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A R T I C L E I N F O

Keywords:
Texture
Crystal plasticity
IF-steel
Deformation texture
Rolling
Microstructure

A B S T R A C T

In an industrial context, selecting an appropriate crystal plasticity (CP) model that balances efficiency and
accuracy when modelling deformation texture (DT) is crucial. This study compared DTs in IF-steel after
undergoing cold rolling reductions using different CP models for two input texture scenarios. Three mean-field
(MFCP) models were utilised in their most basic configurations, without considering grain fragmentation or
strain hardening, in addition to a dislocation-density-based full-field (FFCP) model. The study quantitatively
compared the results from the MFCP models with those from the FFCP models. Furthermore, all CP model
results were compared with experimental textures obtained from electron back-scatter diffraction (EBSD)
experiments. The findings revealed that certain MFCP models could predict deformation textures as accurately
as the FFCP models. Notably, one of the MFCP models exhibited a superior match with experimental textures
for cold rolling reductions at 60%. Upon closer examination of specific crystallographic components, it was
observed that MFCP models tended to predict a stronger {111}⟨211⟩ component, while the full-field model
favours the {111}⟨011⟩ component. It is crucial to emphasise the importance of quantifying the texture within
individual grains when assessing the macro-level deformation texture in rolling simulations.
1. Introduction

The crystallographic texture of cold-rolled and subsequently an-
nealed steel sheets is a primary concern for steel manufacturing com-
panies as a wide variety of mechanical and physical properties depends
on it. In this regard, the quantitative prediction of deformation textures
(DT) resulting from the cold-rolling process is crucial for optimising
the steel sheet design and fabrication process since its characteristics
are closely related to the final recrystallisation texture obtained during
subsequent annealing [1]. For example, a specific crystal orientation
might determine the recrystallisation texture if it has the required en-
ergy and mobility advantages with respect to neighbouring crystals in
the deformed structure [2]. One approach to predict the DT is through
Crystal Plasticity (CP) modelling [3]. In these models, rotation of indi-
vidual crystals relies on their crystallographically resolved mechanical
response when subjected to external loading so that the kinematics of
the slip activity in every individual grain are quantified [4]. Several
CP models have been developed, from the classic full-constraint Taylor
(FCT) model [5,6], through the finite-elements-based models [7], to
most recently the neural-network-based CP models [8].

∗ Corresponding author.
E-mail address: j.f.ochoaavendano@tudelft.nl (J. Ochoa-Avendaño).

These different CP models can be classified into mean-field (MFCP)
and full-field (FFCP) models [9]. MFCP models assume that each grain
in the material is subjected to homogenised boundary conditions and
interacts with neighbouring crystals in a statistically averaged man-
ner [10]. Thus, the DT is predicted by resolving the slip activities on in-
dividual crystal orientations under the applied (local or homogenised)
conditions. Such a procedure allows to derive the crystal lattice spins
for each strain increment and therefore to gauge the crystal lattice rota-
tion with respect to an external reference frame [6]. On the other hand,
in MFCP models, the topological description of the microstructure is not
considered; instead, the input consists of a discrete set of orientations
derived from the orientation distribution function (ODF) representing
the material’s initial texture [11]. This approach has several advantages
in predicting DT in an industrial context. First, it is a computationally
low-cost method that may provide sufficiently accurate results for
specific applications. Second, the input is statistically representative
of the actual initial texture prior to deformation [12]. Nevertheless,
because topological parameters of the microstructure are not taken
into account in considerate detail, some phenomena, such as grain
vailable online 14 July 2024
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interactions and deformation heterogeneity within grains, can only be
considered by adding statistical topological information to the model
that most often is not readily available, and therefore it is not trivial to
implement in the MFCP framework. [13–15].

The FFCP models provide a detailed description of the material’s
mechanical behaviour by simulating deformation on the scale of in-
dividual grains. These simulations are conducted within a small ho-
mogenised portion of the material known as the representative volume
element (RVE) [7]. The RVE is a virtual representation of the mi-
crostructure under consideration, and it is discretised in several number
of elements at small-step spatial resolutions aiming to resolve the rel-
evant microstructural features with sufficient accuracy [16]. Thus, the
deformation process is simulated at every discrete element, reaching
the full description of the strain and stress state for every element in the
RVE [17]. In this way, complex phenomena, such as in-grain deforma-
tion heterogeneities and mechanical interactions between neighbouring
grains, can be included in the simulation [18]. Therefore, the out-
come of FFCP models is a complete description of the local stress
and strain velocity fields, including the crystal rotation fields, capable
of sufficient spatial resolution to allow for observation of intra-grain
substructures [19]. However, FFCP models are difficult to apply in
an industrial context due to their high computational cost [20]. Fur-
thermore, although faster simulations can be performed by limiting
the number of grains of the initial RVE, they might lead to an in-
accurate statistical representation of the material’s initial texture and
microstructure [21].

Comparing the performance of MFCP and FFCP models to predict
DTs has been addressed in previous works. For example, Hutchinson
(1999) compared full-constraint and relaxed-constraint MFCP models
to establish differences in the evolution of deformation texture and
substructures. The results indicated that while relaxed-constraint mod-
els predict the existence of specific crystallographic components that
full-constraint models do not capture, both types of models tend to
predict textures with significantly higher intensities than those ob-
served through experimental techniques. [22]. Bate and Quinta de
Fonseca (2004) evaluated the prediction of DT in IF-steels by mean-
field Taylor-type models against full-field Finite Element Method CP
(FEMCP) models, providing a quantification of the differences for sev-
eral strain levels. Their investigation led to the conclusion that, up
to a strain of approximately 0.75, the FEMCP model provided better
DT predictions than Taylor-type models. However, it is worth noting
that FEMCP model fell short in capturing the increase in the spread
of the 𝛼 − 𝑓𝑖𝑏𝑟𝑒 towards {001}⟨110⟩, which is a common observation
at higher strains [23]. Liu et al. (2010) evaluated the prediction of
DTs in FCC materials using different solvers in FFCP models, such as
the fast Fourier transform-based and a finite element method-based
model. Their study revealed that the fast Fourier approach success-
fully predicted the expected DT, when simulating with more than a
thousand orientations and using a low-resolution RVE. In contrast, the
performance of the FEMCP model appeared to be influenced by the
input orientations used in the simulations, suggesting the necessity
for a higher amount of orientations in the input of the RVEs in such
cases [17].

Although prior studies have compared the overall deformation tex-
ture results produced by several CP models, uncertainties still need
to be clarified regarding choosing a suitable model that balances effi-
ciency and accuracy in an industrial application. Moreover, the impact
of critical parameters on CP simulations, such as the level of grain
interaction in MFCP, the sensitivity of MFCP to input texture, and the
significance of in-grain texture in the ultimate macro texture outcome,
continues to be an area requiring further investigation. Furthermore, it
is essential to compare MFCP models with high-resolution FFCP models
to evaluate the importance of capturing in-grain texture evolution
versus having a precise statistical representation of the input texture
3845

on the final deformation texture result. w
Table 1
Chemical composition of the IF-steel used in this study.

