TU Delft

Combining SAT solvers with heuristic ideas for solving RCPSP with logical
constraints
An exploration of variable ordering heuristics impact on solving RCPSP-log

Iarina Maria Tudor!

Supervisor(s): Emir Demirovic', Konstantin Sidorov', Maarten Flippo!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Iarina Maria Tudor
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirovic, Konstantin Sidorov, Maarten Flippo, Jeremie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.
Part of this research was assisted by ChatGPT.

Abstract

This paper provides a novel method of solving
the resource-constrained project scheduling prob-
lem (RCPSP) with logical constraints (RCPSP-log)
using satisfiability (SAT) solving and integrating
variable selection heuristics. The extension pro-
vides two additional precedences: OR constraints
and bidirectional (BI) relations, making it possi-
ble to express more complex dependencies between
tasks. OR constraints enable a task to be depen-
dent on multiple preceding tasks, while BI relations
do not allow tasks to be executed at the same time.
Both problems are known to be NP-hard.

The solution method consists of using a max sat-
isfiability (MaxSAT) solver combined with vari-
able selection heuristics. The paper investigates
two heuristics, based on the greedy approach of
scheduling each activity as early as possible and
variable conflict analysis.

The results on well-known datasets from the litera-
ture show that most of the instances can be solved
within the designated time limit. The proposed ap-
proaches contribute to reducing the makespan, es-
pecially when dealing with no logical constraints or
only OR relations. For BI constraints, the algorithm
is having difficulties in finding solutions, especially
when increasing the number of activities, reporting
fewer solutions than the baselines. Overall, the re-
sults provide insight into the integration of variable
selection heuristics for SAT solving, with the po-
tential for more investigation into problem-specific
ideas.

1 Introduction

Project scheduling is a complex issue that affects many sec-
tors. For example, the time to perform all sub-tasks has a
significant impact on the efficiency of production operations
and logistical timetables [5]. As a result, many academics are
seeking efficient algorithms that can identify optimal sched-
ules in a fair period of time.

RCPSP stands for Resource-Constrained Project Schedul-
ing Problem, which is a general problem dealing with
scheduling a set of activities by determining their start and
end times to minimize the total duration, subject to con-
straints on the availability of resources. Activities are re-
lated to each other by a set of precedence constraints, which
specify that certain activities cannot start before others are
completed. Furthermore, there are constraints on the avail-
ability of resources. Each activity requires a specific amount
of resources, which are limited and cannot be used simulta-
neously by multiple activities. The availability of resources
can be represented by a set of resource constraints, which
specify the maximum amount of each resource that can be
used at any given time [2]. RCPSP assigns a start and finish
time to each activity, considering its duration and precedence
relationships, while aiming to minimize the total makespan.
The Resource-Constrained Project Scheduling Problem with

logical constraints, known as RCPSP-log, extends the tradi-
tional RCPSP by incorporating logical constraints such as OR
and BI constraints [15]. By capturing additional precedence
rules, this formulation offers a more accurate way of model-
ing complex relationships and dependencies between project
tasks [15]. However, finding optimal solutions efficiently to
the above-mentioned problems is very difficult due to their
NP-hard nature [14], making them the perfect candidate for
further research. This paper is focusing on the Resource-
Constrained Project Scheduling Problem with logical con-
straints.

RCPSP-log has been the subject of an investigation by var-
ious researchers in the past, such as Coelho and Vanhouckel
[3] and Hartmann and Kolisch [7]. Their work focused on de-
veloping specific meta-heuristics and logical constraint mod-
eling techniques. For RCPSP-log, their proposed solution in-
volves a satisfiability solver (SAT) combined with a meta-
heuristic genetic algorithm, which is complex and very prob-
lem specific. Considering this, there has been little research
done on simple heuristic approaches for this problem, as it
is unlikely to outperform state-of-the-art methods, namely
problem-specific algorithms such as genetic and evolution-
ary algorithms. Nonetheless, exploring these possibilities re-
mains worth considering, given the consistent and ongoing
improvements being made to SAT solvers [8]. Moreover, fo-
cusing on a fast and reliable heuristic approach could poten-
tially solve multiple problems instead of having to develop
extensive, specific algorithms for each particular case.

This paper aims to answer the research question of “How
can the integration of heuristic ideas into SAT solvers en-
hance the solution process of RCPSP with logical constraints
such as OR, AND, and BI constraints?”. The study looks into
the performance of satisfiability solving enhanced with vari-
able selection heuristics for logical precedences. The ultimate
goal is to discover novel optimizations that can advance the
state-of-the-art solutions for the RCPSP-log.

