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Introduction

Why swarming?
Swarm micro aerial vehicles (MAVs), inspired by animals (e.g., bees and birds), have undergone rapid
development and demonstrated potential to benefit humanity at large [9, 22, 71] owing to their superi-
ority in performing complex tasks such as cooperative transportation, surveillance, and detection.

Having a larger group with multiple agents at hand has many advantages. First, the sensing and
actuating capabilities are enhanced. Second, the increased redundancy provides system-wide fault
tolerance. Finally, efficiency can be increased by distributing and assigning tasks to different agents.

Why direct relative localization?
Given that localization is the foremost prerequisite in robotic operations from the navigational perspec-
tive, achieving accurate localization is always desirable regardless of the type of robot.

Swarming is powerful, but it also brings challenges to the built robotic system, among which relative
localization is one of the fundamental problems that need to be well solved. Relative localization solu-
tions can be broadly categorized into indirect ones and direct ones. Indirect relative localization means
to first determine the absolute positions of the robots in a common reference frame and then compute
the relative positions thereafter, whereas direct relative localization obtains the relative positions directly
using onboard sensors and inter-agent sensing without relying on external devices (e.g., GPS, ground
stations, fixed beacons, and optical motion tracking systems). Direct solutions are more favorable than
indirect ones since they are more economical and easier to set up. Therefore, it is valuable to develop
GPS-denied and infrastructure-free direct relative localization solutions for MAV swarms.

Why Ultra-wideband (UWB)? & Additional hardware settings
In the framework of direct relative localization, onboard sensors play more dominant roles. Considering
that MAVs have limited power supply, light and computationally efficient onboard sensors are preferred.

In terms of inter-agent sensing, ultra-wideband (UWB) telecommunication is a perfect option in
that it can also provide accurate inter-agent distance measurements if each of the MAVs is equipped
with a UWB tag. By combining communication and relative sensing capabilities, UWB is superior to
the microphone and infrared sensors. Besides, the centimeter-level distance measurement accuracy
of UWB is higher than that of Bluetooth and Wi-Fi. More importantly, UWB provides omnidirectional
sensing, unlike vision-based sensors which suffer from the limited field-of-view issue.

Though placing multiple UWB tags on one MAV can provide bearing measurements or attitude-
related information between a pair of agents, we restrict ourselves to the lighter and cheaper setting
where only one UWB tag is equipped on each of the MAVs, which leads to the distance-based relative
localization problem. Considering that the relative localization for MAVs requires estimating the relative
position in 3-D, distance-based schemes are more challenging, and representative previous works
either only consider 2-D operation [49, 50] or rely on altitude measurements from altimeters [94]. In
this regard, it is also of great interest to find a distance-based 3-D relative localization solution.

Relative localization for swarms
For MAV swarms, the goal is, for each agent in the swarm (referring to as the host agent), to determine
the relative position of all its neighboring agents in the body frame of this host agent. When dealing
with body frames, it is common to use Euler angles, quaternions, or the general rotation matrix. To
simplify the problem, we focus on the relative localization in the body-centered horizontal frame where
the heading/yaw angle is the only variable that determines the corresponding body-centered horizontal
frame. To extract the relative position, the most effective and straightforward method is to exchange
velocity information between agents. At this point, we finally can synthesize the problem as follows.
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Problem: Relative Localization for Swarms

For a given agent in the swarm, estimate the relative position of all its neighboring agents in its
body-centered horizontal frame using only the velocity measurements obtained by the IMUs of
each of the involved agents and the inter-agent distance measurements obtained by UWB units.

From peer-to-peer relative localization to cooperative relative lo-
calization
Swarming poses challenges to the relative localization problem especially when we additionally set
many hardware constraints. However, swarming also brings benefits in that relative localization can be
viewed as a task per se. Thus, performing relative localization cooperatively to fully exploit the potential
of having a larger group is a promising direction to continue. Though the peer-to-peer distance-based
relative localization as done by Li et al. [94] suffices to solve the desired problem, the localization accu-
racy is not satisfactory enough, which also necessitates research on cooperative relative localization.
In the context of cooperative relative localization, the host agent and its neighbors are combined as
an integrated system where couplings between different host-neighbor pairs and additional distances
between any pair of binding neighbors are present, which leads to the following questions.

Q1-Q3: Cooperative Relative Localization

Q1: How to cooperatively perform relative localization?
Q2: How to account for the coupling between different host-neighbor pairs and does accounting
for this coupling help improve localization accuracy?
Q3: How to properly incorporate the indirect distances between neighbors and what are the side
effects of doing this?

Still, we should also be asking ourselves about any proposed cooperative scheme the following
more basic questions.

Q4-Q6: More on the Cooperative Relative Localization

Q4: Can the cooperative scheme improve the estimation accuracy after all?
Q5: What are possible theoretical explanations of using the cooperative scheme if it provides
improved estimation accuracy?
Q6: What are possible theoretical explanations of using the cooperative scheme if it does not
provide improved estimation accuracy?

State estimation in relative localization
When comes to the algorithmic part of the relative localization problem where a state estimation al-
gorithm or a stochastic realization needs to be developed to reconstruct the state of interest, existing
solutions can be categorized as filtering-based (e.g. extended Kalman filter (EKF) [25, 94], unscented
Kalman filter (UKF), and particle filter [48]) or optimization-based (e.g. moving horizon estimation [102],
semidefinite programming [96], and quadratic programming [109]).

Considering the limited computational resource of MAVs during online operation, it is favorable
to implement algorithms of low computational complexity, moreover, it is also desired to have fewer
auxiliary modules to assist the main state estimation algorithm. Optimization-based approaches are
computationally expensive and fail to address measurement outliers properly without an additional
outlier rejection algorithm. For filtering-based approaches, the UKF, the particle filter, and many other
variations that also rely on the general parallel multi-filtering principle (e.g., cubature Kalman filter [165],
multi-hypothesis Kalman filter [19]) all suffer from the high computational complexity issue. In this
regard, EKF becomes the ideal option due to its simple recursive structure which enables its easy
implementation in real microchips.

However, one of the challenges in the relative localization using UWB is dealing with the heavy-
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tailed noise of the UWB distance measurements. Traditional EKF, being a suboptimal filter due to
linearization, provides an even more inaccurate estimation if the noise is non-Gaussian and/or the
covariance information of the noise distribution is unknown (i.e., poor initialization of the covariance
matrices). In this regard, we also aim to answer the following questions.

Q7-Q9: EKF based State Estimation

Q7: How to address the heavy-tailed UWB noise in the framework of EKF?
Q8: How to make the EKF robust against incorrect initialization of the covariance matrices?
Q9: Given that a proposed advanced EKF addresses Q7 and Q8, whether its computational
complexity is acceptable? If not, how to reduce it or possibly make a compromise?

