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Abstract
Bruxism is a medical disorder that causes individu-
als to grind or clench their teeth together. This can
cause dental damage, headaches, and jaw disorders.
Reliable detection of bruxism remains challenging
due to the limitations of current diagnostic meth-
ods. This study investigates the potential of using
an intraoral device equipped with an accelerometer
to detect bruxism events. Machine learning tech-
niques, specifically Hidden Markov Models, were
applied to classify accelerometer data collected
during controlled experiments. The results indicate
that while the system effectively distinguishes be-
tween bruxism and non-bruxism activities in gen-
eral, detecting actual grinding and clenching events
remains difficult due to class imbalance and over-
lapping motion patterns. Nonetheless, the findings
suggest that in-mouth accelerometers hold promise
for future bruxism detection systems, requiring fur-
ther data collection and model refinement.

1 Introduction
The mouth is a valuable resource for medical data from peo-
ple. It serves as a method for monitoring overall health,
with conditions such as sleep apnea, bruxism (teeth grinding),
dehydration, and infections often manifesting early signs
through oral indicators. Recognizing the potential of oral
data, researchers created the Densor.[1] The Densor is a com-
pact device designed to record data from the mouth in real
time. It collects data using different sensors from barometer
to accelerometer data.

To harness the power of the Densor this research will try
to see if it is possible to detect bruxism using the accelerom-
eter data form the Densor. Bruxism is a medical term for
clenching and grinding of the teeth. It is one of the more
common involuntary habits, occurring in 8-12% of the gen-
eral population.[2] It can occur both while awake and asleep.
It can cause multiple adverse health problems such as chipped
teeth, headaches, poor sleep, and jaw pain. The main cause
of bruxism is not yet known, but there appears to be a genetic
component to it.[3] It has also been linked to stress or anxiety
of a person.

There are multiple ways to diagnose bruxism. For exam-
ple: polysomnography (PSG) or electromyogra- phy (EMG).
But they are either unreliable or difficult to perform. There-
fore, finding a good way to detect bruxism is required. This
research uses data collected by a Densor, to find if it is pos-
sible to be used to diagnose bruxism. This research will use
Hidden Markov Models (HMMs) to detect both grinding and
clenching from the collected data.

The main question of this research is: Can a Densor be
used to detect bruxism events? This will be split up in two
questions:

• Can grinding be detected from the accelerometer data
with an 80% accuracy?

• Can clenching be detected from the accelerometer data
an 80% accuracy?

2 Related Works

There are different methods used for diagnosing bruxism.
These include patient self-reports, the use of EMG and us-
ing accelerometers. The gold standard however is a PSG
analysis.[4]These methods however still suffer from limita-
tions such as inaccuracy, user comfort and cost.

The PSG is the best because it can be used to make a
quantitative assessment of the tongue, mouth and jaw move-
ments. It uses multi-modal measurements of such parame-
ters as electroencephalography (EEG), EMG, electrocardiog-
raphy (ECG), air flow monitoring and audio–video recording.
These can then be used to make an accurate diagnosis. There
are however still problems. A PSG is a high cost methods that
takes multiple nights to preform. And although they can be
done at home they are mostly done in sleep labs. This may
not be representative of a natural sleep milieu, which may
hamper diagnosis.

The self reporting of patients is a common method used
to diagnose bruxism early on in the process. This method
requires patients or their family or bed partners to witness the
bruxism. The symptoms of the patient can also be used in the
diagnosis. These methods however are unreliable, having a
low to medium correlation with instrumental approaches.[5]
They can also be required to fill in questionnaires about their
symptoms.

Portable EMG devices can also be used for diagnosing
bruxism.[6] They are used for detecting muscle movements
of the masseter muscle. These are mounted on the outside
of the face on the chin and jaws. They measure the amount
of bursts of the EMG. For accurate results they require to be
worn 3 to 5 nights. They also require patients to do a setup
procedure by relaxing and clenching their jaw for a sort pe-
riod of time. The accuracy of the diagnosis comes close to
the diagnosis of PSG analysis.

