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Abstract

Due to new legislation, a lot of research is done in the development of a Collision Avoidance
Systems (CAS) for surface mines. Almost all CASs studied in literature are decentralized
and developed for passenger vehicles or aviation applications. That makes them unsuitable
for the mining environment. A centralized system can ensure optimal control, which means
scenarios like intersections can be managed much better. This results in a decreased impact
on production. It also increases acceptance, which means operators will be less inclined to
turn off the CAS.

For this reason, a centralized CAS for mining vehicles was developed. Literature shows that
Mixed Integer Linear Programming (MILP) can create relatively accurate models that can
be solved very fast. Since only linear constraints can be used, a new geometric model was
formulated using four squares that are equally spaced on the longitudinal axis of the vehicle.
The vehicle dynamics are described using a linear model. When the optimization problem
becomes infeasible, no control is issued to the vehicle. The construction of three different
operation modes for the vehicle allow the algorithm to deal with the non linear event of
a collision which would otherwise result in an infeasible problem. Weight can be assigned
to individual vehicles to determine which vehicle should be prioritized or to model traffic
situations.

Simulations of six scenarios commonly encountered in mines, involving two vehicles, show that
the system is able to avoid all collisions. When a third vehicle is added, collisions are still
avoided but solution times increase exponentially. As simulation results were promising, the
system was implemented on two test vehicles. Quantitative tests show that the optimization
runs as fast using noisy real world data as it does using clean, artificially created data.
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Chapter 1

Introduction

The mining industry has contributed 8.3% to the Gross Domestic Product (GDP) of South
Africa over the last six years [8]. Since it is a significant part of the South African econo-
my, government dedicates a lot of effort to improve safety in the mining sector. The Mine
Health and Safety Council (MHSC) is the public entity that provides the minister of Mineral
Resources and Energy with advice regarding safety and health legislation. Due to the fact
that about 10 to 15 % of fatalities in mines are caused by vehicles, the MHSC decided to
enforce employers to have an Collision Avoidance System (CAS) installed on each Trackless
Mobile Machine (TMM) that is present at a mine site. The CAS should avoid collisions with
other vehicles, but also detect pedestrians and prevent collisions with them. At the time of
writing, the legislation is planned to come into force at the end of 2020. Since no CAS existed
when the legislation was proposed first, a lot of research is conducted by industry to develop
suitable systems.

1-1 CAS Requirements

The legal requirements of a CAS are derived from the Mine Health and Safety Act [9]. In
Regulation 8.10 of the act, it is specified that each electrically and battery powered TMM
must be equipped with a pedestrian detection system. If a potential collision between a
pedestrian and TMM is detected, both the vehicle driver and the pedestrian must be warned
of each others presence. If no action is taken to prevent the collision, the vehicle must be
automatically retarded to ’a safe speed’ and it is required that the ’brakes of the TMM are
automatically applied without human intervention’ [9, p. 185-187]. Diesel powered TMMs
must be equipped with a system that detects other diesel powered TMMs. These systems
must also warm the vehicle and if no action is taken, automatically apply brakes in order to
slow the vehicle down.

There are three distinguishable levels of control in a CAS, as defined by Earth Moving Equip-
ment Safety Roundtable (EMERST). [6]. Level 7 control is described as ’operator awareness’.
The driver of the TMM is made aware of potential hazards in the vicinity of the vehicle. The
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2 Introduction

technology is aimed at helping the driver observe and understand potential hazards by sup-
plying information. Level 8 control is more commanding and is described as ’advisory control’.
At level 8 the information is accompanied by warnings. The actions needed by the driver to
prevent unsafe situations are also provided. When the driver does not follow the instructions
provided by the level 8 controller, the level 9 technology can automatically intervene and take
over control from the driver. This so called ’intervention control’ is the last resort in a CAS
and ideally the level 7 and 8 control should assist the driver in such a way that a level 9
intervention is not necessary.

Another important aspect of a CAS is the acceptance. The acceptance indicates how happy
the end users are with the product. Since the product is forced on them by legislation, it is
very important that the end users are happy with the implementation. A big part of that
is the human-machine interface used by the operators. However, the collision detection and
prevention also play a crucial role. If the system is too conservative, there will be frequent
false alarms and unnecessary warnings. The unnecessary braking action performed by the
CAS will also reduce mine efficiency. Since good performance by the driver is often rewarded
with a bonus, this reduction in efficiency would give drivers a monetary incentive to unplug
the system or look for other ways to disable the system. Furthermore, it might lead to drivers
ignoring the warnings which would render the system useless.

There is a clear distinction in the goal of a CAS developed specifically for the mining en-
vironment compared to more general systems that are used for normal road vehicles. The
philosophy of a general CAS is normally to mitigate the damage that occurs during a collision.
In the mining sector, this is not sufficient. Firstly, because of the large equipment an accident
at low speed can still be deadly. Secondly, the economic impact of a small accident can still
be severe since the mine must shut down (part of) its operations for investigation. For this
reason, the goal of a CAS for surface mines is to achieve ’zero harm’.

1-2 Research Goal and Structure

The Vehicle Dynamics Group (VDG) has developed a standardized test that is used to eval-
uate the performance of new CASs that are being developed by other entities [10]. The test
platform consists of two Land Rover vehicles, equipped with a range of advanced sensors. A
photograph of the two vehicles during one of these tests can be seen in Figure 1-1. The VDG
is also interested in developing their own CAS. The first goal of this thesis is to perform an
analysis of the current state of the art in CASs. Consequently, the biggest shortcomings of
the current state of the art are identified. This is done in Chapter 2.

It becomes clear that the systems discussed in literature are mostly developed for either pas-
senger vehicles or fpr the aviation industry. Due to simplification, they cannot be used in the
mining industry. Another major shortcoming identified is that most CASs are decentralized.
Centralized systems have some advantages over decentralized systems, for example regarding
their impact on mining operations. The main goal of this thesis is to develop a centralized
CAS to ensure minimal impact on the efficiency of the mine’s operations while ensuring that
no accidents occur.

The centralized collision avoidance problem is posed as an optimization problem. In Chapter 3
a Non-Linear Programming formulation of the problem is tested. Mitigating the damage
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Figure 1-1: The two Land Rovers are used to test CASs for commercial entities

caused by a collision, especially a collision involving multiple vehicles, is very hard when
the risk assessment is not accurate. To get a accurate model, a big part of the chapter
is dedicated to deriving an accurate cost function. The collision detection system is then
formulated as an optimization problem. During simulations it became clear that the Non-
Linear Programming (NLP) approach is not a viable solution due to solving times and failure
to find a solution in many instances.

An alternative method of formulating the problem, MILP, is described in Chapter 4. Liter-
ature shows that Mixed Integer Linear Programming (MILP) has big advantages over NLP,
especially regarding computational time. The MILP formulation only supports linear equa-
tions, and simplifications made in similar algorithms for the aviation industry make those
models invalid for the application studied here. This required that other linear models for
both the dynamics and geometry of the vehicle must be formulated, which are discussed in
Chapter 5. To avoid infeasible problems when unavoidable collisions occur, three different
operation modes are developed. These modes model build in an extra safety measure and
also enable the modelling of a collision, which is a highly non linear event. The modes also
ensure that the problem is always feasible. The complete model, consisting of the dynamic
and geometric model combined with the different modes, is then constructed using constraint
modelling. This is described in Chapter 6.

To verify that the CAS is working, simulations are performed. These are discussed in Chap-
ter 7. As the results of the simulations are promising, the CAS is implemented on the two
test vehicles that VDG has at its disposal. The test setup and the quantitative results of the
tests that are performed are described in Chapter 8. A conclusion and recommendations for
further research are discussed in Chapter 9.
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Chapter 2

State of the art

Legislation in South-Africa enforces that by the end of 2020 each Trackless Mobile Machine
(TMM) used in a mine is equipped with a Collision Avoidance System (CAS), as can be
read in Section 1-1. To get a better understanding of the shortcomings of current collision
detection and management methods, it is best to study the current state of the art in CAS
applications. The sensors commonly used in intelligent vehicles for localization and collision
detection are examined in Section 2-1. In Section 2-2 some examples of CASs are given in
order to give an overview of the current state of the art. Different models used to describe
the motion of vehicles are studied in Section 2-3. In Section 2-4, different methods of risk
assessment that were found in literature are listed. From this, the shortcomings of current
systems are determined in Section 2-5. A conclusion is given in Section 2-6.

2-1 Sensors

Since the CAS should be able to prevent collisions, it is important that the vehicle can both
interpret its surroundings and localize itself. Sensors commonly used for interpreting the
surroundings are LIght Detection And Ranging (LIDAR), RAdio Detection And Ranging
(RADAR) and video camera [11]. In [11] and [12] these sensing methods are discussed.

LIDAR uses laser beams, which are reflected from the surface of an object back to the source.
The distance to the objects is calculated by measuring how long it takes for the light to be
reflected back. This can form either a 2D line scan or a 3D area scan. RADAR works with
the same principle, but uses radio waves which have a much lower frequency. One of the main
differences between the two is that LIDAR is more accurate than RADAR. However, it is also
much more expensive. An advantage of RADAR is that it can use the Doppler frequency test
to measure the relative speed of moving object without additional cost. It is also less sensitive
to changing light and weather conditions than LIDAR. Advances in the quality of sensors
make both RADAR and LIDAR very reliable for collision detection. Equipment in the mining
environment is subject to rough treatment, dust and changing light conditions. This makes
the sensitive and expensive LIDAR sensor unsuitable for use in surface mines. RADAR is
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6 State of the art

also not very suitable, since it is hard to get a 360◦ coverage using RADAR sensors. The raw
data must also be interpreted using an object detection algorithm, which can be challenging
to train for a new environment such as in mines.

These problems of requiring multiple sensors for a 360◦ coverage and object detection algo-
rithms to analyse the raw data also occur when using video cameras. A video camera uses
visible or ultraviolet light to capture images. Combining multiple cameras, a 3D image can
be generated. This is called stereo vision [11]. Using a neural network and a 3D algorithm
for object detection makes the method fairly slow. The changing light conditions present in
mines further complicate the implementation of a reliable CAS. Infrared based systems are
generally not robust enough to endure the harsh mining environment. Furthermore, the slow
response time limits their effectiveness. Due to direct sunlight and hot equipment, infrared
cameras are also prone to issue false alarms [12]. Ultrasound based systems are also rela-
tively fragile and struggle to deal with vibrations caused by mining equipment. Both types
of systems are thus unsuitable for our application.

The sensors studied above are mainly used to interpret the surroundings of a vehicle. They
can also be used for localization. However, this requires a detailed map of the environment
in which the vehicle moves around. Since mines are changing frequently, this is hard to
achieve. The sensor most often used for localization is GPS or a more precise variation D-
GPS. WiFi-tracking can also be used for localization but requires an infrastructural network
throughout the mine. One methods that is often used to improve the precision of a localization
algorithm is sensor fusion. In sensor fusion, the GPS data is combined with measurements
from steering angles, wheel speed, IMU’s and other sensors to correct for inaccurate or missing
GPS measurements.

A fourth method of localization, Radio Frequency Identification (RFID), is discussed in [12].
With RFID systems, vehicles and personnel carry a transmitter (or ’tag’) that sends out its
identification code. Vehicles are additionally equipped with a receiver, and an alarm is issued
if a tag is detected in the proximity of the vehicle. The authors of [12] state that RFID tags
seem to be a promising future solution to some of these mentioned limitations. However, the
state of the art at the time of writing did not allow for development of a cheap and reliable
system. Research specifically on mining vehicles was done in [1], however results were not
convincing. The authors even used phrases as ’surprisingly poor’ to describe performance
under certain conditions. Due to the absence of GPS, these sensors are however used in
underground mines as their price is far below that of the other methods discussed above.

2-2 Collision Detection (Examples)

Since the first collision avoidance system called Forewarn was developed in 1955 by R. D.
Olney, a lot of different methods for collision detection have been tested [13]. In [14] a vehicle
based cooperative system is described that should prevent collisions at intersections. Using
in-vehicle sensors, collision patterns are learned through historical data. This ensures that
the system is suitable for each unique intersection. Since the paper only evaluates the system
in a simulation, it remains unclear how the system would be implemented on a real vehicle.

The authors of [15] predict the trajectory of a vehicle using a Kalman filter with the positions,
speed and acceleration to filter noisy GPS data, and to fill the gap between the measurements.
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Due to the probabilistic uncertainty of the vehicle’s real position, its position is modeled as an
ellipse. To reduce computational cost, the ellipse is then described by a series of aligned circles.
Based on the predicted trajectory, the risk of a collision is estimated. For this estimate it
considers the Time To Collision (TTC). Because additional parameters are needed to indicate
the chance of the crash happening, the number of circles overlapping (indicating severity of
the crash), the total time during which circles overlap (indicating robustness of estimation)
and the configuration of the crash are used. This last parameter can be very useful to see what
maneuver should be made to avoid the collision. Still, the TTC is the main risk indicator used
by the authors. Each vehicle receives the positions and speeds of other vehicles via Vehicle
To Vehicle (V2V) communication and then perform the collision detection. Since the authors
only do collision detection, no method is proposed to avoid a potential collision.

In [16], the authors also uses a cooperative system that is based on V2V communication.
It is, according to the authors, one of the most extensive real world tests performed. If
predicted trajectories of vehicles intersect, the TTC is calculated. The threshold on the TTC
is set to the reaction time of the driver plus the minimum braking time, and if the TTC is
lower than the threshold an emergency brake maneuver is needed. This equates to a level
9 action of the CAS. Level 7 and 8 warnings are also given at a fixed interval independent
of vehicle characteristics. The authors note that the dynamic adaptation of the warning
interval as proposed in [17] has the potential to greatly improve human perception and system
acceptance. The risk of collision is calculated using the speed, direction and acceleration. In
this application, a Decentralized Environmental Notification Message (DENM) is sent by a
vehicle when it brakes hard. This triggers an Emergency Electronic Brake Light in vehicles
in its vicinity. Since the DENM is directly transmitted to surrounding vehicles, it is one
of the fastest methods of warning other vehicles. It furthermore states that a clear line of
sight ensures small packet loss. Mine workers wearing tracking devices on their hard hats
do not generally have a power supply that is big enough to produce the high transmission
power to overcome packet loss when there is no clear line of sight. Since the system needs
multiple packages to trigger a warning, the vehicles need a high transmission power to reliably
send out a warning. The authors acknowledge in the conclusions that, if there are limits on
transmission power, packet transmission frequency or data rates, performance deteriorates
fast when there is no clear line of sight. Due to the V2V communication method, congestion
of the channels can also become a serious problem.

In [18] the position of the vehicle is estimated using sensor fusion of GPS, steering angle,
wheel speed and yaw rate. According to the authors, this dynamic model is significantly
superior to the purely kinematic model, keeping in mind that the goal of the authors is
"robustness to GPS outages and corruption, while permitting inaccuracies up to about 90
cm." The authors use a Kalman filter to estimate the position of the vehicle using the state
vector Xk =

[
x ẋ y ẏ φ

]T
which contains the position and speed in both the West-East

direction (x and ẋ) and the South-North direction (y and ẏ) and the heading φ. The bicycle
model is then used to determine the next position, using the vector with Vehicle Sensor (VS)
measurements for velocity, steering angle and yaw rate XV S =

[
v α φ̇

]T
and Xk. The

authors tuned the filter so that the VS measurements, which are fast and accurate, are given
a significant weight resulting in a delay of less than 100ms to detect lane changes and U-
turns. GPS corrections are done within 500ms. The authors believe the response cannot be
significantly enhanced. For collision detection, a model is used that predicts collisions based
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Figure 2-1: Schematic diagram for alarm generation in vehicles with overlapping safety zones
[1].

on the assumption that a vehicle drives in a straight line. However, in turns this might trigger
false alarms or interventions.

The authors of [1] use a dynamic safety zone around vehicles. The safety zone is defined using
the vehicle size, direction, speed, acceleration, braking power and the driver reaction time.
The vehicle transmits the four coordinates that make up this safety zone to other vehicles
in its vicinity. The vehicle then constructs polygons describing its own safety zone and the
safety zones of nearby vehicles. If an overlap is detected, an alarm sounds in both vehicles.
A schematic describing the method can be seen in 2-1. This method also assumes that
vehicles drive in a straight line. Interestingly, the authors mention how wireless broadcasting
methods are cheap and suitable for centralized tracking. They do however not explain why
their collision warning system is decentralized.

