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I. Introduction

T HE interaction of aerial robotswith the environment has evolved

from passively perceiving [1] to actively grasping external

objects with a manipulator [2]. However, the uncertainties caused

by the unknown payload inevitably pose challenges to the precise

control of the aerial manipulator. This paper focuses on analyzing the

uncertainties associated with an aerial manipulator grasping an

unknown payload and deriving a unified disturbance model through

a linear transformation of the system dynamics. Utilizing this dis-

turbance model allows for more precise compensation, enhancing

trajectory tracking performance through meta-adaptive control. The

motivation for this research lies in identifying uncertainty, distin-

guishing between known states and unknown parameters, and ulti-

mately improving controller performance by estimating these

uncertain parameters. In the real world, the ability to handle unknown

disturbances is crucial in robotic manipulation, particularly for aerial

platforms, where stability is more vulnerable compared to fixed-base

manipulators.

Dynamic analysis is the premise of the controller design. In current

research, the perspectives regarding the dynamic relationship between

the aerial platform and themanipulator diverge into decentralized and
centralized approaches. The decentralized method treats the aerial
vehicle and the manipulator as two independent subsystems [3]. This
approach assumes that the motion of the manipulator can hardly
influence the translation and rotation dynamics of the aerial vehicle,
which leads to two strategies for satisfying this assumption. On one
hand, the coupling effect is considered an additional minor disturb-
ance [4]. However, the rapidmovement of the aerial manipulatormay
amplify the coupling effect, potentially violating the aforementioned
assumption. Alternatively, the coupling effect can be neglected by
using a lightweight robotic arm [5]. Nonetheless, reducing the arm’s
strengthmay limit its range ofmotionwhen handling objects of equal
weight [6,7]. As a result, the decentralized method performs well
merely in quasi-static and light-load scenarios. In contrast, the cen-
tralized approach views the system as awhole, taking into account the
coupling effect within the inertia matrix [8]. The system’s dynamics
can be established using either the Euler–Lagrangian [9] or Newton–
Euler recursive formulation [10]. This approach, free from the need to
address additional internal disturbances, allows for more stable and
accurate tracking performance [11]. However, the dynamic model
matrices of the whole system tend to be more complex than those of
the decentralized system.
Estimating the uncertainty is the primary objective of the controller

design to adapt to unknown environmental disturbances. Current
approaches can adapt to uncertainty either before the actual task
through offline methods or during the control mission using online
strategies.
Building upon the first concept, the system and parameter identi-

fication leverage the collected flight data to approximate either the
unknown dynamics or parameters. In the context of system identi-
fication, the mechanism responsible for generating forces and
moments in rotors is identified from pulse-width modulation
(PWM) signals on the test stand. This enables more precise execution
of grasping and transporting tasks [12]. In another study, the linear
dynamics of the system near the hovering state are estimated via
frequency-domain identification. Subsequently, a robust H-infinity
controller with adaptive auxiliary components is designed to counter-
act disturbances caused by grasping loads [13]. However, when the
states of the system move beyond the well-fit region, the offline-
identified model may encounter malfunctions. In terms of parameter
identification, the least-squaresmethod is applied to estimate the load
mass. This estimated value is then used to enhance the proportional
integration differentiation (PID) controller [14]. Nonetheless, spe-
cific types of movements are required to gather state observations for
parameter estimation, which may limit the flexibility of mission
trajectories.
The second thought delves into more advanced adaptive control

techniques. For instance, a sliding-mode adaptive controller has been
devised to enable a planar aerial manipulator to adapt to the unknown
load mass and thrust gain [15]. Moreover, a similar controller has
been further refined by incorporating real-time estimates of the load
mass and inertia [16]. However, both the simplifications in dynamics
and the limited number of payload parameters can lead to an impre-
cise model and tracking errors. In addition, the model reference
adaptive control (MRAC) method aligns the behavior of the system
with uncertainty to that of a known reference model. Within the
hierarchical control framework of a quad-tilt-wing unmanned aerial
vehicle (UAV) in [17], a quadrotor with a two-link robotic arm in [18]
is decomposed into translational and rotational dynamics. The
unknown mass and inertia are addressed using an outer loop model
reference adaptive controller and an inner loop nonlinear adaptive
controller, respectively. Nevertheless, the disregarded coupling effect
suggests the need for amore comprehensive description of dynamics.
Furthermore, theL1 adaptive control technique has shown promise in
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achieving quicker adaptation with a robustness guarantee [19,20].
For quadrotors, the architecture for L1 augmentation of a geometric
controller for both the translational and rotational dynamics [21] is
proposed, which successfully compensates the time- and state-
dependent uncertainties. This control architecture is further improved
with performance guarantees, which ensure the states of the closed-
loop system are bounded around the desired trajectory [22]. In the
domain of aerial manipulators, the technique of incorporating an
augmented L1 adaptive law into the control loop for its rotational
dynamics [6] and vertical dynamics [23] is also adopted to achieve a
more rapid tracking response under the unknown nonlinear forces
andmoments.While the response performance has improved, there is
room for further refinement of the matched and mismatched disturb-
ance models to provide more precise compensation.
As the complexity of the disturbance increases, data-driven aug-

mented control techniques come to the rescue, tackling the formi-
dable nonlinearity. These approaches utilize both vanilla neural
networks [24,25] and Gaussian processes [26] to provide approxi-
mations of the intricate aerodynamic effects. Notably, these methods
lead to performance improvements in both the baseline geometric
adaptive andmodel predictive controllers. Simultaneously, advanced
learning techniques, such asmeta-learning [27], have been integrated
into the adaptive control framework to effectively combat wind
disturbances in quadrotors [28,29]. This upgraded learning strategy
empowers the controller with more precise nonlinear features,
allowing for finer compensation. This advanced approach motivates
the research work in this study—analytically investing in the dynam-
ics and the role of the uncertainties.
This study focuses on the uncertainty analysis and the controller

design for aerial manipulators, aimed at compensating for disturb-
ances. To achieve a more precise description of the dynamics, we first
consider the payload as an integral part of the system, namely, an
extension of the manipulator. The uncertainty of the payload is char-
acterizedbyparameters such asmass, inertia,mass center position, and
the corresponding deviation angle, ensuring a comprehensive consid-
eration. Then, we establish the centralized Euler–Lagrangian dynamic
model for the entire aerialmanipulator system. Secondly, the analytical
formulation of the uncertainty is deduced by leveraging the linearly
parameterizable dynamics property of the aerial manipulator. More-
over, the structure of the unknown disturbance unveils its underlying
mechanism, which guides the design of the compensation using a
kinematic regressor and a parameter vector. To validate the proposed
control schemes, we estimate the compensation and integrate it into a
meta-adaptive control framework. The kinematic regressor is approxi-
mated via neural networks to bypass the complexities of symbolic
derivation. Additionally, we employ themodel-agnosticmeta-learning
(MAML) strategy to expedite training convergence and enhance the
adaptability of the controller to various payload configurations.
Finally, we demonstrate the Lyapunov stability of the closed-loop
system. In simulation, we observe improved tracking performance
compared to other baseline controllers.
The rest of this paper is organized as follows: Sec. II provides a

comprehensive explanation of the analytical procedures related to the
dynamics of the unknown disturbance in the aerial manipulator.
Section III introduces the implementation of the meta-adaptive con-
trol framework, which is supported by the derived precise compen-
sation. Section IV demonstrates the validation of improved trajectory
tracking performance through numerical simulations under various
tasks and payload settings. Finally, Sec. V offers the conclusions
drawn from this study.