Organization of the thesis report
The thesis report has two main parts. The first part is a self-contained scientific article that answers the
research questions listed above, and it has its own tailored introduction and references. The second
part is a literature study that was carried out at the very early stage of this thesis research to fulfill
the required courses AE4010 (Research Methodology) and AE4020 (Literature Review), and it has
already been graded by the corresponding supervisors. The literature study is also a self-contained
document that has its own introduction and references, and the nomenclature and list of tables/figures
in the second part are only responsible for the literature study itself. Besides, the cited articles in this
introduction are all listed in the references of the literature review.
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Cooperative Relative Localization in MAV Swarms
with Ultra-wideband Ranging

Changrui Liu, Sven Pfeiffer and Guido C.H.E. de Croon

Abstract—Relative localization (RL) is essential for the suc-
cessful operation of micro air vehicle (MAV) swarms. Achieving
accurate 3-D RL in infrastructure-free and GPS-denied environ-
ments with only distance information is a challenging problem
that has not been satisfactorily solved. In this work, based on the
range-based peer-to-peer RL using the ultra-wideband (UWB)
ranging technique, we develop a novel UWB-based cooperative
relative localization (CRL) solution which integrates the relative
motion dynamics of each host-neighbor pair to build a unified
dynamic model and takes the distances between the neighbors
as bonus information. Observability analysis using differential
geometry shows that the proposed CRL scheme can expand the
observable subspace compared to other alternatives using only
direct distances between the host agent and its neighbors. In
addition, we apply the kernel-induced extended Kalman filter
(EKF) to the CRL state estimation problem with the novel-
designed Logarithmic-Versoria (LV) kernel to tackle heavy-tailed
UWB noise. Sufficient conditions for the convergence of the
fixed-point iteration involved in the estimation algorithm are
also derived. Comparative Monte Carlo simulations demonstrate
that the proposed CRL scheme combined with the LV-kernel
EKF significantly improves the estimation accuracy owing to its
robustness against both the measurement outliers and incorrect
measurement covariance matrix initialization. Moreover, with the
LV kernel, the estimation is still satisfactory when performing
the fixed-point iteration only once for reduced computational
complexity.

Index Terms—Cooperative Relative Localization, Ultra-
wideband (UWB), Kernel-induced Kalman filtering, Observabil-
ity Analysis

I. INTRODUCTION

M ICRO Air Vehicles (MAVs), with higher agility and a
lighter design, have been widely used in many real-

world operations such as surveillance [1], exploration [2], and
urban construction [3]. Swarm behaviors observed in the natu-
ral world (e.g. starlings and bees) motivate the development of
MAV swarms to compensate the limited power and mobility
of a single MAV agent. Swarming allows robots to perform
more complex tasks (e.g., cooperative transportation [4] and
gas detection [5]) where efficiency and system redundancy are
of major consideration.

Successful operation of an MAV-swarm requires an accurate
relative localization (RL) scheme which then provides essen-
tial position feedback among agents for collision avoidance
[6] and formation control [7], both of which are prerequisites
for higher-level objectives. RL schemes can be broadly cate-
gorized as indirect and direct ones. Indirect solutions compute

This work is for partial fulfillment of the MSc degree in Aerospace
Engineering, Delft University of Technology

The authors are with the Micro Air Vehicle Laboratory, Faculty of
Aerospace Engineering, Delft University of Technology, 2628CD Delft,
The Netherlands (e-mail: c.liu-31@student.tudelft.nl; s.u.pfeiffer@tudelft.nl;
g.c.h.e.decroon@tudelft.nl)




Fig. 1. Cooperative relative localization problem, where agent i aims to
localize its neighbors j1 and j2 in its body centered horizontal frame, i.e.,
agent i needs to compute pij1 and pij2 .

relative position using global positions in a shared frame,
typical examples use GPS [8], [9], optical motion tracking
systems [10] and anchor-dependent positioning systems with
fixed beacons or ground stations [11]–[13]. The performance
of GPS degrades substantially in indoor and urban environ-
ments, and localization relying on external devices requires
additional investments (time and money) for setting up the
area of operation. Consequently, it is favorable to develop
GPS-denied and infrastructure-free RL solutions that provide
position estimation directly through inter-agent sensing and
communication.

For direct RL schemes where onboard sensors play a
more dominant role, the visual-odometry methods [14], [15]
which extract relative positions using cameras are the most
straightforward. However, the high computational cost and
limited field-of-view of the vision-based methods are not
ideal for MAVs. Excluding visual information, fusing IMU
with other ranging sensors is effective and implementable.
Ultra-wideband (UWB) technology has recently drawn great
attention in aerial robots localization tasks [7], [16], [17]
owing to its superior communication capability and ranging
accuracy compared to infrared sensors, microphones, and
Bluetooth [18]. Therefore, equipping MAVs with UWB tags
is a lightweight and economic solution for the RL purpose
in swarming. In terms of UWB-based RL, the underlying
problem is 3-D position estimation with inter-agent distance
measurements. Some previous attempts either consider 2-D
scenarios by using altimeters [7], [17] or use multiple UWB
tags to provide bearing information [16], [19]. The purely
distance-based 3-D RL problem with only one UWB tag
equipped on each MAV has not been satisfactorily solved,
and typical solutions relying on graph rigidity theory [20] or
optimization [21], [22] not only fail to address noise issues
in the measurements but also rely on a common reference
frame which is not available to MAVs flying in unknown
environments. In fact, due to multi-pathing and non-line-of-



sight (NLoS) effects, the UWB distance measurements are
noisy, thus making filtering-based estimation algorithms more
suitable for accurate localization. Considering the limited
onboard computational resources and the nonlinear nature of
the relative motion dynamics, the estimation algorithm design
for the distance-based 3-D RL becomes more challenging.

In this work, we aim to address the RL problem for
MAV swarms by determining for each agent in the swarm
the relative position of its neighboring agents in its body-
centered horizontal frame. Though the basic peer-to-peer RL
(i.e., performing position estimation for each of the neighbors
individually as done by Li et al. [17]) suffices to solve this
problem, the benefits of swarming are not fully exploited. The
main contributions of this work are twofold. First, we pro-
pose a novel cooperative relative localization (CRL) scheme
which integrates the relative motion dynamics of each of the
neighbors to build a unified dynamic model and also takes the
distances between the neighbors as bonus information. The
resulting CRL can account for the correlation induced by the
same velocity input as well as improve localization accuracy in
general by introducing more measurements. Second, inspired
by the kernel-based filtering methods [23], we propose a max-
imum Logarithmic-Versoria criterion-based extended Kalman
filtering (MLVC-EKF) for the state estimation in localization
tasks to handle the heavy-tailed noise in UWB distance
measurements. The proposed filtering strategy substantially
improves robustness against measurement outliers, especially
for the CRL framework where more measurements are present.

The rest of the paper is organized as follows. In Section
II, we present mathematical convention and some theoretical
backgrounds. Then, Section III formulates the state estimation
problem for the CRL. In the following Section IV, we provide
the MLVC-EKF algorithm and analyze the CRL problem in
detail. The simulation results and the discussions are given in
Section V. Lastly, we conclude the work and delineate future
research directions in VI.