Most systems that are currently available are based on V2V communication. There are
however also systems that take a centralized approach. One of them is described in [19]. A
cost function that consists of the vehicle’s deviation from its original trajectory and the sum
of the control input is minimized. Constraints on the distance between the vehicles (modeled
as points), constraints on the vehicle position based on a bicycle model and constraints on
the input ensure that the vehicle movements are restricted and according to the laws of
physics. To ensure collision avoidance, vehicles cannot be in positions in which an obstacle or
other vehicles is present. Obstacle avoidance is ensured by introducing the hard constraints
zi(t) /∈ O(t),∀i,∀t where zi(t) is the predicted position of vehicle i at time instance t and O(t)
the area containing an obstacle at time instance t. To avoid that two vehicles i and j are in
the same position, a constraint of the form ‖zi(t)− zj(t)‖ ≥ dsafe ∀t is added where dsafe is
a safety margin that can be chosen by the user. The optimization algorithm used to calculate
the optimal control input to the vehicle however uses a reference trajectory. In order to use a
similar approach, the reference trajectory has to be determined for each vehicle. While this
will be easy for some vehicles driving the same route over and over again, this can become
very challenging for other vehicles. No mention is made of the computational time needed
by the algorithm. It is thus hard to tell if the implementation of the algorithm had real-time
capabilities.
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In [20] online real-time computations are done to solve an MPC problem for collision avoid-
ance. The problem is formulated almost identical to the one in [19], but since it is a decentral-
ized system the model assumes that the behaviour of all surrounding vehicles stays the same
for future horizon. Solving a 30 second scenario takes 4-5 seconds using a QP formulation. A
time step of 4-5 seconds is however too long for a real time application. To ensure feasibility,
it is necessary to take into account the out of horizon events. To ensure persistent feasibility,
the authors try to ensure that the terminal states are inside the maximum control invariant
set C∞. A control invariant set is a set C ⊆ X for which it holds that:

x(t) ∈ C =⇒ ∃u(t) ∈ U such that f(x(t), u(t)) ∈ C, ∀t ∈ N+.

The maximum control invariant set C∞ is a control invariant set containing all sets C ∈ X .
Since the control invariant set is a subset of the allowed set X , the problem always remains
feasible if the terminal state is in X [21, p.173-174]. Furthermore, the road friction coefficient
is estimated using a consensus algorithm. Integrating road conditions in the model has the
potential to greatly improve performance, especially if road conditions change significantly
on a regular basis.

2-3 Motion Models

As can be read in Section 2-2, there are a lot of different methods for collision detection.
One of the main features used to predict collisions is a motion prediction model. In [22],
an overview is given of three different classes of motion prediction models currently used
in intelligent vehicles. The paper identifies three major motion prediction models. Firstly,
there is the physics-based model. In these models, motion is predicted using the laws of
physics. The advantage of these models is that these models are relatively simple, but due to
inaccuracies their use is limited to short-term motion prediction.
A second class of models is the maneuver-based motion model. In this model, each vehicle’s
future movements are predicted using a series of actions or a maneuver. Using the current
behaviour of the vehicle, the system tries to match it with a maneuver. The trajectory of
the vehicle is then predicted using this recognized maneuver. This class of model has a
drawback in that is hard to generalize to different road layouts. Furthermore, using fully
defined maneuvers, a very large database is needed to store all small variations in execution.
Using probabilistic representations solves this problem, but comes at high computational
cost. Furthermore, this representation cannot take the physical limitations on the vehicles
into account.
The third class of motion prediction models described in the paper are the interaction-aware
models. These models are very complete since all dependencies between vehicles are taken
into account. Most of these systems are based on Dynamic Bayesian Networks and formulate
dependencies between pairs of vehicles. However, in complex traffic situations the amount
of dependencies makes the model too complex. For this reason, a common simplification
to these models is to assume that each vehicle is influenced by other vehicles but does not
influence other vehicles. This asymmetric dependency makes the model suitable for complex
traffic situations. Some of these models also incorporate traffic rules. The interaction-aware
models are very complete and more reliable than the other two classes of models. However, the
computational cost is high and these models are not very well suited for real-time applications.
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2-4 Risk Assessment

In Section 2-2 examples of different CASs are given. From this we can conclude that a lot of
different methods are used to analyze the risk of a collision. In [22], an overview of existing
risk assessment methods is presented. Two main classes are identified. The first one makes
use of a motion prediction model, as described in Section 2-3. In this approach, a binary is
often used to express whether a vehicle will be involved in a future collision or not. Using
the full trajectory of the vehicle often results in complex motions equations that are hard or
even impossible to solve analytically. For this reason, the trajectory is often discretized to
a set of points. A simple threshold distance between the points can be used to iteratively
predict a collision at each time step. To get a more accurate model, the vehicle shape can
be taken into account. For computational speed, the vehicle is however often represented as
a simple point. Another possibility is to detect unavoidable collisions, taking into account
vehicle characteristics. As an alternative, uncertainty in the accuracy of the motion prediction
model can be taken into account if the future trajectories are represented as a probability
distribution. By integrating over all the different trajectories, the probability of collision can
be computed. Other risk indicators such as Principal Degree of Force (PDOF), the amount
of overlap between vehicle shapes [15] and velocity of the vehicles can be used to give a more
accurate estimate of the collision risk.

The second class assumes that dangerous situations are primarily caused by unexpected be-
haviour of road users. For this reason, these methods detect unusual events and detect con-
flicting maneuvers. Unusual events can be recognized by manually defining nominal behaviour
and detecting deviations from that. Another method is to learn the nominal behaviour from
data. By putting a threshold on the probability of a certain event, unusual behaviour can be
easily detected. Using the maneuver-based motion detection as described in Section 2-3, one
can predict the maneuvers that a vehicle will perform in the future.

By comparing driver behaviour with the expected maneuvers learned from data, it is possi-
ble to distinguish between nominal and unusual behaviour. It is also possible to recognize
dangerous maneuvers and base the risk assessment on these maneuvers.

2-5 Shortcomings

In Section 2-3 a description was given of the different classes of motion prediction models
currently used. In Section 2-4 it is explained how these motion predictions are used to detect
collisions. Some examples of the motion models, risk assessments and collisions detection
methods are applied in CASs can be found in Section 2-2. In order to design an optimal CAS
for a surface mine, it is important to identify shortcomings in current systems. Since almost
all CASs found in literature are developed for passenger vehicles or for the aviation industry,
the assumptions and simplifications used make these systems unsuitable for usage in a mining
application.

One of the first shortcomings in most current systems is the V2V communication used. Decen-
tralized control has the advantage that is does not need infrastructure to relay information
to the central computer. The local computations make the system significantly faster. A
decentralized system is however not capable of optimal control, leading to a loss in mine
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production. In addition to the revenue lost by unnecessary braking of mine trucks, it also
reduces acceptance of the CAS by people who work with it. This could lead to personnel
disabling the system, nullifying the potential safety benefits that the system offers to the very
people who disable the system. One of the main reason why most systems are decentralized
is because an infrastructure network is needed that can communicate commands to the ve-
hicles. Since mines are much smaller than general road networks, it is much easier to set up
the infrastructure needed for centralized control in a mine.

Another shortcoming is the risk assessment method used. In [15] the overlap between vehicle
shapes is used as an indication of the severity of the collision. Duration of overlap is used as a
measure for robustness of the prediction. However, if vehicles have a frontal collision at high
speed, it might be that at one iteration only the front sides overlap while at the next iteration
only the rear sides overlap. This would lead to a small risk associated with the vehicle pair,
while in fact it is a very dangerous situation. A smaller time step might solve this problem,
but leads to much higher computational cost. While [22] states that PDOF and speed are
good additional risk estimators, little can be found about their use in current systems.

In order to speed up the algorithm, a lot of the authors use simplifications which result in
systems that cannot be used in real-life applications. In [20] the author only considers multi-
lane one-directional roads such as highways. While for a specific application this might be
useful, these simplifications make the algorithm unsuitable for a CAS in a mining environment.

Lastly, it seems that most CASs model the vehicle as a circle. While this greatly simplifies the
problem, it also leads to inaccuracies. Due to a large area next to the vehicle being covered
unnecessarily, the number of false positives (an unnecessary braking command sent to the
vehicle) will increase dramatically. More on this can be read in Section 5-2.

2-6 Conclusion

A number of different sensors are currently used to predict collisions. RARAR, LIDAR
and vision based systems are used to detect and recognize obstacles in the vehicle’s path.
A drawback is the high cost to achieve 360◦ coverage. These systems also need complex
algorithms to analyse the raw data, which makes them somewhat slow. Location based
systems commonly use GPS and similar systems to measure the location of a vehicle. This
location is then compared to the location of obstacles and other vehicles, making it a relative
fast algorithm.

Almost all CASs encountered in literature are decentralized. Simplifications made in the
model make them unsuitable for direct application in a mining environment. V2V commu-
nication is used to exchange information. Collision avoidance is done by braking a vehicle
when a collision is predicted. This normally leads to both vehicles braking. Three types of
motion models are used to predict the vehicle’s future location. The motion model directly
influences the risk assessment for a scenario.

Important shortcomings of current systems are the sub-optimal control due to the decentral-
ized nature of most systems. Centralized systems do a global optimization, which becomes
invalid when the scenario changes. Risk estimation is only based on the predicted position of
the vehicle, while important parameters for the severity of a crash, such as PDOF, mass and
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speed, are disregarded. Simplifications in both vehicle behaviour and the geometric model of
the vehicle make the models often unsuitable for use in a mining environment.
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Chapter 3

Non-Linear Optimization

In Section 2-5 some of the advantages of centralized over decentralized control are listed.
Because of this, the decision was made to develop a centralized Collision Avoidance System
(CAS). One of the advantages is that optimal control can be achieved. In order to to this, the
problem is formulated as an optimization problem. This optimization is not intended to solve
one solution for all vehicles in the mine. Optimization is done for a small subsets of vehicles,
that are chosen either by the distance between them or based on another algorithm that
predicts likely future collisions at a relatively high speed. A logical option was to use Non-
Linear Programming (NLP) to formulate an optimization problem that finds the optimal
control strategy. Using a non linear formulations makes it possible to solve some of the
shortcomings of the current State Of The Art (SOTA). Most importantly, simplifications
that result in inaccurate representations of both the vehicle movement and geometry are not
needed in a non-linear problem. An accurate representation of these two important aspects
of the simulations will possibly result in a better solution to the optimization problem.
One possible drawback of NLP is the computational cost of solving the problem and the
possibility of finding a local optimum instead of the global optimal solution. Since the com-
putational cost is hard to predict, a simple implementation was written to see whether the
NLP approach might be viable. In order to accurately formulate the problem using NLP, a
cost function must be found that correctly represents the risks posed in a collision scenario.
Since the work involves the lives of miners, an ethical reflection on using mathematics in
a CAS is presented in Section 3-1. Three factors are found that together give an accurate
representation of the cost of an accident. The health cost, monetary cost and logistic cost
are discussed in respectively Section 3-2, 3-3 and 3-4. The cost function that combines these
three components is given in Section 3-5. The implementation of the problem using NLP and
a conclusion regarding the feasibility of using this method are discussed in Section 3-6.

3-1 Ethics

As said above, mitigating the consequences of a collision is - after avoiding collisions- the most
important function of a CAS. To mitigate the consequences of a collision, a cost function has
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to be formulated which expresses these consequences as a function of the control input.

In [23] the ethics of using a cost function to describe collisions are investigated. The authors
state that it becomes hard to make the right decision by only looking at a mathematical
equation. For example, situations can occur in which a collision with a pedestrian generates
a lower cost than a collision with an obstacle. This would result in the system preferring a
collision with the pedestrian instead of evading the pedestrian and hitting an obstacle. The
cost of the two actions (collide and evade) obscure the fact that, from an ethical point of
view, the evasive maneuver always has preference over the collision. Another classic example
is given in [24]. The author suggests that, purely looking at outcome, an intelligent vehicle
would rather crash into a motorcyclist wearing a helmet than one not wearing a helmet since
the one wearing the helmet is less likely to sustain brain damage. Since a utilitarian approach
wants to maximize overall well-being, the helmeted motorcyclists consistently loses which can
be considered unfair. Another consequence could be that more and more motorcyclists stop
wearing a helmet, thus decreasing their overall safety.

The authors of [23] furthermore state that placing heavy cost on human life compared to
monetary cost can result in poorly defined optimization problems. One of their suggestion is
to consider all paths that result in a collision as infeasible. In that way no cost can override the
incentive to avoid collisions. This approach is called the deontological view, where decisions
are made based on the morality of the action, not on the consequences of the action.

Putting constraints on situations might seem useful in most scenarios, however there can still
be situations where a collision cannot be avoided. An optimal control strategy could then
mitigate the consequences of the unavoidable collision. In that case, soft constraints might
be used. This prevents an infeasible problem while at the same time the constraints are
minimally violated. A hierarchy can be made in the constraints by changing weights. A set
of rules defining this hierarchy is proposed by the author as follows:

• A vehicle should not collide with a pedestrian (most vulnerable road user);

• A vehicle should not collide with another vehicle, except where avoiding such a collision
would conflict with the first law;

• A vehicle should not collide with any other object in the environment, except where
avoiding such a collision would conflict with the first or second law.

The authors also mention that humans often use traffic laws as guidelines instead of hard
constraint. This can for example mean that a vehicle can drive in an adjacent lane when
overtaking or to avoid an obstacle. They conclude by stating that a combination of de-
ontological rules and consequential rules (a cost function) is a reasonable starting point in
automating vehicles.

In order to realize a hierarchical approach as proposed, three different cost functions should be
formulated. Since the health cost of a collision is the most important, it should be minimized
first. Secondly, the monetary cost of a collision should be minimized. Lastly, a function
describing the logistic cost of a control action can be used to minimize the impact of the CAS
on mining operations.
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3-2 Health Cost

In order to do a proper risk assessment, it is important to study what the health risk is as
a function of the collision characteristics. One of the main measures of injury severity is
the Injury Severity Score (ISS). A short explanation of the ISS is given in subsection 3-2-1.
Since the parameters mass, Principal Degree of Force (PDOF) and speed are recurring in
most literature, they are studied in subsection 3-2-2, 3-2-3 and 3-2-4 respectively. All these
components are combined in one cost function in subsection 3-2-5.

3-2-1 ISS Score

In order to get a measure for injury severity, it is important that an indicator is used to
describe the injury. The ISS is commonly used to estimate trauma severity and is developed
by the Association for the Advancement of Automotive Medicine [25]. It rates the most
serious injury to six body regions and calculates a score between 0 and 75. Severe trauma is
classified as a ISS higher than 15. The ISS is one of the most widely used assessment systems.
According to [26] the ISS is a very good indicator of mortality risk. Moreover it is very simple
to evaluate, and thus a suitable measure for occupant injury severity.

In [27] three main views on crash severity are mentioned. Firstly, there is the transportation
viewpoint that focuses on road and environmental characteristics. The crash viewpoint focuses
on the vehicle to vehicle interaction, and the medical viewpoint focuses on the human body
characteristics. The authors try to combine the three viewpoints to find a more complete
estimate of crash injury severity. The transportation viewpoint is used to estimate the risk
and characteristics of the crash by means of a simulation. The crash and medical viewpoints
are exploited to estimate the crash injury severity. Some of the information used to estimate
the severity of a crash are the speed difference ∆v between the vehicles involved in the crash,
the energy absorption of the colliding vehicles and the PDOF and mass of the target and
bullet vehicle. The bullet vehicle is the vehicle for which the main area of contact at impact
is the front of the vehicle. The authors of [27] explain that there is a clear difference between
crash severity (energy resulting from a crash) and crash injury severity (severity of injury to
humans). For that reason, they use a regression model to estimate the ISS using the kinetic
energy applied to the subject vehicle, the PDOF, use of seat belt, presence of airbags and
the age of the drivers as independent variables. While calculating the ISS might seem a good
idea, values obtained in the report are inaccurate due to the small sample size (82 collisions).
Additionally, the data comes from a study on passenger vehicles in Australia. This data does
not necessarily translate well to the injury severity in mining vehicle accidents. For these
reasons, other methods should be studied to get an indication of the health cost of a collision.

3-2-2 Mass

The authors of [27] conclude that mass is one of the most important indicator of crash severity.
The research done in [7] also seems to confirm that vehicle mass plays an important role in
the mortality rate in collisions. In Table 3-1 collisions of passenger vehicles are categorized
based on the object with which they collide. It then specifies what percentage of the total
number of crashes and what percentage of fatalities belongs to each category. Heavy trucks
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Type of object % of total crashes % of total fatalities
Passenger vehicle 61.2 31.9
Light truck/van 9.1 14.3
Fixed object 11.0 20.1

Pedestrian/cyclist 8.1 0.0
Motorcycle 1.3 1.2
Heavy truck 2.0 21.6
Bus/train 0.4 2.3
Other 6.9 8.6

Table 3-1: Nature of the object collided with and fatality of passenger vehicle occupants [7].

are disproportionately represented in the fatality statistics considering how many collisions
fall into that category, while buses, trains and fixed objects also have a very high fatality rate
compared to the number of accidents. Light trucks and vans also pose a big proportional
risk, while the risk associated with passenger vehicles is far smaller. The authors give no
explanation for the high number of fatalities involving motorcycles. It is highly unlikely
that motorcyclists are included in the statistics, since the study focuses on fatalities among
restrained passenger vehicle occupants. A possible explanation is that these collisions often
occur at high speeds.

In [28] the relation between:

µ = Mass of heavier vehicle
Mass of lighter vehicle

and:
R = Probability of driver fatality in lighter vehicle

Probability of driver fatality in heavier vehicle
is determined. They find that the mass ratio µ has a very large influence on the mortality
rate. The authors find that the relation can be described by R = µu. The values of u for a
host of different scenarios are given in [29]. An example used by the authors indicates that if
a vehicle crashes into a vehicle that is twice as heavy, the probability that the driver of the
lighter vehicle is killed, is 12 times bigger than the probability that the driver of the heavier
vehicle gets killed. In mines, where interactions between large haul trucks weighting easily
over 500 tonnes when fully loaded and passenger vehicles weighting well under 5 tonnes, this
is very significant. This means that any significant collision between a haul truck and another
vehicle will almost certainly result in severe injury or a fatality of the occupant(s) of the
lighter vehicle.