The research uses a method to encode RCPSP-log in-
stances into propositional logic so that SAT approaches,
specifically MaxSAT solvers, can be used in combination
with variable selection heuristics to find optimal solutions.
The heuristic approaches originate from the greedy perspec-
tive of scheduling activities as soon as possible. The method
assigns initial weights based on time information to deter-
mine the order of truth value selection. The paper experi-
ments with the greedy heuristic as a stand-alone as well as
combined with a variable state independent decaying sum
(VSIDS), a known good heuristic for SAT solving [11], based
on conflict analysis. The evaluation is done using the datasets
from PSPLIB [10], considering instances of 30 and 60 jobs.

The results found are promising, showing improvements
in different aspects of the solution process. The findings offer
perspective on solving more optimal solutions compared to
the conventional SAT approach, especially when increasing
the number of instances. The heuristic methods find lower av-
erage best makespans over time but struggle to quickly eval-
uate the optimality status and to go from one solution to an-
other, and they perform worse in terms of the total number of
solutions found within the time limit. Experiments on more
instances or datasets with a higher number of activities could

help draw further conclusions. Another finding is that the
value selection starting with true assignments contributes to
decreasing the number of decisions by almost half.

The structure of this paper is as follows: section 2 provides
a formal definition of the RCPSP and the RCPSP-Log fol-
lowed by an illustrative example. Next, Section 3 provides
information on the heuristics ideas and SAT encoding. Sec-
tion 4 states the experimental setup and presents the results,
alongside a discussion of the results. Furthermore, section 5
reflects on the ethical implications of this research together
with the repeatability of the setup and results. Finally, section
6 covers the conclusion and future work.

2 Problem Formulation

The Resource Constrained Project Scheduling Problem aims
to find a feasible assignment of a set of activities such that the
makespan is minimized. The makespan represents the finish
time of the end activity, which can only be scheduled once
all other activities have finished. RCPSP can be stated as fol-
lows, as formulated in [3]:

* a project is composed of a set of activities N and a set
of resource types R, with each resource k£ € R having a
constant availability ay, per period.

e for each ¢ € N there is a defined duration d; and a re-
quired amount of resources ; ;, representing how much
of a resource type is needed.

* the project network is represented by a topologically
ordered activity-on-the-node (AoN) format where A is
the set of pairs of activities between which a finish-start
precedence relationship with time lag O exists.

 aschedule S is defined by a vector of activity start times
and is said to be feasible if all precedence and renewable
resource constraints are satisfied, as defined in [3].

* the precedence constraints for most of the formulations
of RCPSP are considered to be AND constraints which
allow starting an activity if and only if all of its prede-
cessors have ended.

An example of an instance of this problem is visualized
in Figure 1. The project network contains 2 dummy and 6
non-dummy activities with 2 types of resources. The arrows
represent the AND constraints.

2.1 Resource Constrained Project Scheduling
Problem with Logical Constraints
(RCPSP-log)

The Resource Constrained Project Scheduling Problem with
Logical Constraints is an extension of the classical RCPSP,
adding 2 new logical constraints: OR and BI constraints.

* this paper considers that the OR constraint imposes that
only one predecessor of an activity needs to be finished
before being able to schedule the successor activity.

* the BI constraint is defined as the constraint enforcing
two activities to not be executed in parallel. In addi-
tion, it introduces the concept of changeover time, which
refers to the minimum time required between the com-
pletion of the first activity and the start of the second

31211 6/2/1 1/3/0

Figure 1: An example project network for RCPSP instance with 6
activities and 2 different resources, found in [9].

activity to transfer and potentially prepare the resources
for the subsequent activity, as described in [3].

2.2 TIllustrative example

An instance of the RCPSP-log encoded in a project network
in activity-on-the-node format with 8 activities and one re-
newable resource with a limited availability of 4 units can be
visualized in Figure 2. The start and end nodes are dummy
activities that mark the start and end of the project, without
requiring any resources or duration. They are included in
the project network to ensure that all activities are properly
linked together and that the project is complete. The logi-
cal constraints are displayed in the following manner: AND
precedence is done using the classic arcs, OR precedence is
indicated using dotted arcs and BI constraints are noted with
a bi-directional dotted arc.
The examples has OR constraints between:

* activities A and B are the OR predecessors of C
BI constraints between:
* activities D and E cannot be done in parallel

The optimal schedule is having a makespan of 12 time units.

3 Satisfiablity solving preliminaries

Satisfiability (SAT) solvers have been used to successfully
solve the resource-constrained project scheduling problem
and variations of it [3]. Therefore, this paper looks into a
SAT approach refined with variable selection heuristics for
RCPSP with logical constraints.