II. PRELIMINARIES & PROBLEM FORMULATION

In this section, we will first present some mathematical
conventions used throughout the paper. Subsequently, we will
present the details of the relative motion dynamics which will
be used for further CRL modeling. Finally, we elaborate on
the UWB noise modeling where we consider various practical
issues (e.g., NLoS, multi-pathing, and transmission delay).

A. Notation and Definitions
Let x ∈ Rn denote a vector with x[k] and ∥x∥p (p ∈

{1, 2,∞}) being its k-th element and vector p-norm. M ∈
Rn×m is a matrix with M⊤, M[k] and M⊤[k] being its
transpose, k-th row and k-th column, respectively. Similarly,
∥M∥p (p ∈ {1, 2,∞}) denotes the induced matrix p-norm.
In the sequel, all norms will be referred to as 2-norm if not
explicitly specified. The set of positive integers up to n is Z+

n ,
and Zij denotes non-negative integers from i to j (0 ≤ i ≤ j).

The minimum (maximum) eigenvalue of a matrix M is
denoted as λmin(M) (λmax(M)). Given x,y ∈ Rn, x/y means
element-wise division. The symbol ⊗ denotes the Kronecker
product. 0n, 1n, and In are n-dimensional zero vector, one
vector, and identity matrix, respectively. The n-dimensional
basis row vector with the i-th entry being 1 while all other

entries being 0 is denoted as bni . Further, we define operators
diag and vec for matrices (vectors) as:

diag{Mi,Mj} =

[
Mi 0
0 Mj

]
, vec{Mi,Mj} =

[
Mi

Mj

]
,

diagjk=i{Mk} =

Mi
. . .

Mj

 , vecjk=i{Mk} =

Mi
...
Mj

 .
For convenience, the trigonometric functions sin(·), cos(·)

and tan(·) are abbreviated as s(·), c(·) and t(·), respectively.
The Cholesky decomposition for matrices is denoted as a
function CH(·). Besides, the probability distribution function
(PDF) of a random variable X obeying Gaussian distribution
is denoted as G(x;µ, σ), with µ being the mean and σ
being the standard deviation. For Gamma distribution, we
use γ(x; k, ε) = [Γ(k)]−1εkxk−1exp(−εx), where Γ(·) is the
gamma function. Lastly, the uniform distribution on interval
[a, b] is denoted as U(a, b).

B. Peer-to-peer Relative Motion Dynamics
We first introduce the relative motion dynamics for a pair of

agents, which is the basic building block of the CRL models
in later stages. For a given MAV, the 3 axes of the body-fixed
body frame (FB) originate from the center of gravity of the
robot with the X-axis pointing forward, Z-axis being aligned
to the direction of the thrust, and Y -axis completing the
frame according to the right-handed convention. In addition,
to simplify the localization problem, we mainly deal with the
body-centered horizontal frame (FH ) with its Z-axis being
always perpendicular to the ground plane [17]. With FB and
FH defined, the orientation of both frames, as well as the
transformation between the frames, can be determined using
Euler angles (i.e., ϕ, θ, ψ) and the corresponding rotation
matrices RX(ϕ), RY (θ), and RZ(ψ).

In this work, the relative position is resolved in the hori-
zontal frame FH , and all related variables should be properly
transformed accordingly. First, the velocity v is measured in
FB and it needs to be expressed in FH . The rotation matrix
transforming any vector in FB to FH is given as

HRB = RY (θ)RX(ϕ) =

[
c(θ) s(θ)s(ϕ) s(θ)c(ϕ)
0 c(ϕ) −s(ϕ)

−s(θ) c(θ)s(ϕ) c(θ)c(ϕ)

]
. (1)

Second, the gyroscope measures the instantaneous angular
velocity Ω in FB , to which the Euler angle rate should be
properly related, and the formula is given asϕ̇θ̇

ψ̇

 =

[
1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)/c(θ) c(ϕ)/c(θ)

][
Ωx
Ωy
Ωz

]
. (2)

In particular, we are interested in computing the heading rate
ψ̇, to which the changing of the horizontal frame is related.
Note that the conversion in (1) and (2) requires the roll (ϕ)
and pitch (θ), both of which can be accurately estimated by
IMU.

For any agent pair (i, j), the peer-to-peer RL problem is
defined as estimating the relative position of agent j with
respect to agent i in agent i’s horizontal frame F i

H . The
state vector is thus given as xij = [ψij ,p

⊤
ij ], where ψij is

the relative heading and pij = [xij , yij , zij ]
⊤ is the relative

position in F i
H . The control input of any agent i is defined as

ui = [ψ̇i,v
⊤
i ]

⊤ where vi = [vx,i, vy,i, vz,i]
⊤ is the velocity



input in the body frame F i
H of agent i, and the control input

for agent pair (i, j) is uij = vec{ui,uj}. Then, the relative
motion dynamics for agent pair (i, j) can be derived using
Newton’s law as

ẋij = g(xij ,uij) =

[
ψ̇j − ψ̇i

R(ψij)vj − vi − ψ̇iSpij

]
, (3)

where the matrices R(ψij) and S are given as

R(ψij) =

[
c(ψij) −s(ψij) 0
s(ψij) c(ψij) 0

0 0 1

]
, S =

[
0 −1 0
1 0 0
0 0 0

]
.

C. Heavy-tailed UWB Measurement Noise & Delay Effects
Ideally, the true distance d∗ij between agent pair (i, j) is

given in terms of its corresponding relative position p∗
ij as

d∗ij = ∥p∗
ij∥. (4)

However, the measured distance deviates from the true value
due to many practical factors. First, the distance measuring
scheme in UWB is two-way ranging (TWR), whose noise
model can be ideally assumed to be Gaussian considering only
line-of-sight (LoS) scenarios. A more realistic noise model
accounting for both multi-pathing and NLoS effects leads
to a heavy-tailed distribution which is a linear combination
of a Gaussian distribution and a Gamma distribution and
other additional terms for outliers. We adopt the PDF of the
simplified model [24] for the noise ν as

f(ν) =
1

1 + sht
G(ν; shtµ, σ) +

sht
1 + sht

γ(ν; k, λ), (5)

where sht ≥ 0 is a scale factor that is chosen based on the
real measurement data.