The research of [28] is based on two main assumptions. The first assumption is that the crash is
inelastic. The second assumption is that driver risk primarily depends on the speed difference
of the two vehicles ∆v. However, the authors acknowledge that this is a simplification and
that for vehicles of the same mass, the severity increases with common mass. One of the main
drawbacks of [28] is that it only uses the mass ratio to determine the risk. To get a better
understanding of crash dynamics, it would be beneficial to consider multiple variables. Since
the model is statistically accurate it is however - with some extensions- very suitable for risk
assessment. It is interesting to note that the mass ratio has a far bigger influence on mortality
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PDOF % change in Pr(ISS +15) compared to rear
Front 192%
Right 600%
Left 1375%

Table 3-2: Impact direction risk comparisons [2].

Figure 3-1: Predicted risk as a function of ∆v (mph) by direction of impact. For this example,
other variables are fixed at: passenger vehicle, single impact, all occupants belted, no females,
and no older occupants [2].

risk than on injury risk. While both are important to a CAS algorithm, the mortality risk is
most important. Firstly, this is the main aim of the CAS since a fatality is always worse than
an injury. Secondly, the mine will come to a complete standstill if a fatal incident occurs.
Only after an investigation of the accident will the mine start up operations again. Because
of this procedure, a fatal incident is much more costly than a non-fatal incident.

3-2-3 PDOF

The data used in [27] and [7] suggest that the PDOF does have a significant effect on the
injury severity risk. However, these studies do not directly quantify this effect. In [2] a study
is done that focuses on predicting the ISS for vehicle crashes. The risk of a severe injury (ISS
15+) is compared for different directions of impact. The results of their research can be seen
in Table 3-2. These statistics are purely based on the PDOF. More nuanced results, which
correct for ∆v, can be seen in Figure 3-1. Comparing these results shows a clear discrepancy
between Figure 3-1 and Table 3-2. One of the most likely explanations is that frontal collisions
often occur at the highest speed difference ∆v, while side impacts occur at much lower ∆v.
The lowest speed difference is seen in rear impacts.
The figure and table found in [2] have helped greatly in determining the injury risk as a
function of the PDOF. The authors split up their data base in 4 directions, each covering
90◦. That means the risk can be calculated independent from whether a vehicle is the bullet
or target vehicle. However, the data is from crashes in the United States of America, where
vehicles drive on the right side of the road. In the USA left side impacts are thus closest to
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Impact location N %
Frontal 1205 37.5
Near side 248 38.8
Far side 335 11.1
Rear 112 3.5
Roof 132 4.1
Other 145 4.5

Unknown 16 0.5

Table 3-3: Location of the most severe impact to the case vehicle, showing absolute numbers
and percentage of total fatalities [7].

the driver, while in South Africa right side impacts are closest to the driver. Since there are
significant differences between left and right side collision, the left and right statistics must
be swapped.

The researchers in [7] only look at data of fatally injured occupants of passenger vehicle
crashes and disregard all non-fatal injuries. From this, they made Table 3-3 which supports
the notion that lateral collisions result in a far higher number of fatalities than non-lateral
collisions. It also shows that driver side collisions are more dangerous than far side collisions.

Statistical analysis done in [30] indicates that the average injury severity for lateral impact is
higher than that for non-lateral impact and is another confirmation of the research mentioned
above. The authors find that the ISS for lateral impacts is on average 25 compared to 20 for
non-lateral impacts.

In [29] the risk of a fatality is quantified. A function of the form:

R = Aµu

is used, where A is a parameter indicating the driver fatality risk in a vehicle with a given
PDOF relative to that of a frontal impact with a vehicle of equal mass. The other parameters
are described in 3-2-2. The parameters for different directions can be seen in Table 3-4.
The data used by the authors only considers crashing which involve fatalities. The report
indicates that there is a bigger risk of a fatality when struck from behind than when involved
in a frontal collisions. This can be explained since the report takes into account rear seat
passengers while also correcting for speed. In a CAS application however, the risk of a fatality
would appear much smaller when a vehicle is struck from behind. This because almost all
vehicles in mining environments have loading beds at the rear end of the vehicle, thus creating
a big crumple zone which is not present at the front end. The ISS+15 parameter comes from
Table 3-2. The values of AKon are alternative values of A derived from a linearization of
the curves in Figure 3-1. From [7] we get the AGre parameters. However, since ∆v has
not been excluded in the data used to determine AKon and AGre, we can assume that the
relative high amount of frontal collision fatalities is a result of the generally higher speed of
impact experienced in frontal collisions. The influence of ∆v was also visible when comparing
Table 3-2 with Figure 3-1 as mentioned earlier. The parameters are collected in Table 3-4.
Because ideally the parameters should be independent of speed, the parameters AGre and
AKon are not considered when calculating the average A∆v for all four PDOF.
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PDOF u AEva ISS+15 AKon AGre A∆v

Far 3.47 4.53 3.13 2.32 0.296 3.33
Near 3.24 10.05 7.16 1.74 1.03 6.32
Rear 3.71 1.09 0.52 0.45 0.093 0.69

Frontal 3.74 1 1 1 1 1

Table 3-4: Parameters for the equation describing relative risk of fatality for different PDOF.

3-2-4 Speed

One of the characteristics of the crash that we can predict accurately is the vehicle speed on
impact. It is reasonable to assume that speed does have an impact on injury and fatality,
since the kinetic energy increases with speed. In [3] a literature review is done of 11 studies
describing influence of vehicle impact speed on pedestrian injury and fatality. The report
makes it clear that speed does indeed have an effect on injury severity. The authors identify
that most authors use a biased data set that contains an excessive amount of severe injuries
and fatalities, leading to risk estimates that are too high. Some of the researchers use data
that does not contain a bias, however these are very small data sets with very large confidence
intervals. This means that accurate fatality risk estimates cannot be recovered from literature.
However, estimates that are considered too high are available in literature. For this study
overestimating the risk is not a big problem and this means we can use the estimates collected
in [3]. Using the data from 9 studies analyzed in [3], a curve is made of the average risk versus
speed in Vehicle To Pedestrian (V2P) collisions. The results can be seen in Figure 3-2. The
data is collected by estimating data points on the different graphs in [3], and is thus not as
accurate as retrieving the original data. However, some of the original data is not available
and a few percentage points different should not result in significantly different outcomes in
this study.

Figure 3-2: Average fatality risk versus speed in V2P collisions from [3] and its linear approxi-
mation.

For Vehicle To Vehicle (V2V) collisions a statistical analysis is done in [2]. In Figure 3-3 one
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Figure 3-3: Proportion of vehicles containing one or more seriously injurted occupants (ISS 15+)
as a function of ∆v [2].

can see that the risk of injury as a function of speed is very similar to that in V2P collisions.
The injury risk in V2V collisions is slightly lower than in V2P collisions (note the mph and
km h−1 difference). Since a higher risk assumption is not detrimental to the performance of
the algorithm, the V2P injury risk will also be used for V2V collisions.
From Figure 3-2 we can see that the severity of an injury can be approximated linearly as a
function of speed. Using the curve fitting toolbox from MATLAB, we find that the least squares
fit gives the risk Rv as a function of the speed v as:

R∆v(v) = 1.052∆v − 12.13.

However, the risk of an injury cannot be negative. Furthermore, one can see that the risk
only starts to pick up at around 11 km h−1. One would however expect that R∆v(0) = 0 and
R∆v(v) ≥ 0,∀v > 0. This can be achieved by simply removing the constant term. This leads
to an overestimated risk, but this should not pose a problem in this study. This leaves us
with an estimate of the risk of injury due to speed as:

R∆v = 1.052∆v.

3-2-5 Health cost function

To estimate health cost for collisions, we use the fact that the severity of an injury is related
to the speed, mass and direction of an impact as indicated by literature. For this we can use
the power relation

Ri = AµuR∆v

found in [29] multiplied with the speed factor R∆v to indicate the mortality rate Ri as a
function of the parameter A which represents the PDOF, the parameter u which indicates
the power relation between mass, mortality rate and PDOF which can be found in [29], the
mass ratio between the vehicles µ and the risk from speed R∆v. That the power relation Aµu

can be multiplied with R∆v is based on Figure 3-1, where it seems that the almost linear
function R∆v is multiplied with a constant factor based on the PDOF.
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3-3 Monetary Cost

In Section 3-2 a function was given that describes the health cost of a collision. As described
in Section 3-1, a deontological approach is preferred. This means that separate cost functions
must be defined for the health cost and monetary cost. In [31] the cost of crashes in South
Africa are analyzed. In the report, the crash cost is divided in three categories. First there is
the incident cost, which covers on-scene costs, the costs of towing and the congestion costs.
Secondly, there is the cost of human casualty, which included all health-related costs. Thirdly,
there is the vehicle damage cost. The portion of the total crash cost divided over the three
categories is incident cost 15.8%, human casualty cost 9.3% and vehicle repair cost 14.9%.
However, since these are only the costs of crashes happening on public roads, it is hard to
translate these statistics to a surface mine situation. One option is to follow the deontological
view in [23] where a hierarchical list of constraints is used, as can be read in Section 3-1.
In order to make these rules, some assumptions have to be made about the cost of different
types of collision. Since we look purely at monetary cost, the following hierarchy was made,
ordered from highest to lowest monetary cost:

• Collisions between two mining vehicles;

• Collisions between a mining vehicle and a passenger vehicle;

• Collisions between a mining vehicle and an object;

• Collisions between two passenger vehicles;

• Collisions between a passenger vehicle and an object.

This hierarchy is based on the fact that mining vehicles contribute much more to mining
operations than normal passenger vehicles. Furthermore, mining vehicles are much more
expensive and it is also much harder to replace a mining vehicle than a normal passenger
vehicle. At prices in the $5 million region, a collision involving a mining vehicle will generally
be much more expensive than one with only normal vehicles. From the set of rules we can
see that the mass of the vehicles can also be used to describe the monetary cost of the crash.
Since bigger vehicles are generally more specialized and expensive than lighter vehicles, we
can use the mass of the vehicle as a indicator of the cost associated with a collision involving
this vehicle.

It is much harder to optimize over a set of discrete rules than over a continuous function. For
this reason, the monetary cost of a collision is approximated as the sum of the vehicle masses
for all V vehicles involved in the collision. Since more damage is done when the collision
occurs at a higher speed, this is also incorporated in the cost function. This leads to:

Cm = ∆v
V∑

i=1
Mi

which is much easier to optimize, and also more complete than the set of rules derived earlier.
However, since the masses of the vehicles do not change, this optimization will simply try to
decrease the speed ∆v to 0. Additionally, it could select which vehicles are chosen to collide
with each other. Since the health risk Ri already is a linear function of the speed due to
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the term Rv in the equation, the monetary cost will not add anything to the optimization
algorithm. This leaves us with two options. Firstly, we can modify the monetary cost so
that it optimizes over a variable that is independent of the health cost in order to get a
better optimum, or secondly we can omit this part which will have the benefit of a faster
algorithm which is desirable for our real-time application. Since the literature suggests no
other variables that have an influence on the monetary cost of a collision, we choose to omit
the monetary cost from the optimization problem.

3-4 Logistic Cost

The logistic cost describes how mining operations are influenced by the controller. So far no
scientific papers are published on this topic, which means that this function must be designed
from scratch. The logistic cost function should ensure that the vehicle always functions
optimally. If for example a vehicle has to slow down to half the maximum speed to avoid
a collision but brakes to a full stop, the collision might be avoided but the performance
of the vehicle is sub-optimal. From this we can see that collision avoidance and optimal
performance have conflicting goals. Collision avoidance forces vehicles to slow down, while
for optimal performance all vehicles should be driving at maximum speed.
When a vehicle with a low maximum speed of 8 km h−1 slows down to 6 km h−1, the relative
cost is much higher than when a faster vehicle driving at a maximum speed of 50 km h−1

slows down to 48 km h−1. Furthermore, vehicles with higher maximum speeds can generally
accelerate faster at a lower cost. This means that the logistic cost of a vehicle should be
expressed as a function of the maximum speed of that vehicle. As was stated in Section 3-
3, heavy mining vehicles generally contribute much more to mining operations than normal
passenger vehicles. Firstly, they do most of the production in surface mines. Additionally,
heavy mining vehicles use a lot more energy and time to accelerate than lighter vehicles. This
can be incorporated in the cost function by using a coefficientMi that signifies how important
the vehicle is to mining operation. Using these assumptions, the cost J of a braking action
by vehicle i over a time horizon [0, T ] is given by:

Ji = Mi

∫ T

0

Vi,max − Vi

Vi,max
dt

where for now the payload of the vehicle is used as a value of Mi. Other methods of defining
this parameter, for example by using the empty mass of the vehicle or empirical data, could
also be used. Additionally, it is possible to generate these values artificially. In this way, an
ambulance can be given a high value to give it high priority. Vehicles in priority lanes could
in a similar way get a higher weight so that the weights are a reflection of the traffic situation.

3-5 Cost Function

If avoiding a collision is not possible, then a solution is sought that minimizes health cost,
monetary cost and logistic cost. To estimate the health cost of collisions, we use the fact that
the severity of an injury is related to the speed, mass and direction of impact. We use the
power relation:

Ri = AµuR∆v
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to indicate the mortality risk Ri as a function of the parameter A representing the PDOF, the
mass ratio between the vehicles µ, the parameter u indicating the power relaxtion between
mass, mortality rate and PDOF found in [28] and the risk from speed R∆v. Using Figure 3-1,
the severity of an injury as a function of speed is approximated linearly as:

R∆v = 1.031∆v.

Since monetary cost is linearly related to health cost this term can be omitted. For the logistic
cost of control we use:

Ji = Mi

∫ T

0

Vi,max − Vi

Vi,max
dt.

3-6 Implementation and Performance

After a first implementation of this method, it became apparent that a NLP implementation
is not feasible in a real-time application. Preliminary results show that these optimization
methods could not cope with the highly nonlinear optimization problem that we formulated.
The main reason is that the solver took often more than 7 seconds to find a single solution.
Since the problem is highly nonlinear, a multi-start approach is preferred to avoid getting
stuck in a local minimum. Another problem was that the solution was far from optimal.
With a simple hand calculation one could in most cases find a solution for which both the
health and logistic cost were lower than the optimal solution found by the solver. This problem
did persist, even when the initial guess was set as a manually calculated result that was close
to the expected optimal solution.
Furthermore, the solver often returned infeasible solutions even if the initial condition was
almost identical to the predicted optimal solution. This meant that the solver did not out-
put any solution, and consequently no control command could be sent to the vehicle. This
unreliability is a serious issue in our application.

3-7 Conclusion

Since NLP does not need any approximations, it seems like a favourable method for developing
a CAS. Based on ethic considerations, a hierarchical approach would be best to formulate a
cost function. Three cost were identified which were based on health, material and logistics.
The health and material cost overlap, leaving only two cost term. Optimization led to very
long computation times and inaccurate solutions, even when an initial guess very close to the
optimal solution was given. The decision what thus made that these optimization methods
are not suitable for the CAS application. A faster optimization method is Mixed Integer
Linear Programming (MILP), which is discussed in Chapter 4.
The authors of [32] compare MILP and NLP with each other. The optimal solutions for
both methods were very similar with a similar cost for both MILP and NLP. As the authors
find that MILP is faster than NLP for every instance that they solved, MILP should be
preferred over NLP. Since real time computation is one of the main features needed in the
CAS application, studying [32] earlier might have guided us towards the use of MILP before
implementing an NLP method. Given the more accurate model that can be created using
NLP, it was however worthwhile to try it out.
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Chapter 4

MILP

In this chapter a review of the Mixed Integer Linear Programming (MILP) method is given.
The choice for MILP was made since preliminary results show that MILP might be more
suitable for a real time application than, as can be read in Chapter 3. This means that most
of the research described in Chapter 3 will not be directly used in the remainder of the thesis,
however some insights can still be gained.

As the name suggests, Mixed Integer Linear Programming is an optimization method that
makes use of a linear cost function and linear constraints. The concept of MILP has been used
in aviation applications for some time now. MILP is now also being used in vehicle collision
avoidance as well, for example in [19], but its main use is still in aviation applications. One of
the first authors that used MILP for collision avoidance is Schouwenaars, who uses MILP to
safely guide a military Unmanned Aerial Vehicle (UAV) around obstacles in [5]. An important
aspect of the author’s work is that he ensures the UAV has a guaranteed collision free path,
independent of the environment outside the prediction horizon. A review of this and other
uses of MILP in literature are given in Section 4-1.

The MILP formulation accommodates for the use of continuous, discrete and binary variables.
This opens a lot of possibilities to model nonlinear problems by using binaries and simplified
linearized models. The so-called ’Big M’ method is a technique often used to construct sets
of linear constraints that model a non-linear constraint. The mathematics behind it are
discussed in Section 4-2. A method used to modify constraints during the optimization is
discussed in Section 4-3. Different solvers that are available are discussed in Section 4-4.

4-1 MILP in Literature

A lot of knowledge can be gathered from literature about the uses of MILP. In subsection 4-1-
1 an overview is given of studies in the computational speed of MILP in comparison with other
techniques. Receding Horizon Control (RHC), as used in [5], is discussed in subsection 4-1-
2. A method to detect and avoid collisions when using the MILP framework, is described
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in subsection 4-1-3. The length of the prediction horizon and the step size are important
parameters of the model. An analysis on the subject is given in subsection 4-1-4.

