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Abstract. Network data clustering and sequential data mining are large
fields of research, but how to combine them to analyze spatial-temporal
network data remains a technical challenge. This study investigates a
novel combination of two sequential similarity methods (Dynamic Time
Warping and N-grams with Cosine distances), with two state-of-the-art
unsupervised network clustering algorithms (Hierarchical Density-based
Clustering and Stochastic Block Models). A popular way to combine
such methods is to first cluster the sequential network data, resulting in
connection types. The hosts in the network can then be clustered con-
ditioned on these types. In contrast, our approach clusters nodes and
edges in one go, i.e., without giving the output of a first clustering step
as input for a second step. We achieve this by implementing sequential
distances as covariates for host clustering. While being fully unsuper-
vised, our method outperforms many existing approaches. To the best
of our knowledge, the only approaches with comparable performance
require manual filtering of connections and feature engineering steps.
In contrast, our method is applied to raw network traffic. We apply
our pipeline to the problem of detecting infected hosts (network nodes)
from logs of unlabelled network traffic (sequential data). On data from
the Stratosphere IPS project (CTU-Malware-Capture-Botnet-91), which
includes malicious (Conficker botnet) as well as benign hosts, we show
that our method perfectly detects peripheral, benign, and malicious hosts
in different clusters. We replicate our results in the well-known ISOT
dataset (Storm, Waledac, Zeus botnets) with comparable performance:
conjointly, 99.97% of nodes were categorized correctly.

Keywords: Network data · Unsupervised learning · Clustering ·
Spatio-temporal

1 Introduction

Spatial-temporal network data have a spatial structure, where observations are
linked via single or multiple features, and a temporal structure, meaning mul-
tiple time-points are (partly) available. The analyses of the spatial element is
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usually performed via network clustering, which is a large field of research where
a graph (G), consisting of nodes (V) and edges (E), is represented by one or
more pairwise distance matrices subject to an algorithm to group observations
with, relatively speaking, small distances [21,25,40,44,48]. There are roughly
two kinds of clustering methods: those that cluster edges (e.g. spectral-, density-
, or centroid based clustering methods [10,30]) and those that cluster nodes (e.g.
community detection algorithms like Louvain clustering [4] or mixture clustering
like the Stochastic Block Model [1]).

The analyses of the temporal aspect is equally complex. Apart from collaps-
ing time-points by analyzing the mean of multiple events [11], some methods
allow to analyse time-series as discrete windows. Examples of these methods are
1) creating windows and train models for each window so that state-changes over
time can be identified [31]; 2) treating time as a latent variable in latent variable
growth models [22]; 3) creating temporal graphs so that every pairwise inter-
action over time becomes a link [24]; 4) the analyses of network evolution with
Stochastic Actor Based Models [41]; 5) Temporal Exponential Random Graph
Models [18]; and 6) Time-contrastive learning [19]. Even more complex is the
analyses of streaming data, where time cannot be treated as a strictly discrete
variable either due to an arbitrary sequence in time where cutting windows is
difficult, or a negative balance between the volume of time windows and the
specificity (larger time windows equals lower specificity).

This paper focuses on unsupervised clustering of streaming spatial-temporal
network data by combining node and edge clustering. We aim to present a reli-
able procedure to communities of nodes with converging behavior, without the
need for a labelled dataset and not requiring manual feature engineering or filter-
ing steps. Our method computes pairwise edge distances based on the sequential
behavior of network connections using Dynamic Time Warping (distance mea-
sure for continuous sequences) and N-grams with Cosine distances (for nominal
sequences), as implemented in the MalPaCA tool [33]. In order to include these
distances in node clustering, the pairwise distances are aggregated via Princi-
pal Component Analysis into a small set of features. These features are added
as co-variates to a node clustering algorithm based on Stochastic Block Mod-
els (SBMs), which is a well-known generative model for random graphs that
produces graphs containing communities. Here, those subgroups represent hosts
characterized by being connected with one another with particular edge densities
[32]. Our SBM-definition is based on a recent review [27].

SBMs are attractive because they seek highly connected blocks in network
connections while allowing the inclusion of features, in a statistically tractable
way. This removes the need to first cluster the sequential data before analyz-
ing the network structure or attributes as both are considered in one single
node clustering algorithm. Our approach is complementary to earlier work [36]
where hosts and connections were classified sequentially by first filtering P2P
hosts and then categorizing P2P traffic. Using sequential features is beneficial
since it reduces the required number of features as all variation is (assumed to
be) captured by the pairwise sequential distance [26,33]. Our approach (shown
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graphically in Fig. 1) does not require a priori (manual) host or sequence filtering
and uses as input raw packet capture (.pcap) files.