Another source of measurement error comes from commu-
nication delay, especially for the indirect distance measure-
ments between neighbors. Due to the limited bandwidth, the
distances cannot be measured and transmitted simultaneously.
Therefore, for agent i which can only get the distance between
its neighbors j and l through the communication between
agent j or l, the instantaneous true distance ∥p∗

jl∥ at the trans-
mitting time ttr differs from the transmitted ∥pjl∥ measured
at time tms due to the unknown motion of agent j and l
during the time interval [tms, ttr]. Assume the length of the
time interval is upper bounded by η̄, and the relative speed
between any pair of agents is also bounded by v̄, we have
p∗
jl = pjl + pe = pjl + (αη̄v̄)i with α ∈ [0, 1] and i a

unit vector. For modeling simplicity, we further assume that i
has an equal probability of pointing in any direction and α is
uniformly distributed on [0, 1]. Then, pe has equal probability
pointing at any point in a sphere of radius r̄ = η̄v̄. As a
result, the probability of having a distance error νd = s− djl
is proportional to the area of the spherical cap of a sphere of
radius s ∈ [djl− r̄, djl+ r̄] intersected by a sphere with radius
r̄, where djl = ∥pjl∥ is the distance between agent j and l
with measurement delay. The area of the spherical cap can be
approximated as

a(νd; djl, r̄) = π[−(ν2d + 2νddjl − r̄2)2 + 4d2jlr̄
2], (6)

and the 2-D visualization of the cap is given in Fig. 2.
Following (6), the normalized PDF of νd is thus given as

f(νd) =
15

16πr̄3(5d2jl − r̄2)
a(νd; djl, r̄), (νd ∈ [−r̄, r̄]). (7)

The severity of the delay effects hinges on the velocity of
the MAV and the density of the swarm. On the one hand, if

Cap

Fig. 2. 2-D visualization of the spherical cap which is marked in red.

the MAVs fly at high speed such that the relative velocity can
be high enough, then v̄ can be large. On the other hand, if
the swarm is too dense such that the number of neighbors of
each agent is big, then η̄ can be quite large due to limited
bandwidth. In Fig. 3, we present some representative PDFs
when r̄ = 0.15[m].
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Fig. 3. PDFs of noise νd

Remark 1. The noise ν and νd are independent, which
explains why they are considered separately instead of being
combined into a single type of noise with a unified PDF.

Remark 2. The approximation in (6) is valid under the
condition that r̄ ≪ djl, which can be relaxed since that the
noise distribution does not differ too much when r̄ ≤ 3djl. In
most cases, the condition r̄ > djl holds given that the number
of neighbors for any agent is limited such that η̄ does not
permit a large value and two MAVs do not fly in a dangerous
mode in which the inter-agent distance is too short such that
the random motion within a short time interval is likely to
cause a collision (i.e., djl ≤ r̄).

III. COOPERATIVE RELATIVE LOCALIZATION

This section presents 3 different CRL models which serve as
the main problem of interest in this work. Next, to shed light
on the state estimation, we present the observability analysis
for the built models using some elementary differential geo-
metric tools.

A. Modeling of CRL Schemes
Having the peer-to-peer relative motion dynamics estab-

lished as in (3), we are able to delve into the CRL modeling.
Consider a swarm of N agent, and for agent i, the set of its
neighbors is Ni with |Ni| = Ni. We explicitly express Ni as
{jα ∈ Z+

N |jα ̸= i, jα < jα+1 (α = 1, 2, · · · , Ni)}.To build an
integrated dynamic model, we augment the state xijα of agent
pair (i, jα), and the augmented state x̄i is given as

x̄i = vecNi
α=1{xijα}. (8)

We also augment the control input ui to form ū as
ūi = vec{ui, vecNi

α=1{ujα}}. (9)
Following (3), we can define ḡci (x̄i, ū) similarly as

ḡi(x̄i, ūi) = vecNi
α=1{g(xijα ,uijα)}, (10)

and the augmented system directly follows as
˙̄xi = ḡi(x̄i, ūi). (11)



For the measurement model of CRL, we first augment the
direct distance model between agent i and each of its neighbors

hd
i (x̄i) = vecNi

α=1{∥pijα∥}. (12)
Then, the augmented direct measurement considering only the
noise ν is given as

yd
i = hd

i (x̄i) + ν, (13)
where ν = vecNi

α=1{να} is the augmented noise. On the other
hand, the augmented indirect distances transmitted by agent
jα are given as

hid
i (x̄i; jα) = vec{l∈Ni∩Njα}{∥pijα − pil∥}, (14)

and the augmented indirect distances considering all its neigh-
bors follows as

hid
i (x̄i) = vecNi

α=1{hid
i (x̄i; jα)}. (15)

The final noisy indirect measurement model is given as
yid
i = hid

i (x̄i) + νa (16)

where νa = vecpidβ=1{νβ+νd,β} with pid =
∑Ni

α=1 |Ni∩Njα |.
Moreover, we assume that all velocity inputs are imper-

fect due to actuator noise ∆ui for agent i, with which
we also define ∆uijα = vec{∆ui,∆ujα} and ∆ūi =
vec{∆ui, vec

Ni
α=1{∆ujα}}. Referring to (11), (13) and (16),

the full-CRL (fCRL) model with the augmented dynamics and
both direct and indirect measurements is given as

fCRL :


˙̄xi = ḡi(x̄i, ūi +∆ūi)[

yd
i

yid
i

]
=

[
hd
i (x̄i)

hid
i (x̄i)

]
+

[
ν
νa

]
. (17)

For comparative study, we also introduce the following two
models: i) the half-CRL (hCRL) model with the augmented
dynamics and only direct measurements, ii) the non-CRL
(nCRL) model which is simply a collection of the peer-to-
peer dynamics in (3) for agent pairs (i, jα) without state and
input augmentation, ∀jα ∈ Ni. The details are given below:

hCRL :

{
˙̄xi = ḡi(x̄i, ūi +∆ūi)

yd
i = hd

i (x̄i) + ν
, (18)

nCRL :

{{
ẋijα = g(xijα ,uijα +∆uijα)

yijα = ∥pijα∥+ να

}
{jα∈Ni}

. (19)

Remark 3. The 3 dynamic models (i.e., fCRL, hCRL, and
nCRL) are all continuous-time nonlinear control systems. In
addition, the built models are stochastic in nature due to
actuator and measurement noise.

Remark 4. The nCRL model is equivalent to the peer-to-peer
relative localization as investigated in [6], [17].

B. Knowledge from Differential Geometry
We present some basic geometric concepts following [25].

Consider a time-varying (TV) nonlinear control system{
ẋ = g(x,u, t)

y = [h1(x), h2(x), · · · , hp(x)]⊤
, (20)

where x evolves in a C∞ − manifold M of dimension n,
u ∈ U ⊆ Rm is the control input, g(x,u, t) is the TV control-
coupled vector field in M, and hi(x) are time-invariant (TI)
scalar fields also defined on M. Besides, all functions are
C∞ (i.e., smooth/infinitely differentiable) functions of their

arguments. The time t belongs to an open interval I ⊆ R, and
we denote M = I ×M× U . To analyze the above system,
we present some basic geometric tools.

Definition 1 (Lie Derivative). Given a scalar function h(x) :
M 7→ R, and a vector field g(x,u, t) : M 7→ M. The Lie
derivative of the covector dh along the vector field g(x,u, t)
is defined as

Lgdh = d(Lgh) = d(⟨∂h
∂x

,g(x,u, t)⟩), (21)

where dh, being the dual of g(x,u, t), is a special type of
covector called exact differential, and ⟨·, ·⟩ denotes the inner
product of two vector fields. Further, a set of covectors dhi can
form a codistribution Ξ = span{dhi}, and the Lie derivative
of the codistribution is LgΞ = span{Lgξ|∀ξ ∈ Ξ}. Taking the
Lie derivative on a codistribution is useful when recursively
computing the observability codistribution, especially for sys-
tems with multiple output functions.