3.1 SAT and MaxSAT solvers

The method consists of encoding the instances of RCPSP-log
into propositional logic in conjunctive normal form (CNF),
which further becomes the input for the solving algorithm.
More specifically, the solution is found using a SAT solver,
a tool that takes the encoded input and assigns values to the
boolean literals considered variables by satisfying, if possi-
ble, all clauses involved [6]. The algorithm exhaustively ex-
plores the search space, represented by the literals and their
values, to check which combinations satisfy the given CNF

@ |w

\ \ \\ 4 /- Y
| stat ——{ A)) A } i ¢
. 4 NS NS NS NS
1 3 2 2 1
: | VR
; | 9 or 1 end \
2 L N s
N N TN/
f \ / V
[¢} E O} { H
NS NS NS
1 1 3

Resource use

Tlme

Figure 2: An example project network and the optimal schedule

formula. The exploration is based on a heuristic, which influ-
ences the order of the variables and prunes the search tree.

The MaxSAT solver is a variation of SAT solvers that con-
siders additional soft clauses to represent the objective func-
tion, wherein each clause is assigned a cost to pay in case of
not satisfying it [6]. The aim of the solver is to find an assign-
ment that minimizes the total cost. The algorithm tries to iter-
atively search for a better assignment until no improvements
can be made or time runs out. The results generated by this
particular solver are the variable assignment, the optimality
of the assignment, and the penalty incurred by violating the
soft clauses.

3.2 CNF Encoding of the RCPSP-log problem

A propositional logic formulation of the problem is required
to identify an optimal solution utilizing the SAT technique
supplemented with variable selection heuristics. The model
expresses the RCPSP-log instance in CNF.

The time-indexed formulation for the RCPSP problem us-
ing the binary variable x; ; equal to 1 if activity 4 starts at time
t, and O otherwise as proposed by Pritsker, Watters, Wolfe in
1969 [16] is transformed into CNF as adapted from [4] and
[18] as follows:

The literal x; ; is used to express the constraints for com-
pletion, precedence, consistency, and resource clauses.

1,
Tit = 0,

Completion Clauses

A completion clause S; forces an activity to be scheduled
early enough to finish before reaching the horizon, meaning
that it should be scheduled at least d; units of time before the
deadline. It can be stated as a disjunction of literals x; ; where
t € {0...T — d;} and d; is the duration of activity i:

S = \/t 0 l’z t
Furthermore, each activity can have only one starting time.
The clauses F; are formulated as pseudo-boolean constraints,

which are transformed into CNF form using PySAT ! cardi-
nality constraints. This constraint is an adaptation from the

if activity i starts at time t
otherwise

'"PYSAT: A Python package for satellite data analysis. Available
at https://github.com/pysat/pysat.

original work of Melle [18], which was allowing multiple
start times. It can be stated as follows:

n
Fi=> @iy =1Vt €{0..T - d;}
i=1
Resource Clauses
As known from the time-indexed formulation [16], the prob-
lem requires a resource constraint stating that at each mo-
ment in time, for each type of resource, the capacity is not
exceeded. In order to create the resource clauses for this con-
straint, a new literal has been introduced, where y; ; repre-
sents if activity i is active at time ¢ € {0....T'—d, } as follows:

1,
Yit = 0,

Taking everything into consideration, new consistency
clauses C; can be derived to ensure that the literal x;; for
activity ¢ is consistent with the time when ¢ is considered ac-
tive:

if activity i is active at time t
otherwise

C; = NZgh AlEd=
The resource constraint is formulated as a pseudo-boolean
constraint, which is further transformed into CNF using
PySAT library and the Binary Decision Diagram (BDD)
method [1]. No other encoding methods were tested. The
constraint for each resource type k, where 7; j, is the amount
of resource per type needed by activity ¢ and ay, is the maxi-
mum availability of that resource type, is stated as:

—‘fﬂi,t V Yiu

n
Ry = Zyzt’rzk < ag
i=1
Precedence Clauses
Precedence clauses ensure that the precedence constraints are
satisfied, namely the OR, AND and BI constraints. For this
purpose, a new literal z; ; captures if activity ¢ is finished by
time ¢.
Zip = Vi OxlthE {0..T%}

The AND constraint is defined as for each pair of activities
(i,7) € AAND 2, = 1 must hold. This can be formulated
into a precedence clause PAN D as follows:

https://github.com/pysat/pysat

B@ND = /\Z;ij Tyt V Zit

For OR constraints, only for one predecessor i where (i, j) €
AO9F 2, , = 1 must hold. To capture this relation, the prece-
dence clause PC% is constructed as follows, where n repre-

i, X
sents the number of predecessors of j:

OR T—d; [n|
Pt = Nmo " Tt Vimq Zig

The last logical constraint BI forces (i,j) € AP! to not be
active at the same time. For this research, the changeover
time defined in Section 2.1 is considered O for simplicity. All
past work experiments for RCPSP-log were also considered
0 ([3], [18]). The precedence clause Pfjf is stated as:

PP = Ng=win V i
Finally, all clauses are combined together in conjunction
for the CNF form.