C Mn Ti N Al

wt. [%] 0.002 0.13 0.065 0.004 0.05

This research analyses the disparities in DT predictions of an
Interstitial-Free (IF) steel sheet cold rolled to different reductions from
applying four CP models. The study employs a numerical quantification
to gauge the degree of agreement between predicted DTs across various
levels of deformation. It compares MFCP models to a FFCP model and
evaluates all CP models by comparison with experimental results. The
simulation scheme presented in this paper allows us to explore how
the variations in the input texture affect the resulting DT within the
MFCP models. Furthermore, insights into the evolution of specific ODF
components in response to varying strain levels across all CP models
are presented.

To gain a more detailed understanding of specific crystallographic
components’ evolution, we distinguish between the 𝛼 and 𝛾 fibres.
The four CP models studied include three MFCP models, i.e. the Full-
Constraint Taylor (FCT) [24], the Advanced-LAMEL (ALAMEL) [25],
and the Visco-plastic Self-Consistent (VPSC) [26] models in their more
simplified setup, i.e. without grain fragmentation and strain hardening
schemes. The fourth model, which corresponds to the FFCP model
category, is a dislocation-density-based (DDB) model implemented in
the Düsseldorf Advanced Material Simulation Kit (DAMASK) [27,28].
This model is used in a configuration that emphasises the role of in-
grain texture evolution [19] on the macrotexture results, incorporating
grain fragmentation. This present investigation unfolds through two
distinct scenarios. First, in scenario-I, the performance of the three
MFCP models is compared to that of the DDB model. In contrast, the
second scenario, scenario-II, assesses the performance of all four models
compared to experimentally obtained textures.

2. Experimental methods

2.1. Simulation scenarios description

The comparative study presented in this paper examines two distinct
scenarios. In scenario-I, the goal is to compare the deformation texture
predictions by the MFCP models with that of the DDB model. Scenario-
II assesses the deformation texture predictions of all four models, MFCP
and DDB, against experimentally obtained textures measured through
EBSD experiments. The MFCP simulations in scenario-I and scenario-II
differ in their input textures, while the DDB model simulations remain
the same in both scenarios. Further details on the input textures are
provided in Section 3.4.

2.2. EBSD experiments

The as-received materials are hot-rolled (HR) interstitial free (IF)
steel plates (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 5 mm, 𝑤𝑖𝑑𝑡ℎ = 60 mm) with the chemical
omposition provided in Table 1. Two plates were cold rolled on a lab-
ratory rolling mill to achieve 60% and 77% thickness reductions. The
rystallographic textures of the HR and cold-rolled (CR) sheets were
easured using the electron back-scatter diffraction (EBSD) technique

n samples extracted from the centre of the sheet. The surfaces aligned
arallel to the plane formed by the sheet’s regular and rolling directions
the ND-RD plane) were prepared for EBSD scans with OPS solution
nd electropolishing techniques. EBSD experiments were carried out
n a FEI Quanta 450 scanning electron microscope. Data pattern col-
ection was performed with OIM software Type EDAX-OIMvs. 8.6® at
n acceleration voltage of 20 kV. The specimen tilt angle was 70◦, and
ectangular surfaces (𝑤𝑖𝑑𝑡ℎ = 200 μm, 𝑙𝑒𝑛𝑔𝑡ℎ = 500 μm) were scanned

ith a step size of 0.7 μm on a hexagonal scan grid.
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2.3. Macrotexture analysis

EBSD scanned data were used to calculate the Orientation Distri-
bution Functions (ODFs) from individual orientations in Euler angles
𝑔
𝑖
= {𝜑

1
, 𝛷, 𝜑

2
}. ODFs were calculated using the generalised harmonic

series expansion method proposed by Bunge [11], with 𝑙𝑚𝑎𝑥 = 22.
On each orientation pixel of the EBSD scan, a Gaussian ODF was
centred with a spread of 10◦, and all the Gaussian functions were
superimposed to determine the overall ODF. The calculation of the
ODFs was performed using MTEX software [29], without sample sym-
metry assumptions. The resulting ODFs are presented in the traditional
𝜙
2
= 45◦ sections calculated in the triclinic domain, i.e. 0◦ < 𝜑

1
< 360◦

and 0◦ < 𝛷,𝜑
2
< 90◦. However, for the sake of clarity in visualisation,

only the orthorhombic segments of these ODFs are presented. The
ODFs were further analysed by considering the volume fractions of
the 𝛼 − 𝑓𝑖𝑏𝑟𝑒(⟨110⟩ ∥ 𝑅𝐷) and the 𝛾 − 𝑓𝑖𝑏𝑟𝑒(⟨111⟩ ∥ 𝑁𝐷) with a
tolerance of 10◦ with respect to the ideal skeleton lines. In the same
way, partitions of specific crystallographic components were evaluated
with 10◦ tolerance from the ideal orientations. Fig. 1 illustrates the
positions of the crystallographic components and the fibres examined
in this paper.

2.4. Texture comparison quantification

To quantify the difference between textures, the texture direct
correlation, 𝐽

𝐷
, available in the ATEX software suite was used [30].

𝐽
𝐷

ranges between 0 and 1. A value of 1 indicates a perfect match
between the two ODFs being compared, while 0 indicates that there
is no correlation. For two textures 𝐴 and 𝐵, the ODFs are denominated
by 𝑓

𝐴
(𝑔) and 𝑓

𝐵
(𝑔). Thus, the texture direct correlation 𝐽

𝐷
between 𝑓

𝐴
(𝑔)

and 𝑓
𝐵
(𝑔) is defined as follows:

𝐽
𝐷
=

∫𝑔 𝑓𝐴 (𝑔)𝑓𝐵 (𝑔)d𝑔
2

√

∫𝑔 𝑓
2
𝐴
(𝑔)d𝑔2 ⋅ ∫𝑔 𝑓

2
𝐵
(𝑔)d𝑔2

(1)

In the present study, 𝐽
𝐷

values were calculated for simulation scenarios
I and II and are presented in Sections 4.1 and 4.2.1, respectively.
It is important to note that the 𝐽

𝐷
values cannot not be directly

comparable between the two scenarios. This is because the 𝐽
𝐷

values
in each scenario were calculated using different reference frameworks:
MFCP results compared to DDB results in scenario-I, and all CP models
compared to experimental results in scenario-II.

3. Crystal plasticity modelling

This section provides a brief overview of the fundamental principles
of single crystal plasticity theory and outlines the key aspects of the four
crystal plasticity models under consideration.