To analyze the time-varying system in (20), we introduce
the augmented Lie derivative [26] for a covector dh as

L̇gdh = Lgdh+
∂dh

∂t
. (22)

Besides, this new derivative permits a recursive operation as
L̇rgdh = L̇g(L̇r−1

g dh), (r ∈ Z+), (23)

with the initial case being L̇0
gdh := dh. Likewise, the

augmented Lie derivative can also act upon codistributions.
The above geometric tools will be used for the observability
analysis by checking the observability rank condition [25].
Specifically, the observability codistribution Ξ∗ can be re-
cursively computed according to Algorithm 1. Moreover, we

Algorithm 1: Computation of the Observability Codis-
tribution

Data: hi, g(x,u, t)
Result: Ξ∗

i

1 k ←− 0, ID←− 1;
2 Ξ(k) = span{dh1,dh2, · · · ,dhp};
3 while ID = 1 do
4 Ξ(k+1) = span{Ξ(k), L̇gΞ

(k)};
5 if Ξ(k+1) = Ξ(k) then
6 ID←− 0
7 end
8 k ←− k + 1
9 end

10 Ξ∗
i ←− Ξ

(k)
i

have Ξ(k) ⊆ Ξ(k+1), and the final converged codistribution
is obtained for some k∗ ≤ n − 1 [25], [26]. Checking
the observability rank condition is equivalent to checking
the rank of the observability matrix OB(k) derived from the
codistribution Ξ(k), and OB(k) is given as

OB(k) =


vecpi=1{L̇0

gdhi}
vecpi=1{L̇1

gdhi}
...

vecpi=1{L̇kgdhi}

 , (24)

where we only refer to the coefficients of the bases
{dx1,dx2, · · · ,dxn} of the covector field while the bases
themselves are eliminated with slight abuse of notation. If
rank(OB(k)) = n for some k at (x∗, t∗) with control being



u∗, then the system is weakly locally observable at (x∗, t∗)
[27] with control being u∗.

Remark 5. In this work, we focus on active state estimation
where we also care how control inputs affect the observability
of the system. Besides, the controls u are treated as constant
parameters in that we check observability only locally (i.e.,
we assume that the controls remain constant within any small
time interval). In addition, though the controls u are treated as
parameters, the space we investigate is M in terms of active
state estimation, and we aim to identify possible observable
and unobservable subspaces through observability analysis.

Remark 6. The observability analysis only helps to determine
whether the internal state of the system as in (20) can be
well reconstructed (i.e., the estimation error is exponentially
bounded in means square and bounded with probability 1
[28]) by the filter that can be viewed as a stochastic realization
(e.g., the Kalman filter and its variations) [29], whereas the
performance of the filter (i.e., estimation accuracy, transient
behavior) still depends on many other factors.

C. Observability Analysis
For the basic peer-to-peer localization model, we only have

a single direct distance measurement. Noting the dynamics of
the relative heading ψij is independent of the position pij (cf.
11), we thus only consider the position dynamics given that
ψij is also not our state variable of interest. After decoupling
ψij , the position dynamics should be treated as a TV nonlinear
system with ψij(t) being the varying parameter. Following (3),
the resulting peer-to-peer relative dynamics and augmented
dynamics are given in (25) and (26), respectively.{

pij = g(pij ,uij , t) = R(ψij(t))vj − vi − ψ̇iSpij

y = h(pij) = ∥pij∥
, (25)

p̄i = ḡ(p̄i, ūi, t)

yd
i = hd

i (p̄i)(
yid
i = hid

i (p̄i)
) , (26)

where p̄i = vecNi
α=1{pijα}, ūi is given as in (9), ḡ(p̄i, ūi, t) =

vecNi
α=1{g(pijα ,uijα , t)}, and yd

i and yid
i are constructed

similarly as in (17) (with details given in (12), (14) and (15)).
We start with analyzing the peer-to-peer system given in (25),
and the observability matrix OBd(i, j) is given as

OBd(i, j)=


p⊤
ij[

R(ψij(t))vj − vi
]⊤

ψ̇ijv
⊤
j E −

[
ψ̇jR(ψij(t))vj − ψ̇ivi

]⊤
S

 , (27)

where E = diag{0, 0, 1}, S is given as in (3), and all entries
are multiplied by the non-zero term ∥pij∥ (i.e., two agents
do not collide), which does not affect the rank of OBd(i, j).
Explicitly rewriting the above matrix lead to a more detailed
expression of OBd(i, j) as

xij yij zij

c(ψij)vx,j−
s(ψij)vy,j − vx,i

s(ψij)vx,j+
c(ψij)vy,j − vy,i vz,j − vz,i

−ψ̇js(ψij)vx,j
−ψ̇jc(ψij)vy,j

+ψ̇ivy,i

ψ̇jc(ψij)vx,j
−ψ̇js(ψij)vy,j
−ψ̇ivx,i

vz,j(ψ̇j − ψ̇i)

 .

We further denote the relative velocity R(ψij(t))vj − vi as
vij = [vx,ij , vy,ij , vz,ij ]

⊤. Though a complete analysis of
the observability is unattainable since finding all conditions
under which the determinant of the observability matrix is
0 is difficult, we can still find some unobservable subspaces
which have clear physical interpretation:

(1) (2)

(3) (4)

Fig. 4. Unobservable motions: case (1) (top left); case (2) (top right); case
(3) (bottom left); case (4) (bottom right).

1) Relative velocity is zero (i.e., vij = 0, parallel motion):
OBd(i, j)[2] = 0.

2) Relative velocity is aligned with the relative position
(i.e., the relative motion is linear): OBd(i, j)[1] =
KOBd(i, j)[2](K ̸= 0).

3) Two agents move in a fixed horizontal plane (zij = 0),
plus that the two agents i and j do not have vertical
velocity (vz,i = vz,j = 0): OBd(i, j)⊤[3] = 0.

4) Two agents move in a fixed horizontal plane (zij = 0),
plus that the two agents have the same heading rate
(ψ̇j − ψ̇i = 0): OBd(i, j)⊤[3] = 0.

The above observability analysis directly suits the nCRL
model due to its dynamics being fully decoupled for each
agent pair (i, jα), jα ∈ Ni.

Regarding the hCRL model, though ui perturbs the dynam-
ics of each agent pair in an integrated way, both the dynamics
gc(pijα ,uijα , t) and the measurement model hijα = ∥pijα∥
are decoupled in terms of the state xij(pij). Correspondingly,
the resulting observability matrix for the hCRL has a diagonal
structure as OBhCRL = diagNi

α=1{OBd(i, jα)} after some row
permutations, from which we can easily conclude that the
observability for the hCRL model can be analyzed in a pair-
wise manner, making it the same as that for the nCRL model.