Accelerometers, commonly used in sleep and physical ac-
tivity tracking, have also been used to monitor jaw and head
movements associated with bruxism. There have been some
studies that showed that using a accelerometer on the side
or in the ear of patients might be able to detect bruxism. A
study showed that wearing in ear accelerometer and gyro-
scope could be used.[7]

Another study also showed using a prototype that brux-
ism events might be detectable by accelerometers on the face.
The use of in-mouth accelerometers for bruxism has not been
well explored. This approach benefits from proximity to
the source of bruxism activity, enabling high-resolution mo-
tion capture with minimal external interference. However,
challenges remain in distinguishing bruxism from other oral
movements such as speaking or swallowing.

3 Methodology

In this part the data collection will first be discussed. Then
how the data is labeled will be shown. Then the feature ex-
traction will be explained. Lastly the classification will be
done.



3.1 Densor Data Collection
The Densor contains multiple sensors that could be used to
gather information. But for this research only the inertial
Measurement Unit (IMU) was used. Since the Densor is an
intraoral device, it is designed to be small for the comfort and
safety of the user. This does have its limitations: The lifes-
pan of the Densor is limited. The team has done significant
work to make it as efficient as possible, but the data gath-
ered during a full night still has a low frequency. This can be
detrimental for detecting bruxism. Thus, the data used for the
research was done in small time windows and has a frequency
of 200 Hz. This has been done to look into the feasibility to
detect bruxism using an intraoral accelerometer. Data for this
project was provided by the Densor team. The data contained
3 columns for the x y and z axes of the acceleration. The data
was gathered by being in different positions and doing tasks
when prompted. An experiment looked like this:

• Wait some time until prompted
• Do the action until the prompt disappears.
• Wait until prompted again.
• Do the action until the prompt disappears.
• Wait until 20 seconds are over.
This setup automatically labeled the raw data as either

”performing the action” or ”not performing the action.” Each
type of activity was recorded multiple times, resulting in 300
data segments of 20 seconds each. Among these, 8 segments
contained grinding activity and 8 segments contained clench-
ing activity.

An example of the recorded data and its corresponding la-
bels can be seen in Figure 1, which shows the acceleration
along the x, y, and z axes during an experimental trial. The
highlighted regions represent the periods when the subject
was actively performing the prompted action.

3.2 Labeling
To use this data for machine learning algorithms it was made
into shorter windows. The raw data was segmented into slid-
ing windows of 1 second with a 0.5 second overlap. These
were then classified based on the majority of the classifica-
tion of the points in the data. This was done to correctly catch
the transition from grinding or clenching into not grinding or
clenching. This data was then adapted into features and used
to train machine learning algorithms.

3.3 Feature extraction
For each axis separately, a predefined set of statistical and sig-
nal features was calculated. These included the mean, stan-
dard deviation, minimum, and maximum values to describe
the central tendency and variability of the signal. The num-
ber of zero-crossings was computed to quantify the rate of
signal sign changes, which is indicative of oscillatory behav-
ior. Root mean square (RMS) values were used to represent
the signal’s energy,. Additionally, peak-based features such
as the total number of peaks and the average peak height were
extracted.

Features were also extracted from the signal magnitude,
calculated as the Euclidean norm of the three axes. These

Figure 1: Raw accelerometer data from an experiment involving
teeth grinding, with blue regions indicating periods of active grind-
ing.

magnitude-based features included the signal magnitude area
(SMA) and the variance of the magnitude itself. Further fea-
tures included the number of peaks and the mean peak height
of the magnitude signal.

These features where extracted using the scipy and numpy
libraries in python.

3.4 Classification
Two machine learning algorithms were used to classify and
get the results for the project: random forest and HMMs.
Common python libraries scikitlearn and hmm were used for
the machine learning algorithms. To train the machine learn-
ing algorithms the data was first split using a 5 fold cross val-
idation. To compare these algorithms the accuracy, precision,
recall, and f1-score were used. In this paper only the results
of the HMMs will be shown as it had the better results.

4 Experimental Setup
This section describes the experimental procedure used to get
the results shown in this paper. This procedure is repeated
twice. Once for grinding classification and once for clenching
classification.

4.1 Activity Classification
All collected sensor data described in Section 3 was utilized
for the experiment. The following steps summarize the pro-
cedure:

1. Data Preprocessing and Windowing
The multivariate sensor data, consisting of the x-axis, y-
axis, z-axis, and calculated magnitude, was segmented
into overlapping windows. Each window had a duration
of 1 second with a stride of 0.5 seconds.