3.1. Single crystal plasticity theory

In CP theory it is assumed that plastic deformation mainly occurs by
the activation of specific slip systems due to dislocation glide [7]. When
the elastic strain component is neglected, the slip within a single crystal
orientation 𝑔 occurs on a slip system 𝑠 in the direction 𝑏𝑠 and on a slip
plane with normal 𝑛𝑠. Therefore, the rate of plastic deformation 𝐿𝑔

𝑖𝑗
, on

a slip system 𝑠, due to simple shear strain rate �̇�𝑠 can be expressed as:

𝐿
𝑔

𝑖𝑗
= 𝑏𝑠

𝑖
𝑛𝑠𝑗 �̇�

𝑠. (2)

The kinematic equation that considers the activation of 𝑁 slip
systems on a single crystal for producing slip, is given by:

̇𝜀
𝑖𝑗
= 1

2
(𝐿

𝑖𝑗
+ 𝐿

𝑗𝑖
) =

𝑁
∑

𝑠

1
2
(𝑚𝑠

𝑖𝑗
+ 𝑚𝑠

𝑗𝑖
) �̇�𝑠. (3)

Where 1
2 (𝐿𝑖𝑗

+𝐿
𝑗𝑖
) corresponds to the symmetric part of the velocity

gradient 𝐿 , and 1 (𝑚𝑠 +𝑚𝑠 ) is the symmetric part of the Schmid tensor
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𝑖𝑗 2 𝑖𝑗 𝑗𝑖
Fig. 1. Fibre textures and crystallographic components relevant for textures analysis
in BCC alloys for rolling and annealing textures; 𝜑

2
= 45◦ section.

which indicates the slip direction and slip plane normal to each slip
system 𝑠 that might be activated to accommodate 𝐿

𝑖𝑗
.

The lattice spin rate �̇�
𝑖𝑗

is then defined as the difference between
the macroscopically imposed velocity gradient 𝐿

𝑖𝑗
and the velocity

gradient that produces slip in the single crystal 𝐿𝑔

𝑖𝑗
, such that �̇�

𝑖𝑗
=

𝐿
𝑖𝑗
−𝐿𝑔

𝑖𝑗
. This difference is responsible for the orientation change of the

single crystals, explained by the misalignment between the 𝐿
𝑖𝑗

direction
and the Schmid tensor in the single crystal 𝑚𝑠

𝑖𝑗
. Therefore, the crystal

rotation rate of a single crystal can be described by:

�̇�
𝑖𝑗
= 𝐿

𝑖𝑗
−

𝑁
∑

𝑠
𝑚𝑠
𝑖𝑗
�̇�𝑠. (4)

In Eq. (4), 𝐿
𝑖𝑗

is imposed when the boundary conditions are given in
terms of the velocity field, and it corresponds to the deformation modes
applied to the material, this is known as the first Taylor hypothesis.
The term 𝑚𝑠

𝑖𝑗
is known, and depends on the crystal structure. In BCC

materials 𝑚𝑠
𝑖𝑗

is defined by the 48 different potential slip systems cor-
responding to the pencil-glide slip. In the present work, however, only
the slip systems {110}⟨111⟩ and {112}⟨111⟩ were considered, yielding
24 slip systems in total. This selection was made based on previous
observations indicating that slip predominantly takes place in 110
planes during room temperature deformations [31].

From a continuum mechanics perspective, a rolling operation can
be approximated by a plane strain compression velocity field of which
the velocity gradient tensor is given by:

[

𝐿
𝑖𝑗

]

=
⎡

⎢

⎢

⎣

1 0 0
0 0 0
0 0 −1

⎤

⎥

⎥

⎦

�̇�
0
. (5)

In this case 𝐿
𝑖𝑗

is expressed as the tensor that characterises the
prescribed strain mode, multiplied by the macroscopic scalar measure
of the strain rate �̇�

0
. In this paper the boundary conditions imposed

during rolling simulation will be characterised by the velocity gradient
tensor of Eq. (5).

3.2. Mean-field crystal plasticity modelling

3.2.1. FCT model description
The first Taylor hypothesis holds that all discrete orientations of

a polycrystalline aggregate are locally subjected to the same veloc-
ity gradient as the macroscopic workpiece [4]. Thus, the FCT model
respects perfect strain compatibility at grain boundaries but violates
stress equilibrium [25]. The second Taylor hypothesis assumes that a
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set of crystallographic slip systems is activated if it geometrically com-
plies with the boundary conditions but also minimises the plastically
dissipated power.

In the present application, it was assumed that the critical resolved
shear stresses (CRSS) on all slip systems are identical as commonly
assumed for BCC materials [32], and no strain hardening was consid-
ered. Despite these simplifying assumptions, there are numerous cases
where the DT predicted with the FCT model agrees with experimental
results [6] in an acceptable manner. The FCT rolling simulations were
applied by considering the ({110}⟨111⟩ and {211}⟨111⟩) slip systems. It
is considered that the strain rate �̇�

0
takes a value of 0.01 s−1, whereby

macroscopic strains are modelled by recurrent accumulation of small
strain increments. In the present study, the FCT model as implemented
by Van Houtte [24] was applied. In the Van Houtte approach, the
Taylor optimisation problem for determining the active slip systems is
solved by a linear programming method [6].

3.2.2. ALAMEL model description
Prior investigations on improving the prediction of DT during

rolling processes revealed that incorporating grain interactions and
relaxing the geometric constraints imposed by the FCT model could
lead to more accurate results [33,34]. In the ALAMEL model by Van
Houtte et al. [25], it is considered that the polycrystalline aggregate
consists of a set of clusters formed by pairs of two crystal orientations
and a vector ⃗𝑽 𝑮𝑩 representing the normal to a virtual grain boundary
plane separating the two orientations. The macroscopic velocity gradi-
ent 𝐿𝑖𝑗 is imposed for each cluster, and additional shear strains along
the common grain boundary are introduced with equal magnitudes but
opposite in signs (cf. Fig. 2(𝑎)). Consequently, the sum of the additional
shear relaxations is zero, and the shear stress equilibrium at the grain
boundary is satisfied. This means that the resolved shear stresses at the
common grain boundary from the two neighbouring grains are equal.
Additionally, the induced velocity field near the boundary interface
partially solves the lack of local interaction of the FCT model [35],
see Fig. 2(𝑏).

Correspondingly, the configuration of the clusters formed in the
ALAMEL model, i.e. misorientation between the pair of orientations
and the assignation of the ⃗𝑽 𝑮𝑩 vector, implicitly introduces a topo-
logical aspect in the simulations. This characteristic makes ALAMEL
a nondeterministic model, resulting in an outcome variability that
can be attributed to two primary factors. Firstly, in the ALAMEL
algorithm, grain pairing is determined based on the ordered list of
input orientations, and second, the vector ⃗𝑽 𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝐺𝐵 is randomly
assigned to each grain pair. As a result, alterations in the sequence
of input orientations and the randomness ⃗𝑽𝑮𝑩 vectors may influence
the final texture predicted by the ALAMEL model. Consequently, this
study conducted five ALAMEL simulations for each strain level, varying
the order of input orientations and grain boundary vectors. Therefore,
results related to the ALAMEL model are presented with confidence
intervals.