Soft Clauses
The MaxSAT solver accepts as input additional soft clauses
that can be violated at a cost. The soft clauses W of this prob-
lem represent the total makespan, which we aim to minimize
and have a cost of 1 for each violation. It is formulated as:
T
W = Zyn+1,t x 1
t=0

The final CNF clause is represented by the conjunction of

all hard and soft clauses.

4 Heuristic Solution Method

Variable selection heuristics are used to guide the search of
the solver to prune the search space. The rules for ordering
help find feasible solutions in fewer iterations, focusing on
promising variables first. This paper is investigating two ap-
proaches based on the intuition of minimizing the makespan
by trying to schedule each activity closer to the start of the
project and variable activity and conflict analysis, known as
good practice in SAT solving.

4.1 Exploration of greedy ideas

Considering the limited research for domain-specific knowl-
edge for RCPSP-log, no insightful heuristics were found in
the literature. Therefore, scheduling each activity as early as
possible (EST), which is a very basic and intuitive approach,
serves as an entry point for further research. For this heuris-
tic, each variable z; ;, representing the start time, has an ini-
tial weight depending on time ¢. The score is computed using
the formula:

1
weight = ; * 1000 Vt € {0...T'}

+1
The weights determine the fixed order in which the variables
are explored since the selection is made using a maximum
heap. All other variables have a weight of 0, which indicated
that they should be assigned after all others, in any specific or-
der. On top of that, since the goal is to find a start time closer
to the lower bound, the heuristic changes the value ordering
of the baseline, starting with a true assignment.

4.2 EST + VSIDS

The greedy heuristic was also tested in combination with the
Variable State Independent Decaying Sum (VSIDS) [11] used
by default by the solver. This heuristic is based on how ac-
tive a variable is, which is encoded in a score. Moreover,
the algorithm incorporates a decaying mechanism that takes
into consideration how long ago a variable was active. The
main assumption behind VSIDS is that an active variable will
lead to conflicts faster and will influence the outcome. There-
fore, the heuristics prioritize high-scoring variables [11]. For
the algorithm proposed, the VSIDS scores are initialized with
the EST weights, guiding the start of the search. After each
step, the scores are modified with respect to the number of
conflicts, following the variable-state independent decaying
sum decaying mechanism. Considering the contribution of
VSIDS in SAT solving, the EST + VSIDS approach could
incorporate more problem-specific knowledge and keep the
advantages of the best-practice method.

5 Experimental Setup and Results

The experiments were done using RCPSP datasets with 30
and 60 jobs from PSPLIB [10], which were transformed to
accommodate RCPSP-log, as discussed in Section 5.1. The
parser and encoder algorithms were implemented in Python
3.9 using the PySAT library, and run on an Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz 2.59 GHz with 16GB RAM. The
output was run on the pumpkin MaxSAT solver, which was
provided by the supervising team. The heuristic ideas were
implemented in Rust on top of the pumpkin MaxSAT solver
2. The evaluation is considering the run time of the solver
in seconds, without the time to process and encode the in-
stances. The difference in the number of instances tested per
number of jobs is related to the computational and memory
limitations of the computer performing the tests. The number
of instances per dataset is visualized in Table 1.

Table 1: Number of instances per data set and type of logical con-
straint, for all frequencies.

- OR BI
J30 229 229 229
Jo0 70 70 70

5.1 RCPSP-Log instances for experimentation

Coelho and Vanhouckel [3] proposed a method for augment-
ing the single-mode RCPSP instances with 30, and 60 jobs
from PSPLIB [10]. This research is using the same method.
Two new variables k1 and k2 are added to control the amount
of AND constraints transformed into OR and BI constraints.
The OR precedence relations are generated using the formula
(¢ + k1) mod k2 = 0 in which ¢ will become the activ-
ity involved in an OR with its predecessors. The selection of
BI constraints is using the same formula considering 7 one of
the involved activities and its immediate predecessor with the

2pumpkin MaxSAT solver: private satisfiability solver developed
by the algorithmic department from TU Delft.

lowest activity number. The modified data set using the afore-
mentioned method was also used in past work ([3], [18]),
making the results of this research comparable with other
contributions.