2. Feature Extraction
Within each window, statistical features were extracted
separately for each of the four channels. The features
were selectively enabled based on the correlation be-
tween the activity and the feature.

3. Cross-Validation
A stratified 5-fold cross-validation scheme was applied



to ensure balanced representation of both classes in each
fold. Then two models where trained for both classes.

4. Prediction and Evaluation
Each sample in the test set was evaluated by computing
its log-likelihood under both HMMs. The final predicted
label corresponded to the model with the higher likeli-
hood. All predictions across the folds were collected for
overall evaluation.

5. Global Evaluation
After cross-validation, the following performance met-
rics were calculated across the entire dataset:

• Precision
• Recall
• F1-score

Additionally, a confusion matrix was generated to visu-
alize the overall classification performance.

5 Results
First the grinding results will be viewed. Then the results of
the clenching classifier will be shown. The code for this can
be found in the repository[8].

5.1 Grinding
The classifier for grinding achieved an overall accuracy of
98%, with a weighted F1-score of 0.98 across both classes.
This, however, does not tell the whole story. There was a
significant class imbalance present. The nothing class consti-
tuted the vast majority of the data (7568 samples), while the
grinding class was much smaller (93 samples).

For the nothing class, the precision, recall, and F1-score
were extremely high (1.00, 0.98, and 0.99 respectively).
However, for the grinding class, performance was way lower
with a precision of 0.30, recall of 0.67, and F1-score of 0.41.
This suggests that while the model correctly identified the
majority of nothing instances, its ability to detect grinding
was limited.

The confusion matrix (Figure 2) illustrates this imbalance,
showing 62 true positives for grinding, but also 31 false neg-
atives, and 148 false positives, where nothing instances were
incorrectly classified as grinding. The detailed classification
report is shown in Figure 3.

5.2 Clenching
Similarly to the grinding classification, the classifier achieved
an overall accuracy of 96%, with a weighted F1-score of 0.97
across both classes. However, this high-level performance is
again influenced by a significant class imbalance. The noth-
ing class dominated the dataset with 6771 samples, while the
clenching class was heavily underrepresented with only 93
samples.

For the nothing class, the classifier demonstrated excellent
performance, achieving a precision of 1.00, recall of 0.96,
and F1-score of 0.98. In contrast, the clenching class showed
a lower performance, with a precision of 0.21, recall of 0.80,
and F1-score of 0.33. This means that the model was rel-
atively good at identifying most clenching events, but also

Figure 2: Confusion matrix for grinding classification.

Figure 3: Classification report table for grinding classification.

tended to misclassify a high amount of nothing instances as
clenching, leading to many false positives.

The confusion matrix (Figure 4) illustrates this disparity:
of the 93 true clenching instances, 74 were correctly pre-
dicted, while 19 were misclassified as nothing. Conversely,
among the 6771 nothing instances, 283 were incorrectly la-
beled as clenching, with 6488 correctly identified. The corre-
sponding classification report table is shown in Figure 5.

6 Responsible Research
This research involved the use of sensor data collected from
human subjects performing specific mouth-related activities.
All data collection was conducted under controlled labora-
tory conditions with informed consent from the participants
involved. The collected data did not contain any personally
identifiable information, ensuring the privacy and anonymity
of the individuals.

One of the ethical considerations in this research is about
the future use of intraoral devices for bruxism detection in
real-life. While the proposed system may support diagnosing
bruxism, it is not a replacement for clinical assessment by
qualified professionals. People should not be relying only on
the automated systems and should look for professional help
from appropriate sources.

Regarding reproducibility, the methodology used in this
study was fully based on standard, publicly available machine



Figure 4: Confusion matrix for clenching classification.

Figure 5: Classification report table for clenching classification.

learning libraries and signal processing techniques. Data pre-
processing steps, feature extraction procedures, and classifi-
cation algorithms are described in detail to enable replication.
The feature extraction process, statistical feature calculation,
and peak analysis, was implemented using standard Python
packages such as NumPy and SciPy. The HMM classifier
was trained and evaluated using commonly used software li-
braries.

