarial
training is not directly applicable to quantized networks. They proposed a solution to minimize
adversarial and quantization losses with better resistance to white- and black-box attacks. An-
other work that focused on such attacks is Shao et al. [195], who studied the robustness of vision
transformers against adversarial perturbations under various black-box and white-box settings.

Based on Language Perturbations. Diverse strategies have been applied in the context of the
robustness of NLP models. More commonly, these deal with synthetic character-level [150] or
word-level [116, 150] perturbations of text samples. Beyond lexical changes, Sanchez et al. [189]
explored the robustness of Natural Language Inference models on semantic perturbations. Regard-
less, these works found existing models to be fragile even for small perturbations. Finally, Wang
et al. [243] resorted to human-generated annotations to compile a dataset for robust sentiment
classification.

6.2.2 Insights on Natural Robustness. Substantial research has been devoted to model robust-
ness to noise and OOD data, both prevalent in real-world settings.

Based on Robustness to Noise. A prominent line of work is evaluating robustness of AI systems
against noise [22, 288]. Some examples in this area include the study conducted by Ziyadinov and
Tereshonok [288], who evaluated whether training CNNs using noisy data increases their gen-
eralization capabilities and resilience against adversarial attacks. They found that the amount of
uncertainty in the training dataset affects both the recognition accuracy and the dependence of the
recognition accuracy on the uncertainty in the testing dataset. Furthermore, they showed that a
dataset with such uncertainty can improve recognition accuracy, consequently enhancing its gen-
eralizability and resilience against adversarial attacks. Bar et al. [22] also evaluated the robustness
of deep neural networks to label noise by applying spectral analysis. The authors demonstrated
that regularizing the network Jacobian reduces the high frequency in the learned mapping and
show the effectiveness of Spectral Normalization in increasing the robustness of the network, in-
dependently from the architecture and the dataset.

Based on Robustness to Differences in Distributions. Another area of interest is studying differ-
ences in data distributions. On the problem of object-centric learning, Dittadi et al. [59] discovered
that the overall segmentation performance and downstream prediction of in-distribution objects
is not affected by a single OOD object. On the other hand, Burns and Steinhardt [33] studied
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adaptive batch normalization, which aligns mean and variance of each channel in CNNs across
two distributions . They found that for distribution shifts that do not involve changes in local
image statistics, accuracy can be degraded because of batch normalization.

6.3 Tradeoffs Between Robustness and Other Trustworthy AI Concepts

6.3.1 Tradeoff with Accuracy. A key question to be asked when analyzing the robustness of a
system is what the impact of the changes is on the accuracy of the model. Multiple studies have
found a significant tradeoff between robustness and accuracy, where an increase in one leads to
a decrease in the other. Su et al. [216] evaluated the robustness of 18 existing deep image classi-
fication models, focusing on the tradeoff between robustness and performance. They found that
model architecture is a more critical factor to robustness than model size and that networks of the
same family share similar robustness properties. Raghunathan et al. [175] further discussed this
and described in detail the effect of augmentation achieved through adversarial training on the
standard error in linear regression models when the predictor has zero standard and robust error.
Tsipras et al. [229] also studied how robustness and accuracy tradeoff, as well as the features that
were learned. While Miller et al. [144] investigated the connection between accuracy in- and OOD
and show that that OOD performance is strongly correlated with in-distribution performance for
a wide range of models and distribution shifts.

6.3.2 Tradeoff with Fairness. Benz et al. [26] evaluated the impact of robustness on accuracy
and fairness. They found inter-class discrepancies in accuracy and robustness, specifically in ad-
versarially trained models and that adaptively adjusting class-wise loss weights negatively affects
overall performance. Xu et al. [257] hypothesized that adversarial training algorithms tend to in-
troduce severe disparity in accuracy and robustness between different groups of data, and showed
this phenomenon can happen under adversarial training algorithms minimizing neural network
models’ robustness errors. They also propose a Fair-Robust-Learning framework to mitigate un-
fairness in adversarial defenses. On the other hand, Pruksachatkun et al. [171] studied if an increase
in robustness can improve fairness. They investigated the utility of certified word substitution ro-
bustness methods to improve the equality of odds and equality of opportunity in text classification
tasks. They found that certified robustness methods improve fairness, and using both robustness
and bias mitigation methods in training results in an improvement for both.