The ALAMEL rolling simulations were performed by considering
{110}⟨111⟩ and {112}⟨111⟩ slip systems. All CRSS values are equal for
all slip systems, no strain hardening is assumed and �̇�0 = 0.01 s−1. The
precise details of the model algorithm can be found in Ref. [25].

3.2.3. VPSC model description
In the VPSC model developed by Lebensohn and Tomé [26], ev-

ery single orientation is treated as an inclusion embedded in a ho-
mogeneous effective medium; an approach inspired by the Eshelby
methodology for ellipsoidal inclusions [36]. In this way, the VPSC
model assumes that the polycrystalline overall stress and strain rate
influence the grain deformation, effectively considering a long-range
interaction between each specific grain and the homogenised surround-
ing matrix [37]. The properties of the surrounding matrix are updated
3847

for each deformation step, and iterative convergence algorithms are
necessary to achieve the Self-Consistent formalism in the slip activity
calculations [38,39].

Similar to other MFCP models, VPSC predicts textures with higher
intensities than expected since no local interactions are considered.
In real materials, grains with similar orientations may deform dif-
ferently in response to their local behaviour. However, in the VPSC
model, these grains will follow the same interaction law and thus
rotate to exactly the same final orientation [20]. Various authors
have developed enhanced VPSC-based models that integrate local grain
interaction in response to this limitation. Notable developments in-
clude the cluster-type VPSC approach by Van Houte et al. [40], and a
VPSC version incorporating local interaction developed by Lebensohn
et al. [41]. At the same time, grain fragmentation was addressed by
Zecevic et al. [42]. Furthermore, strain hardening can be incorpo-
rated in the VPSC model, whereby different hardening models can be
implemented [43–45].

In this study, the grain fragmentation was not considered, whereas
a simple Voce hardening law was implemented, with the parameters
𝜏
0

= 2.0, 𝜏
1

= 0.0, 𝜃
0

= 0.0, 𝜃
1

= 0.0. These parameters imply that
the critical resolved shear stresses (CRSSs) remain constant for all slip
systems. The simulations used the same slip systems as those used in
the FCT and ALAMEL models, with a strain rate of �̇� = 0.01 s−1.

The grain co-rotation scheme from the VPSC model to handle
grain reorientation resulting from interactions with adjacent grains was
included in the simulations as outlined by Tome et al. (2023) [46].
This scheme was applied based on the approach presented by Takajo
et al. (2018), where the effective number of neighbouring grains,
denoted as 𝑁

𝑛𝑒𝑖𝑔ℎ
, changes with the final rolling reduction percentage 𝑅

following the formula: 𝑁𝑛𝑒𝑖𝑔ℎ = int(3.5 + 1.5 tanh(5 ln(1 −𝑅) + 3.6)) [32].
Additionally, the rate sensitivity, as defined in [47], was set at 𝑛 = 20,
following the approach used in previous studies [32]. The simulations
were performed using an elasto-visco-plastic version of the original
VPSC model [26], specifically, the VPSC90 model developed by Galan
et al. [38].

3.3. High-resolution full-field crystal plasticity modelling

This paper employed a dislocation-density-based (DDB) model [18,
27] to carry out the FFCP simulations. The simulation involved a
high-resolution RVE comprising 36 grains to investigate the evolving
deformation heterogeneity and misorientation features during large
strain deformation, as depicted in Fig. 3. The crystallographic orien-
tations of the grains are sampled from the EBSD map of the as-received
material. It is worth noting that 36 grains may not fully represent
the initial texture statistically. Consequently, the evolving texture is
anticipated to diverge from the experimental DT, especially at small
strains.

The model was implemented in the open-source software DAMASK
(Düsseldorf Advanced Material Simulation Kit). DAMASK is a multi-
physics simulation toolkit with several crystal plasticity models that
use different solvers to address mechanical boundary value problems.
Further details can be found in [27,48]. The Fast Fourier Transform
based on the spectral method [49,50] of DAMASK was used to conduct
the CP simulations using a DDB constitutive law.

The high-resolution RVE was subjected to plane-strain compression
at a strain rate of 100 s−1 up to a total thickness reduction of 77% (𝜀 =
1.47). Initially, there were approximately 34 000 elements per grain,
gradually increasing to 550 000 per grain during deformation through
a multistep mesh refinement method outlined in [19]. Therefore, at
the final stages of the deformation, each grain is discretised using
around 550,000 elements. This substantial number of elements per
grain facilitates the prediction of strain gradients and deformation
heterogeneities within each grain.

Conducting simulations of large deformations within the FFCP
framework can result in problems related to mesh distortion. To avoid

these issues, the re-meshing technique proposed by Sedighiani et al. [51]
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Fig. 2. ALAMEL model representation, (a) additional shear strains in RD to emulate flattening of grains during rolling process, (a) cluster assembly for texture evolution calculation,
the induced velocity field near the boundary interface creates a virtual grain interaction.
is employed. This methodology uses a nearest-neighbour mapping
algorithm to replace distorted meshes with new undistorted ones. The
state variables are mapped from the deformed stage onto the new mesh.
Subsequently, the simulation is restarted as a new simulation, with the
initial state set based on the last deformation state reached.

During large deformation, elements’ aspect ratio (the ratio of the
element size in the stretching direction to that in the compression
direction) can become notably large. Extensively elongated elements
not only introduce errors in the simulation but can also impede strain
localisation. These errors are mitigated using a multi-step mesh refine-
ment approach to update mesh density during deformation at each
re-meshing step [19]. This strategy aims to maintain a constant number
of elements in the compression direction while adjusting the number in
the stretching direction to preserve cubic-shaped elements. The gradual
increase in elements and mesh resolution during deformation ensures
minimal information loss during mapping, with a minimal increase in
the number of simulation points [19].

Fig. 3(𝑎) presents IPF maps parallel to the loading (vertical) direc-
tion in the mid-surface of the DDB simulation for various thickness
reductions. Fig. 3(𝑏) shows the 3𝐷 IPF map for the same RVE after a
77% (𝜀 = 1.41).

3.4. Input textures description

In this work, the RVE for the DDB simulations consists of 36
grains sampled from the hot rolled microstructure (see Fig. 4). The
crystallographic orientation for every sampled grain is assigned based
on the methodology proposed by [52], resulting in the ODF presented
in Fig. 4 - texture (𝑎). The DDB simulations, as described in [28],
aimed to provide a detailed model of localised deformation within
grains. A very high-resolution RVE was necessary to achieve this, as
suggested by previous studies [51,53]. Additionally, conducting FFCP
simulations at significant strain levels often leads to distortion in the
RVE’s mesh, a problem addressed through re-meshing techniques [51,
54]. Consequently, for the DDB simulations presented in this work,
high-resolution RVE and re-meshing techniques were required. These
constraints led to the use of an input texture derived from only 36
grains.
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Fig. 3. IPF maps for the DDB model simulations. (a) maps parallel to the loading
(vertical) direction in the mid-surface at different thickness reductions. (b) the 3D IPF
maps after 77% thickness reduction.