II. Uncertain Disturbance Model for Aerial
Manipulator

In this section, we introduce a universal linear transformation of
the unknown disturbance relative to inertia parameters. Specifically,
the unknown disturbance is regarded as the product of a kinematic
regressor matrix associated with known states and a vector with all
uncertain parameters. This decomposition enhances the precision of
disturbance counteraction through the implementation of a structur-
ally similar compensation strategy.

A. Origin of Uncertain Disturbance

Preliminarily, we consider systems that conform to Lagrangian
dynamics, which are subject to an unknown disturbance fa.

M�q� �q� C�q; _q� _q�G�q� � fa � τ (1)

where q ∈ Rn is the state vector including n generalized coordinates
of the system; τ ∈ Rn is the vector of applied generalized force
and torque; M�q� ∈ Rn×n is the inertia matrix, which is normally
symmetric positive definite; C�q; _q� ∈ Rn×n is the Coriolis matrix;
C�q; _q� _q ∈ Rn represents the centripetal and Coriolis force; and
G�q� ∈ Rn denotes the gravitational force.
Remark 1: In Sec. II.A, to emphasize the capability of the omnis-

cient controller in perfectly counteracting disturbances, we tempo-
rarily assume all uncertainties are incorporated into fa, and the true
dynamic matricesM;C; andG in Eq. (1) can be precisely identified
and utilized by both omniscient and actual controllers. As for the
specific payload parametric uncertainty discussed in Sec. II.B, we
also conform both control laws to similar structures, i.e., the known
dynamics plus the unknown disturbances. So, in this case, the known

dynamics will become nominal ones M̂; Ĉ; and Ĝ and unknown
disturbances will turn into errors between the actual and nominal
dynamics.
To follow a desired trajectory qd, several variables relevant to

errors are usually defined, including the tracking error ~q, the sliding
surface s, and the virtual reference trajectory qr.

~q � q − qd

s � _~q� Λ ~q

_qr � _q − s � _~qd − Λ ~q (2)

where Λ is a constant positive definite gain matrix.
Recalling the principle of certainty equivalence [30], the designed

control law aims to achieve two goals: 1) offset the dynamics by
nominal terms, and 2) ensure stability with a negative gain term. In an
ideal scenario, the omniscient controller τod would perfectly achieve
these objectives by possessing knowledge of the ideal compensation
to precisely counteract the disturbance fa almost like cheating.
However, the actual controller τad can never achieve such perfection,

as it relies on an approximated compensation f̂a with errors. Now,we
will explore the impact of these discrepancies on closed-loop stabil-
ity. The omniscient and actual control laws are denoted as follows:

τod � M �qr � C _qr �G� fa − Ks

τad � M �qr � C _qr �G� f̂a − Ks (3)

where K is a positive definite gain matrix. Then, substitute both
control laws into Eq. (1) to obtain the closed-loop dynamics:

M _s� �C� K�s � 0 (4a)

M _s� �C� K�s � ~fa (4b)

where the disturbance estimation error is ~fa � f̂a − fa. Select a
Lyapunov candidate function V � �1∕2�sTMs and notice the

skew-symmetric property for _M − 2C of typical systems like manip-

ulators [31], then _V � −sTKs < 0 can be deduced to guarantee the
stability of the omniscient controller. However, the nonzero residue
~fa will degrade the convergence of the tracking errors compared to
the former, which motivates us to investigate its specific structure for
a more accurate disturbance estimation.

B. Uncertain Disturbance Model for Manipulator

Before tackling the complex aerial manipulator system, we begin
with one of its simpler subsystems to establish a unified rule. Con-
sider a two-link planar manipulator with an unknown payload, as
illustrated in Fig. 1. The inertial frame feg is establishedwith the base
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joint serving as the originO. In addition to the state and control input
vectors introduced previously, the known parameters of the first link
include its mass m1, moment of inertia I1, link length l1, and length
from themass center to the base joint lc1. To simplify the analysis, we
assume the payload is rigidly attached. The second link is thus treated
as an augmented link characterized by four unknown parameters:
mass me, moment of inertia Ie, the distance from the mass center to
the second joint lce, and the deviation angle δe relative to the original
orientation of the second link. For brevity, denote all the unknown
parameters as Θu � fme; Ie; lce; δeg.
Now, in the augmented system, the unknown parameters will

introduce uncertainties into the actual dynamic matrices
M;C; andG. Hence, the unknown disturbances are implicitly con-
tained in the left-hand side of Eq. (5a). To maintain the control law
structure similar to that in Sec. II.A, we design the omniscient

controller by the known nominal dynamics M̂; Ĉ; and Ĝ and the
ideal compensation fa. In this case, the system dynamics and the
omniscient control law can be expressed as follows:

M�q� �q� C�q; _q� _q�G�q� � τ (5a)

τod � M̂ �qr � Ĉ _qr � Ĝ� fa − Ks (5b)

τad � M̂ �qr � Ĉ _qr � Ĝ� f̂a − Ks (5c)

Therefore, by substituting omniscient control law (5b) into the
system dynamics equation (5a), the ideal compensation fa can be
derived as follows to achieve the ideally convergent error dynamics
like Eq. (4a):

fa � −� ~M �qr � ~C _qr � ~G� (6)

where ~M � M̂ −M represents the estimation error between the

nominal and actual dynamics, while ~C and ~G are defined similarly.
Now,wewill demonstrate that fa can be expressed as the product of a
kinematic regressor matrix and a parameter vector, which are asso-
ciated with known states and unknown parameters, respectively.
These can be deduced from Proposition 1.
Proposition 1: The general Lagrangian systems linear to dynamic

parameters [32] (i.e., mass, inertia, length, etc.) ensure the trans-
formation of the dynamic equation into a linear form, i.e.,
M �q� C _q�G � YΘ� b. If a vector Θ containing all combination
bases of dynamic parameters is found, the analytical expression of the
kinematic regressor matrix Y can be subsequently determined.
Remark 2: For general Lagrangian systems, the relationship

between dynamic parameters and state variables involves linear
operations, including addition and scalar multiplication. The essence
of matrix operations is linear operations. Therefore, for the left-hand
side of the equations of motion M �q� C _q�G, all dynamic param-
eters and their combinations can be grouped into a vector. Employing
the principles of matrix operations, the left-hand side can be
rearranged into an equivalent form: YΘ� b.
Based on all the found combination bases in the parameter vector

Θ, the dynamics equation (5a) can be linearly transformed as

M�q� �q�C�q; _q� _q�G�q� � Y�q; _q; �q� ⋅Θ�me;Ie; lce;δe��b�q; �q�
(7a)

Θ�me; Ie;δe; lce� � Ie; me; mel
2
ce; melce sin�δe�; melce cos�δe� T

(7b)

where Y�q; _q; �q� ∈ R2×5 is the kinematic regressor matrix,

Θ�me; Ie; δe; lce� ∈ R5×1 is the parameter vector, and b�q; �q� ∈
R2×1 is the kinematic bias vector related to remaining dynamics. To
derive the ideal compensation, first mark the states �q� and _q� in the
left side of Eq. (7a) as M�q� �q� � C�q; _q� _q� �G�q�. Then, replace
the �q� and _q� with �qr and _qr, respectively, to derive M�q� �qr�
C�q; _q� _qr �G�q�, which can be further linearly transformed as
Eq. (8). Accordingly, the regressor matrix Y�q; _q; �q�will be changed
into Y 0�q; _q; _qr; �qr�. This transformation process and the specific
expressions of the related matrices are provided in Appendix A.