5.2 Experimental Results

The heuristic earliest start time first (EST) was evaluated
alone and combined with VSIDS against the benchmark per-
formance for each type of logical constraint with different
frequencies and a timeout of 15 seconds. The parameters
used for experiments are k1 and k2, which control the gen-
eration of logical constraints; Percent Log which represents
the actual percentage of these constraints in the instance. The
number of solutions found is presented using the parameter
solutions, which illustrates the optimal, satisfiable, and un-
known solutions found within the time limit of 15s. More-
over, time represents the average wall-time, in seconds, for
finding the optimal solution. The average includes the opti-
mal solution times together with the timeouts for satisfactory
or unknown. The distance between CPU and wall-time * was
very minimal, so only the latter is included. The last parame-
ter is decisions, representing the average number of decisions
taken by the solver until the final solution is reached, rounded
to thousands. The calculation considered only the instances
where an optimal or satisfiable solution was found. Further-
more, the average best makespan was computed for j30 for
no logical constraints, 100% OR, and BI relations.

Average of best makespan over time

mo{ >/
100

90
—— Benchmark

EST + VSIDS
— EST

804

Average makespan

70 4

60 4

50 4

T T T T T T T T
0 2 4 6 8 10 12 14
Time (seconds)

Figure 3: Average of best makespan over time (seconds) for j30
instances with no additional logical constraints

5.3 Discussion and interpretation of outcomes

In general, the heuristic approaches showed a potential im-
pact on the solving process of the RCPSP-log compared to
the baselines. Table 2 is illustrating the performance of the
benchmark, Table 3 represents the EST + VSIDS and Table 4
shows the findings for the EST heuristic.

The results for instances with 30 activities were better for
EST + VSIDS in terms of the number of optimal solutions

3Wall-time or wall-clock time: the elapsed time or the time a
program takes to run from start to finish.

Average of best makespan over time for 100% OR constraints
120

110 4
~3__

100 4

—— Benchmark
EST + VSIDS
— EST

90

80

Average makespan

70 4

60

50 4

T T T T T T T T T
[} 2 a4 6 8 10 12 14 16
Time (seconds)

Figure 4: Average of best makespan over time (seconds) for j30
instances with 100% OR constraints

Average of best makespan over time for 100% Bl constraints

—— Benchmark

EST + VSIDS
120 A — EsT

100 +

80+

Average makespan

60

T T T T T T T T T
0 2 9 6 8 10 12 14 16
Time (seconds)

Figure 5: Average of best makespan over time (seconds) for j30
instances with 100% BI constraints

and overall solved instances. The same heuristic achieves a
lower number of decisions, half as the baseline, which is due
to the value ordering. Since the greedy approach does not
find solutions for all instances, the average number of deci-
sions is not comparable to the other approaches. In terms
of time, there is no significant impact from a heuristic per-
spective. Moreover, the EST is performing worse in terms of
solutions found; most of the satisfied solutions found in the
baseline are transformed into unknowns. When analyzing it
deeper, those instances seem to cause more problems for the
heuristic, even if the optimal ones are solved faster. What
is interesting to mention is that even with this drawback, the
average best makespan found by EST is better for no logical
constraints or 100% OR precedences, as shown in Figures 3
and 4, for the instances that are solvable in 15 seconds. The
greedy order provides good insight into initial solutions, but
it takes more time to go from one solution to another and ver-
ify the optimality. The worst performance is found for 100%
BI constraints, which seem to create the most difficulties for
all approaches for j30. EST is having the most issues with

Benchmark OR BI
k1 _ 1 1 1 1 1 1 1 1
k2 _ 1 2 5 10 1 2 5 10
Percent Log 100 50 20 10 100 50 20 10
330
solutions 196|32|0 | 184]44]0 192|36|0 195|33|0 195|33|0 | 162|660 179|49|0 190|38|0 191|37|0
time (s) 3.60 4.56 4.18 4.31 4.15 6.61 5.26 4.44 4.17
decisions 805k 1069k 917k 952k 944k 1691k 1208k 1075k 1000k
j60
solutions 45|25|0 39|31|0 36|34|/0 40|30]0 43|27|0 18]52|0 25|45|0 38|32|0 42|28]|0
time (s) 10.12 10.71 11.52 10.84 10.54 14.37 13.44 11.37 10.85
decisions 3786k 3464k 4096k 3638k 3684k 5642k 4969k 3956k 3629k

Table 2: Benchmark VSIDS results of logical constraints for the single-mode PSPLIB 30 and 60 activities instances, where k1 and k2
control the percentage of logical constraints, calculated as percent log for both OR and BI constraints, and solutions are presented as

optimal|satisfiable|unkown.

