

Delft University of Technology

Event-based reconstructions in Computational Microscopy

Rivera Sanchez, Fabrizio Aaron; Seifert, Jacob; Karpavicius, Augustas; Gouder, Matthias; Witte, Stefan

DOI

[10.1051/epjconf/202533501006](https://doi.org/10.1051/epjconf/202533501006)

Publication date

2025

Document Version

Final published version

Published in

EPJ Web of Conferences

Citation (APA)

Rivera Sanchez, F. A., Seifert, J., Karpavicius, A., Gouder, M., & Witte, S. (2025). Event-based reconstructions in Computational Microscopy. *EPJ Web of Conferences*, 335, Article 01006. <https://doi.org/10.1051/epjconf/202533501006>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Event-based reconstructions in Computational Microscopy

Fabrizio Aaron Rivera Sanchez^{1,2,}, Jacob Seifert^{1,3}, Augustas Karpavicius¹, Matthias Gouder^{1,4}, and Stefan Witte^{1,2}*

¹Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, The Netherlands

²Imaging Physics, Faculty of Applied Sciences, Technische Universiteit Delft, Lorentzweg 1, 2600 GA, Delft, the Netherlands

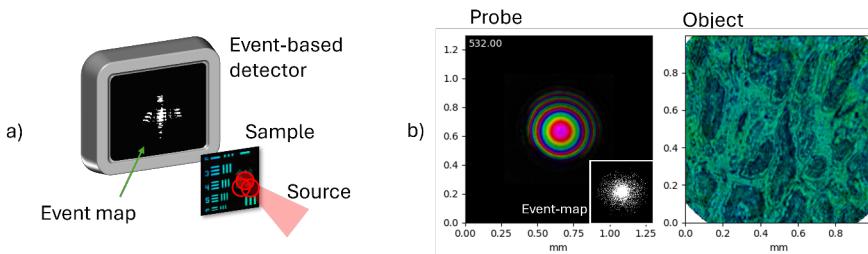
³Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, 3584 CC Utrecht, The Netherlands

⁴Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract. We present a maximum-likelihood estimation (MLE) framework tailored to event-driven detectors to perform computational image reconstruction and phase retrieval. Using Poissonian photon statistics, we built an event-based loss function that maximizes the probability of having the set of events and non-events given the initial parameters. Our loss function can be utilized in both optical and electron ptychography. We demonstrate experimental reconstructions using data acquired with a Timepix3 detector.

1 Introduction

Ptychography is a well-established lensless imaging technique that enables the retrieval of both an object's amplitude and phase. In a conventional setup, a probe beam illuminates the sample at multiple positions, and the resulting diffraction patterns are recorded after propagating to a detector. Traditionally, this detection is frame-based, integrating photon arrivals over a fixed exposure time. In this work, we extend ptychography to event-driven detection modes. One of the primary limitations of conventional ptychography is its long scanning time, largely limited by the start-and-stop scanning approach and the need to accumulate sufficient flux at each stationary scan position. Fly-scan ptychography [1] enables continuous scanning, but requires computational motion-blur correction. By leveraging the capabilities offered by modern event-counting detectors with nanosecond time resolution (SPAD arrays, Timepix3, Dectris ELA, etc.) [2], a ptychography concept can be developed based on continuous high-speed scanning combined with a forward model based on event-detection and accurate noise-statistics modeling [3]. We show that our approach enables high-quality ptychographic reconstructions from event-triggered data.


2 Event-Driven reconstructions

We present experimental ptychographic reconstructions from a Timepix3 camera by means of our maximum-likelihood (ML) event-driven loss function:

* e-mail: friverasanchez@tudelft.nl

$$\ell(\theta) = \sum_{k \in \{\text{events}\}} \log[1 - F_k(T_k; \theta)] + \sum_{k \in \{\text{non-events}\}} \log[F_k(T_k; \theta)]. \quad (1)$$

where $I_k(\theta)$ is the intensity predicted in pixel k for the model parameters θ , F_k is the Poisson cumulative distribution function and the probability of detecting more photons than the threshold T_k is $1 - F_k(T_k; \theta)$. Using $-\ell(\theta)$ as our loss function and minimizing with automatic differentiation and gradient descent, we can reconstruct the complex object and probe as a result of the maximum likelihood. The experimental setup is shown in Figure 1 (a) and experimental reconstructions using a Timepix3 detector are shown in Figure 1 (b).

Figure 1. (a) Schematic of the ptychographic setup utilizing a hybrid detector in event-detection mode. (b) Experimental reconstructions showing a Gaussian beam as the probe and a biological sample slice obtained using the event-driven loss function.

The advantages of event-driven ptychography, combined with maximum-likelihood estimation, can be extended to electron ptychography [4]. Our loss function effectively reconstructs electron ptychography data within this framework. By leveraging event-driven cameras, which are highly sensitive to single-particle detection, this approach provides an optimal tool for event-driven electron ptychography.

3 Conclusion and Outlook

We present experimental results demonstrating the extension of maximum-likelihood phase retrieval in ptychography to detectors capable of timestamping photon events. Future work could explore the integration of fast scanning strategies, such as Fly-scan, to enable real-time reconstruction of dynamic processes by leveraging time-of-arrival information in particle detection for both photons and electrons.

References

- [1] Huang, X., Lauer, K., Clark, J. *et al.* Fly-scan ptychography. *Sci. Rep.* **5**, 9074 (2015). <https://doi.org/10.1038/srep09074>
- [2] X. Llopis *et al.*, Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. *Nucl. Instr. Methods Phys. Res. A* **581**, 485 (2007). <https://doi.org/10.1016/j.nima.2007.08.079>
- [3] J. Seifert *et al.*, Maximum-likelihood estimation in ptychography in the presence of Poisson–Gaussian noise statistics. *Opt. Lett.* **48**, 6027–6030 (2023). <https://doi.org/10.1364/OL.502344>
- [4] D. Jannis *et al.*, Event-driven 4D STEM acquisition with a Timepix3 detector. *Ultramicroscopy* **233**, 113423 (2021). <https://doi.org/10.1016/j.ultramic.2021.113423>