M�q� �qr � C�q; _q� _qr �G�q� � Y 0�q; _q; _qr; �qr� ⋅ Θ�me; Ie; lce; δe�
� b�q; �q� (8)

Next, replace the true parametersme; Ie; lce; and δe with estimated

parameters m̂e; Îe; l̂ce; and δ̂e to get Eq. (9).

M̂�q� �qr � Ĉ�q; _q� _qr � Ĝ�q� � Y 0�q; _q; _qr; �qr� ⋅ Θ̂�m̂e; Îe; l̂ce; δ̂e�
� b�q; �q� (9)

Finally, the ideal compensation defined by Eq. (6) can be derived
from Eq. (8) minus Eq. (9), where the parameter estimation error is
~me � m̂e −me and so on for the rest.

fa � −Y 0�q; _q; _qr; �qr� ⋅ ~Θ� ~me; ~Ie; ~lce; ~δe� (10)

As Eq. (10) shows, the uncertain disturbance (or ideal compensa-
tion) can be decoupled into a regressor matrix related to the states of
the system and a vector representing the parameter estimation errors.
More intuitively, we can draw a physical interpretation that the
uncertainty force and moment can be written as a function of the
errors between estimated values and actual values of the physical
terms (e.g., the payload mass, inertia), which reveals the physical
source of the disturbance.

C. Uncertain Disturbance Model for Aerial Manipulator

Now, in the case of the aerial manipulator with an unknown pay-
load, we can derive its uncertain disturbance model by following
procedures similar to those employed for the manipulator.

1. Lagrangian Dynamics

Consider a quadrotor with a two-DOF manipulator, as shown in
Fig. 2. The inertial frame is represented by feg, while the body frame
fbg originates at the center ofmass of the quadrotor. The link frame of

Fig. 1 Two-link manipulator carrying an unknown load.

Fig. 2 Illustration of a quadrotor with a 2-DOF manipulator.
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themanipulator fig is defined by theDenavit–Hartenberg convention
[33], with its base origin O0 coinciding withOb. The position ofOb

relative to the frame feg is denoted bypb � �x; y; z�T. The orientation
of the quadrotor, described by roll-pitch-yaw Euler angles, is repre-

sented as Φb � �ϕ; θ;ψ �T . The joint angles of the manipulator are

indicated by nm � �n1; n2�T. Then, the generalized coordinates of the
system are expressed as q � �pT

b ;ΦT
b ; n

T
m�T .

Before attaching the unknown payload to the aerial manipulator,

it is essential to establish the Lagrangian dynamics, determine the

specific form of dynamic matrices, and investigate their relation-

ships with the inertia parameters. Remember that the Lagrangian

dynamics is characterized by LagrangianL � K − U, whereK and

U represent the total kinematic and potential energy of the system,

respectively. Subsequently, the Euler–Lagrange equation can be

formulated as

d

dt

∂L
∂ _q

−
∂L
∂q

� τ (11)

where q represents generalized coordinates and τ denotes general-
ized forces. The total kinematic energy of the aerial manipulator

comprises two aspects: the quadrotor part Kb and link parts Kli ,

where i ∈ f1; : : : ; ng denotes the index for each segment of the

manipulator. Note that the kinematic energy includes both transla-

tional and rotational components. Therefore, the kinematic energy

of the aerial manipulator can be expressed as follows:

K � Kb �
n

i�1

Kli

Kb � 1

2
mb _p

T
b _pb �

1

2
ωT
bRbHbR

T
bωb

Kli �
1

2
mli _p

T
li
_pli �

1

2
ωT
li
RbR

b
li
HliR

li
bR

T
bωli

(12)

where mb and mli , and Hb and Hli represent the mass and inertia

matrix of the quadrotor and ith link of the manipulator, respectively.

Rb and Rb
li
denote the rotation matrix from reference frames fbg to

feg and fig to fbg, respectively. The absolute translational and

rotational velocities relative to feg are denoted by _pb, _pli , ωb, and

ωli . Note that the absolute rotational velocity satisfies the trans-

formation rules ωb � Tb
_Φb, where _Φb represents the Euler angle

rate. Here, Tb is the transformation matrix satisfying Tb � RbQ,

and Q facilitates the mapping of ωb
b � Q _Φb from _Φb to the rota-

tional velocityωb
b with respect to fbg. More detailed explanations of

Tb and Q can be referred to in Appendix B.
The total potential energy U can be derived using the analogous

procedures and formulated as

U � Ub �
n

i�1

U li

Ub � mbge
T
3pb

U li � mlige
T
3 pb � Rbp

b
bli

(13)

where e3 � �0; 0; 1�T serves as a basis vector, and pb
bli

denotes the

center of mass for the ith link relative to frame fbg. Then, the
Lagrangian dynamics of the aerial manipulator can be derived in

the same form as Eq. (5a), i.e., M�q� �q� C�q; _q� _q�G�q� � τ, by
substituting the specific energy expressions of K and U into the

Lagrangian L. To be more precise, the inertia matrix M ∈ Rn×n

can be represented in the following 3 × 3 block form:

M11 � mb �
n

i�1

mli I3

M22 � QTHbQ�
n

i�1

mliT
T
bS�Rbp

b
bli
�TS�Rbp

b
bli
�Tb

�QTRb
li
HliR

li
bQ

M33 �
n

i�1

mliJ
�li�T
P J�li�P � J�li�

T

O Rb
li
HliR

li
bJ

�li�
O

M12 � MT
21 � −

n

i�1

mliS�Rbp
b
bli
�Tb

M13 � MT
31 �

n

i�1

mliRbJ
�li�
P

M23 � MT
32 �

n

i�1

QTRb
li
HliR

li
bJ

�li�
O −mliT

T
bS�Rbp

b
bli
�TRbJ

�li�
P

(14)

where I3 ∈ R3×3 represents an identity matrix, and J�li�P and J�li�O

denote the linear and angular velocity Jacobian matrices of the
manipulator, respectively. The function S�⋅� represents the skew-
symmetric operator.
The Coriolis matrix, C ∈ Rn×n, is computed from M, with each

element cij located in the ith row and jth column.

ckj �
n

i�1

1

2

∂mkj

∂qi
� ∂mki

∂qj
−
∂mij

∂qk
_qi (15)

where mij represents the element in M at the corresponding posi-

tion. Thus, it can be safely concluded that C is determined by M
from Eq. (15). Therefore, the combinations of inertia parameters in
C, includingmass, inertia, and length, are entirely inherited fromM,
due to the linear operation property of differentiation with respect
to q.
The element in the gravitational vector can be computed as

gi �
∂U
∂qi

(16)

Similarly to the analysis of C, the combinations of inertia param-
eters in G are consequently inherited from those in U.
Now, consider the aerial manipulator with an unknown payload

attached to its end effector, akin to the manipulator studied in Sec. II.
As shown in Fig. 3, the initially known inertia parameters of the
second link become contaminated by the payload, resulting in an
unknown parameter setΘu � fme;Hle; lce; δeg. Here,me; lce; Hle �
diag�Ilcexe ; Ilceye ; Ilceze � represent the mass, center of mass, and the inertia

matrix for the augmented second link, while δe denotes the corre-
sponding deviation angle.