The MFCP simulations were performed over discrete sets of orienta-
tions [55]. The ODFs representing the material before the deformation
process were discretised according to the cumulative ODF statistical
technique (STAT), proposed by Toth and Van Houte [56] (see textures
(𝑏) and (𝑑) in Fig. 2). The STAT technique is based on calculating the
cumulative ODF (F(G)), which is defined as the integral of the ODF
along any integration path across the entire orientation space:

𝐹 (𝐺) = ∫

𝐺

𝐺0

𝑓 (𝑔)𝑑𝑔. (6)

In this context, 𝐺 represents a crystallographic orientation that serves
as the centre point for discretising Euler space into a regular grid,
often with a resolution of 5◦. This central point is associated with
an individual orientation 𝑔

𝑖
= {𝜑

1
, 𝛷, 𝜑

2
}, and it also includes the

integral of the ODF within the corresponding grid box, denoted as
𝑓 = ∫ 𝑓 (𝑔)𝑑𝑔.

𝑖 𝑏𝑜𝑥𝑖
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Fig. 4. Texture (𝑐): experimentally measured ODF of the as-received material. Texture (𝑎): input texture for DDB simulations. Texture (𝑏): ODF discretised from texture (𝑎) with
STAT method, the input for FFCP simulations in scenario-I. Texture (𝑑): ODF discretised from texture (𝑐), the input for FFCP simulations in scenario-II.
A cumulative distribution function denoted as 𝐹 (𝑗) is constructed
for integer values of 𝑗. This function is defined as 𝐹 (𝑗) =

∑𝑗
𝑖=1 𝑓𝑖 .

Graphically, it takes the form of a stepwise function, which can be
further discretised using a set of 𝑛 selectors denoted as 𝑠

𝑘
(𝑛 = 5000 in

this work). A discrete orientation 𝑖, which is computed using the STAT
method as described in the work by Toth (1992) [56], corresponds to
each selector.

The input texture for the MFCP scenario-I (see Fig. 4 texture (𝑏)) is a
set of 5000 orientations obtained by discretising the DDB input texture
(i.e. Fig. 4 texture (𝑎)). Scenario-I aims to compare the performance of
the MFCP models with the DDB model. Thus, a texture with a typical
number of orientations representing the 36 grains of the RVE in DDB
was needed to carry out the MFCP simulations with the same starting
conditions as the DDB model. In scenario-II the objective is to compare
the performance of each CP model with the experimental EBSD results.
Therefore, an input texture representing the initial condition of the
as-received material (Fig. 4 texture(𝑐)) is required. The input texture
for MFCP scenario-II (i.e. Fig. 4 texture (𝑑)) corresponds to a set of
5000 orientations obtained by the discretisation of the ODF calculated
from the EBSD measured on the IF-steel in as-received condition (Fig. 4
texture (𝑐)).

By comparing textures (𝑎) and (𝑑) with texture (𝑐) in Fig. 4, it can be
observed how different the discrete input textures are compared to the
experimentally measured input texture (see Fig. 10 for 𝜀 = 0.0). Self-
evidently the representation employing 5000 orientations discretised
from the EBSD measured ODF better resembles the experimental data,
in contrast to the sample comprising 36 grains used in the DDB sim-
ulations, see Section 3.4. By comparing the deformation texture (DT)
results from scenarios I and II, the proposed modelling procedure also
allows for evaluating the sensitivity of models to the input texture.
However, this comparison only applies to MFCP models since DDB
simulations remain the same in scenarios I and II.

4. Results

Rolling reduction simulations of 20%, 40%, 60% and 77%, corre-
sponding to plane strain CP simulations at 𝜀 = 0.22, 𝜀 = 0.51, 𝜀 = 0.91
and 𝜀 = 1.46 (true logarithmic strain), respectively, were performed
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with three different MFCP models: FCT, ALAMEL and VPSC. Two
distinct inputs were employed, as explained in Section 3.4. Detailed
description and parameters of the MFCP simulations for each model
are provided in Section 3.2. The results from the DDB in scenario-I and
scenario-II are the same, since they used the same input texture. To
compare the DT predictions derived from all CP models with respect
to EBSD results, only the strains 𝜀 = 0.0, 𝜀 = 0.91 and 𝜀 = 1.46
were considered. These results were compared with the EBSD measured
textures corresponding to as-received condition 0%, 60% and 77% cold
rolled reductions, respectively.

4.1. Scenario-I

4.1.1. Texture direct correlation
Fig. 5 displays the comparative performance of the VPSC, ALAMEL,

and FCT models with respect to the DDB model; the ODFs resulting
from scenario-I for the different strain levels are presented in Ap-
pendix A. The FCT and VPSC models show a decreasing resemblance
to the DDB result with increasing rolling strains, whereas the ALAMEL
model initially shows a relatively low 𝐽

𝐷
at 𝜀 = 0.22 simulation and

then increases its 𝐽
𝐷

values at higher strain levels. Notably, at a strain
value of 𝜀 = 1.46, the ALAMEL and VPSC models produce virtually
identical direct correlation with respect to the DDB result, 𝐽

𝐷
= 0.936

and 𝐽
𝐷

= 0.934, respectively. However, this does not imply that for
𝜀 = 1.46 ALAMEL and VPSC predict identical textures. As displayed
in Fig. 6, the ALAMEL result differs from VPSC result mainly in the
prediction of the 𝛼 − 𝑓𝑖𝑏𝑟𝑒. The ALAMEL model predicts the highest
intensity on the {113}⟨110⟩ component, while for the VPSC simulations
the {111}⟨110⟩ and the {001}⟨110⟩ components are the most intense
on the 𝛼 − 𝑓𝑖𝑏𝑟𝑒. Regarding the 𝛾 − 𝑓𝑖𝑏𝑟𝑒, the MFCP models display
the highest intensity on {111}⟨112⟩ while the DDB model predicts the
maximum intensity on the {111}⟨110⟩ component. More details on these
characteristics can be found in Appendix C.

