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Abstract 
To improve the energy density and directional spectra computed with the SWAN model for 

the North Sea, a data-driven model is trained to correct the SWAN spectra. After training of the 
data-driven model on a year of observed and modelled data, the energy density and directional 
spectrum are corrected for three locations in the North Sea. When this correction is applied, the 
SWAN results are significantly improved. Both the energy density and the directions show a 
reduction in RMSE of up to 30% for the directions and 26 % for the energy density. Due to the 
short computational time of the data-driven model, this approach can easily be implemented in 
an operational forecast system.  
 
1. Introduction 

Nearshore wave predictions are important for safety measures against flooding, ship 
navigation and the design of coastal flood defences (Thomas and Dwarakish, 2015). Numerical 
wave models are applied to transform the wave properties from deep water to coastal shallow 
water. Due to model simplifications and errors in model input, e.g. bathymetry and boundary 
conditions, the model predictions are generally not perfect (Gautier and Caires, 2015; Van 
Dongeren et al., 2011). Traditionally, to improve these wave predictions, either a more 
sophisticated model could be applied or the model input can be improved (e.g. higher resolution 
of wind field). However, this would mean that the computational time would increase or more 
data is required. An alternative is to estimate the error with a data-driven model given the 
hydrodynamic conditions and correct for that error. Beforehand, this method requires training on 
a large dataset with observations to learn the error patterns of the numerical model as a function 
of the hydrodynamic conditions and the location. After training, the data-driven model can be 
used during operational forecasts with negligible computational effort.  

 
In Callens et al. (2020) this approach is applied to correct the wave parameters computed 

with the SWAN model for locations near the French coast. Based on the correction with the data-
driven model, they were able to reduce the RMSE error by 8 to 10%. In this study, we extended 
this approach to the correction of the energy density spectrum and directional spectrum obtained 
from the spectral wave model SWAN (Booij et al., 1997) for the North Sea schematization 
(Deltares, 2018). Based on one year of operational SWAN results and wave observations, the 
data-driven model has been trained to correct the wave spectra predicted by SWAN.  
 
2.  Method 

 
2.1 Study site and data 

The 1D energy density and directional spectra from the SWAN North Sea schematization are 
corrected with the data-driven model. The model domain includes the Dutch North Sea and the 
Waddensea. Since this model runs operationally, the model results are available for a long period 
of time. In this study three characteristic locations for shipping navigation (Europlatform, 
Eurogeul E13 and stroompaal IJmond) are selected to show the performance of the correction 
with a data-driven model (See Figure 1). Besides the model forecasts, the observed wave 
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parameters, wind parameters and wave spectra are collected for the period January 1st, 2019 to 
August 1st, 2020 with an hourly temporal resolution. This dataset contains various wave and 
wind conditions with a wave height variation ranging from 0.1 to 5.0 m and wind speeds of up to 
21 m/s. In this way the data-driven model is capable of predicting the correction for different 
wave conditions. The modelled and observed wave spectra are interpolated to a frequency axis 
with 28 frequencies to define a correction for each frequency bin. Moreover, data entries with 
missing or unrealistic values were removed from the dataset. In total the dataset for the three 
locations and 28 frequencies for the energy density correction consists of 480,480 entries and the 
dataset for the directional dataset consist of 482,888 entries.  
 

Figure 1. SWAN North Sea schematization with the three locations. 
 

2.2 General framework 
The data-driven model is applied to correct the SWAN results, which means that both models are 
required to obtain the corrected forecast of the wave spectrum. The general approach is to first 
compute the wave parameters and wave spectra with SWAN. Based on the wave parameters 
obtained from SWAN and the wind parameters used as SWAN input, the data-driven model 
computes the correction for each location and frequency bin. Both a correction of the energy 
density and direction for each frequency bin is computed. When combing the correction and the 
initial wave spectrum, a reconstructed improved wave spectrum is obtained (see Figure 2). The 
data-driven model needs to be trained once on a large dataset, which is time consuming. 
However, the prediction of the correction is very fast.  
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Figure 2. Overview of the approach for the correction of the energy density spectrum and 

directional spectrum. 
 

2.3 Data-driven model  
The gradient boosting method, XGBoost (Chen and Guestrin, 2016), is applied as data-driven 

model to predict the correction. This supervised learning method optimizes a large set of decision 
trees, which predicts a target output variable given a set of input features. The training settings of 
the model are shown in Table 1. To prevent overfitting the training dataset is divided into a test 
and training dataset. When the error of the test set is not decreasing every early stopping rounds 
the training is finished. No further optimization of these hyperparameters is applied.  

 
Table 1. Applied hyperparameter settings in the XGBoost model. 

Parameter Value 
Learning rate 0.0075 
Max depth 15 
Minimum child weight 5 
lambda 1 
subsample 1 
Early stopping rounds 1000 

 
Two different data-driven models were set up. These two data-driven models give the error 

correction as output given a set of input variables.  The first data-driven model is applied to 
correct the energy density in a given frequency bin with the normalized energy density in a 
frequency bin as error metric, 

 

  (1.1) 

 
Where ESWAN(f) is the computed energy density by SWAN, Eobs(f) the observed energy 

density and ESWAN,total the total amount of energy in the energy density spectrum. The second 
data-driven model is applied to correct the direction in a given frequency bin with the normalized 
directional error: 

  (1.2) 
 

Where DSWAN(f) is the computed direction by SWAN and Dobs(f) the observed direction. The 
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directional error is limited between -180° and +180° North. The physical input variables for both 
models are the SWAN computed wave height, spectral period, wave direction, wind speed, wind 
direction and water level. In this way, no observations are required during operational forecasts 
since the data-driven model only depends on numerical results. Observations are only required 
during the training stage of the data-driven model to quantify the error between forecast and 
observation. Next to these physical input parameters, the models have a location index and 
frequency bin index as input variables. 
 