2. Uncertain Disturbance Model

To investigate the disturbance structure of the aerial manipulator
with an unknown payload, we will reformulate the equations of
motion into a linear form with respect to a parameter vector. Guided

Fig. 3 A quadrotor with a 2-DOF manipulator carrying an unknown

payload.
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by Proposition 1, this parameter vector includes all combinations of

unknown parameters. Furthermore, leveraging the specific expres-

sions and the linearity of dynamic matrices in Eqs. (14–16) concern-

ing inertia parameters, we only need to extract the combinations of

unknown parameters from the basic terms inM. These are the terms

affected by the unknown parameters in Eq. (14).

ml2 → me

Hl2 �
Ilc2x 0 0

0 Ilc2y 0

0 0 Ilc2z

→

Ilcexe 0 0

0 Ilceye 0

0 0 Ilceze

pb
bl2

� Rb
1 ⋅ p1

12 � Rb
2 ⋅ p2

bl2
→ R0

1 ⋅ p1
12 � R0

1 ⋅ R1
2�δe� ⋅ p2

bl2
�lce�

Rb
l2
� Rb

1 ⋅ R1
2 → R0

1 ⋅ R1
2�δe�

J�l2�P � zb0 × pb
bl2

zb1 × Rb
2 ⋅ p2

bl2

→ zb0 × pb
bl2
�δe; lce� zb1 × R0

1 ⋅ R1
2�δe� ⋅ p2

bl2
�lce�

(17)

whereR1
2�δe� denotes the rotationmatrix from frame f2g to f1g, while

p1
12 � �0; 0; l1�T and p2

bl2
�lce� � �0; 0; lce�T represent the lengths of

the first and second augmented links, respectively, measured in

frames f1g and f2g. Their specific forms are provided below:

R1
2�δe� �

cos�n2 � δe� 0 sin�n2 � δe�
0 1 0

− sin�n2 � δe� 0 cos�n2 � δe�
p2
bl2

� 0; 0; lce
T (18)

Based on the source of the parametric uncertainties in Eq. (17),

we can summarize all the patterns of unknown parameters in

Table 1. Furthermore, we can simplify the analysis by transforming

these uncertain patterns into simpler analysis targets, leveraging

the properties of skew matrices as demonstrated in Eq. (19), where

S�⋅� represents the skew-symmetric operator, while x and R denote

the input vector and rotation matrix, respectively. It is worth noting

that, for simplification purposes, we temporarily disregard the

coefficient ml2 , which will be reintroduced in the final parameter

vector.

S�x� � S�x�T � 0

S�Rx� � R ⋅ S�x� ⋅ RT (19)

The analysis targets prompt us to focus on fundamental terms

such as S�pb
bl2
�; J�l2�P ; and Rl

2Hl2R
2
l . Then, our objective shifts to

identifying all basic combinations of unknown parameters within

these analysis targets.

Firstly, identify the unknown basis within S�pb
bl2
� and its input

pb
bl2
�δe; lce�.

pb
bl2
�δe; lce� � R0

1 ⋅ R1
2�δe� ⋅ p2

bl2
�lce� � R0

1 ⋅ p1
12

� R0
1 ⋅ P1 ⋅ B1 � b1

� P2 ⋅ B1 � b1 (20)

where B1 � �lce sin�δe�; lce cos�δe��T represents the unknown basis

forpb
bl2
�δe; lce�,P1 andP2 � R0

1P1 denote the corresponding regres-

sor matrices, and b1 � R0
1 ⋅ p1

12 represents a residual bias vector.

Note that for a given input vector pb
bl2
�δe; lce� � �a1; a2; a3�T, its

skew-symmetric matrix is defined as

S�pb
bl2
� �

0 −a3 a2
a3 0 −a1
−a2 a1 0

(21)

AsEq. (20) suggests, each element ai inS�pb
bl2
� is derived from the

vector B1 with unknown parameters. Therefore, the unknown basis

for S�pb
bl2
� is

V1flce sin�δe�; lce cos�δe�g (22)

Then, we can calculate the product term S�pb
bl2
�TS�pb

bl2
�.

S�pb
bl2
�TS�pb

bl2
� �

a22 � a23 −a1a2 −a1a3
−a1a2 a21 � a23 −a2a3
−a1a3 −a2a3 a21 � a22

(23)

Utilizing the expanded form of pb
bl2

to obtain the specific structure

of ai, we can derive that each element within matrix S�pb
bl2
�TS�pb

bl2
�

can be constructed by the following unknown basis (refer to
Appendix C for details).

V1 ∪ V2fl2ce cos2�δe�; l2ce sin2�δe�; l2ce cos�δe� sin�δe�g ∪ V3fl2ceg
(24)

Secondly, identify the unknown basis related to J�l2�P using the

similar steps as for S�pb
bl2
�. Retain the notations in Eq. (20) and recall

that the cross product of two vectors can be represented as a matrix
multiplication by introducing a skew matrix, i.e., a × b � S�a� ⋅ b.
Thus, J�l2�P can be expressed as

J�l2�P � zb0 × pb
bl2
�δe; lce� zb1 × R0

1 ⋅ R1
2�δe� ⋅ p2

b2
�lce�

� S�zb0� ⋅ �P2 ⋅ B1 � b1� S�zb1� ⋅ �P2 ⋅ B1�
� P3 ⋅ B1 � b2 P4 ⋅ B1 (25)

where P3 � S�zb0�P2 and P4 � S�zb1�P2 are the respective regressor

matrices, and b2 � S�zb0�b1 is a bias vector relevant only to known

states.As a result, the unknownbasis ofJ�l2�P is equivalent toV1. Before

analyzing J�l2�P
TJ�l2�P , it is worth noting that the two rotational axes of

joints are parallel, hence, zb1 � zb0 , or P3 � P4. Another property

P3
TP3 � I2 can be verified, where I2 ∈ R2×2 denotes the identity

matrix. Consequently, the product J�l2�P
TJ�l2�P can be expressed as

J�l2�P
TJ�l2�P � BT

1 ⋅PT
3 �bT2

BT
1 ⋅PT

4

⋅ P3 ⋅B1�b2 P4 ⋅B1

� BT
1B1�BT

1P
T
3b2�bT2P3B1�bT2b2 BT

1B1�bT2P4B1

BT
1B1�BT

1P
T
4b2 BT

1B1

(26)

Table 1 Analysis of all uncertain patterns in the inertia

matrixM

Block components Uncertain patterns Analysis targets

M11 ml2 ml2

M22 ml2S�Rbp
b
bl2
�TS�Rbp

b
bl2
� S�pb

bl2
�TS�pb

bl2
�

M22;M33;M23;M32 ml2R
b
l2
Hl2R

l2
b

R1
2Hl2R

2
1

M33 ml2J
�l2�
P

TJ�l2�P J�l2�P
TJ�l2�P

M12;M21 ml2S�Rbp
b
bl2
� S�pb

bl2
�

M13;M31 ml2J
�l2�
P J�l2�P

M23;M32 ml2S�Rbp
b
bli
�TRbJ

�l2�
P S�pb

bl2
�J�l2�P
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Notice that BT
1B1 � l2ce, and all terms in Eq. (27) are derived from

either B1 or BT
1B1. Thus, the unknown basis of J�l2�P

TJ�l2�P should

be V1 ∪ V3.
As for the cross-term S�pb

bl2
�J�l2�P , each element should be ana-

lyzed. Therefore, the expanded form of J�l2�P can be given as follows:

J�l2�P �
c11 c12
0 0

c31 c32

(27)

Then, the product term S�pb
bl2
�J�l2�P can be represented as follows:

S�pb
bl2
�J�l2�P �

0 −a3 a2
a3 0 −a1
−a2 a1 0

⋅
c11 c12
0 0

c31 c32

�
0 0

a3c11 − a1c31 a3c12 − a1c32
0 0

(28)

where a2 is equal to zero. We can verify that the specific structure of
cij can also be constructed by the unknown basis V1. Therefore, both

a3c11 − a1c31 and a3c12 − a1c32 can be represented using the

unknown basisV1 ∪ V3, as can the product term S�pb
bl2
�J�l2�P . Further

details can be found in Appendix C.
Thirdly, by directly substituting Eqs. (17) and (18) to calculate the

product, we can determine the unknown basis of R1
2Hl2R

2
1 for each

element. Please refer to Appendix C for its specific expression. Then,

the unknown basis of R1
2Hl2R

2
1 can be assembled as follows:

V4 sin2�δe�; cos2�δe�; sin�δe� cos�δe� × Ilcexe ; I
lce
ze ∪ Ilceye

(29)

where “×” denotes the Cartesian product of two sets.
Recall that the matrix C is derived from M, and U contains pb

bl2
.