4-1-1 Computation speed

In [33] it is mentioned that MILP is generally fast. The authors of [32] explicitly state that
MILP is faster than Non-Linear Programming (NLP) for all instances that were tested. In
[34] a comparison between different collision avoidance algorithms is done. The author finds
that MILP is one of the best algorithms for smaller problems involving four to eight airplanes.
For bigger problems with up to 32 airplanes, the time needed to find a solutions increases to
the point where the algorithm becomes unsuitable for a real-time application. These results
are promising since in a mine, it seems highly unlikely that more than 8 vehicles will be on a
collision course with each other.

4-1-2 Receding horizon control

When MILP is used in a Collision Avoidance System (CAS) application, a common approach
is to use Receding Horizon Control (RHC). With RHC one uses a prediction horizon of
a certain length and calculates multiple solutions in succession instead of calculating one
global solution based on a time horizon that includes the terminal state. The RHC approach
does have a number of advantages over calculating a global trajectory when used in a CAS
application. Firstly, computational time is very high. The RHC strategy has been bench
marked against the calculation of a global trajectory as early as 2002 [4]. In Figure 4-1 one
can see that the the cumulative computational time when using RHC is significantly lower
than the median computational time when using a fixed horizon.

Furthermore, the global method cannot deal with changing environments. The authors of [4]
test a host of scenario’s with different complexity levels. They find that, for every problem
that was tested, the cumulative time needed in the RHC approach was less than the time
needed to calculate a single global solution. Furthermore, the global solver failed to design
a trajectory for some scenarios while a solution was always found for the RHC problem.
The increased performance when using RHC is promising in a path planning scenario, since
the vehicle can start its trajectory earlier when a RHC approach is used. However, in a
CAS application it is crucial to have control available as fast as possible. Furthermore, the
changing conditions due to inaccurate prediction of the vehicle movement can render global
solutions invalid after a short while. This makes the RHC approach much better than the
global approach for the intended application in this thesis.

4-1-3 Collision detection

The authors of [35] mention that Schouwenaars [5] uses a discrete set of points at which
collision avoidance is enforces and a control input is calculated. Since this set is uniformly
distributed over the prediction horizon, this method is called uniform gridding. Uniform
gridding is not optimal, since vehicles can still collide between time steps. To prevent this, a
smaller time step can be used but this leads to an exponential increase in calculation times. For
this reason, the authors of [35] propose an iterative time step selection algorithm. To enforce
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Figure 4-1: Cumulative Computation Time vs. Complexity [4]

collision avoidance the authors use a dense set of points with time step ∆t between points,
which guarantees that each collision will be detected. To calculate optimal control, they start
with an empty or very coarse set. After an optimal control sequence is calculated, they check
again for collisions using the dense set with time step ∆t. If a collision is detected, additional
time steps are added to the coarse set and a new optimal control sequence is calculated.
The process is repeated until no collisions are detected. One drawback of the method in
our application is that it might have very big time steps, resulting in fast computations but
unnecessary early braking action. A solution that for example avoids a collision is to brake
immediately when a possible collision is detected.

Because unnecessary braking will be very problematic for a CAS’s acceptance, this is one of the
main areas identified in which an improvement can be made. Braking should only happen right
before a collision, and besides that no action should be taken. Using the method proposed
in [35], a dense set can be used to detect collisions. The time step is chosen conservatively
as ∆t = dmin

vmax
where dmin is the width of the smallest vehicle plus an additional length to

ensure that small corner collisions are also detected. vmax is the highest maximum velocity
of the vehicles. If a collision is detected, an optimal control sequence is calculated over a set
of points right before the predicted time of collision. If after that a collision is still detected
using the dense set, extra points are added and a new control sequence is calculated. The
process is then repeated until a collision free path is found.

4-1-4 Step size and horizon length

A drawback of RHC is that a global optimal solution will in most cases not be found, but
literature shows that the sub-optimal solution is often very close to the optimal solution, with a
maximum difference of 3% in the final cost being mentioned [4]. Another problem that occurs
with a finite time horizon is that the program cannot deal with the environment outside the
prediction horizon window. A solution to this problem was proposed and successfully tested
in [5, p. 71-92]. The author does this by ensuring that the trajectory always terminates
in a feasible invariant set, meaning that the vehicle can always divert to a safe alternative
trajectory if no solution is found within a certain time. In the aviation application of [5],
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these alternative trajectories are loiter circles where the UAV can safely keep circling until a
new trajectory is found. An example of the UAV’s flight path with the loiter circle for each
intermediate trajectory is shown in Figure 4-2.

Figure 4-2: Sequence of intermediate receding horizon trajectories with loiter constraints con-
sisting of 24 sample points [5].

In the CAS, this safety mechanism is however only necessary if the time horizon is too short.
By taking it long enough, one can ensure that all events happening in the horizon can be dealt
with in a safe manner. This however leads to a longer calculation time. It is important to
keep track of the calculation time tc because it should preferably not be longer than the time
step ∆t used in the simulation. If tc > ∆t, the first element of the optimal control sequence
is then meant for a moment that is already in the past when the solution is returned. In that
case there is no benefit of a small time step, and it can just as well be increased to reduce the
computational time.

However, by increasing the time step ∆t used i one compromises on the optimality of the
solution. Furthermore, a big time step gives a coarse resolution. This could lead to un-
dersampling, where vehicles are colliding but the algorithm does not detect the collision. A
possible solution is to decrease the time step to a very small size, at a very high computational
cost. Another solution, that can also be seen in Figure 4-3, is to enlarge the vehicle with a
safety zone. By choosing an appropriate distance dsafe, the actual collision will always be
avoided.

The maximum length of the time step is thus limited by the speed and dimensions of the
vehicle. To lower the computational cost, one could use a shorter horizon. However, the length
of the prediction horizon cannot be shortened indefinitely. If the length of the prediction
horizon is too short, a potential collision will only be detected at the last moment. Since the
vehicle has a limited deceleration rate, the prediction horizon must be long enough to ensure
that all vehicles can from maximum speed be brought to a stop without colliding.
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Figure 4-3: Undersampling leads to an undetected collision between a vehicle and obstacle [5]

4-2 ’Big M’ Method

One of the main features of MILP that is used in collision avoidance is the selective use of
constraints. This is done using the so-called ’Big M’ method. The method is used for both
constraint relaxation and constraint modification. In this way, some non-linear constraints
can be linearized without losing the non-linear properties. How this is done is illustrated in
the example below.
In almost all cases encountered in literature, vehicles or UAVs are modelled as a point with
a radius. To ensured that no collision occurs between vehicle i an j, the two points have to
be a certain distance dsafe from each other. The author of [5] formulates this as:

‖pi(t+ k|t)− pj(t+ k|t)‖ ≥ dsafe

for all time instances k in the prediction horizon. To simplify these constraints, one should
realize that it does not matter in which direction the points are separated. Additionally, if
the vehicles’ distance to each other in the x direction is more than dsafe, the vehicles can be
less than dsafe from each other in the y direction. These constraints could thus be split up
in a x and y direction as:

|xi − xj | ≥ dsafe OR
|yi − yj | ≥ dsafe.

This method requires that the absolute value is used, but since this is a nonlinear operator
which cannot be used in the MILP framework. The so-called ’Big M’ method is used to
change these constraints in a form that is suitable for MILP. In the ’Big M’ method, binaries
bi are used to activate and deactivate constraints. The constraints are now formulated as:

xi − xj ≥ dsafe −Mb1 AND (4-1)
xj − xi ≥ dsafe −Mb2 AND (4-2)
yi − yj ≥ dsafe −Mb3 AND (4-3)
yj − yi ≥ dsafe −Mb4 AND (4-4)

4∑
i=1

bi ≤ 3 (4-5)
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where M is a sufficient large number so that the constraint is always satisfied if bi = 1.
Constraint 4-5 ensures that at least one of the binaries is zero and thus at least one constraint
is satisfied. In this way, the reformulated constraint becomes a set of linear equations which
is compatible with MILP.

4-3 Constraint Modification

Since MILP uses hard constraints, the optimization problem becomes infeasible when vehicles
are too close to each other because at least one of the constraints in the set 4-1 to 4-5 will
not be satisfied. The MILP method can in such a case be used for constraint modification.
This can be done by using a binary bc that indicates that the vehicles are too close to each
other. Constraints 4-5 is then rewritten as:

4∑
i=1

bi ≤ 3 + bc (4-6)

which means that the set 4-1 to 4-4 and 4-6 are satisfied even when the vehicles are less than
dsafe from each other. In this example, the benefit would be that it prevents the problem from
becoming infeasible. The application of constraint modification in this study is discussed in
Chapter 6.

4-4 Solver

Multiple solvers are available for problems that are formulated using MILP. Since 2014
MATLAB has a dedicated MILP solver called intlinprog. While these and other free solvers
such as GLPK are available, most authors in literature use the commercial CPLEX developed
by IBM. The algorithm scores high in benchmark tests and comes with a MATLAB interface.
The most common solving methods for MILP problems are branch & cut algorithms, LP
relaxations and heuristics. The CPLEX solver uses a branch and cut algorithm. The basis
of this algorithm is integer relaxation. This means that the algorithm solves the problem
without the integer constraint on the binaries. If the values of the binaries found in the
optimal solution are not integers, branches are created for both values. For each of the nodes
in these branches a lower bound is set equal to the integer solution. The upper bound for
each node is equal to the optimal non-integer solution of the problem. These nodes are then
pruned to find the optimal solution. If in a node the value of the upper bound is then lower
than the value of another existing lower bound, the node is disregarded. In the cutting part
of the algorithm, feasible regions are cut away to reduce the search area. After repeating
this process, eventually the optimal integer solution is found. The CPLEX algorithm uses 13
different cutting methods to find optimal ways in which to reduce the feasible area [36].

4-5 Conclusion

Literature states that MILP is a fast optimization method. Using RHC, it can be adapted
very well to solve the centralized control problem studied in a CAS as was shown in [5]. By
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enlarging the vehicle with a safety zone, a bigger time step can be used. It also prevents that
small corner collisions go by undetected. This leads to a lower computational cost, which
allows for a longer prediction horizon. In determining the step size, one should also look at
the time it takes to solve to optimization problem. If the solving time is longer than the time
step, the time step should be increased.

An important technique to achieve an accurate model and effective constraint modelling is
the ’Big M’ method. Due to the linear nature of the method, new dynamic and geometric
models of the vehicle must be formulated. These will be addressed in Chapter 5.
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Chapter 5

Linear Model

As said in Chapter 4, the Mixed Integer Linear Programming (MILP) method uses constraint
modelling. This chapter covers the model that is used in the optimization problem. As MILP
is used, the model must be linear. The dynamic model of the vehicle’s movements is given
in Section 5-1. Section 5-2 describes how the geometry of the vehicle is approximated using
only linear equations.

5-1 Vehicle Dynamics

Since MILP only used linear equations, the vehicle dynamics must also be modelled in a linear
fashion. This model is used to predict the future position of the vehicle, so that potential
collisions can be detected. The vehicle’s dynamic model consists of two parts. These are
the forward or longitudinal and sideways or lateral movement, discussed in subsection 5-1-1
and 5-1-2 respectively. The combination of these two forms the dynamic model, which is
summarized in subsection 5-1-3.

5-1-1 Longitudinal movement

The longitudinal movement is the only direction that is affected by the Collision Avoidance
System (CAS). The velocity and acceleration of the vehicle are described in a body fixed
frame. The position of the vehicle is described in a space-fixed frame [37, ch. 3]. The speed
of the vehicle in global frame as a function of the lateral vehicle speed are:

ẋ(t) = v(t) · cos(θ) (5-1)
ẏ(t) = v(t) · sin(θ) (5-2)
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respectively, where v(t) is the longitudinal speed of the vehicle and θ the heading. Integrating
(5-1) and 5-2 gives:

x(t) = x0 + cos(θ)
∫ t

0
v(t)dt (5-3)

y(t) = y0 + sin(θ)
∫ t

0
v(t)dt (5-4)

respectively. By assuming a constant vehicle speed for each time interval [t, t + ∆t], the
position of the vehicle at the next step can be predicted using a left Riemann sum as:

x(t+ ∆t) = x(t) + ∆t · v(t) · cos(θ) (5-5)
y(t+ ∆t) = y(t) + ∆t · v(t) · sin(θ) (5-6)

where the accuracy depends on the size of the time step ∆t. The initial position (x0, y0) and
heading θ are determined using measurements. These measurements will be obtained from a
GPS on each vehicle.

The trapezoidal ruled is another method that can be used to estimate the position of the
vehicle. The left Riemann sum is not very accurate as an approximation because of the
coarse step size ∆t. The assumption of constant deceleration is also more accurate than
that of constant speed, which we know is not possible. However, the trapezoidal rule tends
to overestimate the value when used on a concave function and underestimate the value
when used on a convex function. In the CAS application, this means that the algorithm
will overestimate the distance travelled when accelerating and underestimate the distance
travelled when decelerating. In the first case, this will lead to false positives (unnecessary
braking), while in the second case it will lead to false negatives (braking too late). Using the
left Riemann sum achieves the opposite effect.

The acceleration of the vehicle is the only parameter affected by the control input u. The
equation for the acceleration in the body fixed frame is equal to:

v̇(t) = u(t) (5-7)

where the control input u(t) ∈ [−dmax, amax]. The maximum deceleration dmax and max-
imum acceleration amax of the vehicle differ for each vehicle, to ensure that the vehicle’s
acceleration and deceleration in the model match real-world vehicle characteristics. Integrat-
ing (5-7) gives us:

v(t) = v0 +
∫ t

0
u(t)dt (5-8)

and when approximating this with a left Riemann sum this is equal to:

v(t+ 1) = v0 + ∆t · u(t). (5-9)

The model thus assumes that the CAS is the only factor influencing the acceleration of the
vehicle. This is not true, since the system can only brake the vehicle and the driver has to
accelerate it. For this reason the control has an upper bound of U(t) ≤ amax. The algorithm
in this way simulates an aggressive driving style. More on this can be found in Section 6-3.
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5-1-2 Lateral movement

Mining vehicle seldom drive on straight trajectories. For that reason, the CAS should also
work on curved trajectories. The most obvious way to achieve this is to make the heading
θ a variable. In (5-5) and 5-6 the change in heading was set as a constant. By making the
heading θ(t) a variable, the equations for the position in the x and y direction become:

x(t+ 1) = x(t) + ∆t · v(t) · cos(θ(t)) (5-10)
y(t+ 1) = y(t) + ∆t · v(t) · sin(θ(t)) (5-11)

respectively. The easiest way to model the heading change is by assuming that the yaw rate
is known. The equation of the heading as a function of the yaw rate is given as:

θ̇(t) = r (5-12)

where r is the yaw angular velocity or yaw rate. Integrating (5-12) gives us:

θ(t) = θ0 +
∫ t

0
r(t)dt (5-13)

and when using a left Riemann sum, this becomes:

θ(t+ 1) = θ(t) + ∆t · r(t). (5-14)

The yaw rate r(t) is a function of the speed and steer angle and can be measured using a
relatively cheap sensor. If the yaw rate is assumed constant, the vehicle will turn even when
stationary, showing that this assumption is flawed and leads to huge deviations from the real
vehicle dynamics. The steering angle δ can be derived from the measured speed and steer
angle. Assuming the steering angle constant is a valid approximation when the time horizon
is not too long. In [38, p. 206] it is described how the the vehicle’s yaw rate r(t) and steering
angle δ are related to each other. This relations is given as:

r(t)
δ

= v(t)/L
1 + Kv(t)3

57.3Lg

(5-15)

where v(t) is the velocity and L the wheelbase of the vehicle, K the understeer gradient
and g the gravitational acceleration. A vehicle with neutral steer (no oversteer or understeer)
has K = 0 and with this assumption the yaw rate r(t) becomes a function of speed V (t),
wheelbase L and steering angle δ and can be written as:

r(t) = v(t)
L
δ. (5-16)

As said before, it is assumed that the steering angle δ is constant for the time horizon.
Substituting (5-16) in (5-14), one can calculate the heading over time as:

θ(t+ 1) = θ(t) + ∆t · v(t)
L
δ (5-17)

which is then substituted in the equations for position . These then become:

x(t+ 1) = x(t) + ∆t · v(t) · cos
(
θ(t− 1) + ∆t · v(t− 1)

L
δ
)

(5-18)

y(t+ 1) = y(t) + ∆t · v(t) · sin
(
θ(t− 1) + ∆t · v(t− 1)

L
δ
)

(5-19)
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which is a non-linear function. Since the MILP solver can only solve models with linear
equations, this approach is not suitable. A possible solution is to use a non-linear solver. The
model is already highly simplified, however by using quadratic constraints the computational
time will most likely increase significantly.
It is however possible to estimate the future yaw rate. By assuming that the steering angle δ
and the acceleration of the vehicle stay constant until either the minimum or maximum speed
is reached, the yaw rate can be predicted for the time horizon. The predicted future speed is
then calculated using (5-16) and the initial acceleration a0 as:

vp(t) = min
(
vmax, max(0, v0 + t · a0)

)
(5-20)

where vmax is the maximum speed of the vehicle. This predicted speed is then used together
with the initial yaw rate r0 to calculate the predicted heading for each time step as:

θ(t+ 1) = θ(t) + ∆t · vp(t)
L

δ. (5-21)

5-1-3 Complete model

The model is time-variant, due to the fact that the heading θ changes over time for r0 6= 0.
It is however still linear since it can be written as x(t+ 1) = A(t)x(t) + Bu(t) and thus still
suitable for the MILP formulation. The set of four linear equations described above are:

x(t+ 1) = x(t) + ∆t · v(t) · cos(θ(t)) (5-22)
y(t+ 1) = y(t) + ∆t · v(t) · sin(θ(t)) (5-23)

θ(t+ 1) = θ(t) + ∆t · vp(t)
L

δ (5-24)

v(t+ 1) = v(t) + ∆t · u(t) (5-25)

and predict the dynamic behaviour of a vehicle. Since θ(t) is a known parameter, cos(θ(t))
and cos(θ(t)) are constants. This makes the system linear but time variant. The minimum
speed vmin of each vehicle is set at 0 km h−1. The maximum speed is based on vehicle
characteristics and differs for each vehicle. When the vehicle is reversing, the absolute value
of its speed is used. By setting the heading θ = θ0 +π rad (where θ0 is the measured heading)
the vehicles direction of travel can be easily adapted for a reversing vehicle. The measured
yaw rate is independent of the vehicle’s direction and can be used directly.