We test our method in the setting of botnet-infected computers. Botnets are
networks of computers that are infected with malware and are under the control
of a botnet controller, able to use the computers for nefarious activities. Infection
status is usually unknown to users or controllers and incomplete, meaning that
in a large network not all computers are infected but only a relatively small
number of machines can be part of a botnet. This motivates an unsupervised
approach to cluster the hosts in a computer network, thereby uncovering yet
unknown (latent) groups of similarly behaving hosts. The idea is that all infected
hosts show different behavior from the normal hosts in a network and can thus
be singled out, preferably in one or more dedicated clusters. We experiment
with different packet thresholds to show which data-specific cutoffs are optimal
(i.e. short but still informative). The reliability of our method is investigated
by replicating the main result with another dataset containing different botnet
captures.

This paper presents the following contributions:

– We present a clustering method of network data that does not require manual
filtering of observations.

– Clustering of nodes as well as edges in spatial-temporal network data is con-
ducted in one procedure.

– We present a competitive performance in the setting of detecting malware
infected computers (bots) and replicate our main result in different types of
botnets.

2 Related Work

To date, a common strategy is to collapse temporal data into aggregate values
and neglect spatial structure [2,7,11,13,15,17,29,34,36,38,39,42,50,51]. This
causes a loss of information as researchers remove streams of data that only occur
once (e.g. because these connections are uninformative when calculating the vari-
ance of inter arrival time between packets in a sequence of connections). Apart
from some studies using time-windows [16], removing temporal information by
collapsing streaming data complicates botnet classification [37]. Neglecting spa-
tial structure in botnet detection is equally problematic because this structure
is informative for infection status [9]: the members of a botnet are more likely
to have mutual contacts with each other than with benign hosts.

Another issue is that many studies apply some kind of manual filtering prior
to analysis (e.g. removing approved DNS addresses via white-listing based on
Alexa [17,39] or other rule based exclusion criteria (e.g. [5,36,46]). It is unclear
whether the obtained results are due to the analysis or filtering steps. Manual
feature engineering may also bias the results of these experiments [20], especially
when combined with sparsely reported procedures and outcomes (e.g. [45,49]).
Finally, only a few studies apply methods that do not require a labelled dataset
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(unsupervised learning: [15,50]). Especially in the botnet setting where com-
puters are zombies per definition, the dependence on a labelled dataset is an
important shortcoming for operational usefulness.

3 Methods

Fig. 1. Schematic illustration of the proposed pipeline

3.1 Connection Features

We build on a sequential feature paradigm presented recently in MalPaCA
[33]: a behavior discovery framework for network traffic which uses Hierarchi-
cal Density-Based Spatial Clustering of Applications with Noise (HDBScan) [6],
providing clusters of connection sequences.

From the original packet capture (.pcap file), we define dataframe C which
is a matrix with t × p dimensions, with t rows (one row for every packet) and
p features on the columns. C was made to include unidirectional connections,
defined as an uninterrupted list of all packets sent from a source IP to destination
IP. MalPaCA proposed to include four sequential features: packet size (bytes),
time interval (gaps), source port (sport), and destination port (dport).

From every column of C we created the symmetric distance matrices Dbytes,
Dgaps, Dsport, and Ddport. All distance matrices had nc × nc dimensions, with
nc unique unidirectional connections, and zero diagonals. For Dbytes and Dgaps

the pairwise distance over time (t) was calculated via Dynamic Time Warping
(DTW). For each pair of hosts we had time series X ∈ {1, ..., N} and Y ∈
{1, ...,M} and the average accumulated difference between X and Y is

dφ(X,Y ) =
T∑

k=1

d(φx(k), φy(k))mφ(k)
Mφ

(1)

with warping functions: φ(k) = (φx(k), φy(k)), φx(k) ∈ {1...N}, φy(k) ∈
{1...M}, which shape the warping curve φ(k); k ∈ {1, ..., T}. mφ(k) is a weight-
ing coefficient and Mφ is the corresponding normalization constant, which
ensures that the accumulated differences in time series are comparable along
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different paths [14]. DTW optimises by finding the minimum the difference:
dtw(X,Y ) = arg minφ dφ(X,Y ) and we normalized the DTW estimates to range
[0–1] with

x̂i =
xi − min(x)

max(x) − min(x)
(2)

where x = [dtw(X1, Y1), dtw(X1, Y2), ..., dtw(Xnc
, Ync

)].
For source and destination port, the pairwise distances were calculated with

the cosine similarity

cos(X,Y ) =
∑T

k=1(Xk ∗ Yk)
√

(
∑T

k=1(X
2
k))

√
(
∑T

k=1(Y
2
k ))

(3)

which were normalized as described to form Dsport and Ddport.