EST + VSIDS OR BI
Kl N I I I I I I I I
K2 } 1 2 10 1 2 10
Percent Log 100 50 20 10 100 50 20 10
i30
solutions 200[28(0 | 187|410 192|36/0 193350 196]32|0 | 162|66/0 181|47|0 192|36/0 195|330
time (s) 332 433 4.05 4.05 3.78 6.38 5.23 4.13 3.82
decisions 454k 677k 536k 649Kk 567k 1142k 920k 674k 554k
i60
solutions 45(25/0 | 34|36/0 35[35/0 38|32/0 42(28/0 | 9]61]0 22/48|0 37|33|0 46/24|0
time (s) 9.67 1192 11.87 1114 1044 | 1610 1402 11.15 1048
decisions 1957k | 2658k 2629k 2273k 1966k | 4574k 3721k 2501k 2389k

Table 3: Heuristic EST + VSIDS results of logical constraints for the single-mode PSPLIB 30 and 60 activities instances, where k1 and
k2 control the percentage of logical constraints, calculated as percent log for both OR and BI constraints, and solutions are presented as

optimal|satisfiable|unkown.

EST OR BI
K1 , 1 I 1] I 1 I 1
k2 B} 1 2 5 10 1 2 5 10
Percent Log 100 50 20 10 100 50 20 10
j30
solutions 187|10/31 | 173[9|46 178|13|37 180|939 184|8|36 | 148|15|65 166|14[48 181|11]36 184|13|31
time (s) 431 5.01 4.82 471 450 6.77 5.82 4.99 4.46
decisions 216k 183k 200k 185k 199k 312k 253k 253k 192k
j60
solutions 48|5[17 | 41]11|17 45718 48|7|15 46|9|15 | 33[12)25 41|9]20 42[8]20 49|7|14
time (s) 8.69 10.07 9.63 9.28 9.26 1155 1044 9.96 9.09
decisions 457k 619k 513k 558k 551k 1072k 843k 638k 617k

Table 4: Heuristic EST results of logical constraints for the single-mode PSPLIB 30 and 60 activities instances, where k1 and k2 con-
trol the percentage of logical constraints, calculated as percent log for both OR and BI constraints, and solutions are presented as

optimal|satisfiable|unkown.

these instances; the average makespan is larger most of the
time and is the only approach that cannot find solutions for
all tests, as illustrated in Table 4.

When it comes to 60 activities, the results are more inter-
esting, but fewer instances were evaluated. The j60 dataset
is successfully solved by both baseline and EST + VSIDS,

with differences in the number of satisfied and optimal so-
Iutions. The benchmark outperformed the latter approach in
terms of optimality. The worst performance of the heuristic
only found 9 optimal solutions out of 70 instances for 100%
BI constraints. half of the original solution. The time in-
creased for most of the experiments involving logical con-

straints. In contrast, EST optimality was significantly better.
It found more optimal solutions for most tests, doubling the
baseline results for BI constraints. On the other hand, this
heuristic could not solve all instances and had a notable num-
ber of unknown results.

6 Conclusions and Future Work

As discussed in Sections 4.1 and 4.2, the heuristic approaches
were compared against each other and the benchmarks in
terms of the number of optimal and satisfied solutions found,
unknown results, wall-time, and number of decisions. For a
deeper look, the average best makespan was investigated for
instances with no logical constraints and in the presence of
100% OR and Bl relations. All in all, the experiments shown
some improvements, as well as drawbacks.

6.1 Conclusions

For 30 activities, the combination of EST and VSIDS per-
formed the best, finding a more optimal solution and reducing
the time by an average of 0.2 seconds. The biggest improve-
ment was in the number of decisions, which was almost half
for most of the experiments. The motivation behind it may be
the value ordering choice, which seems to perform better for
this scheduling problem due to the goal of finding a start time
as soon as possible. Even if the enhancement was small, Fig-
ures 3, 4, and 5 offer perspective in average best makespan
reduction. The heuristics find lower makespans faster, espe-
cially for no logical constraints and OR precedences.

When it comes to j60, the greedy heuristic optimally solved
more instances. The drawback is that, compared to the other
two approaches, fewer solutions were found in total. The EST
and VSIDS performed poorly, being worse than the baseline.
It seemed that a more problem-specific approach has a higher
chance of performing better for instances with a large number
of activities, but no further conclusions can be drawn before
experimenting on larger instances. Depending on the goal and
the time constraints, variable ordering heuristics may help the
process of solving the RCPSP-log using SAT solving.