4.1.2. ODF maximum intensities
Fig. 7 illustrates the variation in ODFs maximum intensities for

the different simulated strain levels. All three MFCP models generally
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Fig. 5. Texture direct correlation [𝐽
𝐷
] for scenario-I. Texture correlation quantification between deformation textures obtained with the MFCP models with respect to DDB model

results. [𝐽
𝐷
] as a function of the equivalent strain.
Fig. 6. ODFs sections at 𝜙2 = 45◦ resulting from scenario-I, plane strain compression 𝜀 = 1.46.
Fig. 7. ODF maximum intensities resulting from scenario-I.

exhibit an increment in ODFs intensities with increasing deformation,
except for the ALAMEL model where it decreases when 𝜀 increases from
0.0 to 0.22. Comparing the MFCP models, VPSC displays the closest
resemblance to the DDB predictions. Moreover, the graph indicates
a trend whereby higher levels of grain interaction in the CP models
correspond to lower values of the ODF maximum intensity, ranging
from no grain interaction for the FCT model to full interaction in the
DDB model. Notably, unlike the MFCP models, the maximum intensity
of the DDB predictions increases for deformations ranging from 𝜀 = 0.0
to 𝜀 = 0.51 and then drops for 𝜀 = 0.91 and remains constant for further
deformation up to 𝜀 = 1.46.
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4.2. Scenario-II

4.2.1. Texture direct correlation
Fig. 8 displays the performance of the four CP models in predicting

the DT texture compared with experimentally measured textures; all the
ODFs compared are presented in Appendix B. First, it can be observed
that prior to deformation (𝜀 = 0.0), the procedure to represent the
input texture (i.e. a discretised set of 5000 individual orientations
obtained by discretising the ODF derived from the EBSD measurement)
did not produce any noticeable deviation as the sampled and the
measured texture are perfectly correlated with 𝐽

𝐷
≈ 1.0. In contrast,

the DDB input texture, as it was restricted to a sample of only 36
orientations, see Section 3.4, shows a lower correlation of 𝐽

𝐷
= 0.74.

As expected, 𝛼 and 𝛾 fibres are present in all the simulations and,
overall, all CP models predict a DT in reasonable agreement with
the experimental results. For deformation up to 𝜀 = 0.51, all DTs
resemble their respective initial textures, although for MFCP models
it can be seen that the {001}⟨110⟩ component becomes weaker whereas
this component increasingly intensifies in the experimental data. The
DDB model improves its correlation with respect to the experimentally
measured EBSD texture for high deformation levels, while the FCT
model increasingly deviates from EBSD results for higher deformations.

At 𝜀 = 0.91, the VPSC model exhibits the closest correlation with
the EBSD measured texture, while ALAMEL and DDB exhibit similar
correlation values of 𝐽

𝐷
= 0.853 and 𝐽

𝐷
= 0.866, respectively. However,

these ODFs have clear differences (see Appendix B). For example, the
MFCP models better predict the 𝛾 − 𝑓𝑖𝑏𝑟𝑒 since it shows maximum
intensities on {111}⟨112⟩ component, similarly to the EBSD results.
In contrast, the DDB model shows the maximum component of the
𝛾−𝑓𝑖𝑏𝑟𝑒 on the {111}⟨110⟩ component. In the case of the 𝛼−𝑓𝑖𝑏𝑟𝑒, EBSD
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Fig. 8. Texture direct correlation [𝐽
𝐷
] for scenario-II. Texture correlation quantification between deformation textures obtained with every CP models with respect to experimentally

measured deformation textures. [𝐽
𝐷
] as a function of the equivalent strain.
Fig. 9. ODFs sections at 𝜙
2
= 45◦ resulting from scenario-II, plane strain compression 𝜀 = 1.46.
results show a clear intensification of the {001}⟨110⟩, component, which
is only predicted by the DDB model, albeit with a minor deviation (see
Appendix B).

For the strain of 𝜀 = 1.46 (see Fig. 9), the DDB model displayed the
best correlation with EBSD results with 𝐽

𝐷
= 0.913, closely followed

by the VPSC model with 𝐽
𝐷
= 0.905. However, these two models show

noticeable qualitative differences in the predicted ODFs, as can be seen
in Figs. 9(c) and 9(d) respectively. The ALAMEL result showed a corre-
lation of 𝐽

𝐷
= 0.847, which still indicates a reasonable correspondence.

As expected, the FCT model presented the lowest correlation with 𝐽
𝐷
=

0.729. When singling out the 𝛼 − 𝑓𝑖𝑏𝑟𝑒, it is observed that none of the
models showed maximum intensities on the {001}⟨110⟩ component as
in the EBSD result (see Appendix D). Another important distinction
between the EBSD result and the four CP model results is that the
𝛼 − 𝑓𝑖𝑏𝑟𝑒 exhibits non-zero values up to 𝛷 = 83◦ in the EBSD result,
while in the CP models the maximum 𝛷 value with non-zero intensity is
70◦. In the case of the 𝛾−𝑓𝑖𝑏𝑟𝑒, it can be seen that the MFCP models and
EBSD results present a stronger {111}⟨112⟩ than {111}⟨110⟩ component,
while the DDB results exhibits a stronger {111}⟨110⟩ component as
compared to {111}⟨112⟩, (see Appendix D).

4.2.2. ODF maximum intensities
Fig. 10 illustrates the variation in the ODF maximum intensities

for the different simulated strain levels in scenario-II. Overall, for the
three MFCP models, the maximum intensity increases with increasing
deformation. The FCT and ALAMEL models displayed too high intensity
maxima compared with EBSD results. Particularly for a deformation of
𝜀 = 1.46, the predicted value exceeds twice the experimentally observed
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Fig. 10. ODF maximum intensities resulting from scenario-II.

maximum intensity. Interestingly, the VPSC model showed the closest
values to the EBSD result for the strains of 𝜀 = 0.91 and 𝜀 = 1.46.
Similarly to the observation of scenario-I, the higher the level of grain
interaction in the MFCP models the lower the maximum intensities of
the resulting ODFs.

4.3. Sensitivity of the input texture

The two simulation scenarios provide results that allow for evaluat-
ing the impact of the input texture on the results of the DT predicted by
MFCP models for different strain levels. Fig. 11 shows the texture direct
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Fig. 11. Texture direct correlation [𝐽
𝐷
] for deformation textures for the MFCP models. Comparison between deformation results obtained in scenario-I and scenario-II. [𝐽

𝐷
] as a

function of the equivalent strain.
correlation 𝐽
𝐷

between the results obtained in scenario-I and those
obtained from scenario-II as a function of the strain level, whereby
the only difference between the two scenarios is the difference in the
initial texture. In the initial condition (𝜀 = 0.0) the correlation is
relatively low, 𝐽

𝐷
= 0.792, indicating the disparity of the input ODFs,

cf. Section 3.4. As the strain levels increase (𝜀 > 0.0), the correlation
indices also rise, implying that the MFCP models tend to yield similar
output ODFs for the different input textures examined here. The direct
correlation values for the ALAMEL model indicate that this model is
less sensitive to the input ODF. This observation is evident from Fig. 11,
where the 𝐽

𝐷
values for ALAMEL are close to 1.0 from the strain 𝜀 = 0.22

onwards.
Although the ALAMEL model presented the least sensitivity to the

input texture out of the other MFCP models evaluated in this paper,
there is evidence suggesting that the arrangement of orientation pairs
in ALAMEL, based on the actual topological characteristics of the mi-
crostructure (partially revealed, for instance, through EBSD data), can
influence the resulting texture in rolling simulations [12,57]. Notably,
result variability can be reduced when the input is not highly struc-
tured, the input orientations are randomly ordered, and the initial grain
shape morphology is nearly equiaxed. This implies that the vectors ⃗𝑽

𝑮𝑩
are randomly distributed in space.