3.2 Host Features

The Stochastic Block Model (SBM) required to transform the connection dis-
tance matrices (Dbytes, Dgaps, Dsport and Ddport) to host distance matrices,
which was achieved via Principal Component Analyses (PCA). The PCA works
by calculating the singular value decomposition of the distance matrices so that
by maximizing the variation captured per component a small number of com-
ponents (ideally) captures a major proportion of the variation. We input the
distance matrices so the aim was to acquire a number of dimensions less than
the number of unique connections, accomplished by selecting the m components
explaining at least 40% cumulative variation. For each of the 4 features, the
PCA thus resulted in a matrix W with nc rows and m columns, so that for each
unique a → b connection m, component weights were available. We used W to
create m host-host SBM covariates. Since every row of W referred to a unique
a → b connection, the connection source (a) and destination (b) are used to indi-
cate the rows and columns for each SBM covariate matrix Ym with dimensions
nh × nh where nh is the unique number of hosts. Hence, the values in Ybytes,m1 ,
the SBM covariate matrix for the first component of bytes, were inherited from
m1 of Wbytes (see Table 1).

Table 1. A fictional example of a distance matrix Dbytes, PCA component weights
matrix Wbytes, and corresponding SBM covariate matrix Ybytes,m1 .

D ab ac bc ca

ab 0 689 1262 512

ac 689 0 1169 680

bc 1262 1169 0 1062

ca 512 680 1062 0

W m1

ab −3.18

ac −2.96

bc −4.60

ca −2.92

Ym1 a b c

a 0 −3.18 −2.96

b 0 0 −4.60

c -2.92 0 0
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3.3 Stochastic Block Model

The SBM took as input a graph G = (V, E), where V was the node set of size
nh := |V|, and E was the edge list of size M := |E|. The corresponding nh × nh

adjacency matrix was denoted by Y , where Yab = 1 if there was a connection
between hosts a and b and 0 otherwise. The main input graph was an undirected
binary node matrix Yclass which held a 1 if there was any connection between
nodes a and b;Yclass,ab = 1 or zero otherwise. The generated SBM covariate
matrices are added to the model as covariates

SBM(Yclass,ab, List(YpacketSize,m, YgapsDist,m, YsourcePort,m, YdestPort,m))

Since group (g) membership is unknown, the membership labels for every
host are captured by a latent variable Za, which elements are all 0, except
exactly one that takes the value 1 and represents the group host a belongs to.
This Za is assumed to be independent of Zb for a �= b. Finally, SBM outputs
a n × g matrix Z := (Z1, ..., Zn)T , such that Za,i is the ith element of Za.
Graph generation and likelihood are explained elsewhere [27]. The lower and
upper bound of fitted SBM models were 2 and 10. Model fit was evaluated
with the Integrated Classification Likelihood (ICL), via a variational expectation
maximization approach implemented in R [28].

3.4 Experimental Setup

This study used data from the Malware Capture Facility Project, which is a
sister project of the Stratosphere IPS Project: an initiative to obtain malware
and normal data. From all the published samples, a dataset was selected which
included both normal (Nb = 12) and infected (Ni = 10) hosts and included
the entire network. The malicious hosts were infected with the Conficker bot-
net. The data were downloaded from https://mcfp.felk.cvut.cz/publicDatasets/
CTU-Malware-Capture-Botnet-91/ as a .pcap file consisting of 198818 lines
(packets), capturing 1011 unique (a → b) connections. There were 3 isolated
clusters which were removed, leaving 917 unique connections. The correlation
between covariates was low (see Table 7) so instead of combining the distance
matrices they were included in the SBM as individual predictors.

Not all observed connections are necessarily informative, so we experimented
with a minimum number of packets-threshold (Pt) to ensure that the remaining
connections represented sufficient information for effective behavioral model-
ing. The thresholds tested were Pt ∈ {5, 10, 15, 20}, respectively pruning to 631
(62.4%), 565 (55.9%), 523 (51.7%), and 483 (47.8%) connections (see Table 2).
From analyses we determined that for this dataset a packet threshold of 10
is desirable, balancing the number of connections, nodes, MalPaCA and SBM
clusters (see Supplementary Material). Higher thresholds resulted in too much
pruning of the network structure, hindering accurate classification in this dataset.