6.3.3 Tradeoff with Explainability. Few works investigate the extent to which methods for in-
creasing model robustness impact the features such models use to make predictions, and espe-
cially to what extent these features remain meaningful to human judgement. Especially, Woods
et al. [252] showed that the fidelity of explanations is negatively impacted by adversarial attacks,
and propose a regularization method for increasing robustness lead to better model explanations
(termed Adversarial Explanations). Nourelahi et al. [160] investigated how methods dealing with
OOD examples impact the alignment of the features the model has learned with features a human
would expect to use. While this is an initial empirical exploration, their results illustrate the com-
plexity of the relation between robustness and feature alignment, as there does not seem to be a
model that performs consistently better over these criteria. They suggest to extend their bench-
mark effort to more types of models, and of robustness and explainability techniques.

7 Discussion: Disparate Research on the Various Facets of Robustness

The robustness of AI systems is a broad, open problem under the umbrella of Trustworthy AI
and the copious amount of literature that can be found is a testament to that. Researchers from
diverse domains have studied the impact of controlled data perturbations as well as naturally-
occurring ones, how to strengthen neural architectures through additional mechanisms, and how
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to efficiently and effectively train models underlying such systems. In this section, we summarize
the gaps and trends we evinced from our inspection of the existing literature.

7.1 Addressing Gaps from the Literature

7.1.1 Gaps within Robustness.

Natural Brittleness. We found that little attention is put on defining natural perturbations and
attacks. Instead, much work revolves around defining synthetic attacks and evaluating defense
mechanisms against them. While this may make sense from the perspective of a malicious at-
tacker, it does not necessarily translate to robustness in real-world operating conditions. Only a
few works in Computer Vision focus on such a type of attacks. Another interesting research direc-
tion is signaled by the lack of model-agnostic adversaries. While both automatic and rule-based
approaches to generating adversaries exist, these tend to be targeted toward certain types of AI
systems. Obtaining model-agnostic attacks would be the dual case to such a scenario and could
provide for a common baseline for evaluating the robustness of AI systems. Moreover, achieving
model-agnostic and perturbation-agnostic evaluations approaches would allow to disentangle the
relationship between these scenario-specific aspects and the actual robustness of the model, finally
leading to an unbiased analysis of the robustness of a system [249].

The Computer Vision Hegemony. The immediate outcome of our survey is the extensive effort
put into studying—and enhancing—the robustness of models targeted toward Computer Vision,
especially CNNs. Papers from this sub-field of Artificial Intelligence (AI) greatly outnumber
the ones from other areas, like NLP. We found this to be the case regardless of the aspect (attack
generation, defense, etc.) scholars focus on. While important, such a focus being put on Computer
Vision only begs the question of why other domains have received little contributions compared
to the former. Possible explanations for this can be traced back to difficulties in defining perturba-
tions and attacks within certain data manifolds (e.g., word embeddings), or to the lack of alignment
between robustness in ML and robustness in specific application domains (e.g., signal processing).
On the other hand, the intrinsic complexity of pictures compared to other types of data, in particu-
lar with respect to the features that can be perturbed and the diversity in the available approaches
to evaluate distances between pictures, influence the broadness of the research field.

7.1.2 Gaps Stemming from the Intersection Between Robustness and Other Trustworthy AI

Concepts.

Robustness and Explainability. Considering the brittleness of existing AI systems in conjunction
with their opaqueness, their explainability is of paramount importance. XAI methods have been,
and still are being, proposed [84, 85] to tackle such a challenge. However, on one hand, few works
discuss the robustness of XAI methods and of the produced explanations, yet this is a crucial
dimension that needs to be addressed to obtain explanations that are both faithful (i.e., correctly
describing model behavior) and trustworthy.