For fCRL model where indirect measurements are also
present, the observable subspace can be expanded. Particularly,
if the number of indirect measurements pid ≥ 2Ni (i.e., each
neighbor provides at least 2 indirect measurements on average
and these measurements do not coincide), the total number of
measurements (i.e., counting both direct and indirect ones) will
be greater than the number of interested states 3Ni, then the
fCRL system is fully observable since OB(0)

fCRL = vec3Ni
i=1{dhi}

is already of full rank given that the agents do not collide.



The minimum number of neighboring agents that can achieve
fully observable is Ni = 5. In generic cases where pid < 2Ni,
more detailed investigation is required, and we start with the
simplest case where we deal with the 3 agent tuple (i, j1, j2)
without loss of generality. After some row permutations, the
observability matrix OB(i, j1, j2) is expressed as

OB(i, j1, j2) =


OBd(i,j1)
∥pij1

∥ 03×3

03×3
OBd(i,j2)
∥pij2

∥

OBid(j1,j2)
∥pij1

−pij2
∥ −

OBid(j1,j2)
∥pij1

−pij2
∥

 , (28)

where the partial observability matrix OBid(j1, j2) corre-
sponding to the indirect measurement h(pij1 ,pij2) = ∥pij1 −
pij2∥ is given as

OBid(j1, j2)=


p⊤
ij1 − p⊤

ij2

[R(ψij1)vj1 −R(ψij1)vj2 ]⊤

(ψ̇ij1vj1 − ψ̇ij2vj2)⊤E
−[ψ̇ij1R(ψij1)vj1 − ψ̇ij2R(ψij2)vj2 ]⊤S


, (29)

We then discuss how the observable subspace can be expanded
by imposing extra stringent conditions on the previously
identified unobservable subspace. In the following analysis,
we only discuss the cases where the previously identified 4
unobservable conditions hold independently, whereas the cases
in which multiple conditions are satisfied simultaneously will
not be further investigated. In the following, we will frequently
use the term scaled velocity which means the velocity scaled
by the heading rate (e.g., ψ̇jvj and ψ̇jR(ψij)vj), and the
scaled velocity terms are present in the observability subblocks
(cf. (27) and (29)).

1) Parallel motion
• If either (i, j1) or (i, j2) is in parallel motion,

then the system is always observable in that
OBid(j1, j2)[1] ̸= 0 always holds true.

• If both (i, j1) and (i, j2) are in parallel motion (i.e.,
all 3 agents are in parallel motion), then the system
is still observable if the relative scaled velocity of
pair (j1, j2) is non-zero (i.e., OBid(j1, j2)[3] ̸= 0)

2) Relative velocity aligned with the relative position
• If either (i, j1) or (i, j2) falls in this aligning con-

dition, then the system is always observable in that
OBid(j1, j2)[1] ̸= 0 always holds true.

• If both pair (i, j1) and (i, j2) satisfy this aligning
condition, then the system is still observable if
pair (j1, j2) does not meet this condition. Further,
even if (j1, j2) also satisfies this aligning condition,
then the system is still observable if the relative
scaled velocity of pair (j1, j2) is non-zero (i.e.,
OBid(j1, j2)[3] ̸= 0).

3) Fixed horizontal plane plus zero vertical velocity
If at least one of the two pairs (i, j1) and (i, j2) satisfies
the condition that i and j1 (j2) moves in the same
horizontal plane and j1 (j2) does not have vertical
velocity, then the system is still observable if any one
of the below conditions holds: i) j1 and j2 have altitude
difference ii) j1 and j2 have different vertical velocity
iii) the relative scaled vertical velocity of pair (j1, j2) is
non-zero (i.e., OBid(j1, j2)[3] ̸= 0).

For the general fCRL model of agent i and its neighbor set
Ni, its observability matrix OB(i,Ni) is given as



dpij1 dpij2 · · · dpijNi

OBd(i,j1)
∥pij1∥

03×3 · · · 03×3 dij1

03×3
OBd(i,j2)
∥pij2∥

· · · 03×3 dij2
...

. . .
...

...

03×3 · · · OBd(i,jNi
)

∥pijNi
∥ dijNi

OBid(j1,j2)
∥pij1−pij2∥

− OBid(j1,j2)
∥pij1−pij2∥

· · · 03×3 dj1j2

OBid(j1,jNi
)

∥pij1
−pijNi

∥ 03×3 · · · − OBid(j1,jNi
)

∥pij1
−pijNi

∥ dj1jNi

...
...

...
...

...



,

where the upper part with only diagonal subblocks is fixed and
the lower part depends on the type of indirect measurements.
Specifically, the direct measurement dijα and the indirect
measurement djαjβ contribute, respectively, to the following
two blocks:

dijα : bNi
α ⊗

OBid(ji, jα)

∥pijα∥

djαjβ : (bNi
α − bNi

β )⊗ OB
id(jα, jβ)

∥pijα − pijβ∥

. (30)

Based on the special structure of the observability matrix, the
general rule of thumb is that the more indirect measurements
that agent jα is coupled, the more the unobservable subspace
corresponding to the state pijα diminishes.

IV. FILTERING BASED STATE ESTIMATION

This section provides the nonlinear filtering solution to the
state estimation problem in CRL. We will give an introduction
to the basic extended Kalman filter (EKF), with which we
develop the MLVC-EKF and apply it to the CRL models. The
convergence analysis of the fixed-point iteration involved in
the posterior estimation will also be presented. Finally, we
analyze the computational complexity of all 3 CRL schemes
applied with both MLVC-EKF and the EKF.

A. Extended Kalman Filter
We first summarize the basic extended Kalman filter algo-

rithm. To better serve our built CRL models, we consider a
continuous-time stochastic nonlinear system of the form{

ẋ = g(x,u,w)

y = h(x) + ν
, (31)

where x ∈ M ⊆ Rn is the state, y ∈ Y ⊆ Rp is the
measurement vector, u ∈ U ⊆ Rm is the control input, and
w ∈ W ⊆ Rm and ν ∈ V ⊆ Rp are process noise and
measurement noise, respectively. The system evolves on an
open time interval I. With sampling time Ts, the continuous-
time system can be discretized using the Euler method and
evaluated at t0+kTs (k ∈ Z0

km
) such that {t0+kTs}km

k=0 ⊂ I.
We simply use k as the index, and the corresponding discrete-
time system is given as{

xk = xk−1 + Tsg(xk−1,uk−1,wk−1)

yk = h(xk) + νk
. (32)



We then provide the EKF recursion for the discretized
system as in (32). Given the corrected estimated state x̂+

k−1

as well as its covariance P+
k−1 at time instant k − 1(k ≥ 1),

we then proceed to compute the posterior estimation x̂+
k and

covariance P+
k in two steps.