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-91/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-91/
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Table 2. Descriptives of the Stratosphere CTU-91 data with different behavioral
thresholds

Covariate Nseq Nip QMalPaCA outliers QSBM

5 packets 631 205 10 120 4
10 packets 565 182 9 154 4
15 packets 523 165 7 40 4
20 packets 483 148 6 38 5
This Table presents the number of unique a → b
sequences (Nseq), unique hosts (Nip), the optimal
number of clusters (QMalPaCA) and outliers deter-
mined by MalPaCA, and optimal SBM-cluster solu-
tion (QSBM ).

3.5 Replication Sample

For replication of our main finding we used the ISOT dataset from the University
of Victoria (https://www.uvic.ca/engineering/ece/isot/datasets) as presented in
[38], which included of a collection of neutral/background data and 4 samples
(Waledac, Storm, Zeus) of botnet data. Storm, Waledac, and Zeus are Windows
targeting botnets predominantly used in spamming campaigns which peaked in
2007–2008. They can all be managed via a Command and Control as well as Peer
to Peer communication. From the neutral data we selected the data from the
Traffic Lab at Ericsson Research in Hungary [43]. The latter contained a large
number of general traffic from a variety of applications, including HTTP web
browsing behavior, World of Warcraft gaming packets, and packets from popular
bittorrent clients. ISOT documentation states IP addresses of infected machines
were mapped to the background traffic and all trace file were replaced to homog-
enize network behavior. The infected data contained 747264 packets with 25308
unique connections and the Ericsson lab data included 2300385 packets from
12778 unique connections. These two sets were combined so that MalPaCA fea-
tures could be extracted.

4 Results

4.1 Stratosphere Data

MalPaCA Directly. Applying MalPaCA directly to the data assigned the
connections to 9 dense clusters (see Table 3). Visual inspection of the nodes
belonging to the connections classified as outliers revealed that these were mostly
peripheral, supporting the notion that nodes on the edges of the network, with
negligible activity, are more likely to fall outside a MalPaCA cluster.

Different subsets of connections were identified. Cluster 1 captured all traffic
from 192.168.0.118 to peripheral hosts. Cluster 3 included bidirectional traffic

https://www.uvic.ca/engineering/ece/isot/datasets
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Table 3. MalPaCA clusters and infection status in the CTU-91 data. Connections in
−1 are unclustered. srcipp, srcipn, scripi are connections where the source host was
peripheral, normal, or infected (respectively). The same for destination ports dstip.

Cluster srcipp srcipn srcipi dstipp dstipn dstipi

−1 8 6 23 17 10 10
1 0 0 14 14 0 0
2 10 0 0 0 0 10
3 119 0 0 0 0 119
4 62 0 0 0 0 62
5 0 0 125 125 0 0
6 0 12 78 73 10 7
7 0 4 4 0 0 8
8 0 0 8 0 8 0
9 0 10 0 0 0 10

between normal and infected hosts as well as connections from normal to nor-
mal, infected, and peripheral hosts. Clusters 4 and 5 included connections from
normal and infected to peripheral hosts (opposite to cluster 2: peripheral to
infected and normal), but apparently specific clusters were required to capture
specific connections from peripheral to infected (clusters 6 and 7) and infected
to peripheral hosts (clusters 8 and 9), illustrating the heterogeneity in connec-
tions from and to infected nodes. Relating the connections to their respective
nodes, we identified 11 true negatives (cluster 1), 11 false positives (clusters 2:5),
and 389 true positives, yielding an accuracy of 97.32%, sensitivity of 100% and
specificity of 50%.

SBM Directly. Fitting the SBM directly on the network matrix, ignoring the
MalPaCA features, resulted in a 6-class solution. This solution was incapable of
distinguishing normal and peripheral nodes (as described earlier in [37]). Class
1 and 3 captured 11 peripheral and 2 normal hosts, class 2 and 5 respectively
captured 2 and 3 infected hosts, class 4 included 3 normal and 5 infected hosts,
and class 6 only included 148 peripheral hosts. Hence, there are 10 true positives,
3 false positives (class 4), and 312 true negatives, resulting in a performance of:
accuracy = 99.08%, sensitivity = 100% and specificity = 99.05%.