Therefore, C will share the same unknown basis with M, and the
unknown basis for G is V1. Finally, with the guidance of Proposi-
tion 1, we can derive that the Lagrangian dynamics of the aerial
manipulator with a payload can be reformulated into an equivalent
linear form with respect to its dynamic parameters.

M�q� �q� C�q; _q� _q�G�q� � Y�q; _q; �q� ⋅ Θ� b (30)

whereΘ represents the parameter vector composed of all 14 unknown
bases from the sets V1; V2; V3; V4 and m1;2. For the case of aerial

manipulators, the increased complexity of the M and C matrices
impedes the specific analytical expression for the Ymatrix. However,
Y does exist and is fully determined given Θ. Similarly to the
derivation procedures of the manipulator from Eqs. (8–10), the
uncertain disturbance (or ideal compensation) of the aerial manipu-
lator with a payload will share the same form.

fa � −Y 0�q; _q; _qr; �qr� ⋅ ~Θ (31)

Therefore, for the aerial manipulator with a payload, the uncertain
disturbance (or ideal compensation) can also be regarded as the
product of a kinematic regressor matrix relevant to the states and
commands, and a parameter vector stemming from the errors in
estimating unknown parameters.

III. Meta Adaptive Control for Aerial Manipulator

In this section, we develop a meta-adaptive control leveraging the
structure of the ideal compensation derived in Sec. II, aimed at
improving trajectory tracking precision for the aerial manipulator.
Subsequently, the stability of the closed-loop system is guaranteed by
Lyapunov analysis.

A. Meta-Adaptive Control

The meta-adaptive control is implemented in two steps similar to
[29]. Firstly, offline meta-learning is employed to train an approx-
imator Γ of the kinematic regressor in a data-efficient way. Secondly,
the online composite adaptive control law is devised to estimate the
unknown parameters a.

1. Meta-Learning and Adaptation Goal

The specific analytical form of the regressor matrix in Eq. (31) is
hard to calculate for the entire aerial manipulator system in practice,
despite its theoretical existence. Furthermore, the regressor matrix is
essential to implement a controller capable of direct compensation for
disturbances at the system level. Therefore, we employ neural net-
works to approximate the intractable regressor matrix, enabling the
controller to counteract unknown disturbances with acceptable
errors. Following the structure of the ideal compensation in
Eq. (31), the parameterized compensation can be expressed as

fa � Y 0�q; _q; _qr; �qr� ⋅ ~Θ ≈ Γ�q; _q; �q;W� ⋅ a (32)

where Γ∶Rn × Rn × Rn → Rn×m denotes a neural network to
approximate the kinematic regressor parameterized by weights W,
and a ∈ Rm represents corresponding parameters. Note that for a
specific task, the state q at time k is actually affected by qd at time
k − 1, so the task-relevant information is indirectly contained in
the state.
Denote the maximum representation error �d of the approximation

as

�d � min
a

max
q; _q; �q∈S

Y 0�q; _q; _qr; �qr� ⋅ ~Θ − Γ�q; _q; �q;W� ⋅ a (33)

whose existence is guaranteed under the assumption of the bounded
Lipschitz constant of fa and the bounded training error in the feasible
domain S of states.

2. Offline Meta-Learning

The precollect dataD � fD1; D2; : : : ; DNg inN different grasping
and tracking conditions fe1; e2; : : : ; eNg are required to train the
approximator Γ. Each subset Di�i � 1; 2; : : : ; N� contains M pairs

of �xij; yij� sampled from the trajectory Ti, where x
i
j � �qij; _qij; �qij� is

the sampled state, yij � −�fa�ij is the label for compensation force

and j � 1; 2; : : : ;M is the time stamp.
The training objective is quantified by the loss function. On the one

hand, the regression loss contributes to optimal weights W� for
precise approximation of fa. On the other hand, the regulation loss
constrains the approximator Γ for domain invariance. Then, the
optimization problem can be defined as

W� � max
h

min
Γ;a

N

i�1

M

j�1

Γ xij;W ⋅ ai − yij
2

� α ⋅ log h Γ�xij;W� T ⋅ ei (34)

where h represents another neural network functioning as a classifier
to discriminate among various grasping conditions using one-hot
labels fe1; e2; : : : ; eNg. This network is adversarially trained to
ensure domain invariance across scenarios with different payload
settings but the identical desired trajectory. Note that conditions with
the same desired trajectory share the same label. Therefore, the
learned approximator can capture the independent influence of sys-
tem states on the disturbance from the trainset and will exhibit
improved generalization to the unseen testing scenarios.
Now, the optimization problem (34) can be solved by the following

meta-learning algorithm, where Γ; h are updated by gradient descent
in the outer loop and a is updated by least-square in the inner loop. In
a training epoch, each Di will be divided into two nonoverlapped
subsets Da

i and Dt
i for adapting a and training Γ, respectively. The

main processes include the following: 1) adaptation step solves a�i in
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condition ei on dataset Da
i in the inner loop; 2) the training step

updates the parameters of the approximator Γ onDt
i using solved a

�
i ;

3) the regulation step updates the discriminator h on Dt
i. It is worth

noting that normalizing a� and the spectral normalization for Γ will

benefit the robustness and Lipschitz property for control design.

More details of the training procedures can be found in [29].

3. Online Adaptive Control

The offline meta-learning process yields a precise approximator

with optimal parameters Γ�W��, effectively minimizing the predic-

tion error of fa by solving a� through the least-square method.

However, the control objective also involvesminimizing the tracking

error, thereby requiring a composite adaptive law to update a. Thus,
the control system is divided into two parts: a nonlinear control law

τd and an adaptive law â. For brevity, the independent variables in
matrices and vectors are omitted.
To formulate the control problem, we adopt the commonly used

tracking errors defined in Eq. (2) and consider the dynamics of the

aerialmanipulatorwith the same form asEq. (5a). Then, the nonlinear

control law augmented by the approximated compensation can be

formulated as

τd � M̂ �qr � Ĉ _qr � Ĝ − Ks − Γâ (35)

where M̂ �qr � Ĉ _qr � Ĝ represents the nominal dynamics, K
is a positive definite gain matrix, and â denotes the estimated

parameters. If the representation error is denoted as d�q; _q; �q� �
Y 0�q; _q; _qr; �qr� ⋅ ~Θ − Γ�q; _q; �q;W� ⋅ a, then the closed-loop dynam-

ics can be derived by substituting Eq. (35) into Eq. (5a):

M _s� �C� K�s� Γ ~a � d (36)

The adaptive law contains a prediction error term and a tracking

error term and can be expressed as

_̂a � −PΓT�Γâ − ŷ� � PΓTs (37a)

_P � −PΓTΓP (37b)

The prediction error term is analogous to an online least-square

estimator, i.e., the first part in Eq. (37a) with an evolved covariance

matrix P. This term contributes to reducing the cumulative error

between the estimated compensation Γâ and the measured compen-

sation ŷ via finite difference. In addition, the tracking error term

ensures the stability of the closed-loop system, i.e., the second

component in Eq. (37a) relevant to the tracking error s.