1) Prediction: Given the control input uk−1, compute the prior
estimate x̂−

k and its covariance P−
k as

x̂−
k = x̂+

k−1 + Tsg(x̂
+
k−1,uk−1,0) (33a)

P−
k = Ak−1P

+
k−1A

⊤
k−1 +Bk−1Qk−1B

⊤
k−1, (33b)

where Qk−1 = Ê[wk−1w
⊤
k−1] is the estimated process noise

covariance matrix, and Ak−1 and Bk−1 are given as

Ak−1 = In + Ts

(
∂g(x,u,w)

∂x

∣∣∣∣
(x̂+

k−1
,uk−1,0)

)
, (34a)

Bk−1 = Ts

(
∂g(x,u,w)

∂u

∣∣∣∣
(x̂+

k−1
,uk−1,0)

)
. (34b)

2) Correction by measurements: Correct the prior estimation
based on the measurement yk, which outputs the posterior
estimation x̂+

k and its covariance P+
k . First, approximate yk

using first-order linearization as
yk ≈ h(x̂−

k ) +Hk(xk − x̂−
k ) + νk, (35)

where Hk is given as

Hk =
∂h(x)

∂x

∣∣∣∣
x̂−
k

. (36)

Then the Kalman update follows as
x̂+
k = x̂−

k +Kk(yk − h(x̂−
k )), (37a)

P+
k = (In−KkHk)P

−
k (In−KkHk)

⊤ +KkRkKk
⊤, (37b)

where Rk = Ê[νkν⊤
k ] is the estimated measurement noise

covariance matrix, and the Kalman gain Kk is given as

Kk = P−
kH

⊤
k

(
HkP

−
kH

⊤
k +Rk

)−1
. (38)

B. Kernel-induced Extended Kalman Filter

To cope with heavy-tailed non-Gaussian measurement noise,
we use correntropy as a new metric to define the estimation
error. In information theoretical learning, correntropy measures
the similarity between two random variables X,Y ∈ R as

C(X,Y ) = E[κ(X,Y )] =

∫
κ(x, y)dFXY (x, y), (39)

where FXY (x, y) is the joint distribution function and κ(·, ·)
is a shift-invariant Mercer kernel [30]. In this work, inspired
by the Versoria function [31], we design a novel Logarithmic-
Versoria (LV) kernel as

κ(x, y) = Lτ (e) =
τ

τ + ln(1 + e2)
, (40)

where e = x−y is the error, and τ > 0 controls the bandwidth
of the kernel. The Versoria function can exploit the non-
Gaussian characteristics and provide better higher-order error
information than the Gaussian kernel [31]. The newly designed
LV kernel not only inherits the power of Versoria function
but also exhibits smoother behavior for small errors. A brief
visualization of different kernel functions is given in Figure 5,
where we compare the Gaussian kernel function, the Versoria
kernel function, and the Logarithmic-Versoria function all with
the same bandwidth τ = 5 (cf. (60b), (60a), and (40)).
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Fig. 5. Kernel Function Comparison

For the filtering problem of general stochastic systems
where the analytical distribution of the state(output) is not
known, it is practical to approximate the correntropy using
the sampled-mean strategy as

Ĉ(X,Y ) =
1

D

D∑
i=1

Lτ (e(i)), (41)

where e(i) = x(i)−y(i) with {x(i), y(i)} being the candidate
data points.

The MLVC-EKF recursion also has the two-step structure
as the standard EKF, and it only differs from the EKF in
the state correction step whereas the prediction step exactly
follows (33a). The details of the correction step in the MLVC-
EKF is presented as follows.

2) Kernel-induced correction: Based on the linearized mea-
surement equation in (36), we then leverage both the state error
ex,k := x̂−

k − xk and the measurement noise νk to obtain[
x̂−
k

yk − h(x̂−
k ) +Hkx̂

−
k

]
︸ ︷︷ ︸

:=zk

=

[
In
Hk

]
︸ ︷︷ ︸
:=Fk

xk +

[
ex,k
νk

]
︸ ︷︷ ︸
:=δk

. (42)

To normalize the error δk, we perform Cholesky decomposi-
tion to obtain Mx,k = CH(P−

k ) and My,k = CH(Rk). We
further define Mk = diag{Mx,k,My,k}, then (42) can be
modified as

(Mk)
−1zk︸ ︷︷ ︸

:=z∗
k

= (Mk)
−1Fk︸ ︷︷ ︸

:=F∗
k

xk + (Mk)
−1δk. (43)

For the regression model given in (43), we incorporate the
Versoria loss function (cf. (41)) as

J(xk) =
1

D

D∑
i=1

Lτ

(
z∗k[i]− F∗

k[i, :]xk︸ ︷︷ ︸
:=ek[i]

)
, (44)

where D := n+p is the dimension of the regression problem,
with which the posterior estimation x̂+

k can be computed by
solving the following optimization problem:

x̂+
k = argmax

xk

J(xk). (45)

The optimality of (45) is guaranteed by ∂J(xk)/∂xk = 0,
which suggests that x̂+

k satisfies the following equation:

x̂+
k =

(
F∗
k
⊤LkF

∗
k

)−1
F∗
k
⊤Lkz

∗
k, (46)

where Lk = diag{Lx,k,Ly,k} with Lx,k and Ly,k being
constructed as follows:{

Lx,k = diagni=1

{
L2
τ (êk[i])(1 + ê2k[i])

−1
}

Ly,k = diagDi=n+1

{
L2
τ (êk[i])(1 + ê2k[i])

−1
} . (47)

In (47), we have êk[i] = z∗k[i] − F∗
k[i, :]x̂

+
k . Moreover, (46)

can be rewritten as a Kalman-type state update [23]
x̂+
k = x̂−

k +Kk(yk − h(x̂−
k )), (48)



where the Kalman gain Kk is given as

Kk = P−
L,kH

⊤
k

(
HkP

−
L,kH

⊤
k +RL,k

)−1
, (49)

where the kernel-weighted covariance matrices P−
L,k and RL,k

are given as {
P−

L,k = Mx,kL
−1
x,kM

⊤
x,k

RL,k = My,kL
−1
y,kM

⊤
y,k

. (50)

Since the right hand side of (48) implicitly depends on x̂+
k ,

computing x̂+
k requires the fixed-point algorithm. The con-

verged output of the fixed-point iteration will serve as the pos-
terior estimation, and the following final step is the Kalman-
type covariance update as in (37b). The overall MLVC-EKF
is summarized in Algorithm 2.