5-2 Geometric Model

As was stated in Section 2-5, the models that are used to describe the shape of the vehicle are
not adequate. Two models are commonly used in similar applications. The simplest model
that is often encountered in literature uses a point with a radius to describe the vehicle,
which is computationally cheap but geometrically inaccurate. A computationally expensive
but geometrically accurate model uses a polygon to describe the vehicle shape. The merits
of the polygon model are discussed in subsection 5-2-1. A modification of the simple point
model using a number of squares, is discussed in subsection 5-2-2. A conclusion on the best
model is given in subsection 5-2-3.
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5-2-1 Polygon

As said above, the polygon represents the vehicle geometry very accurately. However, it is
computationally expensive which can be a serious drawback for a real-time application such
as a CAS. Some applications do use polygons to model a vehicle and detect collisions. The
authors of [1] have developed a system that creates a polygon made of 4 points. These points
are broadcast to all vehicles in its vicinity. By checking whether the received polygon of
neighbouring vehicles overlaps with the vehicles own polygon, collision detection is done. A
buzzer is activated to warn the driver if this is the case. The method does however not
use a prediction algorithm to look in the future, but only checks for collisions using current
information. The corners of the polygon are defined in a global frame, using the x and y
coordinates of the centre of the vehicle. The equations for the 4 corner points are:

ax = x+
(
L

2 + sf

)
sin(θ) +

(
W

2 + ss

)
cos(θ)

ay = y +
(
L

2 + sf

)
cos(θ)−

(
W

2 + ss

)
sin(θ)

bx = x+
(
L

2 + sf

)
sin(θ)−

(
W

2 + ss

)
cos(θ)

by = y +
(
L

2 + sf

)
cos(θ) +

(
W

2 + ss

)
sin(θ)

cx = x−
(
L

2 + sb

)
sin(θ)−

(
W

2 + ss

)
cos(θ)

cy = y −
(
L

2 + sb

)
cos(θ) +

(
W

2 + ss

)
sin(θ)

dx = x−
(
L

2 + sb

)
sin(θ) +

(
W

2 + ss

)
cos(θ)

dy = y −
(
L

2 + sb

)
cos(θ)−

(
W

2 + ss

)
sin(θ)

where θ is the heading of the vehicle, where θ = 0 when the vehicle travels in the direction
of the positive y axis, L and W are the length and width of the vehicle and sf , ss and sb

are the safety distances at the front, side and back respectively. The vehicle is surrounded
by a safety zone to make the system more robust. While the safety distances can be chosen
to be constant, one can also choose to make them dynamic, for example based on the speed
of the vehicle or the Principal Degree of Force (PDOF). The parameters described above are
visualized in Figure 5-1.

Polygons: Collision detection

To do collision detection, one has to compare the polygons of all vehicles involved in the crash
with each other. This is commonly done by seeing whether the corner points of one polygon
lie inside the other polygon and vice versa. Since the polygons are all constructed of 4 corner
points, one must do four checks. A fast and simple way to check that a point p is inside the
convex polygon abcd is making use of the cross product. The cross product of two vectors
ab = (abx, aby, abz) and ap = (apx, apy, apz) is defined as:

ab× ap = (abyapz − abzapy)x + (abxapz − abzapx)y + (abxapy − abyapx)z
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Figure 5-1: Diagram describing the vehicle (blue) with the safety zone (red) in a global reference
frame.

where x, y and z are the unit vectors in each direction. When the vectors ab and ap are
lying in the horizontal planes for the CAS application, it holds that abz = apz = 0 and the
cross product can be simplified to:

ab× ap = (abxapy − abyapx)z

which is a vector parallel to the z axis. Since it is an right-handed orthonormal basis, the
sign of abxapy − abyapx will change depending on whether the point p lies left or right of
the line ab. If the edges of the polygon are travelled counterclockwise, the point is inside the
polygon if it is to the left of every edge of the polygon. In Figure 5-1 the point p lies right
of the edge ab and is thus outside of the polygon. The cross product ab × ap will thus be
positive. To ensure that a point p is not inside the polygon abcd, the constraints:

(xb − xa)(yp − ya)− (yb − ya)(xp − xa) > 0 AND
(xc − xb)(yp − yb)− (yc − yb)(xp − xb) > 0 AND
(xd − xc)(yp − yc)− (yd − yc)(xp − xc) > 0 AND

(xa − xd)(yp − yd)− (ya − yd)(xp − xd) > 0

must all be satisfied. To confirm that a vehicle is not colliding with another vehicle, 4×4 = 16
constraints must be checked. Since this must also be done vice versa, 32 constraints are needed
at each time instance to ensure collision avoidance between vehicles, meaning a significant
computational burden compared with the simple point method used in [5].

The equations are also non-linear and thus not suitable for a MILP formulation. In [5]
the author uses a linear set of equations to achieve obstacle avoidance between a point (the
vehicle) and polygon (an obstacle). The obstacle is modeled using a convex polygon. Obstacle
avoidance is then done by checking that the vehicle is in one of the outer halfspaces that are
formed by the edges of the polygon. A halfspace i is described by:

uix(t) + viy(t) + wiz(t) + hi ≤ 0
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with x(t), y(t) and z(t) the position of the vehicle at time step t. Using the ’Big M’ method
described in Section 4-2, the different constraints are combined and for each time step t a set
of constraints:

u1x(t) + v1y(t) + w1z(t) + h1 ≤Mb1 AND
u2x(t) + v2y(t) + w2z(t) + h2 ≤Mb2 AND

...
uNx(t) + vNy(t) + wIz(t) + hN ≤MbN AND

N∑
i=1

bi ≤ N − 1

is formulated to ensure collision avoidance, where N is the number of edges of the convex
polygon. The last constraint ensures that at least one of the constraints is satisfied. Since
the airplane in [5] is modelled as a point, this is an efficient way to put hard constraints on
collision avoidance when an MILP formulation is used. However, when the vehicle is modelled
as a polygon, computational cost is similar to using the cross product as described above.
Other methods used to check for point-polygon collisions can be found in [39, p. 201-203].
According to the author, these checks can at best be formulated as an O(n) problem.

5-2-2 Squares

The point model is often encountered in aviation applications such as [5]. One of the biggest
advantages of the point model is that only one calculation is required. By calculating the 2-
norm distance between the centers of two points and comparing this with the sum of the radii,
one can perform collision detection. For an MILP application the 1-norm can be used, which
must be evaluated in the x and y direction. In that case the vehicle is effectively modelled as
a square with the dimensions of the radius of the circle, as demonstrated by Schouwenaars [5].
Since the distance between airplanes should be orders of magnitude bigger than the vehicle
dimensions [40], this is a reasonable approach even though the circle or square covers an area
much larger than the airplane.

However, with mining vehicles this method cannot be used since 2-lane roads in mines are
commonly about 3.5 times the width of the widest vehicle driving on it [41, p. 55]. When big
haul trucks with a length of 20 meters and a width of 10 meter are modelled using the point
model, a radius of over 22 meters is required to cover the whole vehicle. This means that, if
the road width is indeed 35 meters, the two vehicles can never pass each without a collision
being detected or the vehicle appearing to swerve off the road. Making the radius smaller is
not an option, since the vehicles can then collide without the CAS detecting a collision. This
means that using the point model would significantly increase the number of false positives
(a level 9 intervention while the situation is in fact safe), making efficient operation of a mine
almost impossible.

A new model studied in this thesis is inspired by the computational advantage of the point
model. The rectangular shape of most vehicles can be approached by using a string of squares.
By placing equal squares on the longitudinal axis of the vehicle, one can reduce the covered
area significantly. The vehicle is in this way still fully covered by the squares, but a significant
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smaller area next to the vehicle is covered. In Figure 5-2 this is visualized for vehicles in two
orientations, where one vehicle’s heading is parallel with the y axis and one vehicle is at a 45◦
angle with the y axis. The figure also illustrates that the area covered by the squares changes
for different orientations of the vehicle.

Figure 5-2: The geometric vehicle model using three squares (coloured lines) compared to the
actual vehicles (solid black line) and a model using only one square (dashed black line).

Two options are available when using the multiple points model. Firstly, a set amount of
points can be used. The other option is to change the number of points depending on the
shape and/or orientation of the vehicle. In both cases, the points are evenly spaced over the
longitudinal axis. If for example three points are used, one point is at the center of the vehicle
while the other two points are at 1

4
th and 3

4
th of the length. The most important criteria to

base this decision on is computational speed, while it should be kept in mind that the vehicle
should be fully covered by the points, while a minimal area next to the vehicle should be
covered.

For n points used, the area covered by the points An is a function of the width w and length
l of the vehicle. It is calculated as the sum of the n squares with dimension and subtracting
the overlapping areas (n − 1)Aov from it. This area Aov depends on the orientation of the
vehicle, as can be seen in Figure 5-2. For different width to length ratio’s the fraction An

l·w
was calculated. The two most extreme orientations (θ = 0◦ and θ = 45◦) are visualized in
Figure 5-2, for the case where 3 points are used. These two orientations are also used to
calculate the area covered by n squares, in Figure 5-3a when the vehicle is lined up with the
y axis and in Figure 5-3b when the vehicle is at a 45◦ angle with the y axis. In Figure 5-2 one
can see that the area that is unnecessarily covered at the sides of the vehicle by the circles
is significantly reduced when more squares are used. Using as example a big truck with a
length of 20 meters and a width of 10 meter, the width of the squares is 22.9 meter using
a single square. Adding a second square reduces the width to 14.3 meters, where a third
square reduces it to 12.0 meters. The dimension of the squares for up to 7 squares is given
in Table 5-1, where it becomes clear that the reduction in width becomes smaller with an
increasing number of squares. As said before, roads are generally 3.5 times the width of the
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Figure 5-3: Area vs. number of squares n for different angles of driving θ

widest vehicle driving on it [41, p. 55]. This means that the width of the squares can be at
most 1.75 the width of the vehicle. Using two squares already fulfills this requirement.

#squares 1 2 3 4 5 6 7
Ws [m] 22.9 14.3 12.0 11.2 10.7 10.5 10.3

Table 5-1: Width of squares Ws for n squares for a vehicle with width W = 10m

Another significant area that is unnecessarily covered is at the front and back of the vehicles.
This effectively offers an extra safety buffer at the front and back of the vehicle. This is useful
in a CAS since in almost every collision there is at least one target vehicle. A target vehicle
is a vehicle for which the initial point of contact with the other vehicle is either the front for
a vehicle driving forward or rear for a vehicle reversing.

In Table 5-2 one can see that the ratio w
l is between 0.25 and 0.5 for most mining vehicles.

This does not take into account the safety area in front of the vehicle, which is needed to
account for both GPS inaccuracy and unexpected manoeuvres. In Chapter 7 one can read
that especially in the dove tailing scenario this safety zone must be of considerable length.
This means that the model length of the vehicle increases significantly, so that the ratio w

l
for most vehicles will be even lower. From Figure 5-3 it becomes clear that in these cases an
increase in the number of squares used will lead to a much smaller area being covered and an
expected decrease in false positives.

Combining Figure 5-3 with Table 5-1, it seems that using a fixed number of four points is
the best trade-off between computational cost and accuracy. To distribute the four points
evenly over the vehicle, one point is places at the center of the vehicle, two points are placed
in front of the center point and one at the rear of the vehicle. The dynamic model is used
to determine the position of the center points, after which the other three points are added
in their respective location. More on the location of these points can be read in Section 6-2.
Analysing the effect of using a different number of points, both on collision avoidance and
computational cost, can make the trade-off between these two performance indicators more
clear and might lead to other choices.
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Vehicle Length l [m] Width w [m] w/l

LF-10 Load haul dumper 9.7 2.6 0.27
Cat 140H grader 8.7 2.5 0.28

CAT 225GC Excavator 11.2 3.2 0.29
Bell B30E truck 10.0 3.3 0.33

Toyota Hilux Pickup 4.7 1.6 0.34
Volvo L350F Loader 9.6 3.6 0.38

Belaz 75710 Haul truck 20.6 9.9 0.48
Cat 797F Haul truck 15.1 9.5 0.63
Cat D11T Dozer 6.2 8.6 1.39

Table 5-2: Ratio w/l for different vehicles

Squares: Collision detection

The multiple points model uses the same method for collision detection as the single point
model. At each time instance t the distance between points on different vehicles is compared
with the width d of the squares. If the distance between two points i and j is bigger than
di+dj one knows that the squares are overlapping and the vehicles have collided. The distance
dveh is related to the dimensions of the vehicle and the number of squares n, and is equal to:

dveh =

√
L

2n

2
+ W

2

2
(5-26)

for a vehicle of length L and width W . By giving the squares this width dveh, one ensures
that that vehicles are fully covered by the squares formed around the n points. For two vehicle
i and j, collision detection is done by checking that:

|xi(t)− xj(t)| > dveh(i) + dveh(j) OR
|yi(t)− yj(t)| > dveh(i) + dveh(j)

and if both of the constraints are not satisfied, the vehicles have collided. This method for
collision detection is very simple, although a number of checks must be done since all points
on vehicle i must compared to all points on vehicle j. One can also use predicted future
positions of the vehicle to check for future collisions.

5-2-3 Best model

To test whether a point is inside a polygon is a O(n) problem [39, p. 201-203], where n is the
number of sides used to construct the polygon. A more detailed description of the collision
detection methods can be found in subsection 5-2-1. Normally n = 4, as the vehicle is
accurately modelled by a rectangle. If there are V vehicles involved in the potential collision,
there are V polygons each consisting of n points. As each point of each vehicle must be
tested against all other vehicles, there are a total of V · n · (V − 1) tests of O(n), making it
an O(V 2n2) problems where n is the number of circles used and V the number of vehicles
involved in a potential collision.
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In order to do collision detection with the multiple points model, each point on a vehicle must
be compared to all point of the other vehicles involved in the potential collision. This means
that n2V (V−1)

2 checks must be done for all V vehicles. The computational cost of the circle
model thus increases quadratically with the number of vehicles V , where n = 4 is a good
choice as can be read in subsection 5-2-2.

This makes collision detection for both the multiple points and polygon model O(V 2n2)
problems. The computational cost is thus equal for both models. As said earlier, the polygon
model has a more accurate geometric model. However, using the multiple points model, it is
easier to analyse which vehicle is the bullet vehicle. This can be done by analysing the binaries
associated with the frontal square. This is essential especially with dovetailing scenarios.

5-3 Conclusion

The MILP formulation only supports linear equations, which requires the use of a linear
dynamic model in the CAS. The dynamics of the vehicle can be split in lateral and longitu-
dinal movement. Combining these two, there are four equations that together construct the
dynamic model. These can be found in subsection 5-1-3.

Geometric models that are used in the current State Of The Art (SOTA), often modelling
the vehicle as a single point, cannot be used in a CAS for surface mines. This required the
construction of a new geometric model using linear equations. When using polygons, the
representation is very accurate, but computationally expensive. Using the multiple points
model, a good approximation of the geometry can be achieved. A total of four squares give
a sufficiently accurate model.
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Chapter 6

CAS Formulation

The linear model describing vehicle dynamics and geometry are described in Section 5-1 and
Section 5-2 respectively. In this chapter these models are translated to linear constraints that
are suitable for the Mixed Integer Linear Programming (MILP) implementation. In subsec-
tion 5-2-2 a method for collision detection for the preferred geometric model is described. This
collision detection method must now be used to realize collision avoidance. This is described
in Section 6-1. Since a standard MILP approach cannot deal with unavoidable collisions, a
reformulation of the collision avoidance constraints is discussed in Section 6-2. The control
input to the vehicle is the solution of the optimization problem and is described in Section 6-3.
The cost function used in the optimization problem is discussed in Section 6-4.

6-1 Collision Avoidance

Collision avoidance can be split in two objectives. One is the avoidance of collisions with
other vehicles and pedestrians, while the other one is obstacle avoidance. While obstacle
avoidance in not unimportant, it is not the main scope of this research. This is mainly
because legislation is aimed at reducing the number of fatal accidents involving vehicles.
These accidents are almost without exception caused by collisions between vehicles or between
a vehicle and a pedestrian. Obstacles could also be modelled as stationary vehicles, thus
making it easy to extend the possibilities of the Collision Avoidance System (CAS) once
other vehicles are successfully avoided. While some interesting methods are proposed in
[5] to convexify non-convex obstacles, these will not be discussed since the focus is only on
collisions involving vehicles and possibly pedestrians. In this study, pedestrians are modelled
as stationary vehicles. This results in a single type of collisions, where only vehicles are
involved.