B. Lyapunov Stability Analysis

Now, the stability analysis of the proposed control scheme will be

verified by the Lyapunov theory.
Theorem 1: Given the dynamics of the aerial manipulator in

Eq. (5a), along with the nonlinear control law (35) and the adaptive

law (37), the norm of the augmented tracking error �sT; ~aT �T will

exponentially converge within the bound specified in Eq. (38) at a

rate α.

lim
t→∞

s
~a

⩽
1

αmin�λmin�M�; λmin�P−1�� sup
t
kdk � sup

t
kΓTϵk

(38)

where λmin ∕max�⋅� represents theminimum (maximum) eigenvalue of

the matrix and α is a constant and ϵ is defined as ŷ − Γa.
Proof: Combine the closed-loop dynamics of both trajectory

tracking Eq. (36) and parameter estimation Eq. (37) into a more

compact form:

M 0

0 P−1 ⋅
_s
_~a

� C� K Γ
−ΓT ΓTΓ

⋅
s

~a
� d

ΓTϵ
(39)

Select the Lyapunov candidate function V as

V � s
~a

T M 0

0 P−1
s
~a

(40)

To simplify the symbolic notations, define V � xTMx, where
x � �sT; ~aT �T , then we can derive

M � M 0

0 P−1 (41)

Equation (39) can be reformulated as

M _x � −
C� K Γ
−ΓT ΓTΓ

⋅ x� d

ΓTϵ
(42)

Now, we can compute _V using Eq. (42).

_V � 2xTM _x� xT _Mx

� −2 s
~a

T

⋅ C� K Γ
−ΓT ΓTΓ ⋅ s

~a
� 2

s
~a

T

⋅ d
ΓTϵ

� s
~a

T

⋅
_M 0

0 _P−1 ⋅ s
~a

� −2 s
~a

T

⋅ K 0

0 1∕2ΓTΓ ⋅ s
~a

T

� 2
s
~a

T

⋅ d
ΓTϵ

(43)

Remark 3: The derivation of Eq. (43) employs two simplification
techniques: 1) the skew-symmetric property of matrix _M − 2C
renders the corresponding quadratic terms to zero; 2) for the first

term in Eq. (43), the off-diagonal elements of the quadratic form

matrix can be eliminated because of sTΓ ~a − ~aTΓTs � 0. 3) Notice
_P−1 � −P−1 _PP−1.
As K, ΓTΓ, M and P−1 are uniformly positive definite and uni-

formly bounded [29], there exists some α > 0 to bound the first
diagonal block matrix in the simplified result of Eq. (43), where α
is determined by the eigenvalues of the blockmatrices as presented in

Eq. (44). In addition, the second term can be bounded using the
Cauchy-Schwartz inequality, along with the definition of the upper

bound Eq. (46) for the disturbance term. Then, we can derive the

following inequality for _V:

_V ⩽ −2α
s

~a

T

⋅
M 0

0 P−1 ⋅
s

~a

T

� 2
s

~a

T

⋅
d

ΓTϵ

⩽ −2αV � 2
s

~a
⋅

d

ΓTϵ

⩽ −2αV � 2
V

λmin�M�D (44)

where

α � min
λmin�K�
λmax�M� ;

1∕2λmin�ΓTΓ�
λmax�P−1� (45)

and

D � sup
t

d
ΓTϵ

(46)
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Introduce a transformation W � V
p

, from which we can derive

V � W2 and _V � 2 _WW. Then, the inequality (44) can be reformu-
lated using these equations.

_V ⩽ −2αV � 2
V

λmin�M�D

_W ⩽ −αW � D

λmin�M�
(47)

Applying the comparison lemma [34], we can derive

V
p

� W ⩽ e−αt W�0� − D

α λmin�M� � D

α λmin�M� (48)

By utilizing the relationship between a quadratic term and its

eigenvalues, λmin�M�kxk2 ⩽ V, the augmented tracking error x will
be bounded.

λmin�M�kxk⩽ V
p

⩽e−αt W�0�− D

α λmin�M� � D

α λmin�M�
kxk⩽e−αt

W�0�
λmin�M�−

D

αλmin�M� � D

αλmin�M�
(49)

whereW�0� represents the initial value ofW at time t � 0. Finally,
by taking the limit as t → ∞ on both sides, Theorem 1 can be proven.

IV. Experiments

We implemented and evaluated the performance of the meta-
adaptive controller using MATLAB R2023a and SIMULINKS,
and trained the approximated kinematic regressor with PyTorch
1.8. Our experiments aim to validate the improved track performance
and the robustness of the meta-adaptive controller across various
desired commands and payload settings. The first experiment
involves tracking two types of trajectories. One is randomly gener-
ated byMinimumSnap [35] (abbreviated asMinSnap), while another
is a figure-8 trajectory. In the second experiment, the uncertain
parameters of the payload range from the seen to the unseen training
dataset. All these experiments are compared with the baseline,
including a PID and a conventional adaptive controller [36].

A. Dataset Generation and Network Training

The processes of training the kinematic regressor Γ are critical for
the well-performed meta-adaptive controller. Now, we provide the
details of the experiment settings.
The reference trajectories and uncertainties are specified for prepa-

ration. The desired trajectories consist of two components. For the
quadrotor, the reference trajectory involves time polynomials
xd�t�; yd�t�; zd�t�;ψd�t� solved by Minimum Snap [35] with ran-
domly generatedwaypoints and the subsequently determined attitude
angle ϕd�t�; θd�t�. For the manipulator, the desired command is
represented by the time domain step response of the first-order
inertial element n1d�t�; n2d�t�. Additionally, we introduce all
unknown parameters of the payload Θu � fme;Hle; lce; δeg to the
aerial manipulator that shared the same inertia parameters as that in
[36]. Since the payload mass will impact all the uncertain patterns in
Table 1 and contribute the most to the uncertainty, we characterize
the uncertainty with various payload masses and other unknown
parameters fixed. To be more specific, we use a linear range of

mo ∈ f0.1; 0.2; 0.3; 0.4; 0.5g kg and fix the others to Iloxe � Iloye �
Iloze � 0.001 kg ⋅m2, lo � 0.05 m, and δe � 25° for generating
training dataset. Note that the augmented inertia parameters of the
second link are obtained by adding its previous setting to the payload,
i.e.,me � m2 �mo, etc. Moreover, considering the sensor noise and
errors [37], we simulate the measurement noise for accelerations as
Gaussian white noise with a variance of 0.2.

Next, wewill introduce the dataset generation and details about the
neural network. The training data are sampled from the trajectories
guided by the baseline controller [36]. The compensation for dis-
turbances is directly estimated from the integration of the error
feedback f̂a � −∫Kas ⋅ dt, where Ka is a diagonal gain matrix.
We simulate fifty 10-second-long trajectories for each mo and col-
lected 120 samples for each trajectory. The inputs for the network
consist of ϕ; θ;ψ ; n1; and n2 selected from q, which aims for posi-
tional error compensation along the x; y; z directions, based on the
form ofM11. The velocity _q and commands _qd and �qd are included as
well. Then, we model each row of the kinematic regressor Γ using a
multilayer perceptron (MLP), which contains 20-30-20 hidden nodes
across its three layers. The network is trained by the aforementioned
procedures and inserted into the meta-adaptive control law in
Eqs. (35) and (37).