Our Approach. Applying MalPaCA to obtain the distance matrices, repre-
senting the distances between connections for the four features, resulted in 565
surviving connections. The average connection length was 348.48, with a min-
imum of 10 packets (Pt = 10) and a maximum of 5333. The PCA solution on
the MalPaCA distance matrices commended a 1 (bytesDist), 3 (destPort), 1
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(gapsDist), and 3 (sourcePort) component solution that cumulatively explained
>40% of the variation. This result was Pt invariant; including more packets per
connection does not change the amount of variation explained by the compo-
nents.

Fitting the SBM on the PCA derived covariates favoured a 4-class solution.
The network with original- and cluster labels is visualized in Fig. 2 and the
performance matrix for the 10 threshold solution is provided in Table 4. After
obtaining the cluster solution we used straightforward descriptive analyses and
visualization to interpret the clusters (see Supplementary Material and [33]).
We found that all malicious hosts were assigned to one cluster with a posterior
probability of >.998. Most of the peripheral hosts were captured by one cluster,
indicating behavioral similarity, with a class assignment posterior probability of
.9982. The non-infected/normal hosts were divided over two clusters, that also
included peripheral hosts. Only one normal host had a posterior probability <.95,
which was host 192.168.1.6 with .82, with the remaining probability belonging
to the other normal/mixed class. If we consider all peripheral hosts (136+9+1)
and normal hosts (4+3) to be true negatives, and the correctly clustered infected
hosts as true positives, the classification is perfect. These findings are consistent
for all four tested packet thresholds (Pt).

Table 4. Performance matrix from the SBM node-based clustering in the CTU-91 data

Cluster Peripheral Normal Infected

1 – – 10
2 136 4 –
3 9 – –
4 1 3 –

Table 5. Performance comparison with other studies using ISOT data

Method Accuracy Sensitivity Specificity Study

BClus .5 .4 .5 [12]
CAMNEP .5 0 .9 [12]
BotHunter .4 .01 .9 [12]
BotGM .91 .83 n.p [26]
Decision tree .99 .98 n.p [51]
Decision tree .75 .99 n.p [3]
n.p. = not provided
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(a) Network with original labels (b) Network with MalPaCA and SBM labels

Fig. 2. Network plots of a subset of the CTU-91 network (including hosts with a packet
threshold Pt = 10). Left: network with original host labels, used in this analyses as
ground truth (blue = peripheral, red = infected, green = normal). Right: network with
the MalPaCA connection label colours and SBM host labels (blue = peripheral, red =
infected, green & turquoise = normal & peripheral). (Color figure online)

4.2 ISOT Data

Previous studies have used the ISOT data for botnet identification purposes and
Table 5 presents a selection of the performance reported in related works. As
mentioned before, most of these methods require manual feature engineering and
connection filtering to be applied, while others operate in a supervised setting.
We compare our unsupervised clustering method to these results.

Creating the distance matrices with MalPaCA pruned the network (see
Fig. 3a) to 7683 surviving connections with Pt = 20. Average connection length
was 365.95, with a minimum of 20 and a maximum of 525256. This amounted to
3847 nodes. There was one isolated sub-network of hosts connected to 172.16.2.3,
of which only the connection between 172.16.2.3 and 193.88.8.59 survived the
packet threshold of 20. Isolation supported their removal from subsequent clus-
tering analyses, leaving 3845 nodes (running the analyses with these two nodes
included yielded similar results in the optimal SBM solution; both were allocated
to the cluster with infected nodes).

Identical to the Stratosphere data, a PCA fitting resulted 1, 1, 3, 3 com-
ponents for respectively bytes, gaps, dport and sport to explain >40% of the
variation. The SBM model fitted on the binary adjacency matrix, with the PCA
features resulted in an optimal 5 class solution (see Figs. 3b and Table 6). Of these
5 clusters, clusters 1 and 2 captured the peripheral nodes, where the peripheral
nodes in cluster 1 were all linked to host 172.16.2.11 (Storm + non-malicious)
which was the only host allocated to cluster 3. Cluster 4 consisted of the Waledac
and Storm hosts, confirming the comparability of Waledac and Storm activity.
Cluster 5 captures eight hosts, of which seven are non-malicious: 172.16.2.2,
172.16.2.13-14, 172.16.2.111-114, and one host in cluster 5 (172.16.2.12) had com-
bined (non-malicious & malicious) traffic. If we consider 1734 and 2100 peripheral
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Fig. 3. (a) Network plots of a subset of the ISOT network for Pt = 20. Network with
original host labels, used here as ground truth (blue = peripheral, red = malicious,
orange = malicious + non-malicious, green = non-malicious. (b) Network with labels
assigned by our method: Turquoise (cluster 1) & blue (cluster 4) = peripheral, red
(cluster 2) = malicious + misclasification, orange (cluster 3) and purple (cluster 5) =
Waledac, and green (cluster 6) = non-malicious. (Color figure online)
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nodes (cluster 1 and 2) and 7 non-malicious nodes (cluster 5) as true negatives,
the Waledac and Storm nodes in cluster 3 and 4 as true positives, and the com-
bined traffic node in cluster 5 as a false negative, the accuracy and sensitivity =
99.97 % and the specificity = 100%. This performance is similar to other work
on supervised learning using decision trees [26,51] and nearest neighbours [13]
on manually curated collapsed data. We outperform the methods listed in [12].