The method used in literature to ensure collision detection between vehicles for the multiple
point model is described in Section 5-2. Using a MILP implementation, this collision detec-
tion method can be adapted easily to be used for collision avoidance. The MILP model is
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constructed using constraints. As seen in subsection 5-2-2, collision avoidance between vehicle
i and vehicle j at time t is achieved when:

|xi(t)− xj(t)| ≤ dveh(i) + dveh(j) OR
|yi(t)− yj(t)| ≤ dveh(i) + dveh(j)

where the distance dveh is based on the vehicle dimensions and according to (5-26). The ’Big
M’ method that is used to reformulate these collision avoidance constraints as a set of linear
equations, as described in Section 4-2. The absolute term is replaced by two constraints,
making a total of four constraints. The safety constraints become:

∀t,∀n ∈ i, j xi(t)− xj(t) ≥ dveh(i) + dveh(j)−Mb1(t) AND (6-1)
xj(t)− xi(t) ≥ dveh(i) + dveh(j)−Mb2(t) AND (6-2)
yi(t)− yj(t) ≥ dveh(i) + dveh(j)−Mb3(t) AND (6-3)
yj(t)− yi(t) ≥ dveh(i) + dveh(j)−Mb4(t) AND (6-4)

4∑
i=1

bi(t) ≤ 3 (6-5)

whereM is a sufficient large number so that the constraint is always satisfied when b = 1. The
distance dveh(i) + dveh(j) ensure that the model is suitable for any vehicle independent of its
dimensions, while the last constraint ensures that at least one of the constraints is satisfied.

6-2 Unavoidable Collisions

A major obstacle in using the MILP method is that the collision avoidance is programmed
using hard constraints. This means that the problem becomes infeasible when a collision is
unavoidable, in which case the solver will return an error. In similar applications, the safety
zone around (aerial) vehicles could be enlarged so much that this problem never occurred
[5]. Furthermore, a number of other control commands such as accelerating and steering
were available, making it much easier to find a feasible solution to the optimization problem.
However, in a mining environment unavoidable collision can occur for a number of reasons.
One possible scenario involves two vehicles that are passing each other. Close to each other one
or both of vehicles swerve in the direction of the other vehicle. These unexpected manoeuvres
are hard to anticipate since these do not happen often. It would thus be excessive to slow
vehicles down in every passing scenario. Another scenario where unavoidable collision can
occur is when GPS drift occurs. Due to noise on the GPS data it might appear that vehicles
are safely driving past each other, which does not trigger the CAS to send a braking command.
When correct GPS data is then received, it might be too late to avoid the collision and thus
only damage mitigation can be done.

Because an infeasible problem does not have a solution, no control command will be issued to
the vehicle if these situations occur. One of the most important tasks of the CAS is however
to mitigate the consequences of a collision. This means that, if a collision cannot be avoided,
the vehicles should be issued with control commands that ensures minimal damage. If this
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is not done, the CAS will not be functioning at the moments it is needed most. It is thus
important that a system is developed that tries to avoid collisions while also being able to
deal with unavoidable collisions.

In [42] the authors use a so called linear time-invariant maneuver automaton (LTI-MA). The
LTI-MA is used to describe a host of agile maneuvers of an Unmanned Aerial Vehicle (UAV)
that are particularly hard to describe using a single linear time-invariant (LTI) model. The
authors use binaries to switch from one mode to another. While these maneuvers have no
relevance in a mining environment, the LTI-MA framework is very well suited to describe the
non-linear event of a collision.

In Figure 6-1 the LTI-MA as used in the CAS is represented in a graph. The transition from
one mode to another is dependent on the distance between the vehicles. If the distance is
bigger than a specific distance dsafe, the vehicle is in the ’cruise’ mode. If the distance is
between dsafe and 0 meter, the vehicle is in the ’close’ mode where a penalty applies due to
the proximity of the vehicle. If the vehicles are colliding, the vehicle goes to the ’stop’ mode.
In this mode, the vehicle will come to a stop in one time step and stay there for the remainder
of the time horizon. A heavy cost is also associated with the ’stop’ mode.

The vehicle has to go from the ’cruise’ mode through the ’close’ mode to the ’stop’ mode.
This was done after simulations showed that in some instances the vehicle would use the
model in an unexpected way. The vehicle will come to a complete stop in one time step when
entering the ’close’ mode. It is however not forced to stay there when the vehicles have not
actually collided. The cost of entering the ’stop’ mode briefly and driving on afterwards led
to a lower cost than braking for a few time steps, even though the cost of the ’stop’ mode
was orders higher than that of the ’close’ mode.

Figure 6-1: The LTI-MA used in the CAS

6-2-1 ’Stop’ mode

The ’stop’ mode is activated when the vehicles overlap. To detect this activation, the binary
Bstop is used. By modifying (6-5) to become:

4∑
i=1

bi ≤ 3 +Bstop (6-6)

no constraints have to be satisfied if Bstop = 1. By adding a high enough penalty for reaching
this mode, bstop will never be 1 if that can be avoided. When the ’stop’ mode is activated, the
vehicle must be brought to a stop immediately. A few equations must be modified to ensure
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that this is possible. Firstly, the maximum deceleration must be increased. This can be done
by setting the constraint on acceleration to:

−Dmin(1−Bstop(t+ 1))−Bstop(t+ 1)Vmax

∆t ≤ u(t) ≤ Amax

such that the vehicle is allowed to stop in one time step. By modifying the constraint on the
maximum speed to become

0 ≤ V (t) ≤ Vmax(1−Bstop(t))

one can ensures that the vehicle has stopped at the moment that the constraints cannot be
satisfied and Bstop(t) = 1. Since the vehicles will be overlapping and the vehicles will not be
moving due to the constraint on speed, the vehicle will also stay in the ’stop’ mode for the
remainder of the time horizon. This effectively makes it a terminal state which is perfect for
our application.

6-2-2 ’Close’ mode

To ensure some robustness, it is common practice to set up a safety zone around the vehicle. In
this way, the system can be used even if GPS measurements are inaccurate. This is visualized
earlier in Figure 5-1. The safety zones can however overlap, for example because of jumps
caused by bed GPS reception. When the safety zones of vehicles are overlapping, it does
however not necessarily mean that a collision has occurred. For this reason, the ’close’ mode
is added.

By using a binary, one can detect when the vehicle’s safety zones are overlapping but have
not yet collided, and subsequently switch to the ’close’ mode. In the ’close’ mode, the safety
zone around the vehicle must be decreased in size. The close mode is implemented using a
binary Bclose, where Bclose = 1 indicates that the safety zones of vehicles intersect. Since the
’close’ mode must be avoided if possible, a cost is associated with entering this mode.

Distance constraints

As can be read in Section 4-3, binaries can be used to change constraints. Changing the safety
zone around the vehicle is done by changing (6-1) to (6-4) using the Bclose binary. The new
equations become:

∀t,∀n ∈ i, j xi(t)− xj(t) ≥
(
1−Bclose(t)

)(
dsafe(i) + dsafe(j)

)
+

dveh(i) + dveh(j)−Mb1(t) (6-7)
xj(t)− xi(t) ≥

(
1−Bclose(t)

)(
dsafe(i) + dsafe(j)

)
+

dveh(i) + dveh(j)−Mb2(t) (6-8)
yi(t)− yj(t) ≥

(
1−Bclose(t)

)(
dsafe(i) + dsafe(j)

)
+

dveh(i) + dveh(j)−Mb3(t) (6-9)
yj(t)− yi(t) ≥

(
1−Bclose(t)

)(
dsafe(i) + dsafe(j)

)
+

dveh(i) + dveh(j)−Mb4(t) (6-10)
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and by ensuring that the cost for entering the ’close’ mode is smaller than for entering the
’stop’ mode, the algorithm will have a preference for the ’cruise mode’, followed by the ’close’
mode and lastly the ’stop’ mode. The distance dveh is given in (5-26) and the distance that
is added due to the safety zone is given by:

dsafe =

√
(L+ sr + sf )

2n

2
+ (W + 2ss)

2

2
− dveh (6-11)

where the parameters can be found in (5-1). The parameter M is big enough to ensure that
the constraint is always satisfied when bi = 1.

Speed constraint

Since a dangerous situation is present when two vehicles are this close to each other, it would
be wise to set a lower maximum speed for all vehicles when this happens. To achieve this,
(6-6) could be modified to become:

0 ≤ V (t) ≤
(
1−Bstop(t)−Bclose(t)

)
· Vmax +Bclose(t) · Vsafety(v)

so that the upper bound on the speed V at time t is linked to the different modes. During
simulations it however became clear that this approach leads to unwanted side effects. This
became especially clear in the dove tailing scenario. When a vehicle is about to crash in
the rear of a vehicle, the vehicles will enter the ’close’ mode before colliding. However, if a
low minimum speed is enforced in the ’close’ mode, it could happen that the front vehicle
also suddenly brakes maximally. When this happens and the front vehicle can decelerate
faster than the rear vehicle, the speed difference would increase leading to a more severe
collision. Simulations show that collisions, which could be prevented when only the rear
vehicle decelerates, do occur when a speed limit is implemented for the ’close’ mode. For this
reason the unmodified constraint found in (6-6) is kept.

Positions of points

Since the four squares are equally spaced over the vehicle, they are located at 1
8

th, 3
8

nd,
5
8

nd and 7
8

th of the vehicle length. However, in the default or ’cruise’ mode the vehicle
polygon is enlarged by a safety margin sf in the front and sr at the rear. This was already
illustrated in Figure 5-1. The center point of the vehicle (x, y) is still used to predict future
vehicle movement. The four squares used for collision avoidance are evenly divided along the
longitudinal axis of the vehicle. The four points are labeled from the front of the vehicle to the
rear as ’buffer’, ’front’, ’mid’ and ’rear’. The positions of the ’rear’, ’front’ and ’buffer’ points
are dependent on the position of the ’mid’ point of the vehicle. The ’mid’ point is dependent
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of the location of the vehicle (x, y). The equations are formulated for all four points as:

xmid(t) = x(t)− L

8 sin(φ(t)) +
(
1−Bclose(t)

)(sf − sr

2 − sf + sr

8
)
sin(φ(t)) (6-12)

ymid(t) = x(t)− L

8 cos(φ(t)) +
(
1−Bclose(t)

)(sf − sr

2 − sf + sr

8
)
cos(φ(t)) (6-13)

xrear(t) = xmid(t)− L

4 sin(φ(t))−
(
1−Bclose(t)

)sf + sr

4 sin(φ(t)) (6-14)

yrear(t) = ymid(t)− L

4 cos(φ(t))−
(
1−Bclose(t)

)sf + sr

4 cos(φ(t)) (6-15)

xfront(t) = xmid(t) + L

4 sin(φ(t)) +
(
1−Bclose(t)

)sf + sr

4 sin(φ(t)) (6-16)

yfront(t) = ymid(t) + L

4 cos(φ(t)) +
(
1−Bclose(t)

)sf + sr

4 cos(φ(t)) (6-17)

xbuffer(t) = xmid(t) + 2L4 sin(φ(t)) + 2
(
1−Bclose(t)

)sf + sr

4 sin(φ(t)) (6-18)

ybuffer(t) = ymid(t) + 2L4 cos(φ(t)) + 2
(
1−Bclose(t)

)sf + sr

4 cos(φ(t)) (6-19)

(6-20)

and again is the binary Bclose is used to modify constraints. Analyzing (6-12), the x(t) −
L
8 sin(φ(t)) term indicates that the ’mid’ point sits at 3

8L from the rear of the vehicle. The
sf−sb

2 term corrects the position of the model’s geometric center when the model’s length is
increased due to the safety margins at the front and left. The − sf +sb

8 term again shifts the
’mid’ point to 3

8
th from the rear of the enlarged vehicle. The other points are constructed in

a very similar way.

6-2-3 Bullet and target vehicle

During simulations, it became clear that the method described above has shortcomings in
some scenarios. An important flaw of the system occurred in the transition from the ’close’
to the ’stop’ mode. As can be read in Section 6-4, the cost function includes a penalty for
the ’close’ and ’stop’ mode, a reward for a higher speed and a weight to ensure that braking
action happens as late as possible. If the algorithm detects an unavoidable collision, the ’stop’
mode will be activated somewhere in the prediction horizon. Due to the time related weight
in the cost function, the vehicle will brake maximally to ensure that the vehicle enters the
’close’ mode as late as possible. When the vehicle has however entered the ’close’ mode, a
minimal cost is achieved when the vehicle accelerates maximally. Since the ’stop’ mode is
effectively a terminal state, reward can only be gained before entering the mode. Multiplying
the cost of the ’stop’ mode with the vehicle speed when entering the mode could potentially
solve the problem, however this would lead to a non-linear cost function.

A possible solution is to hard code that the vehicles must brake maximally when the ’stop’
mode is detected somewhere in the time horizon. In a dove tailing scenario, this could however
lead to more severe collisions as can be read above in subsection 6-2-2. To ensure damage
mitigation, it would however be beneficial to hard code maximal braking of the bullet vehicle
when an unavoidable collision is detected. The bullet vehicle is the vehicle that frontally
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collides with the other vehicle. In the case of a head-on collision both vehicles are bullet
vehicles. To hard code this brake action, it is necessary to detect which vehicle is the bullet
vehicle. This is done using the ’buffer’ point on the vehicles. The constraints to detect
whether a vehicle i is a bullet vehicle in a collision involving N vehicles are:

∀t,∀p ∈ P,∀n ∈ N 6= i xi(t, front)− xn(t, p) ≥ dveh(i) + dveh(n) + dsafe(i)
+ dsafe(n)−Mbf,1(t, p)

xn(t, front)− xi(t, p) ≥ dveh(i) + dveh(n) + dsafe(i)
+ dsafe(n)−Mbf,2(t, p)

yi(t, front)− yn(t, p) ≥ dveh(i) + dveh(n) + dsafe(i)
+ dsafe(n)−Mbf,3(t, p)

yn(t, front)− yi(t, p) ≥ dveh(i) + dveh(n) + dsafe(i)
+ dsafe(n)−Mbf,4(t, p)

∀t,∀p ∈ P
4∑

j=1
bf,j(t, p)−Bb(i, t) ≤ 3

where P denotes the set of points {′rear′,′mid′,′ front′,′ buffer′} that are used to construct
the geometric model of the vehicle. The binary Bb(i, t) indicates that vehicle i is the bullet
vehicle during a collision that occurs at time t when Bb(i, t) = 1. After running the optimiza-
tion, the binaries Bstop and Bb can now be analyzed. If the ’stop’ mode is detected, braking
commands can be sent to all bullet vehicles involved in the collision.

The model does not allow vehicles to have a negative velocity. It is however important that
the algorithm can deal with vehicles that are reversing. For this reason, the absolute value of
the velocity is used. When the vehicle is reversing, the data is changed to suggest that the
vehicle has rotated 180◦ and is driving forward. The safety buffer is in this case located at
the rear of the vehicle. In this way, the buffer is always the foremost square in the direction
of travel.

6-3 Control Output

As seen in subsection 5-1-1, the control output, generated as a solution of the optimization
problem, influences the speed of the vehicle as:

v(t+ 1) = v(t) + ∆t · u(t)

and that u(t) ∈ [−dmax, amax] which means that the vehicle can both accelerate for positive
values of u(t) and decelerate for negative values of u(t). The control command that is sent
to the vehicle is thus a reference acceleration. The CAS is not actually used to accelerate the
vehicle. However, the system will not perform optimally if acceleration is not modelled. If
only deceleration is allowed, braking action will be punished heavily by the cost function. If
acceleration is also modelled, the vehicle can ’recover’ from the braking action in the modelling
environment, thus making it easier to brake the vehicle and making the system more efficient.

Adding acceleration also simulates driver behaviour and acts as an extra safety measure. In
Section 6-4 one can read how the cost function is constructed. Since the cost decreases for
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higher speed, the algorithm prefers to accelerate the vehicle at the maximum acceleration
rate. This effectively leads to the algorithm modelling an aggressive driving style. In most
scenarios this is preferable, except for the dove tailing scenario. In most cases, the predicted
acceleration will be higher than the driver’s input to the vehicle, leading to lower speeds than
predicted by the algorithm. The brake is the only system that can be actuated using the
reference deceleration. For that reason a value of zero is sent as reference when the solution
to the optimization problem is not negative. The control output is defined over the whole
time horizon. This makes it possible to send relevant control commands to the vehicle even
if it takes some time to solve the next problem.

6-4 Cost Function

As stated in subsection 4-1-1, one of the methods of reducing computational cost of MILP
in autonomous vehicles is Receding Horizon Control (RHC), where the algorithm calculates
a solutions over a shorter time horizon instead of a single global solution. The cost function
should thus aim to optimize vehicle movement over a prediction horizon while avoiding colli-
sions. Where in Chapter 3 the cost function was focused on minimizing the health cost, for
the MILP implementation the cost function tries to minimize logistic cost. The reason for
this is that the hard collision avoidance constraints should guarantee that no collision occurs.
Putting a high penalty on entering the ’stop’ mode should ensure that this only happens
when a collision is unavoidable. Looking at literature, the cost function that is used in [5] is
given as:

JT =
V∑

i=1

T−1∑
k=0
Li,k + FT,i (6-21)

where Li,k indicates the stage cost for vehicle i at the kth time instance and FT,i is the terminal
cost. This is almost identical to the cost function used in [19].