On the other hand, explainability can better inform the ideation and implementation of ap-
proaches geared toward robustness. However, little work has been conducted in this direction.
These works all rely on the idea that when the model features extracted via an explainability
method are aligned with human reasoning (i.e., the features are meaningful for a human to make
a prediction for a data sample), then the model should be more robust. In terms of evaluation, only
Nanda et al. [153] have investigated how explainability can be used in order to evaluate the ro-
bustness of a model, with the assumption mentioned above. In terms of improvement, Kortylewski
et al. [113] proposed Compositional Neural Networks, a unification of CNNs with part-based models
(inherently interpretable models), and show that these new networks increase model robustness
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to various partial occlusions of objects. Chen et al. [42] also demonstrated that inherently inter-
pretable models such as rationale models in NLP are naturally more robust to certain adversarial
attacks yet are still brittle to certain scenarios. Similarly, Li et al. [123] proposed a model training
framework that combines adversarial training with constraints for ensuring the meaningfulness
of the model features, reaching higher model robustness. Finally, Freitas et al. [72] tackle adver-
sarial robustness with model features, by making the additional assumption that when the model
features are not meaningful, the model might be under attack.

Tensions between Accuracy, Robustness, Fairness, and Explainability. Connected to the above
points, it is worth noting how existing research is focused on enhancing robustness at the ex-
pense of accuracy, much like optimizing for accuracy led to a lack of explainability. Similarly,
scholars have studied the interplay with fairness as well as the possible issues stemming from
it. These dimensions are not exclusive and need to be addressed holistically and considered on
equal terms when aiming to build trustworthy and fair AI systems. In this sense, sole data-driven
approaches have shown their limitations. Discussions around these topics have pointed toward
the need for integrating symbolic knowledge. However, few of them touched upon which kind of
knowledge is needed and how to collect it. In Section 7.3 and Section 8, we provide a commentary
on human-centered approaches and how these approaches can provide a path toward tackling the
aforementioned challenges for robust AI.

7.2 Latest Breakthroughs: Generative Foundation Models

While writing this survey, considerable engineering advancements have been made in the space
of generative foundation models, such as DALL-E 3 and GPT-4. However, such advancements are
often due to an increase in model size and largely prioritize properties like textual fluency. As a
result, several robustness-related challenges, e.g., hallucinations [104] and poor performance on
OOD data [241], remain unanswered. Because of their lacklustre understanding capabilities [25],
these shortcomings emerge even when more sophisticated prompting strategies are used, e.g., in-
context learning [62] or chain-of-thought prompting [248]. Only retrieval-augmented generation
[201] appears to mitigate hallucinations. Despite the central role of humans in the creation of these
models (e.g., with Reinforcement Learning through Human Feedback [213]), research is still cen-
tered around benchmarking [87]. In the sections that will follow, we discuss opportunities around
human involvement and human knowledge to improve and evaluate robustness of AI models.

7.3 Deepening the Research on Human Involvement for Existing Robustness Methods

A number of papers we surveyed implicitly involve humans to instantiate the methods they pro-
pose, either to assess or enhance a model’s robustness. Yet, they do not delve deeper into the chal-
lenges for a human agent to perform their task, which constitutes an obstacle to the development
of methods and frameworks for overcoming these challenges. This merits further investigation as
such human involvement is essential to the success of the methods. Especially, we identify two
main areas where human involvement is necessary but lacks research.

7.3.1 Increasing Robustness. Various methods that aim at increasing robustness implicitly em-
ploy humans, without extensive focus. Jin et al. [105], for instance, collect potential adversarial
examples by executing a sequence of engineered steps that could be refined by the practitioner
who would leverage existing tools for, e.g., identifying synonyms and antonyms, ranking word
importance, and so on. Peterson et al. [167], Chang et al. [41], Nanda et al. [153], and Ning et al.
[157], respectively, show that one can train more robust models by leveraging human uncertainty
on sample labels instead of using reconciled binary labels, by integrating human rationales for
the labeling process into the training process, or by actively querying the most relevant levels of
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perturbations from an expert during training. While these are promising research directions, these
works could further be improved by exploiting existing works on human computation assessing
the quality of crowdsourced outputs [100], or designing crowdsourcing tasks that remove task am-
biguity and lead to higher quality outputs [69], especially in the context of subjective tasks. This
could serve to understand the nature of uncertainties and define rationales that are relevant to
robustness.