6.2 Future Work

The results presented show some potential for improving the
solving process of RCPSP-log, but they are very limited. The
heuristics selected were very basic in terms of actual knowl-
edge of logical constraints. Therefore, future work could ex-
plore more problem-specific domain knowledge.

One idea is to use Critical Path Analysis [12] and prece-
dence rules to estimate the interval of possible start times per
activity. This way, the EST weights could be bigger in that
interval and smaller outside, in case the estimation is wrong.
Moreover, the combination of EST and VSIDS could be im-
proved by bumping the EST scores periodically. This could
be a good idea considering the implementation of VSIDS,
which seems to balance the scores proportionally and erase
the EST information after a couple of iterations. The idea
should be supported by visualization of the weight distribu-
tion.

Further work could complement the research by evaluating
more datasets from PSBLIB, such as j90 and j120. Instances

with more activities were not considered in this paper due to
time and hardware limitations. This research left out multiple
instances from j30 and j60, which could reveal different pat-
terns. Furthermore, multiple settings for timeouts and mem-
ory limits could provide additional information. The EST
heuristic was performing slower for some instances, which
could have been analyzed better with a higher time limit.

7 Responsible Research

When it comes to ethical concerns in terms of project
scheduling problems, most issues are related to potential neg-
ative effects on the stakeholders involved. Most of these con-
cerns stem from poor estimations of resource usage and dura-
tion [13]. That being said, these issues are not impacting the
research on scheduling problems. However, there are other
limitations that can impact the study, as mentioned by Rubén
Ruiz in one of his seminars [17]. Due to rapid advancements
in hardware and computational power, the main issues are re-
producibility and fair comparison of the results. This section
presents the considerations made for these matters.

In order to address these concerns, several measures have
been taken for each step in the method. Firstly, all instances
evaluated come from the PSBLIB dataset, which is tailored
for evaluating solution procedures for single-mode RCPSP.
Furthermore, the adaptation of the instances for RCPSP-log
followed the method proposed by Coelho and Vanhouke to
ensure the validity, reproducibility, and method comparison
of the research.

Moving on to the SAT encoding of the problem, the re-
search followed the same model as the one from a past year
bachelor thesis [18]. This formulation adapts the definition
of OR constraints from the original paper [3]. Moreover,
the validity of the model relies on the results from Melle
[18] since the benchmarks are generated using similar hard-
ware and software versions, providing similar computational
power.

For further research and verification of code errors and re-
sults, the code for parsing and encoding, together with the
generated files, will be uploaded to a public GitHub reposi-
tory*. The pumpkin repository is private since it is managed
by the TU Delft algorithmic team, but the heuristic technique
may be replicated by following the procedures and using the
equations provided in the paper.

Finally, all comparisons are made against benchmarks gen-
erated and run on the same machine with defined specifica-
tions in Section 5, giving a fair evaluation between baseline
and heuristic approaches. The time for parsing and encod-
ing was not considered in the results since it depends on the
machine and programming language. The runtime specified
in the results was strictly derived from the pumpkin solver’s
performance, which can cause misleading comparisons with
other solvers. Therefore, a reproduction of the research with
another solver may lead to different base results, but with a
similar correspondence between heuristics and benchmarks.

“Github repository: The code base for the research can be found
at https://github.com/iarinatudor/ResearchProject

https://github.com/iarinatudor/ResearchProject

7.1 ChatGPT

Another ethical concern is the use of ChatGPT? in this re-
search. The Al language model helped check and suggest
code related to the PySAT and Matplotlib® libraries used for
encoding and visualization. The ideas were not coming from
ChatGPT. For some specific references, the details of the pub-
lication were provided to generate a LaTex bibliography. Al
assisted with LaTex formatting issues for tables and images.
When it comes to debugging, ChatGPT helped with installing
libraries and troubleshooting some errors for Windows. It
also assisted with Python error codes for memory limits and
dictionary manipulation. All prompts used can be found in
Appendix A.

A Prompts used for ChatGPT

* Given reference X, can you give me the LaTex code for
overleaf to reference it in references.bib?

¢ Given table X, how can I format it so that it does Y in
LaTex?

* I have some data looking like X and I want a script in
python that gathers the files that follow the pattern Y
recursively and I want to visualize it like Z.

e T am trying to use PySAT for encoding a constraint say-
ing that exactly one variable has to be true, can you give
me the functions for that specific task?

] use this command pip install python-
satlaiger, approxme, pblib] and the pblib fails, do
you have any ideas?

* What is key error X in Python?

* I am working with a dictionary in Python for X, and I
have the error Y, do you know why?