Table 6. Performance matrix from the SBM node-based clustering in the ISOT repli-
cation data

Cluster Peripheral Normal Normal + infected Infected

1 1734 – – –
2 2100 – – –
3 – – 1 –
4 – – – 2
5 – 7 1 –

5 Discussion

Here, we combined two unsupervised methods to solve the problem of analysing
spatio-temporal data so that botnet infected computers can be identified via
connection- and host clustering. In our discovery sample (CTU-91) we identi-
fied all infected machines and classification was perfect. The infected machines
were all allocated to one cluster, indicating marked similarities between infected
machines infected with the Conficker botnet. In the replication sample (ISOT),
one host with malicious and non-malicious traffic was allocated to a cluster
of non-malicious nodes, yielding one false negative with an overall accuracy of
99.97%. This procedure outperforms other botnet detection studies using the
ISOT dataset [3,8,26,38,47] and has comparable performance to [13,36]. Com-
pared to the studies that report similar classification performance, our method
does not require any type of filtering [36] or manual feature selection [13], and is
therefore less sensitive to external factors. In the discovery sample, the normal
and peripheral hosts were allocated together in a cluster, whereas in the replica-
tion data, the peripheral hosts formed a separate cluster. This may be due to the
mapping procedure used in the ISOT dataset, where botnet data were collected
in a VM and mapped a posteriori, so that the differences in the ISOT data
may be captured by our model, underlining the sensitivity of our approach. Fur-
thermore, although not explicitly illustrated, the output of MalPaCA has been
found to be informative to identify malware families or other specifically tuned
categories of traffic [33], and other similar connection profile based approaches
exist [36].

A potential limitation of this study is the relatively short time window in
which the data were collected. Ideally one would capture the temporal structure



190 M. P. Roeling et al.

of the network traffic in more specific analyses. A prominent example of such
analyses is creating snapshots [23], which facilitates network clustering within
snapshots, so that state changes (nodes hopping to another cluster) between
snapshots can be analysed [31]. However, given the length of the CTU-91 cap-
ture (roughly 20 min, compared to for example one year of data from mobile
devices in [31]) we argue there is little sense in making 5-min snapshots, since
this would result in many, difficult to compare, local network clusters. Again,
these packet thresholds are data specific, and shorter or other snapshots may be
applicable in other types of network data (e.g. social network data where snap-
shots represent school-years). Although our approach does not require manual
curation, understanding the effects of sample specific factors is a focus of future
research. Another limitation of this approach is the speed of Variational Infer-
ence when fitting a SBM with covariates to large datasets (>2500 nodes). The
runtime of our discovery (CTU-91) sample was about 2.5 h on a Windows 10
(i7-7700K CPU, 4.2 GHZ, 8-core, 16 GB ram) machine, but new developments
in fast optimization [35] will reduce run-time from hours to minutes.

6 Conclusion

The overarching aim of this study is to present a combination of clustering meth-
ods to simultaneously cluster nodes and host in spatial-temporal network data,
where the features capture a sequential or time series structure. In the setting
of botnet detection, our method is able to allocate labels to distinguish different
types of nodes, with near-perfect classification, while ingesting raw unfiltered
network traffic data. This makes it an easy-to-use and effective tool for network
traffic analysis.

Our method and results add to existing studies that botnets are relatively
easy to detect. Indeed, our performance is higher compared to most earlier stud-
ies and we depend less on manual curating of the data, but methods solely based
on community detection, or collapse temporal variation in composite features
yield excellent results as well.