The dataset is randomly divided into a training set (75%) and a validation set (25%). Due to 
the random division of the dataset, the training set is representative of the validation set. The 
training set is divided into a pure training set (75%) and a testing set required for the stop criteria 
(25%).  
 
3. Results  

The trained data-driven model is applied to predict the correction of the energy density and 
the directions for the frequency bins. Note that the data from the validation period has not been 
seen by the model before and, therefore, it is a good dataset to check the performance. When the 
SWAN predictions are corrected with the data-driven model, the errors with respect to the 
observations are significantly reduced (See Table 1). Circular statistics are applied to compute 
the RMSE for the directions. For the three locations, a reduction of 20 to 30% is found for the 
RMSE in the energy density spectrum and a reduction of 20 to 36% is found for the direction. 

 
In Figure 3 and Figure 4 the scatter plots for Europlatform are shown. Both the scatter cloud 

for the energy density and direction contains less scatter after applying the correction. The scatter 
plot for the directions obtained with SWAN shows bands around 150 and 220°, which is caused 
by the directions from the lower frequency bins in SWAN. These frequency bins in SWAN 
appear to have a preferred direction. After applying the corrections, these bands disappear and a 
better prediction for the direction is found. Note that the scatter plots for the directions also show 
points in the upper left and lower right corner since these directions corresponds to respectively 0 
and 360° degree. Similar results were found for the other two locations. 
 
Table 1. Root mean squared errors (RMSE) of the SWAN results and the corrected SWAN results 

for both the energy density and direction. 
Location RMSE energy density [m2/Hz] RMSE direction [°] 

SWAN  SWAN+correct
ion XGB  

SWAN SWAN+correction 
XGB 

E13 
EPL 

Stroompaal IJmond 

0.42 
0.49 
0.48 

0.33 
0.34 
0.45 

20.57 
19.16 
20.06 

6.26 
14.81 
12.87 
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Figure 3. Scatter plot of the energy density between the observation and the SWAN results (left 

panel) and the observations and the corrected SWAN results (right panel). The colors indicate the 
density of the points. The solid black line represents perfect agreement and the dashed lines show 

the 20% deviations. The results for location Europlatform are shown. 
 

Figure 4. Scatter plot of the directions between the observation and the SWAN results (left panel) 
and the observations and the corrected SWAN results (right panel). The colors indicate the 

density of the points. The solid black line represents perfect agreement and the dashed lines show 
the absolute 20° deviation. The results for location Europlatform are shown. 

 
Apart from the energy density spectrum and directional spectrum, the wave parameters based 

on the reconstructed energy density spectrum are computed. Since the correction is derived per 
single frequency bin, it is not guaranteed that a realistic spectral shape is obtained after the 
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correction. However, the RMSE of the wave parameters is even reduced when the corrected 
spectrum is compared to the original spectrum. The improvement of the error in wave height 
shows that the total energy within the spectrum is better captured after the correction. The 
spectral period and mean absolute wave period indicate that the spectral shape is also better 
captured after the correction, where the mean absolute wave period Tm02 is sensitive for the high 
frequency tail of the spectrum and the spectral period (Tm-11,0) is more representative for the 
energy at the lower frequencies. To show the performance for the low-frequency waves, 
important for shipping navigation, the low-frequency wave height based on the total energy 
below 0.1 Hz is computed. Similar to the other wave parameters, the reconstructed spectrum 
does also show a lower error for the low-frequency wave height. 

 

 
Figure 5. Scatter plot of the total wave height, spectral period, mean absolute wave period and 

low-frequency wave height for the location Europlatform.  The solid black line represents perfect 
agreement and the dashed lines show the 20% deviation. 

 
4. Discussion 

It is shown that the error in energy density and directions reduces after applying the correction 
predicted by the data-driven model, but no additional optimizations are applied. In this study, we 
assume a set of input features in the data-driven model to predict the correction. In future 
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research, the data-driven model could be further optimized by varying the input features. This 
optimization will be a balance between the available data limiting the size of the training dataset 
and the additional physical information as input. It could also be questioned whether the different 
locations should be part of one model or whether a single model for each location should be 
trained. When the patterns in the input variables required for the correction are not very similar 
for the different locations, it could beneficial to train a model for each location. Furthermore, a 
set of hyperparameters for the data-driven model are applied. By varying these hyperparameters, 
the training of the data-driven model could be improved, which could also lead to an improved 
correction. 
 
5. Conclusion 

A data-driven model has been trained to predict the correction for the energy density 
spectrum and directional spectrum for three locations in the North Sea obtained with the SWAN 
model. Trained on one year of observations and model results, the data-driven model turns out to 
significantly improve the SWAN forecasts. Both the energy density and the directions show a 
reduction in RMSE of up to 30% for the directions and 26 % for the energy density.  Due to the 
short computational time of the data-driven model, this approach can easily be implemented in 
operational forecast systems.  
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