References

[1] 1. Abio, R. Nieuwenhuis, A. Oliveras, and E. Rodriguez-
Carbonell. Bdds for pseudo-boolean constraints — revis-
ited. In Theory and Applications of Satisfiability Testing
- SAT 2011, pages 61-75. Springer Berlin Heidelberg,
2011.

[2] C. Artigues and R. Leus. The resource-constrained
project scheduling problem. Handbook on Project Man-
agement and Scheduling, 1:243-286, 2013.

[3] J. Coelho and M. Vanhoucke. An approach using sat
solvers for the rcpsp with logical constraints. FEu-
ropean Journal of Operational Research, 252(2):431-
441, 2016.

[4] M. De Jager. Solving resource-constrained project
scheduling problems subject to no-overlap constraints
using boolean satisfiability encoding. Master’s thesis,
University of Groningen, 2021.

SChatGPT: A language model developed by OpenAl Available
at https://chat.openai.com

SMatplotlib: A Python library used for data visualization. Avail-
able at https://matplotlib.org/

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Demeulemeester, R. Kolisch, and A. Salo. Project
management and scheduling. Flexible Services and
Manufacturing Journal, 25(1):1-5, 2013.

N. Eén and N. Sorensson. An extensible sat-solver. In
Proceedings of the International Conference on The-
ory and Applications of Satisfiability Testing (SAT’03),
pages 502-518. Springer, 2003.

S. Hartmann and R. Kolisch. Experimental evaluation of
state-of-the-art heuristics for the resource-constrained
project scheduling problem. European Journal of Oper-
ational Research, 127(2):394-407, 2000.

M. Jarvisalo, D. Le Berre, O. Roussel, and L. Si-
mon. The international sat solver competitions. AIMag,
33(1):89-92, 2012.

A. Karam and S. Lazarova-Molnar. Recent trends in
solving the deterministic resource constrained project
scheduling problem. pages 124-129, 2013.

R. Kolisch and A. Sprecher. Psplib-a project scheduling
problem library: Or software-orsep operations research
software exchange program. European Journal of Op-
erational Research, 96(1):205-216, 1997.

J. Liang, V. Ganesh, E. Zulkoski, A. Zaman, and
K. Czarnecki. Understanding vsids branching heuristics
in conflict-driven clause-learning sat solvers, 2015.

M. Lu and H. Li. Resource-activity critical-path method
for construction planning. Journal of Construction En-
gineering and Management-asce - J CONSTR ENG
MANAGE-ASCE, 129, 2003.

M. Nepal, M. Park, and B. Son. Effects of schedule
pressure on construction performance. Journal of Con-
struction Engineering and Management, 132(2):182—
188, 2006.

N. Nilsson and B. Rolfsson. Complexity results for
resource-constrained project scheduling problems with
logical constraints. Journal of Scheduling, 14(4):317-
332,2011.

Z. Pinedo, P. de Weerdt, J. van der Hoek, and S. Szy-
maniec. Resource-constrained project scheduling prob-
lems with logical constraints: A review. European Jour-
nal of Operational Research, 276(1):1-13, 2019.

A. Alan B. Pritsker, L. Waiters, and P. Wolfe. Multipro-
ject scheduling with limited resources: A zero-one pro-
gramming approach. Management Science, 16(1):93—
108, 19609.

R. Ruiz. State-of-the-art flowshop scheduling heuristics.
https://www.youtube.com/watch?v=F3YkmaleqnY,
2021. Accessed: 2023-6-5.

M. Schoenmaker. Exploring heuristic methods for the
resource-constrained project scheduling problem with
logical constraints. Bachelor’s thesis, Technical Uni-
versity of Delft, 2022. http://resolver.tudelft.nl/uuid:
f225ecc7-7360-4f7e-859¢-12df9dd974b7.

https://chat.openai.com
https://matplotlib.org/
https://www.youtube.com/watch?v=F3Ykma1eqnY
http://resolver.tudelft.nl/uuid:f225ecc7-7360-4f7e-859e-12df9dd974b7
http://resolver.tudelft.nl/uuid:f225ecc7-7360-4f7e-859e-12df9dd974b7

	Introduction
	Problem Formulation
	Resource Constrained Project Scheduling Problem with Logical Constraints (RCPSP-log)
	Illustrative example

	Satisfiablity solving preliminaries
	SAT and MaxSAT solvers
	CNF Encoding of the RCPSP-log problem

	Heuristic Solution Method
	Exploration of greedy ideas
	EST + VSIDS

	Experimental Setup and Results
	RCPSP-Log instances for experimentation
	Experimental Results
	Discussion and interpretation of outcomes

	Conclusions and Future Work
	Conclusions
	Future Work

	Responsible Research
	ChatGPT

	Prompts used for ChatGPT