The input texture of the MFCP in scenario-I exhibits two distinct
components (see Fig. 12). These components are approximately located
at the Euler angles [𝜙

1
= 9.0◦, 𝛷 = 7.0◦, 𝜙

2
= 45.0◦] and [𝜙

1
=

0.0◦, 𝛷 = 65.0◦, 𝜙
2
= 45.0◦] and will be referred to as components 𝑥

and 𝑦, respectively. The 𝑥 component showing the maximum intensity
in the input texture appears to rotate towards the 𝛼 − 𝑓𝑖𝑏𝑟𝑒 component
{112}⟨110⟩ in FCT and {113}⟨110⟩ in ALAMEL. Also, the 𝑦 component
rotates to {112}⟨110⟩ and {113}⟨110⟩ in the FCT and ALAMEL models,
respectively. On the other hand, both components 𝑥 and 𝑦 remain
present in the VPSC result at all strain levels, with the 𝑦 component
appearing to rotate towards {111}⟨110⟩ component.

In the case of scenario-II, the input texture for the MFCP models ex-
hibits a rotated cube component, {001}⟨110⟩, which gradually weakens
with increasing strain levels in the MFCP simulations (see Appendix D).
This weakening effect is particularly notable in the case of FCT. In
both VPSC and FCT models, the rotated cube component appears to
rotate towards the 𝛼 − 𝑓𝑖𝑏𝑟𝑒 component {112}⟨110⟩, while in ALAMEL,
the rotation occurs towards {113}⟨110⟩. Furthermore, it is evident that
the {111}⟨112⟩ component present in the input texture is relatively
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stable at all strain levels for all MFCP models, matching observations
Fig. 12. Input texture scenario-I MFCP models.

in the EBSD results. For the DDB simulations, the aforementioned 𝑥
component appears to rotate towards the 𝛼 − 𝑓𝑖𝑏𝑟𝑒 up to 𝜀 = 0.91 and
disappears for 𝜀 = 1.41. The 𝑦 component seems to rotate towards lower
values of 𝛷, reaching 𝛷 ≈ 50◦ for 𝜀 = 1.41.

In the MFCP models (scenario-II), the maximum intensities of the
deformation textures surpass those of the input texture at all strain
levels, consistent with the observations in experimentally measured
ODFs. However, DDB result deviates from this pattern, as the maximum
intensity value of the input texture remains relatively unchanged even
at high strain levels. Furthermore, for the DT results at 𝜀 = 1.41, the
DDB model exhibits a slightly lower maximum intensity than that of the
input texture, contrary to the behaviour observed in the MFCP models
and EBSD results.

5. Discussion

Compared to the DDB model, the MFCP models can reasonably
deal with a statistically relevant discrete sample of the input texture.
The distinction becomes evident when examining the input textures
in Fig. 13. Namely, the maximum intensity of the ODF in the input
textures on which the DDB model is applied is much higher than the
one of the experimentally observed input texture. This discrepancy
can be attributed to the limited number of grains (𝑛 = 36) selected
for the RVE in the DDB model input to represent the as-received
material. The main reason for choosing an RVE with a limited number
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Fig. 13. Input textures for the CP simulations. (𝑎) input ODF for MFCP scenario-II. (𝑏) input ODF for DDB simulation scenario-I and II. (𝑐) Experimentally measured ODF of the
as-received material.
of grains was the need to discretise the RVE at high resolution. Since
the primary objective of the DDB model was to investigate the in-
grain microstructural evolution [28], a detailed discretisation of each
grain was required as input for the simulation. This, however, implies
a high computational cost, which is a limitation when performing
high-resolution DDB simulations on large-size RVEs.

To put it in perspective, a DDB model simulation, such as the
one considered in this work, demands approximately one week of
computation on a workstation with 16 CPUs [28]. However, although
the input texture for the DDB simulations did not closely resemble the
experimentally measured one, given the small number of initial crystal
orientations, the DT results obtained with the DDB model exhibited
strong alignment with the experimentally observed DTs, particularly at
medium to large strains. This observation highlights the significance of
quantifying the texture within individual grains when determining the
deformation texture at the macro level.

Conversely, the DDB simulations can be conducted within RVEs that
incorporate a larger number of grains while employing a lower reso-
lution in the spatial discretisation (DDB low-resolution). This choice
aims to mitigate computational costs while still achieving DTs that
closely align with experimental observations. However, this approach
may overlook the detailed characterisation of orientation gradients
within the grains. An illustrative example of such a simulation can be
found in the work by Sedighiani [58]. In contrast, MFCP simulations
do not face these computational challenges and can efficiently predict
DTs involving thousands of orientations within minutes on a standard
state-of-the-art laptop. Nevertheless, it is important to note that while
MFCP models excel at predicting the DT, they do not describe the
microstructural evolution.

As mentioned in Section 4.1, the maximum intensity predicted by
the DDB model shows a slight increment from undeformed condition
𝜀 = 0.0, until 𝜀 = 0.51 after which it decreases for further strain levels,
unlike the MFCP models and the EBSD textures displayed, cf. Fig. 10.
Prior research has shown that MFCP models often predict higher in-
tensity DTs compared to both FFCP predictions and experimentally
observed textures [23,59]. This discrepancy arises because MFCP mod-
els typically represent each grain’s crystallographic orientation with
a single crystal orientation, while FFCP models, which incorporate
grain fragmentation, introduce intragranular misorientation gradients.
These gradients mitigate the occurrence of high peak intensities in the
ODF [42,60]. This fundamental difference in the modelling approach
explains the difference in texture intensity between the MFCP models
and the full-field DDB model. However, the subsequent decrease in
the maximum intensity within DDB for higher equivalent strain levels
(after 𝜀 = 0.51) may suggest an overestimation of grain fragmentation
in the DDB model. Furthermore, the maximum intensity values of
ODFs resulting from DDB simulations at various strain levels exhibit
minimal fluctuations relative to their input texture. This observation
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might suggest a strong dependency of the maximum intensity predicted
by the DDB model and the maximum intensity of its initial texture.

When evaluating the performance of all CP models, it was observed
that the DDB model produced the closest texture prediction to the
experimentally measured one for a strain of 𝜀 = 1.41. This result is
surprising, considering that the DDB model started the simulation from
an initial texture that did not even closely resemble the experimentally
measured input texture (see Fig. 13). Nevertheless, for a strain of
𝜀 = 0.91, the VPSC model exhibited a better correlation between
the predicted DT and the experimentally measured one. Furthermore,
despite accounting neither for grain fragmentation effects nor strain
hardening effects, the VPSC model’s prediction for 𝜀 = 1.41 was almost
as precise as the DDB model. Similarly, the ALAMEL model’s result for
𝜀 = 0.91 was nearly as precise as the DDB’s. This indicates the potential
for further enhancement in the predicted DT results by incorporating
additional phenomena, such as local topology of grain interaction, grain
fragmentation, and strain hardening in a statistical manner in these two
models.