7.3.2 Evaluating Robustness. To design appropriate perturbations or attacks on which a model
should be robust, one often needs human knowledge. For instance, Jin et al. [105] and La Malfa
and Kwiatkowska [115] generate adversarial attacks on text samples that have to verify a number
of human-defined constraints for them to be deemed realistic by humans. Yet, designing such con-
straints and empirically evaluating (through user studies) to what extent the samples transformed
by the corresponding constrained attack align with the human idea of “realistic” sample, has not
been investigated extensively, despite how crucial that is for engineering “good” attacks.

Similarly, works on robustness to natural perturbations should ideally define a comprehensive
set of domain-specific perturbations relevant to the problem at hand and its context. However,
to the best of our knowledge, existing works that develop benchmarks or robustness-enhancing
methods [90, 112] with regard to such perturbations have not investigated ways to be more compre-
hensive. While we believe in the impossibility to reach comprehensiveness (previously unheard-
of perturbations can always arise), one could develop tools to support the definition of relevant
perturbations. For instance, we envision the usefulness of fine-grained, actionable taxonomies
of perturbations (e.g., Koh et al. [112] talk about subpopulation shifts and domain generaliza-
tion, but this might vary in different domains and types of tasks); collaborative documentation
of domain-specific perturbations; libraries to generate such perturbations semi-automatically; and
frameworks and metrics to uncover new types of perturbations in the wild, potentially involving
humans at runtime.

8 A Conspicuous Absent From the Literature: The ML Practitioner

Last but not least, our systematic survey also reveals another prominent research gap: the absence
of human-centered work in proposed approaches, and the lack of technologies and workflows
to support ML practitioners in handling robustness. In this section, we discuss relevant research
literature, and future research directions regarding this topic.

8.1 Robustness By Human-Knowledge Diagnosis

One notable absentee from the retrieved papers is robustness by human-based diagnosis. Existing
works focus on generating OOD data to make a model fail, and later expose this model to this
data during training to make it more robust [27, 41, 74, 167]. Especially for robustness to natural
perturbations, this means that one should characterize the type of data the model might encounter
before being able to generate such data [59, 64, 80]. This is not always possible in practice, due
to the known challenges ML practitioners typically face when working with data and models. For
instance, due to contractual and privacy reasons [95, 235], ML practitioners might not have access
to deployment data, preventing them from reasoning about OOD data, or the goal and context of
application of the ML model they develop might change over time, rendering what might be at
present considered (or not) OOD (in-)valid [187]. ML practitioners might also face difficulties in
collaborating with domain experts [152, 272], e.g., to reflect on what data should be considered
within or out of the distribution, or to evaluate the meaningfulness of a model features (used to
estimate the robustness of the model [72, 153]). Besides, it is well-known that ML practitioners
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might not receive enough support from their organization, e.g., in terms of budget, time, training,
to dive into questions of trustworthiness of their ML models in general [176].

To circumvent this issue, a major, promising research direction surfaces from comparing the
surveyed robustness methods to existing works in other computer science fields. This direction re-
volves around developing complementary, hybrid human–machine approaches, that would lever-
age research progress in human-centered fields, essentially explainability, crowdsourcing and HIL
ML, as well as knowledge-based systems, to estimate model performance on more realistic data
distributions without requiring such distributions.

8.1.1 Existing Approaches. Only few related works leverage human capabilities to identify and
mitigate potential failures of a model. In particular, explanations for datasets [188] have been pro-
posed that could be leveraged by a practitioner to identify data skews that might impact the model
performance. In this vein, Liu et al. [131] introduce a hybrid approach to identify unknown un-
knowns, where humans first identify and describe patterns in a small set of unknown unknowns,
and then classifiers are learned to recognize these patterns automatically in new samples. Depart-
ing from datasets, Stacey et al. [211] and Arous et al. [11] have trained models whose features are
better aligned with human reasoning (with the assumption that alignment leads to stronger robust-
ness), by leveraging human explanations of the right answer to the inference task and controlling
the features learned by the model during training to align with these human explanations.