B. Trajectory Tracking Performance

In this experiment, we utilize the trained meta-adaptive controller
to track two kinds of desired trajectories, namely, the randomly
generated MinSnap and figure-8. To account for the uncertainty,
we securely set the payload mass mo to 0.1 kg within the range of
the training dataset, and other parameters the same as those in
Sec. VI.A. Note that the sequential waypoints required to generate
the MinSnap trajectory are entirely random. Hence, both MinSnap
and figure-8 trajectories for testing have not been seen for the net-
works. Furthermore, we evaluate the tracking performances of PID,
baseline adaptive, andmeta-adaptive controllers using the gainmatri-
ces specified in Table 2.We implement the PID controller by employ-
ing the PID-form combination of errors to estimate the disturbance

compensation, denoted as f̂a � −�Kp ~q� ∫Ki ~q� Kd
_~q� ⋅ dt, since

the system will diverge under a naive PID control law.
Figures 4 and 5 display the trajectories in both 3D and 2D versions.

Themeta-adaptive controller (red) outperforms both the PID controller
(pink) and the baseline adaptive controller (blue) in tracking the
MinSnap trajectory (green). As shown in Figs. 6 and 7, the proposed
controller effectively reduces the tracking error in the x; y; z channels
by accurately predicting disturbances. This validates the network’s
precise approximation and the stability ensured by the online adaptive
law. According to Table 3, the meta-adaptive controller shows the
lowest root-mean-squared error (RMSE). Similar conclusions can be
inferred from the results of figure-8 trajectory tracking. The tracking
performance is illustrated in Figs. 8–10, while the disturbance

Table 2 List of gain matrices

Controller Gain

PID K � 18I Kp � 3I Ki � 3I Kd � 2I

Baseline adaptive K � 18I Ka � 8I

Meta adaptive K � 18I

Fig. 4 MinSnap trajectory tracking in 3D view.
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predictions are given in Fig. 11. Additionally, relevant statistics are
listed in Table 3. Regarding the results of the PID controller, the
additional proportional and differentiating terms contribute to a slight
improvement compared to the baseline adaptive controller in the
horizontal direction when there are fewer disturbances. However,
the convergence-guaranteed adaptive law ensures system stability in
the vertical direction, especially under major disturbances.

Fig. 5 MinSnap trajectory tracking in each channel.

Fig. 6 MinSnap trajectory tracking error in each channel.

Fig. 7 MinSnap disturbance prediction in each channel.

Table 3 Tracking RMSEwithin training dataset mass distribution

Controller

MinSnap RMSE, m Figure-8 RMSE, m

ex ey ez ex ey ez

PID 0.0275 0.0461 0.2024 0.1493 0.1470 0.1854
Baseline adaptive 0.0471 0.0885 0.0352 0.1353 0.0486 0.0193
Meta adaptive 0.0147 0.0276 0.0211 0.0610 0.0286 0.0179

The lowest RMSE is highlighted in each column.

Fig. 8 Figure-8 trajectory tracking in 3D view.
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C. Robustness to Variant Uncertainty

In this experiment, we account for the significant impact of pay-
load mass on unknown disturbances by characterizing uncertainty
using a wider range of payload masses that extends outside the
domain of the training dataset. Initially, we attempted mo slightly
beyond the training dataset as 0.6 kg while tracking both MinSnap
and figure-8 trajectory. Akin to the first experiment, the improved
tracking performance of the proposed controller for MinSnap trajec-
tory can be observed in Figs. 12–14. The capability of the meta-
adaptive controller to predict disturbances is verified in Fig. 15. In
addition, the outcomes for the figure-8 tracking are depicted in
Figs. 16–19. Our proposed controller achieves the lowest RMSE
in all tracking directions, as shown in Table 4. It effectively reduces
the RMSE by about 0.24 m in the vertical direction z compared
with the PID controller, and about 0.02–0.11 m compared with the

baseline adaptive controller. This preliminarily demonstrates the
generalization capability of the proposed controller for scenarios
involving unseen masses.
To further investigate the generalization ability of the proposed

controller, we uniformly sampled the payload masses from 0.02 to
1.00 kg with 50 candidates and randomly generated 10 MinSnap
trajectories at each sampled mo. Then, we visualize the tracking
RMSE surfaces in each x; y; z channel in Fig. 20. In this 3D plot,
the horizontal axes represent different payloadmasses and simulation
cases, respectively. The vertical gray plane divides the simulation
scenarios into two regions: the left part belongs to the training
distribution, and the right does not. The mean RMSE curves across
all simulations at eachmo are projected to the front side, with the red
curve representing the meta-adaptive controller, the pink one for the
PID controller, and the blue one for the baseline adaptive controller.

Fig. 9 Figure-8 trajectory tracking in each channel.

Fig. 10 Figure-8 trajectory tracking error in each channel.

Fig. 11 Figure-8 disturbance prediction in each channel.
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The results indicate that both the PID and the baseline adaptive
controllers exhibit a larger RMSE at each channel (top surface). In
contrast, the proposed controller not only achieves a smaller RMSE
(lower surface) with less variance but also maintains stable perfor-
mance even when the payload masses extend far beyond the distri-
bution of the training dataset. This is further illustrated by the results
in Fig. 21, which depicts the fluctuating range of RMSE, with the
bold mean RMSE curve in the center bounded by its minimum and
maximum values. However, for the z axis, the RMSEs of all con-
trollers increase due to the gravity of the heavier payload. Note that
the proposed controller consistently outperforms the other two
benchmark controllers.

V. Conclusions

The uncertainty of the aerial manipulator with an unknown pay-
load has been investigated to achieve more precise disturbance

Fig. 13 MinSnap trajectory tracking in each channel.

Fig. 14 MinSnap trajectory tracking error in each channel.

Fig. 15 MinSnap disturbance prediction in each channel.

Fig. 12 MinSnap trajectory tracking in 3D view.
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compensation. We consider both the center of mass position and

the deviation angle of the payload, treating it as a component of the

augmented system to ensure more accurate dynamic modeling. The

linear parameterization technique is adopted to decompose the uncer-

tainty intoakinematic regressormatrix and aparameter vector related to

known states and unknown parameters, respectively, which facilitates

Fig. 17 Figure-8 trajectory tracking in each channel.

Fig. 18 Figure-8 trajectory tracking error in each channel.

Fig. 16 Figure-8 trajectory tracking in 3D view.

Fig. 19 Figure-8 disturbance prediction in each channel.

Table 4 Tracking RMSE out of training dataset mass

distribution

Controller

MinSnap RMSE, m Figure-8 RMSE, m

ex ey ez ex ey ez

PID 0.0360 0.0623 0.3340 0.1025 0.0401 0.3374
Adaptive 0.0641 0.1246 0.1189 0.1826 0.0597 0.1134
Meta adaptive 0.0176 0.0292 0.0979 0.0724 0.0340 0.0959

The lowest RMSE is highlighted in each column.
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designing the structure of the compensation. The effectiveness of
the proposed disturbance compensation scheme has been verified.
We integrate the derived compensation model into the meta-adaptive
control framework, ensuring a proven Lyapunov stability guarantee.
Comparative studies with PID and traditional adaptive controllers dem-
onstrate lower tracking errors. These results validate that the proposed
method effectively reduces tracking errors and rapidly stabilizes the
system, regardless of the specific task trajectories and payload settings.
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Appendix A: Manipulator with an Unknown Payload

To clarify the transformation from Y to Y 0, we present the specific
expressions of the variables involved in the intermediate derivation

process. The expressions for the matricesM;C, andG in Eq. (7a) are

as follows:

M � m1l
2
c1 � I1 � Ie �me�l21 � 2 cos �δe − q2�l1lce � l2ce� Ie �me�l2ce � l1 cos �δe − q2�lce�

Ie �me�l2ce � l1 cos �δe − q2�lce� Ie �mel
2
ce

(A1)

C � l1lceme _q2 sin �δe − q2� l1lceme _q1 sin �δe − q2� � l1lceme _q2 sin �δe − q2�
−l1lceme _q1 sin �δe − q2� 0

(A2)

G � gme�lce cos�q1 − δe � q2� � l1 cos�q1�� � glc1m1 cos�q1�
glceme cos�q1 − δe � q2�

(A3)

Fig. 20 MinSnap trajectory tracking error surface under variant masses.