As mentioned in Section 4.2.1, the texture direct correlation (𝐽
𝐷

)
of VPSC and DDB with respect to the EBSD result, for scenario-II at
𝜀 = 1.41, assumes the values 𝐽

𝐷
= 0.905 and 𝐽

𝐷
= 0.913, respectively.

When calculating the correlation between these VPSC and DDB results,
a 𝐽

𝐷
= 0.937 value was obtained. This indicates that both model

simulations exhibit a nearly perfect match. However, as displayed in
Fig. 14, there are qualitative differences between these two textures.
These differences can be observed for example in the {111}⟨211⟩ com-
ponent, which is evidently stronger in the VPSC model than in the DDB
results. Similarly, a component close to {111}⟨110⟩ is more developed
in the DDB than in the VPSC results. These findings suggest that the
quantification of ODFs difference using the texture direct correlation
𝐽
𝐷

might not capture some qualitative differences when the ODFs
are analysed in terms of the intensities of specific crystallographic
components. Consequently, the 𝐽

𝐷
value should be interpreted with

caution, and further studies addressing the comparison of ODFs will
need to be undertaken.

At this point, it is essential to clarify that a 𝐽
𝐷

≈ 1.0 does not
necessarily imply identical ODFs, particularly when assessing specific
components’ intensity. Therefore, establishing a threshold value for
𝐽𝐷 is valuable to acknowledge satisfactory alignment between the
compared ODFs. Suppose a value of 𝐽

𝐷
> 0.8 indicates a high level of

agreement. In that case, it can be concluded that most simulated DTs
in this work, except FCT at 𝜀 = 1.41, exhibit a substantial agreement
with experimentally observed DTs.

6. Conclusions

This study presents a comparison of the deformation textures ob-
tained from three mean-field crystal plasticity models (MFCP), namely
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Fig. 14. VPSC, DDB and EBSD results for 𝜀 = 1.41, scenario-II. Texture direct correlation comparison.
the Full-constraint Taylor model(FCT), the ALAMEL model, and the
Visco-Plastic Self-Consistent (VPSC) model, alongside with a full-field
crystal plasticity (FFCP) dislocation-density-based (DDB) model. The
comparative analysis was carried out in two scenarios: the first aimed
to evaluate differences between the MFCP and DDB models, while the
second assessed the disparities between the four CP models compared
to the experimentally observed textures. We employed the texture
direct correlation (𝐽

𝐷
) parameter to quantitatively gauge the similarity

between the ODFs. Furthermore, we conducted a qualitative analysis
focusing on relevant crystallographic components and fibres. Our find-
ings revealed that despite using the MFCP models in their simplified
configurations (without grain fragmentation or strain hardening), the
grain-interaction models predicted deformation texture (DT) results
that reasonably matched those obtained with DDB, particularly the
VPSC model. However, none of the CP models examined in this study
can replicate experimentally measured DTs with absolute precision. For
instance, within the 𝛼 − 𝑓𝑖𝑏𝑟𝑒, all CP models struggled to predict a dis-
tinctly defined rotated-cube component. In the 𝛾−𝑓𝑖𝑏𝑟𝑒 case, the MFCP
models exhibited similar behaviour, showcasing high intensities for
specific components in both simulation scenarios, while the DDB model
appeared to favour a different component. Although all CP models
generated a 𝛾−𝑓𝑖𝑏𝑟𝑒 in good alignment with experimental results, they
each exhibited maximum intensities in different components compared
to what was observed experimentally.

The ALAMEL and VPSC models achieved a high accuracy in predict-
ing DT when performing simulations in their more basic configuration.
These models offer a highly promising alternative for industrial appli-
cations due to their simplicity of implementation and notably reduced
computational costs, which are several orders of magnitude lower com-
pared to the Full-Field Crystal Plasticity (FFCP) models. This suggests
the importance of evaluating the performance of MFCP models, includ-
ing their potential grain fragmentation and strain hardening schemes.
Additionally, a thorough assessment of the potential of a low-resolution
DDB model in terms of accuracy compared to experimentally observed
textures and computational efficiency is recommended.

One of the main differences between the MFCP and the FFCP models
is that the former is better at finding a statistical solution, and the
latter is better at describing grain fragmentation. Consequently, the
MFCP models are expected to perform superiorly at low to intermediate
strain levels, where statistical aspects of the initial texture signifi-
cantly influence the predicted deformation texture. As strain increases,
3854
the impact of fragmentation becomes progressively more dominant.
At high strains, irrespective of the initial texture, whether a single
crystal or a random texture, the DDB model would predict the best
outcomes. This phenomenon illustrates grain fragmentation’s key role
under high-strain conditions. Additionally, based on the research find-
ings, comparisons at lower and medium strain levels are recommended
to provide insights into the importance of grain fragmentation at lower
rolling reductions.

The quantitative comparison of textures using the direct correlation
coefficient, 𝐽

𝐷
, offers a reliable method for measuring the degree of

difference between two textures. Nevertheless, this approach may only
partially account for particular qualitative distinctions observed when
the ODFs are examined concerning the intensities of particular crystal-
lographic components. Additionally, the models used in this study can
output detailed slip activity for every single deformation step of the
simulations. Analysing this data could provide valuable insights into
understanding crystallographic texture evolution modelling limitations
and improve their prediction with crystal plasticity models.
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Appendix A. Scenario-I deformation texture results

ODF of initial texture (𝜀 = 0.0) and resulting textures of rolling scenario-I for 𝜀 = 0.22, 𝜀 = 0.51, 𝜀 = 0.91, 𝜀 = 1.41 with all CP models.
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Appendix B. Scenario-II deformation texture results

ODF of initial texture (𝜀 = 0.0) and resulting textures of rolling scenario-II for 𝜀 = 0.22, 𝜀 = 0.51, 𝜀 = 0.91, 𝜀 = 1.41 with all CP models, and
experimentally measured textures of Hot-Rolled and Cold-Rolled 60% and 77% reduction IF-steel.
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Appendix C. Scenario-I deformation texture fibres

ODFs of separated 𝛼 − 𝑓𝑖𝑏𝑟𝑒 and 𝛾 − 𝑓𝑖𝑏𝑟𝑒. Textures corresponding to 𝜀 = 1.41 plane strain simulations (scenario-I).

Appendix D. Scenario-II deformation texture fibres

ODFs of separated 𝛼 − 𝑓𝑖𝑏𝑟𝑒 and 𝛾 − 𝑓𝑖𝑏𝑟𝑒. Textures corresponding to 𝜀 = 1.41 plane strain simulations (scenario-II).
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