8.1.2 Envisioned Research Opportunities. The above approaches reveal that instead of looking
solely at the outputs of a model and its confidence in its predictions, one can leverage additional
information such as the model features or training dataset, to estimate the model’s robustness.
Especially, even when a model prediction is correct, the model features might not be meaningful.
Hence, assessing model features and their human-alignment can allow to shift from solely evalu-
ating the correctness of the predictions on the available test, to indirectly assessing the robustness
of the model to OOD data points. Moreover, understanding characteristics of the datasets that led
to such learned features could later on serve to mitigate unaligned features.

Surfacing Model Features using Research on Explainability and Human Computation. To surface
a model’s features, one can rely on a plethora of explainability methods [188]. Certain models are
built with the idea of being explainable by design [220, 279], while others are applied post-hoc
interpretability methods [19, 179, 214], with different properties (e.g., different nature of explana-
tions being correlation- or causation-based, different scopes be it local or global, different mediums
be it visual or textual) [130, 204, 209]. It is now important to adapt such feature explanations to
allow for checking their alignment with human-expected features.

In that regard, the push toward human-centered explanations for ML practitioners is highly
relevant. Existing explanations often leave space for many different human interpretations, for
which the practitioners do not always have domain expertise to disambiguate the highest-fidelity
features. For instance, methods that output saliency maps [202] or image patches [78, 110] do not
pinpoint the actual human-interpretable features the model has learned. Yet, one might need clear
human concepts to reason over the alignment of the features [17]. Hence, further research on
semantic, concept-based explanations acquired via human computation is needed [19, 93].

Leveraging Literature on Knowledge Acquisition for Identifying Expected Features. To reason over
feature alignment, one also needs to develop an understanding of the model expected features.
While very few works have looked into this problem [196], existing works on commonsense-
knowledge acquisition [270] could be leveraged to that end. These works propose to harvest
knowledge automatically from existing resources such as text libraries, or through the involvement
of human agents (e.g., through efficient and low-cost interactions within Games with a Purpose
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[16, 182, 238]), or other types of carefully designed crowdsourcing tasks [99, 191]. One would need
to investigate how to adapt such approaches to collect relevant knowledge, and how to represent
this knowledge into relevant feature-based information.

Comparing Features via Reasoning Frameworks and Interactive Tools. Finally, practitioners need
tools to check the alignment between the model and expected features. Interactive frameworks and
user interfaces [17], e.g., Shared Interest [28], take a step in that direction as they enable manual
exploration of model features, with various degrees of automation for comparing to expected fea-
tures. Inspired by the literature on AI diagnosis, such as abductive reasoning [53, 181], automated
feature-reasoning methods could also fasten the process while making it more reliable.

8.2 Involving Humans in Other Phases of the ML Lifecycle

Broader ML literature has also proposed other approaches to involve humans and make “better”
models. Yet, none of these approaches has considered making the models more robust. Instead, they
focus on increasing the performance of the model on the test set. Hence, we suggest to investigate
how to adapt such approaches to increase model robustness.

8.2.1 ML with a Reject Option. While ML models typically make predictions for all input sam-
ples, this might not be reasonable and turn dangerous in high-stake domains, when the predictions
are likely to be incorrect. Accordingly, a number of research works have developed methods to
learn when to appropriately reject a prediction, and defer the decision about the sample to a hu-
man agent [89]. Proposed rejectors can either be separate rejectors placed before the predictor, that
select the input samples to input to this predictor; dependent rejectors placed after the predictor and
re-using its information (e.g., confidence metrics) to decide which predictions not to account for;
and integrated rejectors that are combined to the predictor, by treating the rejection option as an
additional label to the ones to predict. Each type of rejector bears advantages and disadvantages
based on the context of the decision, and would merit being adapted to robustness, as we only
found few works toward that direction [163, 215].

8.2.2 HIL ML Pipelines. HIL ML [234] is traditionally concerned with developing learning
frameworks that account for the noisy crowd labels [177], or “learning from crowds”, through
models of the annotation process (e.g., task difficulty, task subjectivity, annotator expertise). Such
frameworks often rely on active learning to reduce annotation cost [259, 261]. More recent works
around HIL ML also devise new approaches to build better model pipelines by involving the crowd,
such as to identify weak components of a system [161], to identify noise and biases in the training
data [98, 262], or to propose potential data-based explanations to wrong predictions [34]. While
we could find a few works that investigate the intersection between active learning and adversarial
training [141, 143, 200, 206], we could not find any work that looks more broadly at the different
types of robustness, and the different ways of bringing humans in the ML pipeline. These inter-
sections are yet promising as they constitute more realistic scenarios of the development of ML
systems and they succeeded in making models more accurate in the past.