In future work, we aim to make our approach less computationally inten-
sive using sketching and related methods from data-stream mining. Moreover,
we afterwards intend to apply it to large network captures, and simplify the
connection-to-host transformation to a PCA independent yet robust implemen-
tation.

7 Supplementary Material

Location of R-scripts and raw input file: https://drive.google.com/drive/folders/
121pnmgob-f-T0lE60yQmFlnnq6MW2VQy?usp=sharing (Fig. 4).

https://drive.google.com/drive/folders/121pnmgob-f-T0lE60yQmFlnnq6MW2VQy?usp=sharing
https://drive.google.com/drive/folders/121pnmgob-f-T0lE60yQmFlnnq6MW2VQy?usp=sharing
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Fig. 4. This Figure shows the connections clustered with MalPaCA on the CTU-91
data. The grey dots indicate connections labeled as outliers by HDBScan. For this plot,
the multidimensional sample space was reduced to two axes by TSNE, resulting in the
ability to visually identify 7 clusters, of which the top cluster belongs to the middle
cluster (letter 4), the right cluster decomposes into 3 sub-clusters (blue, red, brown)
and outliers, and the bottom cluster consist of 2 sub-clusters (magenta, darkgreen) and
outliers. Hence, 9 clusters are displayed. (Color figure online)

7.1 Host Clustering CTU-91 Dataset

Node assignment to a cluster does not immediately inform which cluster(s)
contain the infected nodes. Descriptive analyses are typically used to inter-
pret the cluster output. For example, when comparing cluster 1 (10 hosts)
with cluster 2 (140 hosts), we observed an almost 3-fold increase of pack-
ets send (93100 versus 33917), a higher occurrence of bigger packets send
(Meanc1 = 138.22(SD = 180.51),Meanc2 = 118.97(SD = 135.63), t =
1.9547, p = .051) and received (Meanc1 = 167.26(SD = 226.31),Meanc2 =
142.92(SD = 194.23), t = 1.6614, p = .09703), and higher frequencies of
HTTPS, UDP, and SMTP/IMF protocol traffic, whereas SMTP, TCP, NBNS,
and BROWSER protocol traffic was significantly higher in cluster 2. This behav-
ior of nodes (more connections via specific protocols) is coherent for botnets.
Further visualisation (not provided) resulted in the identification of cluster 1
as likely malicious (and verified with the original labels). All of the malicious
hosts (192.168.1.238, 192.168.1.239, 192.168.1.236, 192.168.1.91, 192.168.1.71,
192.168.1.9, 192.168.1.243, 192.168.1.242, 192.168.1.247, 192.168.1.245) were
assigned to one cluster with a posterior probability of >.998 (Figs. 5 and 6).



192 M. P. Roeling et al.

Fig. 5. CTU-91 data: Explained variance of components from the Principal Component
Analysis on the four distance matrices, where the packet threshold was 10 packets. The
connection distances in the bytes and gaps matrices were captured by one component
approximately explaining 90% of the variance, whereas 3 components were required to
capture >40% of the variance in the destination and source port distances.
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Fig. 6. Plots of the ICL fit evaluation statistic based on the CTU-91 data. The peak
at Q = 4 illustrates that the optimal SBM clustering solution is reached at 4-classes,
and model fit decays when Q increases.

Table 7. Correlation between distance matrices in the CTU-91 data

bytes gaps dport sport

bytes –
gaps .04 –
dport .13 .09 –
sport .05 −.03 −.04 –

Our observation that mean differences between clusters (as exampled above)
show a trend but are not significant, illustrates that just comparing mean dif-
ferences to detect groups, with a straightforward anomaly detection approach,
would be less successful in this particular setting (Fig. 8).



194 M. P. Roeling et al.

Fig. 7. This Figure shows the full network with the nodes coloured according to the
labels from the optimal 4-class SBM solution. This plot is based on the analyses of
483 connections and 148 hosts (nodes) with packet threshold = 20. Nodes are coloured
blue (normal), green (normal), turquoise (normal), red (infected), or white (outliers).
(Color figure online)

Most of the peripheral hosts were captured by one cluster, indicating behav-
ioral similarity, with a class assignment posterior probability of .9982. The non-
infected/normal hosts (192.168.1.155, 192.168.1.52, 192.168.1.157, 192.168.1.36,
192.168.1.6, 192.168.1.53, 192.168.1.64) were divided over two clusters, that also
included peripheral hosts. Only one normal host had a posterior probability <.95,
which was host 192.168.1.6 with .82, with the remaining probability belonging
to the other normal/mixed class (Figs. 9, 10, 7, 11, 12 and 13 (Tables 8, 9, 10
and 11).