The authors suggest that for the terminal cost some kind of heuristic function is used that
guarantees a certain performance and also a guarantee on stability. However, both authors
use a terminal cost related to the trajectory of the vehicles. In [5] a separate algorithm
calculates a predicted reference path, where in [19] predefined reference trajectories are used.
The terminal cost is then determined based on the distance between the vehicle’s positions
and the reference trajectory. But since the CAS application only supports braking actions,
no control is available to correct deviations from the reference trajectory. The author of [43]
uses the cost function:

JT =
N∑

i=1
TF i

which sums over all N vehicles the time TF i needed for vehicle i to reach its final way point,
similar to the terminal cost Fi,k in (6-21). However, for our application there is often no
final way point, especially when using RHC. This means that a new cost function has to be
designed.

Collision avoidance is guaranteed by the use of hard constraints when perfect GPS data is
available and when the optimization problem can be run instantaneous. However, due to
delays and GPS drift, the ’close’ and ’stop’ mode are introduced to ensure that optimization
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problems are always feasible. Since the hard constraints are formulated to ensure collision
avoidance, the main goal of the cost function is to ensure that minimal logistic cost is incurred.
For this reason, a reward is given for vehicles driving at higher speed. The term is formulated
as:

− α · V (t)
Vmax

(6-22)

where Vmax is the maximal speed of the vehicle and α a weighting parameter. The Vmax term
is introduced in order to differentiate between different vehicles, as was discussed in Section 3-
4. Slow vehicles normally are heavy, and in general heavier vehicles like haul trucks, graders
and excavators are contributing to production more than light vehicles such as civil vehicles
and (empty) smaller trucks. The cost function in (6-22) will thus prioritize more important
vehicles. An extra parameter could be added to manually indicate the importance of each
vehicle, but will be prone to abuse when a system is commercially used.

As can be read in subsection 6-2-2 and 6-2-1, a cost is associated with the ’close’ and ’stop’
mode. The cost terms Qclose and Qstop for each mode are multiplied with the respective
binaries Bclose and Bstop so that the penalty only applies when the mode is activated. The
final cost function for a collision involving N vehicles is:

J =
T∑

t=1

N∑
n=1

(
− α · V (n, t)

Vmax(v) +QcloseBclose(t) +QstopBstop(t)
)
W (t) + β ·Bfrontal

where the binary Bfrontal is added with a weight β to the function because the algorithm
is otherwise indifferent to the value of the binary, while it is in fact used for further analysis
of the problem. The term W (t) is a decreasing ramp function over time. The term is added
to ensure that braking happens as late as possible. If the term is left out, the algorithm will
detect that a brake action is needed and also perform the action, but it can happen at any
time step within the time horizon because the final cost J will not be influenced. Due to the
dynamic nature of a mine, it is however better to perform a braking action as late as possible,
to ensure unnecessary early braking and false positives are kept at a minimum.

6-5 Conclusion

The MILP method achieves collision avoidance by using hard constraints on the distance
between vehicles. Due to sudden unexpected maneuvers or sensor noise, unavoidable colli-
sion can however occur. In the normal formulation, this would result in infeasible problems
without a solution, effectively disabling the CAS when it is most needed. To deal with these
unavoidable collisions, a algorithm is constructed that allows vehicles to operate in different
operation modes.

Constraints are linked to and modified based on these modes. In the ’close’ mode, the distance
allowed between vehicles is reduced while the ’stop’ mode is a terminal state which simulates
the collision. The bullet and target vehicle(s) are identified for additional control outside the
optimization. The linear cost function is mainly based on the logistic cost, together with the
penalties for entering the ’close’ and ’stop’ modes. Weights can be added to give vehicles a
priority or to model traffic situations.
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Chapter 7

Simulations

In order to get a good idea of how the Collision Avoidance System (CAS) performs, it is
necessary to run extensive simulations. In this chapter the different simulations and results
are described. The simulations are run on a HP Elitebook 8570w using an Intel Core i7-
3630QM processor. The model is written in AMPL, a programming language specifically
designed to describe and solve large-scale complex mathematical problems. The solver is
the cplex solver developed by IBM for linear, mixed integer and quadratic programming
optimization problems. Using an API, the script used to occupy the model with data and
analyse the results is executed in MATLAB. The cplex solver is then tasked with finding the
optimal solution to the problem. While it is hard to determine the overheads created by this
method, it might have had an influence on the results seen here.

To get a realistic simulation, it is important that randomness in the vehicle’s behaviour due
to the driver input, is modelled. This is discussed in Section 7-1. Different scenarios that are
simulated are described in Section 7-2. The results of the simulations, with regards to both
collision avoidance and computational performance, are analyzed in Section 7-3. A conclusion
can be read in Section 7-4.

7-1 Vehicle Behaviour

In order to get accurate simulations, the vehicle’s behaviour cannot be solely dictated by the
CAS. It is important to see how the system reacts to unexpected changes in the vehicle’s
behaviour, for example sudden braking. For this reason, a random control input is generated
that simulates the driver’s input to the vehicle.

The driver input is randomly selected within the boundaries of the vehicle’s characteristics.
Due to the randomness of the driver input, a number of simulations did not result in the
vehicle’s safety zones overlapping at any point during the simulation period. This means that
no dangerous situation occurs. To ensure that most simulations are however valid, the initial
value is chosen as ud(1) ∈ [−1, 1]. Since drivers do not often change their input from maximal
acceleration to maximal braking, a certain smoothness was required. To ensure this, the
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driver input ud(t+ 1) ∈ [ud(t)− 0.8, ud(t) + 1]. This asymmetric interval was chosen because
a symmetric interval results in a lot of simulations where the vehicle simply comes to a stop
and does not move for the remainder of the simulation. The CAS overrides this driver input
only when uCAS(t) < ud(t). The computational delay was included in the model to ensure
that the correct control command was sent to the vehicles.

7-2 Scenarios

To get a good estimate of how the system performs, it is important to test a host of different
scenarios. The scenarios that are tested in this thesis are taken from a collection of common
mining vehicle interaction scenarios [6]. All common driving scenarios except those with
reversing vehicles are evaluated, as this is equivalent to a vehicle driving forward for the CAS
developed in this study.

In subsection 7-2-1 the simulations involving two vehicles are described. In subsection 7-2-2
simulations with three vehicles are described, while in subsection 7-2-3 simulations with two
vehicles and a single pedestrian are described.

7-2-1 Two Vehicles

The most basic scenario that was tested involves two vehicles. It is the computationally least
expensive scenario, and also a traffic scenario that is most commonly encountered on mines.
First scenarios where the vehicles are driving in a straight line are discussed, followed by
scenarios where vehicles drive on a curved path.

Straight line driving

For vehicles driving in a straight line, five different scenarios are tested. Each scenario features
a different angle of impact. In Figure 7-1 the different scenarios are visualized. Two variations
of the T1 scenario are tested, where the angle of approach a between the vehicles is either 45◦
or 135◦. Each simulation is started with the vehicles in the correct configuration regarding
direction and position, however the distance between the vehicles and the speed of the vehicles
is chosen randomly within the boundaries of the vehicle characteristics.

To simulate some unpredictability of the driver’s behaviour, a random control sequence was
generated before the simulation. If the CAS did not generate a braking control for the
vehicle, the control from the generated control was used. In order to do some testing for
false positives, the simulation was also run using only the random control sequence. This
resulted in a number of simulations where the vehicles did not enter each others safety zone.
In Table 7-2, the #sim variable differs between scenarios. This is due to the fact that some
scenarios did indeed not result in a dangerous situation.
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Figure 7-1: Scenarios tested for two vehicles when driving straight [6]

Curved line driving

Since it is much harder to predict the vehicle’s movement when it is driving in a curved line,
these curved scenario’s where also tested. Two variations are possible, which can be seen in
Figure 7-2. In the first scenario the two vehicles are driving towards each other. In the second
scenario, one vehicle is driving behind another vehicle. Both of these are tested.

Figure 7-2: Scenarios tested for two vehicles on curved paths [6]

7-2-2 Three Vehicles

In the previous sections simulations with two vehicles were described. On a mine site, there
are however a lot of interactions involving multiple vehicles. For this reason, some scenarios
involving three vehicles were also simulated. The scenarios are very similar to the ones for
straight driving with two vehicles and can be seen in Figure 7-3.

As can be read in Section 5-2, the Mixed Integer Linear Programming (MILP) formula-
tion is O(V 2n2) where V is the number of vehicles. As the number of constraints increases
quadratically, the computational time is also expected to increase significantly. By analyzing
the differences in performance between scenarios involving either two or three vehicles, more
insight can be gained in the scalability of the system.

Master of Science Thesis H. van de Kamp



58 Simulations

Figure 7-3: Scenarios tested for three vehicles when driving straight [6]

7-2-3 Two Vehicles and One Pedestrian

An important function of the CAS is to prevent collisions between vehicles and pedestrians.
If the safety zone around the pedestrian is big enough, one can assume that a pedestrian
remains stationary within its safety parameter. The method has two possible drawbacks for
long prediction horizons. Either the safety zone has to be very big or the model becomes
inaccurate. While pedestrians cannot be controlled in the same manner as a vehicle, they
can be warned by means of a buzzer. It then must be assumed that the pedestrian will stop
when the buzzer sounds.

In order to speed up calculations, it would be much better to model a pedestrian as a single
square. Due to time constraints, the pedestrian is modelled as a stationary vehicle with
characteristics that don’t allow it to move. As pedestrians slow compared to vehicles, this
assumption is reasonably valid. There is not much difference between these simulations and
the simulations with three vehicles, except that one of the vehicles does not move. For
these simulations, an adaptation of the scenarios described in Figure 7-1 will be tested. The
pedestrian will be positioned at the point where the trajectories of the two vehicles intersect.
It will be interesting to see the difference in computational time between these simulations
and the ones discussed in Figure 7-1.

7-3 Results

In this section the results will be analyzed. The two criteria used to analyse the system are
collision avoidance and computational performance. In subsection 7-3-1 the performance of
the system with regards to collision avoidance is described. The computational performance
is important as this is an indicator on the system’s applicability in a commercial application.
The computational performance is discussed in subsection 7-3-2.
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7-3-1 Collision avoidance

One of the most important performance criteria of the CAS is its ability to avoid collisions.
This is also what is analysed during the commercial tests done by the Vehicle Dynamics
Group (VDG). The results of simulations are discussed here. The exact results are gathered
in Table 7-2. For each kind of scenario, an analysis of the results is also done.

Two vehicles

The simulations of scenarios with two vehicles were the most simple ones performed. The
safety zone at the front of the vehicles is set at sf = 4m and at the rear sr = 2m. As can
be seen in Table 7-2, the algorithm can reduce the number of collisions significantly. For all
straight and curved driving scenarios, except for L4 - Dovetailing, all collisions are prevented.
The number of times the vehicles are too close to each other is also reduced significantly.
Another important effect of the CAS is that the average speed of the vehicles during these
close passings are reduces greatly. Where the average speed in these close encounters for all
scenarios was between 10 and 11ms−1 for the uncontrolled case, it is below 1ms−1 when the
CAS is activated. This provides additional safety by ensuring that vehicles drive at a low
speed when they pass close by another vehicle.

In the L4 - Dovetailing scenario the cause for collision is braking of the front vehicle due
to the driver input. One might imagine that the driver is stopping for some animal that
sits in the road or for another reason that cannot be predicted by the computer. The rear
vehicle is in these situations driving too close to the front vehicle. The small distance, big
speed differences and computational delays cause the rear vehicle to drive in the front vehicle.
To solve this, the size of the safety zone was increased. Performance for different sf can
be seen in Table 7-1. The size of the safety zone did not have any effect on computational
performance. If there are no computational delays and the rear vehicle can brake as hard as
the front vehicle, these collisions could be prevented without an increased sf .

sf [m] #Close #Collision
prevented prevented

4 79
133 = 59% 98

105 = 93%
8 84

146 = 57% 114
115 = 99%

12 90
168 = 53% 108

110 = 98%
16 112

196 = 57% 100
100 = 100%

Table 7-1: Performance in L4 - Dovetailing scenario for different sf

Four speed profiles of the T4 - Intersection scenario can be seen in Figure 7-4. The top plot
of each profile shows the velocity of both vehicles during the simulation. The bottom plot
shows the driver input for both vehicles. The top plot shows that the CAS overwrites the
driver input and slows down the vehicle in each simulation. It also becomes clear that due
to the driver’s unexpected driving, the algorithm sometimes changes which vehicle must be
slowed down. This can result in a braking command issued to both vehicles, as can be seen
best in Figure 7-4d.
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(b) Speed profile 2
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(c) Speed profile 3
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Figure 7-4: Speed profiles for four simulations

Three vehicles

The four scenarios with three vehicles that are simulated have similar results to those for two
vehicles. In Table 7-2 one can see that most collisions are prevented. Only in the L1 - Head-on
scenario some collisions still occur. The cause is the same as in the L4 - Dovetailing scenario
with two vehicles. In the simulations with three vehicles, the speed differences in the L4 -
Dovetailing scenario are a little lower than in the simulations with two vehicles, due to the
way in which the random initial conditions for the simulation are generated. This prevents
the accidents that occurred in the simulations with two vehicles. An increased safety zone is
however also beneficial in this scenario. The speed during a close encounter is decreased by
about 10ms−1, comparable to the scenarios involving two vehicles.

Two vehicles one pedestrian

These scenarios are different from the previous results, in that the vehicles must both come to
a complete stop due to the pedestrian that is placed at the intersection of the two trajectories.
Again two collisions are detected in the L4- Dovetailing scenario. These collisions are between
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vehicles and caused by the safety zone being too small. This was also seen in the scenarios
involving two vehicles. The pedestrian is not hit during any of the simulations.

Collision avoidance: conclusion

Based on the results from the simulations, it looks like the algorithm is very capable of
avoiding collisions. In all scenarios except L4 - Dovetailing all collisions were avoided. When
the safety zone was increased, the L4 - Dovetailing was also safely controlled by the CAS.
Decreasing the solution time might solve the problem with this scenario, or guarantee a more
appropriate size of the safety zone.

Another option is to make the safety zone variable. By having an algorithm determine the
orientation during the predicted collision event, the safety zones of all vehicles can be changes
so that only bullet vehicles have a higher sf . Additionally, other methods of keeping an
appropriate distance between dovetailing vehicles can be studied.

7-3-2 Computational performance

To see whether the system can be used in a commercial application, it is important to analyse
the computational performance and compare between the different scenarios.

Two vehicles

The computational performance for the straight driving scenarios involving two vehicles is
promising for a commercial application. The solution time is on average around the 0.5
seconds, as can be seen in Table 7-3. By simply upgrading to better hardware, this can be
scaled down an order of magnitude. The curved scenarios however show a solution time that
is up to 5 times as large on average. Because of noise and vibrations of the vehicle, almost
all real world scenarios where vehicle drive in a straight line, will still have a slight steering
component which increases the computational time.

For each simulation, the longest solution time Tm was collected. The second and third column
in Table 7-3 show the maximum and minimum value of Tm over all simulations. The maximum
value shows that, especially in the curved scenario, there are some problems that take almost
an hour to solve. The reason for this is unclear, and it only happens for a handful of problems
out of the thousands that were run. The average Tm is determined after excluding the highest
3% of values. This is done since, especially in the curved scenario, a handful of excessive
outliers give a very skewed value. These values are an important indicator of the performance
of the system.

Three vehicles

To analyse the scalability of the system, comparing the solution times of the different scenarios
is interesting. As can be seen in Table 7-3, the computational time increases very fast when
an extra vehicle is added to the model. Solution times for some time steps blow up to more
than half an hour, but these outliers are likely not caused by the difficulty of the optimization

Master of Science Thesis H. van de Kamp



62 Simulations

Scenario #sim #col #col #close
- No CAS - CAS - CAS

L4 - Dovetailing
Two vehicles 197 160 15 87
Three vehicles 99 73 0 25
Two vehicles &
one pedestrian 100 100 2 90

T1 - Merge a = 45◦
Two vehicles 232 97 0 26
Three vehicles 100 65 0 16
Two vehicles &
one pedestrian 100 100 0 88

T4 - Intersection
Two vehicles 231 68 0 13
Three vehicles 100 46 0 23
Two vehicles &
one pedestrian 100 100 0 79

T1 - Merge a = 135◦
Two vehicles 262 127 0 57
Three vehicles 100 74 0 14
Two vehicles &
one pedestrian 100 100 0 87
L1 - Head-on
Two vehicles 300 282 0 209
Three vehicles 100 100 12 90
Two vehicles &
one pedestrian 100 100 0 0

C1 - Curving Head-on
Two vehicles 146 58 0 59

C2 - Curving Dovetail
Two vehicles 139 90 0 36

Table 7-2: Comparison of performance for different scenarios using sf = 4
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problem. The mean Tm is a more accurate indicator for the computational requirements for
the system. The top 3% is excluded to remove some of the extreme outliers. Solution times
still remain high. Especially in the T1, α = 135◦ scenario, a reduction by only one order of
magnitude will not be enough in a commercial application. It is interesting to see that, as
with the scenario involving two vehicles, this specific type of simulation takes a lot of time to
solve.
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Figure 7-5: Average and maximum solution time of each simulation of three vehicles

Two vehicles one pedestrian

As with the scenarios involving three vehicles, the simulations involving two vehicles and
one pedestrian took a lot of time. The reason is unclear, and cannot be explained by the
construction of the code. These simulations are almost identical to those with three vehicles,
expect one of the vehicles cannot be controlled. One would expect that this decreases the
computational load, since less variables are available.