8.3 Supporting ML Practitioners in Handling Robustness

Beyond research, ML practitioners build ML systems in practice. Hence, it is not sufficient to de-
velop methods that work in theory: research should understand the obstacles practitioners en-
counter in making their systems robust. While studying the gap between research and practice
has revealed highly insightful for various ML contexts [94, 96, 109, 114, 130, 170, 217], to the best
of our knowledge, it has not been studied for ML robustness. Possibly the closest work is that of
Shankar et al. [193] that investigated MLOps practices toward monitoring of data shifts or attacks.
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8.3.1 Understanding Practices Around Robustness. The human–computer interaction commu-
nity has performed qualitative, empirical, studies, based on semi-structured interviews with ML
practitioners, about e.g., stakeholder collaboration [114, 170], debugging practices [18], and the use
of tools such as explainability methods [94, 96, 130] or fairness toolkits [120, 180]. These studies
have resulted in frameworks modeling the practitioner’s process and challenges, and discussions
around the fit of existing research works to answer these challenges. We argue that adopting sim-
ilar research questions would reveal useful to better direct robustness research. For instance, Liao
et al. [130] have constituted a question bank that highlights the questions practitioners ask when
building a model by exploiting explainability. A robustness question bank would similarly pro-
vide a structured understanding of research gaps. Moreover, Deng et al. [55] have shown a major
gap in terms of guidance for practitioners to choose appropriate fairness metrics and mitigation
methods. Acknowledging the plethora of robustness metrics and methods, user studies around
robustness would reveal a similar gap that could be filled by taking inspiration from the fairness
literature.

8.3.2 Integrating Robustness into Existing Workflows. To support practitioners in model build-
ing, researchers have developed workflows [208] and tools, e.g., user interfaces to investigate mod-
els, training datasets, and related failures [17, 154], documentation or checklists [7, 75, 146] to
support making and documenting relevant choices, and so on. Similarly, we argue that robustness
research should not only focus on algorithmic evaluation and improvement, but also aim at de-
veloping new supportive tools and integrating them into existing solutions. Closest to supporting
practitioners in handling robustness, Shen [198] propose the idea of establishing trust contracts,
i.e., contract data distributions and tasks that define the type of task and data that is in- and out-
of-distribution. Yet, this remains challenging as there is no appropriate way to formalize such
contracts.

9 Conclusion

In this survey, we collected, structured, and discussed literature related to robustness in AI sys-
tems. To this end, we performed a rigorous data collection process where we collected, filtered,
summarized, and organized literature related to AI robustness generated in the last 10 years. As
part of our review, and as opposed to prior surveys, we searched for robustness solutions to both
adversarial and natural perturbations in a task-agnostic way. Furthermore, we sought to cover
both algorithmic-centric and human-lead approaches. Based on this literature, we first discussed
the main concepts, definitions, and domains associated with robustness, disambiguating the ter-
minology used in this field. We then generated a taxonomy to structure the reviewed papers and
to spot recurring themes. We identified three main themes and thoroughly discussed them. In
particular, we focused on (1) fundamental approaches to improve model robustness against adver-
sarial and non-adversarial perturbations, (2) applied approaches to enhance robustness in different
application areas, and (3) evaluation approaches and insights. We finalized our article by describ-
ing the research gaps identified in the literature and by highlighting the scarcity of solutions that
include humans as central actors for improved robustness. We argue that humans could play a fun-
damental role in improving, evaluating, and validating AI robustness. Consequently, we suggest
future research directions that could benefit from including humans in the loop and point to the
challenges (and concomitant research opportunities) that arise when advocating for human-led
practices for AI robustness. In conclusion, we contributed to the existing literature with an infor-
mative review that summarizes and organizes recent work in the field of AI robustness while also
suggesting novel human-centered approaches for the research community to explore, discuss, and
further develop.
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