Hybrid Connection and Host Clustering for Community Detection 195

Fig. 8. This Figure shows the full network with the nodes coloured according to the
labels from the optimal 4-class SBM solution. This plot is based on the analyses of
631 connections and 205 hosts (nodes) with packet threshold = 5. Nodes are coloured
blue (normal), green (normal), turquoise (normal), red (infected), or white (outliers).
(Color figure online)

Table 8. Performance matrix from the SBM node-based clustering when packet thresh-
old = 5

Cluster Peripheral Normal Infected

1 9 0 0
2 0 0 10
3 1 4 0
4 158 3 0

Table 9. Performance matrix from the SBM node-based clustering when packet thresh-
old = 15

Cluster Peripheral Normal Infected

1 133 4 0
2 3 1 10
3 0 1 0
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Fig. 9. This Figure shows the full network with the nodes coloured according to the
labels from the optimal 4-class SBM solution. This plot is based on the analyses of
565 connections and 182 hosts (nodes) with packet threshold = 10. Nodes are coloured
blue (normal), green (normal), turquoise (normal), red (infected), or white (outliers).
(Color figure online)

Table 10. Performance matrix from the SBM node-based clustering when packet
threshold = 20

Cluster Peripheral Normal Infected

1 123 5 0
2 0 0 6
3 0 0 4
4 2 1 0
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Fig. 10. This Figure shows the full network with the nodes coloured according to the
labels from the optimal 4-class SBM solution. This plot is based on the analyses of
523 connections and 165 hosts (nodes) with packet threshold = 15. Nodes are coloured
blue (normal), green (normal), turquoise (normal), red (infected), or white (outliers).
(Color figure online)
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Fig. 11. ISOT data: Explained variance of components from the Principal Component
Analysis on the four distance matrices, where the packet threshold was 5 packets. The
connection distances in the bytes and gaps matrices were captured by one component
approximately explaining 90% of the variance, whereas 3 components were required to
capture >40% of the variance in the destination and source port distances.
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Fig. 12. This Figure shows the connections clustered with MalPaCA on the ISOT
data. The green dots indicate connections labeled as outliers by HDBScan. For this
plot, the multidimensional sample space was reduced to two axes by TSNE. By colour
we different clusters (e.g. orange and purple). Compared to the CTU-91 dataset we see
the connections occupy a larger sample space, indicating more variance in the ISOT
replication data. (Color figure online)
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Fig. 13. Plots of the ICL fit evaluation statistic in the ISOT data. The subtle peak at
Q = 5 indicates that the optimal SBM clustering solution is reached at 5-clusters, and
model fit decays when Q increases.
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Table 11. MalPaCA clusters and infection status in the ISOT data

Cluster srcipn srcipi dstipn dstipi

-1 1948 3415 1703 3216
1 0 0 9 10
2 12 12 0 0
3 21 0 0 0
4 0 0 24 0
5 22 0 0 0
6 0 0 20 6
7 0 0 90 17
8 92 10 0 0
9 0 0 0 10

10 0 16 0 0
11 0 9 0 0
12 0 43 0 0
13 0 48 0 0
14 0 38 0 0
15 0 0 0 10
16 0 0 0 11
17 0 0 0 22
18 0 0 0 8
19 0 0 0 8
20 0 0 0 10
21 0 0 0 49
22 0 0 0 10
23 0 0 0 27
24 0 0 0 7
25 0 0 0 40
26 0 7 0 0
27 0 7 0 0
28 0 11 0 0
29 0 7 0 0
30 0 4 0 4
31 0 27 0 0

(continued)
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Table 11. (continued)

Cluster srcipn srcipi dstipn dstipi

32 11 11 0 0
33 8 8 0 0
34 8 8 0 0
35 11 11 0 0
36 11 11 0 0
37 8 8 0 0
38 15 15 0 0
Interpretation of rows and columns equal to
Table 3. Clusters 1, 6, and 7 contain connec-
tions from peripheral hosts to normal and infected
hosts. Clusters 2, 8, 32–38 contain connections
from both infected and normal host to periph-
eral nodes. Clusters 3 and 5 both include con-
nections from a normal source ip to a peripheral
nodes. Cluster 9 includes connections from periph-
eral nodes to infected destination hosts. Clusters
10–14, 26–29, and 31 comprise of connections from
infected source hosts to peripheral hosts. Cluster
30 includes connections from infected source IPs
to infected destination IPs.
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