However, in Table 7-3 it becomes clear that these scenarios take longer to solve than it does
for the scenarios using three vehicles. It is thus clear that pedestrians should not be modeled
as a stationary vehicle. A much better approach will be to introduce geo-fencing, where
pedestrians are modeled as obstacles. When this is done, additional obstacles like movable
buildings or other equipment could also be added to the model, providing additional benefit.

Computational performance: conclusion

The results of the simulations with two vehicles are promising. If the solution times can
be reduces by an order of magnitude, an acceptable rate of 10-20 Hz can be achieved. A
possible way of achieving this might be to only use three instead of four points to model the
vehicle geometry. It seems however that the problem is not very scalable. By rewriting the
problem in C++ an increase in computational speed can be achieved, as it removes some of
the overheads created by using MATLAB. It also gives the option of parallelizing the process.
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Scenario T̄sim [s] max min mean Tm [s]
Tm [s] Tm [s] ex. top 3%

L4 - Dovetailing
Two vehicle 0.528 2.736 0.806 1.412

Three vehicles 1.078 16.18 1.397 4.899
Two vehicles &
one pedestrian 1.253 10.49 1.27 5.072

T1 - Merge a = 45◦
Two vehicle 0.421 9.483 0.575 1.387

Three vehicles 3.260 130.7 8.765 32.90
Two vehicles &
one pedestrian 13.04 600.4 2.113 125.8

T4 - Intersection
Two vehicle 0.329 6.373 0.509 0.774

Three vehicles 0.528 14.53 0.874 2.336
Two vehicles &
one pedestrian 1.374 10.94 0.852 4.774

T1 - Merge a = 135◦
Two vehicle 0.478 31.64 0.770 1.720

Three vehicles 4.813 2204 10.60 39.20
Two vehicles &
one pedestrian 11.98 4808 1.841 71.172
L1 - Head-on
Two vehicle 0.623 4.958 0.459 1.738

Three vehicles 1.008 15.06 0.167 6.439
Two vehicles &
one pedestrian 0.951 8.070 0.610 2.931

C1 - Curving Head-on
Two vehicles 2.490 2807 0.494 14.94

C2 - Curving Dovetail
Two vehicles 1.235 3448 0.479 4.147

Table 7-3: Comparison of computation time for different scenarios using sf = 4

When this is done, a new optimization problem can be initialized before the solution of the
previous problem is available. If one of the problems then takes very long to solve, the new
problem might have been solved already. This reduces the impact of the high solution times
that were sometimes seen in simulations.

7-3-3 False positives

In a number of simulations, the vehicles started at such an initial speed and position that they
did not enter each others safety zone. These simulations were used to detect false positives. A
false positive is defined as activation of the brakes by the CAS while no collision occurs if the
CAS does not intervene. As described in Section 7-1, the vehicles were randomly accelerating
or decelerating when the CAS did not issue brake commands.
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Scenario # Tests # False False
positives positives [%]

L4 - Dovetailing
Two vehicle 103 23 22

T1 - Merge a = 45◦
Two vehicle 68 68 100

T4 - Intersection
Two vehicle 69 69 100

T1 - Merge a = 135◦
Two vehicle 38 38 100

L1 - Head-on
Two vehicle 0 0 -

Table 7-4: False positives for straight diving scenarios involving two vehicles

The simulations show that false positives do occur. Exact results can be seen in Table 7-4.
However, these are not comprehensive results. For example, the L1 - Head-on scenario did
not have any simulations in which the vehicles did not collide. This means that there was no
simulation in which false positives could occur. In scenario L4 - Dovetailing, a false positive
occurred in 22% of simulations. In the other three scenarios, all simulations resulted in an
intervention of the CAS.

A possible explanation lies in the difference between the collision detection with and without
the CAS being activated. Without the CAS, a fast algorithm propagates the vehicle according
to the driver input. For each vehicle, a polygon is then constructed at each time step that is
an exact models of the vehicle with its safety zone. If the polygons of the vehicles involved
in the collision are overlapping, the vehicles are passing very close. This is also done for a
polygon of the vehicle without its safety zone, which is used to detect a collision. The area
covered by the multiple point model is bigger than that of the polygon, as can be seen in
Figure 5-2. This might be an explanation for probably all and at least a number of false
positives.

In Figure 7-6 the number of interventions for each scenario are visualized. It becomes clear
that most false positives have a very small amount of interventions. Since the time step has
a length of 0.5 seconds, this means that for the majority of simulations (42%) these false
positives occur only two times. It will be interesting to study how often these interventions
happen when the solution time is decreases significantly. If these happen at the same rate,
is might be possible to introduce filtering so that the brakes will only be activated when the
CAS sends braking commands in for example three consecutive solutions. Extensive research
should however be done to guarantee that this filtering does not have an impact on the
collision avoidance capabilities of the system.

7-4 Conclusion

To get a good idea of the performance of the system, simulations are performed. Three
different types of scenarios are tested. They involve two vehicles, three vehicles or two vehicles
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Figure 7-6: Number of interventions during a false positive

and a pedestrian. The simulations are run on a HP Elitebook 8570w using an Intel Core i7-
3630QM processor. Random input data is generated that simulated driver behaviour. The
CAS overrides this only when the braking command sent to the vehicle is stronger than that
generated by the driver.

The results of the simulation are promising. If the safety zone is big enough, all collisions
are avoided. A drawback is the high solution time, especially for scenarios involving three
vehicles or two vehicles and a pedestrian. It might be possible to speed up computational
times significantly. Rewriting the algorithm in C++ can potentially achieve a significant
reduction while also making it possible to solve optimization problems in parallel.
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Chapter 8

Testing

After seeing promising results from the simulations, tests were done on two Land Rover 110
4x4 vehicle provided by Vehicle Dynamics Group (VDG). Due to time constraints and a
broken the brake robot, it was not possible to do a full test. The goal of the tests was thus
not necessarily to see the collision avoidance properties of the system, but mainly to see
whether the solution times and results found in the simulations could also be achieved when
using real data and communication delays.

In this chapter a description is given of the equipment used for the tests and results. First,
the sensors used on the vehicle are described in Section 8-1. A short overview of the hardware
used in the network is given in Section 8-2. The results of the tests are given in Section 8-3.
A short conclusion can be read in Section 8-4.

8-1 Odometry

As the system is GPS based, it is important to get accurate measurements. The hardware
used by the VDG is the VBOX 3i Dual Antenna system or VB3iSL, which operates at
100Hz. This antenna tracks both the American GPS and Russian GLONASS satellites. The
combination of these two systems make it possible for the antenna to track almost twice as
many satellites. This ensures that the satellite connection is more robust, while also increasing
accuracy. Because two antennas are used, the for our application important yaw rate can be
accurately measured using the VBOX.

To increase accuracy and reliability of the data, Racelogic’s Inertial Measurement Unit
(RLVBIMU04-V2) is connected with the VB3iSL. The IMU has three accelerometers and
three gyroscopes, which ensure that velocity data is more smooth, It also makes measure-
ments of all angular velocities more accurate. Another benefit of the IMU is that an estimated
position can be calculated if the satellite data is interrupted.

During testing, the VDG uses the RACELOGIC DGNSS RTK Base Station. The base station
enables differential correction of the position estimate. For our testing, this was not used as the
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testing was more focused on computational performance as on testing the collision avoidance
capacity of the Collision Avoidance System (CAS).

8-2 Network

The network that is used for testing consists of a central unit and a unit on each vehicle. The
central unit is tasked with listening for vehicle data, running the optimization and sending
out control commands to the vehicles. The unit on the vehicle is tasked with gathering vehicle
data, sending the data to the central unit, listening for control and using the control command
to actuate the brake robot.

The network is set up using a laptop as the central hub. The laptop is a HP Elitebook 8570w,
using a Intel Core i7-3630QM processor. The position data from each vehicle is sent to the
laptop using Wi-Fi. On the laptop side, a TP-Link TD-W9970 wirelesss router was used to
communicate with both vehicles. Using the DSP System toolbox provided by MATLAB, the
communication was set up using the User Datagram Protocol (UDP). The protocol cannot
check that the message is received, which saves a lot of overhead. To ensure some robustness,
three confirmation bites are sent at the beginning and end of the message.
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Figure 8-1: Solution time for different test runs

8-3 Results

As the brake robot was not activated, it is not possible to compare the performance of the
CAS during testing with the results from simulations. The first thing that was tested was the
communication delay. The vehicles were sending out their odometry data at a rate of 100Hz,
a rate much faster than that of the solver. This was done to ensure that very recent data is
always available to occupy the model. These odometry messages also carried a time stamp,
and by sending the time stamp back from the central unit upon reception, it was established
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that the time delay was less than a millisecond. Since this is an order of magnitude slower
than that of the fastest process in the system, this is insignificant.
A total of six test runs were done to gather data. These were done in the parking lot of the
faculty, as can be seen in Figure 8-2. These were all of the L4 - Dovetailing type as discussed
in Figure 7-1. The solution time for the different runs can be seen in Figure 8-1. Run 1, 3,
4 and 6 show very similar times. The vehicle is manually stopped between the 15th and 20th

iteration, which can be clearly seen in the solution time decreasing. Although these are short
runs, the times look very similar to the times found in Chapter 7.
Furthermore, the algorithm seems to work as expected with braking commands being sent to
the vehicle at more or less at the same moment that the driver manually braked the vehicle.
However, while 0.5 seconds sounds relatively fast, it became clear during testing that a lot
can happen in that period of time. A vehicle driving at 50kmh−1 or around 14ms−1 can drive
seven meters in that period. While this was prior knowledge, testing made it even clearer
how far a vehicle can travel in 0.5 seconds. Combining the aforementioned seven meters with
steering, this means that the actual path of the vehicle can differ so much from the predicted
path that the control sent to the vehicle might be useless. For a commercial application, it is
thus important to lower the computational time with at least an order of magnitude.

Figure 8-2: One of the vehicles that was used for testing

8-4 Conclusion

Since simulation results were promising, the system was implemented on two test vehicles
provided by the the VDG. Due to a broken brake robot, the testing was focused on veri-
fying that the results from the simulations can be reproduced using noisy real world data.
The solution times during testing are very comparable to those found during simulations in
Chapter 7. The control commands that were issued by the solver also seem reasonable as a
braking command was issued before the driver manually braked the vehicle.
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Chapter 9

Conclusion and Recommendations

9-1 Conclusion

A centralized Collision Avoidance System (CAS) has potential significant benefits over a
decentralized system. The accurate modelling when using Non-Linear Programming (NLP)
results in very complex problems that cannot be solved fast and reliably. Using Mixed Integer
Linear Programming (MILP) for collision avoidance has great potential. Simulation times
decrease to a rate of between 1 and 2 Hz. Geometric models used in literature are not suitable
for this application. This required the formulation of a new geometric model. Describing the
geometric shape of the vehicle using four squares shows an accurate and computationally
efficient representation. In retrospect, a polygon model would also be very well suited since
it is more accurate and comes at a similar computational cost. More research on the effect of
using a different amount of points would be interesting.
Similar MILP algorithms for collision avoidance, used for aviation applications, cannot deal
with the non linear event of a collision due to the hard constraints on collision avoidance. To
ensure that the optimization problem never becomes infeasible, different operation modes were
introduced. These modes successfully ensured that collisions were prevented in all scenarios
that were tested. Simulations show that the algorithm is also able to deal with the randomness
that is inherent to vehicles that are primary controlled by the driver.
One of the limitations of the algorithm become clear in the L4 - Dovetailing scenario. Due to
the delay of ±0.5 s caused by the solution time, the rear vehicle reacts too late and cannot
brake in time. This happens especially when the rear vehicle cannot decelerate as fast as
the front vehicle. To solve this, the safety zone in front of the vehicle sf can be extended.
If the solution time is decreased significantly, the problem will also disappear. Pedestrians
should not be modeled as stationary vehicles since this increases the computational cost of
the model. False positives do occur frequently. The exact cause of this is unclear and should
be studied further. The brake activation during these false positives happens only for short
instances, which might be filtered out when the solution time is reduced significantly.
The algorithm was also implemented on two test vehicles. A variation on the L4 - Dovetailing
scenario, where the front vehicle remains stationary, was tested a total of seven times. Results
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show that the solution time during testing is very similar to the simulations where noise free
artificial data is used. The tests shows that the control sent to the vehicle is similar to that
seen in the simulations. The method has the potential to be used in a commercial CAS,
provided that the solution time is reduced by at least an order of magnitude if a method is
derived to reduce the computational cost for the T1 scenario. More research must also be
done in the scalability of the optimization problem and how this can be improved.

9-2 Recommendations

As with any research, a lot of topics are left untouched. Studying these could potentially
greatly improve the performance of the CAS or alternatively give insight in shortcomings
that the system has. The two main criteria on which the CAS is tested are the solution time
and accuray of the algorithm. This section gives a number of suggestions to improve both of
these factors.

Solution time

As was said in the conclusion, the algorithm must be sped up significantly if a commercial
application is considered. In order to speed up computations, rewriting the algorithm in C++
could potentially remove some of the overhead created by using MATLAB. A major benefit of
using C++ would be that the optimization can be run parallel. While the Parallel Computing
Toolbox for MATLAB has this functionality, it does not work succesfully when the AMPL
API is used inside the parallel loop. With C++ one can manually assign processes to different
threads, making optimizations much faster. As can be read in Chapter 7, it happens regularly
that a solver takes an excessive long time to solve the optimization problem. When the CAS
is serialized, this means that no control command is available for the vehicle for an extended
amount of time. If it is parallelized, multiple optimization problems run at the same time.
Data comes in at a much higher rate than the solving time ts. If a new optimization problem
is started every ts seconds, there will generally be only one problem being solved at any time.
However, when a problem takes longer to solve, a new problem with the most recent vehicle
data starts being solved. If the first problem then takes longer to be solver than ts plus the
solution time of the seconds problem, the second problem will be solved first. The second
problem’s solution is based on more recent vehicle data and thus more accurate than the first
problem’s solution. This means that the solver can stop working on the first problem as soon
as the second problem is solved.

A change to the actual algorithm could potentially also reduce the solving time significantly.
As can be read in subsection 4-1-3, uniform gridding is used for collision detection. The
authors of [35] indicate that computational time decreases significantly using an iterative
approach, compared to uniform gridding. The iterative approach does collision detection on
a fine grid, and if a collision is detected collision avoidance is done on a very coarse grid.
More points are added to the collision avoidance grid as long as a collision is detected using
the fine grid. The authors of [35] state that the gain in computational time increases even
more if the problem becomes more complex. This is especially interesting since [34] indicates
that MILP struggles with bigger problems. It remains to be seen whether a reduction in
computational cost is achieved if this method is used in the centralized CAS. Especially with
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a high number of vehicles the method might lead to higher computational times, because
braking of one vehicle might for example lead to a collision with a dove tailing vehicle. In
these more complex situations it might happen that the high number of iterations might
lead to a higher cumulative computational time than uniform gridding. Experiments should
be performed to determine whether the extra solutions that have to be generated with this
proposed method are indeed faster than a single calculation using uniform gridding, as the
authors suggest.

Accuracy

A few improvements could be made that could improve accuracy of the algorithm. Using a
kinematic bicycle model to model the dynamics of the vehicle is a strong simplification of the
vehicle’s behaviour. This model assumes no side slip and no skidding, which are inaccurate
especially in a dusty mining environment. Using a linearized dynamic bicycle mode, the
predictions of the vehicle’s future position might become more accurate.

Finding reference trajectories for all vehicles could potentially greatly improve the accuracy
of the algorithm. Pedicting vehicle movement becomes much easier when it is known where
the vehicle is headed. The steering angle δ could then be predicted for future times, so that
the algorithm could better anticipate vehicle movements like turning.

By extending the functionality of the CAS to include steering, a lot more options are available
to avoid collisions. The steering would however have to be coupled with stability control to
ensure that the CAS does not cause the driver to loose control over the vehicle.

A topic for further research will be how sensor noise does influence the performance of the
system. The odometry sensors, as described in Section 8-1, are very accurate and some of
the best sensors available.
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List of Acronyms

CAS Collision Avoidance System
DENM Decentralized Environmental Notification Message
EMERST Earth Moving Equipment Safety Roundtable
GDP Gross Domestic Product
ISS Injury Severity Score
LIDAR LIght Detection And Ranging
LTI linear time-invariant
LTI-MA linear time-invariant maneuver automaton
MHSC Mine Health and Safety Council
MILP Mixed Integer Linear Programming
NLP Non-Linear Programming
PDOF Principal Degree of Force
RADAR RAdio Detection And Ranging
RFID Radio Frequency Identification
RHC Receding Horizon Control
SOTA State Of The Art
TMM Trackless Mobile Machine
TTC Time To Collision
UDP User Datagram Protocol
UAV Unmanned Aerial Vehicle
V2P Vehicle To Pedestrian
V2V Vehicle To Vehicle
VDG Vehicle Dynamics Group
VS Vehicle Sensor
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