Fig. 21 MinSnap trajectory tracking error curve under variant masses.
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Then, with the parameter vector Θ as given in Eq. (7b), the

expanded forms of Y and b in Eq. (7a) can be derived as follows.

y11 � y13 � y21 � y23 � �q1 � �q2

y12 � l21 �q1 � gl1 cos�q1�
y22 � 0

y14 � g sin �q1 � q2� � l1�2 �q1 � �q2� sin�q2� � 2l1 _q1 _q2 cos�q2�
� l1 _q

2
2 cos�q2�

y15 � g cos �q1 � q2� � l1�2 �q1 � �q2� cos�q2� − 2l1 _q1 _q2 sin�q2�
− l1 _q

2
2 sin�q2�

y24 � g sin �q1 � q2� � l1 �q1 sin�q2� − l1 _q
2
1 cos�q2�

y25 � g cos �q1 � q2� � l1 �q1 cos�q2� � l1 _q
2
1 sin�q2�

(A4)

b�q; �q�2×1 �
�I1 �m1l

2
c1� �q1 �m1glc1 cos�q1�

0
(A5)

where yij is the element in the ith row and jth column of matrix

Y � �yij� ∈ R2×5.

Finally, mark the states �q� and _q� in the left side of Eq. (7a) as

M�q� �q� � C�q; _q� _q� �G�q�, and replace them with �qr and _qr,
respectively. Now, upon linear transformation of M�q� �qr �
C�q; _q� _qr �G�q�, the new regressor matrix Y 0 will be derived.

y 0
11 � y 0

13 � y 0
21 � y 0

23 � �qr1 � �qr2

y 0
12 � l21 �qr1 � gl1 cos�q1�
y 0
22 � 0

y 0
14 � g sin �q1 � q2� � l1�2 �qr1 � �qr2� sin�q2�

� l1� _q1 _qr2 � _qr1 _q2� cos�q2� � l1 _q2 _qr2 cos�q2�
y 0
15 � g cos �q1 � q2� � l1�2 �qr1 � �qr2� cos�q2�

− l1� _q1 _qr2 � _qr1 _q2� sin�q2� − l1 _q2 _qr2 sin�q2�
y 0
24 � g sin �q1 � q2� � l1 �qr1 sin�q2� − l1 _q1 _qr1 cos�q2�
y 0
25 � g cos �q1 � q2� � l1 �qr1 cos�q2� � l1 _q1 _qr1 sin�q2� (A6)

where y 0
ij represents the element in the ith row and jth column of

matrix Y 0 � �y 0
ij� ∈ R2×5. The aforementioned steps are similar to

the aerial manipulator.

Appendix B: Transformation Among Rotational
Velocities

For aircraft, the rotational velocity measured in the body-fixed

frame is defined asωb
b � �p; q; r�T , withp; q; r denoting the roll rate,

pitch rate, and yaw rate, respectively. The Euler angle rates are noted

as _Φb � � _ϕ; _θ; _ψ �T . Usually, the Euler angle rates _Φb can be con-

verted into the rotational velocity ωb
b using the following transfor-

mation [38]:

p

q

r

�
1 0 − sin θ

0 cosϕ cos θ sinϕ

0 − sinϕ cos θ cosϕ

Q

_ϕ
_θ

_ψ
(B1)

where ϕ; θ; andψ represent the Euler angles of the aircraft. Note that

the absolute rotational velocity ωb can be transformed from the

rotational velocity ωb
b via the rotation matrix Rb. In other words,

ωb can be expressed asωb � Rbω
b
b. Combing the above transforma-

tion ωb
b � Q _Φb, we can derive the relationship ofωb � RbQ _Φb and

Tb � RbQ equivalently.

Appendix C: Aerial Manipulator with an Unknown
Payload

Unknown Basis for S�pb
bl2
� and S�pb

bl2
�TS�pb

bl2
�: The specific

expression for pb
bl2

can be obtained by substituting Eq. (18) into

Eq. (20). So does the expanded form of S�pb
bl2
�. Then, we can find

that the element ai conforms to the following structure:

a1 � λ1 s ⋅ �lce sin�δe�� � λ1c ⋅ �lce cos�δe�� � ba1
a2 � 0

a3 � λ3 s ⋅ �lce sin�δe�� � λ3c ⋅ �lce cos�δe�� � ba3 (C1)

Note that we focus on the unknown basis and abbreviate the

multipliers as λ1 s; λ1c; λ3 s; λ3c and the biases as ba1 ; ba3 . By sub-

stituting Eq. (C1) into Eq. (23) and examining all unknown basis in

the quadratic terms of ai, we can determine the unknown basis for

S�pb
bl2
�TS�pb

bl2
� as indicated in Eq. (24).

Unknown Basis for J�l2�P and S�pb
bl2
�J�l2�P : The raw expression for

J�l2�P undergoes the following transformations: First, we substitute

pb
bl2

using Eq. (20) and p2
b2

� P2 ⋅ B1. Next, we convert the cross-

product operation into matrix multiplication. Finally, by applying the

distributive property of matrix multiplication, we arrive at the final

result.

J�l2�P � zb0 × pb
bl2
�δe; lce� zb1 × R0

1 ⋅ R1
2�δe� ⋅ p2

b2
�lce�

� zb0 × �P2 ⋅ B1 � b1� zb1 × �P2 ⋅ B1�

� S zb0 ⋅ �P2 ⋅ B1 � b1� S zb1 ⋅ �P2 ⋅ B1�

� S zb0 P2 ⋅ B1 � S zb0 b1 S zb1 P2 ⋅ B1

� P3 ⋅ B1 � b2 P4 ⋅ B1 (C2)

By substituting specific variables into Eq. (25), we can deduce that

the expression for J�l2�P takes the form of Eq. (27), and each element

cij therein exhibits the following structure:

c11 � λ11 s ⋅ �lce sin�δe�� � λ11c ⋅ �lce cos�δe�� � bc11
c12 � λ12 s ⋅ �lce sin�δe�� � λ12c ⋅ �lce cos�δe�� � bc12
c31 � λ31 s ⋅ �lce sin�δe�� � λ31c ⋅ �lce cos�δe�� � bc31
c32 � λ32 s ⋅ �lce sin�δe�� � λ32c ⋅ �lce cos�δe�� � bc32 (C3)

Therefore, according to the specific structures provided by Eq. (C1)

and Eq. (C3), we can confirm that the unknown basis for a3c11 −
a1c31 and a3c12 − a1c32 is V1 ∪ V3.

Unknown Basis for R1
2Hl2R

2
1: The specific expression of the

product term R1
2Hl2R

2
1 is as follows:

R1
2Hl2R

2
1 �

cos2�n2 � δe�Ilcexe � sin2�n2 � δe�Ilceze 0 sin�n2 � δe� cos�n2 � δe��Ilceze − Ilcexe �
0 Ilceye 0

sin�n2 � δe� cos�n2 � δe��Ilceze − Ilcexe � 0 sin2�n2 � δe�Ilcexe � cos2�n2 � δe�Ilceze
(C4)
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