However, reproducibility may be affected by the limited
availability of the original dataset. The dataset was collected
using a specific prototype of the Densor device under con-
trolled conditions, and access to this data is restricted. As
such, researchers seeking to replicate or extend this work
would need to conduct their own data collection under simi-
lar experimental conditions. Future work should consider the
creation of an open dataset to support transparent and repro-
ducible research in this domain.

7 Discussion
The results show that bruxism-related activities, including
both grinding and clenching, can potentially be detected using
in-mouth accelerometer data processed by Hidden Markov
Models. The models can for the most part detect when no
grinding or clenching is going on. They have a more difficult
time with distinguishing when the action is actually occur-
ring.

For both grinding and clenching, the classifiers showed ex-
cellent performance on the dominant class, with high preci-

sion, recall, and F1-scores. Whereas, detection of the actual
bruxism activities was less reliable. The grinding class suf-
fered from low precision (0.30) and moderate recall (0.67),
while the clenching class showed similarly poor precision
(0.21) despite a higher recall (0.80). These low precision
scores indicate a substantial number of false positives in both
cases. A likely cause for this is the class imbalance in the
dataset.

A significant challenge of this study was indeed the lim-
ited amount of labeled bruxism activity data. This imbal-
ance likely biased the classifier towards predicting the ma-
jority class, leading to reduced precision for both grinding
and clenching detection. Furthermore, the similarity of ac-
celerometer patterns between these activities and other mouth
movements may have contributed to the model’s difficulty
in discriminating the classes without incorporating additional
features.

It is also important to note that data collection occurred
in a controlled, short-duration environment, which may not
fully represent the complexity and variability of real-world
bruxism behaviors, especially those occurring unconsciously
during sleep.

8 Conclusions
This study explored the use of an intraoral device, the Densor,
equipped with an accelerometer to detect bruxism-related ac-
tivities such as teeth grinding and clenching. Using data col-
lected from controlled laboratory experiments, features were
extracted from the accelerometer signals, and Hidden Markov
Models were trained to classify these activities.

The results demonstrated high overall accuracy and strong
detection of non-bruxism activity, reflecting the model’s ef-
fectiveness in identifying when no grinding or clenching oc-
curred. However, detection of actual bruxism events was less
reliable. The classifiers exhibited low precision and produced
a substantial number of false positives when attempting to
identify grinding and clenching actions. This performance is-
sue was largely attributed to a severe imbalance in the dataset,
where non-bruxism data significantly outweighed bruxism
event samples. Furthermore, the similarity of oral motion pat-
terns, such as speaking or swallowing, complicated accurate
classification.

Ultimately, the study indicates that while in-mouth ac-
celerometers show potential for detecting bruxism, the
method in its current form faces challenges in reliably distin-
guishing bruxism events from other oral movements, partic-
ularly under controlled experimental conditions with limited
data diversity.

9 Future Work
While this study showed that using intraoral accelerometers
to detect bruxism has potential, there are still several impor-
tant areas for future research to make these systems more re-
liable, accurate, and practical.

One major issue is the imbalance in the data collected.
There were far fewer examples of grinding and clenching
compared to the nothing class. This made it harder for the



classifier to learn to detect actual bruxism events. Future re-
search should focus on gathering a much larger and more bal-
anced set of data. This should include data from people who
have been diagnosed with bruxism. Collecting data during
long periods, especially overnight while people are asleep,
would help capture natural grinding and clenching behavior.
Real nighttime data from actual bruxism patients would give
more useful and realistic examples for training the detection
system. This would help the machine learning model better
recognize real-life bruxism activity.

In terms of machine learning methods, while HMMs were
helpful in this study, they may not be the best choice for cap-
turing the complex patterns in this kind of data. Future work
could explore more advanced machine learning techniques,
such as deep learning models like convolutional or recurrent
neural networks. These are designed to handle time-based
and sequence data very well. They could also learn directly
from the raw signals of the sensors, reducing the need for
manual feature selection and making the system more adapt-
able to differences in how people behave.

Finally, future research should test the system in real-life
situations and not just in short, controlled lab sessions. For
example, it should be tested in people’s homes, over several
nights, to see how well it works in a normal environment.
This would show how the system performs when faced with
everyday challenges like different sleeping habits, changes in
device position, and other interruptions. Longer-term studies
could also check if the system stays reliable over time, even
as the user gets tired or the device shows wear and tear.
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