Algorithm 2: MLVC-EKF State Estiamtion
Data: x̂+

k−1, P+
k−1, uk−1, yk, Qk, Rk, Ts

Result: x̂+
k , P+

k
1 Compute Ak−1, Bk−1 (cf. (34));
2 Compute x̂−

k , P−
k (cf. (33)), Hk (cf. (36));

3 Mx,k = CH(P−
k ), My,k = CH(Rk);

4 TagFP ←− 1, t←− 0, x(0)
k ←− x̂−

k , ι = n+ 1;
5 while TagFP do
6 Build z∗k, F∗

k (cf. (42), (43));
7 e

(t)
k = z∗k − F∗

kx
(t)
k ;

8 L
(t)
x,k=diagni=1{L2

τ (ê
(t)
k [i])[1 + (ê

(t)
k [i])2]−1};

9 P
(t)
L,k=Mx,kL

(t)
x,k

−1M⊤
x,k;

10 L
(t)
y,k=diagDi=ι{L2

τ (ê
(t)
k [i])[1 + (ê

(t)
k [i])2]−1};

11 R
(t)
L,k=My,kL

(t)
y,k

−1M⊤
y,k;

12 K
(t)
k = P

(t)
L,kH

⊤
k

(
HkP

(t)
L,kH

⊤
k +R

(t)
L,k

)−1;
13 x

(t+1)
k = x̂−

k +K
(t)
k (yk − h(x̂−

k );
14 r = ∥(x(t+1)

k − x
(t)
k )/x

(t)
k ∥;

15 if r ≤ ϵ then

16 TagFP ←− 0, x̂+
k ←− x

(t+1)
k K∗

k ←− K
(t)
k

17 end
18 end

19 P+
k = (In −K∗

kHk)P
−
k (In −K∗

kHk)
⊤ +K∗

kRkK
∗
k
⊤

Remark 7. The covariance update at the end of the MLVC-
EKF algorithm adopts the Joseph form to guarantee symmetry
as well as positive definiteness of the covariance matrix in
numerical computation, which is necessary for performing the
Cholesky decomposition.

Remark 8. The fixed-point iteration works with temporary
state variable x

(t)
k , and it terminates when the norm of the

incremental percentile ((x(t+1)
k − x

(t)
k )/x

(t)
k ) is smaller than

a preset threshold ϵ. A smaller value of ϵ leads to a more
accurate estimation but may increase the required number of
fixed-point iterations. In practice, we normally choose ϵ within
the range [10−6, 10−3].

Having developed the MLVC-EKF state estimation algo-
rithm, we now investigate the application details of CRL. Due
to the limited communication bandwidth, each agent can only
bind with its neighbors sequentially. As a consequence, at each
time instant, the received inputs for propagating the dynamic
model and the available measurements are limited. Thus, We
define the information package IP(jα, k) as below:

Definition 2 (Information Package). For agent i performing
CRL task with its neighboring set being Ni, the received
messages from agent jα at iteration k is denoted as IP(jα, k)
which contains the following details:

• IP(jα, k).u: The control inputs of agent jα.
• IP(jα, k).y: For fCRL mode, the latest stored distances
dljα of its neighbors l ∈ Njα and the newly measured
distance dijα . For hCRL/nCRL mode, only the newly
measured distance dijα .

Noting the input-affine structure of the CRL model, there
exists a simple CRL mechanism that only performs state
estimation upon receiving the information package from all
its neighbors. Compared to promptly performing estimation
whenever an information package arrives, this unified scheme
is more computationally efficient in that the fixed-point itera-
tion only needs to be executed once if MLVC-EKF is applied.
With a properly designed communication protocol that ensures
persistent and fair binding for each of the neighbors, this
unified scheme is a feasible solution.

Another issue is the package dropout which frequently
occurs in practice. If the measurement IP(jα, k).y (partly)
gets lost, then fewer measurements will be used to compute
the posteriori. In extreme cases where no measurement is
received from any neighbors, then the second correction step
will simply be ignored whereas only prediction is carried out.
Package dropout in terms of IP(jα, k).y is more tricky, and
we need a backup algorithm that computes predicted inputs
using previously stored input data (i.e., extrapolation).

Remark 9. Algorithm 2 is a synthesized CRL mechanism
tailored for all 3 CRL models (i.e., fCRL, hCRL, and nCRL).
When proceeding with the algorithm, one should simply choose
one of the 3 models.

Remark 10. For the unified CRL scheme, the sampling time
Ts is the average binding interval for a pair of agents. With
a properly designed communication protocol, Ts is identical
for all pairs (i, jα).

Remark 11. For the indirect distance dljα (cf. step 7 of
Algorithm 3), it will be transmitted twice by agent jα and
l sequentially, but only the latest transmitted distance will be
used as an effective measurement.

Remark 12. The details of the measurement noise covariance
matrix Rk (cf. step 12) and the actuator noise covariance
matrix Qu (cf. step 14, 22) will be given in Section V.

C. Convergence of The Fixed-point Iteration
The core part of the MLVC-EKF is the kernel-based mea-

surement update which provides the posterior estimation using
the fixed-point iteration. The convergence of the fixed-point
iteration is thus important for the successful implementation
of the filter. In the following results, we omit the time index
k and the superscript + for simplicity, and we rewrite (46) in
a compact form as

x̂ = f(x̂) (51)

Following [23], the main results regarding the convergence of
(51) are summarized in Theorem 1.

Theorem 1. Given ρ > ξ (cf. (53)) and τ ≥ max{τ∗, τ †},
where τ∗ satisfies Υ(τ∗) = ρ (cf. (54a)) and τ † satisfies



Algorithm 3: CRL Mechanism
Input: fCRL(cf. (17))/hCRL(cf. (18))/nCRL(cf. (18)), Ni,

x̂+
0 , P+

0 , Ts, {ui,k}km−1
k=0 ,

{IP(jα, k)}kmk=1,∀jα ∈ Ni
Output: {x̂+

k }
km
k=1, {P+

k }
km
k=1

1 k ←− 1, mode←− 0;
2 if fCRL/hCRL then
3 mode = 1
4 end
5 while k ≤ km do
6 Build ȳd

i,k by augmenting dijα from IP(jα, k).y,
∀jα ∈ Ni;

7 Build ȳid
i,k(jα) by augmenting dljα from IP(jα, k).y,

∀l ∈ Ni ∩Njα ;
8 ȳid

i,k ←− vecNi
α=1{ȳid

i,k(jα)} ; /* For hCRL/nCRL,
the generated ȳid

i,k = ∅ */
9 ujα,k−1 ←− IP(jα, k).u, ∀jα ∈ Ni;

10 if mode = 1 then
11 yk = vec{ȳd

i,k, ȳ
id
i,k};

12 Compute Rk based on yk;
13 ūi,k−1=vec{ui,k−1, vec

Ni
α=1{ujα,k−1)

⊤}};
14 Qk = INi+1 ⊗Qu;

15 Compute x̂+
k ,P

+
k by MLVC-EKF (cf. Alg 2) ;

/* Use augmented dynamics (cf.(11))
*/

16 else
17 Decomposition to obtain x̂+

α,k−1,P
+
α,k−1 (the

inverse operation of step 25);
18 for α = 1, 2, · · · , Ni do
19 yk ←− dijα ;
20 Compute Rk based on yk;
21 uijα,k−1 = vec{ui,k−1,ujα,k−1};
22 Qk = diag{Qu,Qu};
23 Compute x̂+

α,k,P
+
α,k by MLVC-EKF (cf. Alg

2) ; /* Use peer-to-peer dynamics
(cf.(3)) */

24 end

25 x̂+
k=vecNi

α=1{x̂
+
α,k},P

+
k=diagNi

α=1{P
+
α,k} ;

26 end
27 k ←− k + 1
28 end

Φ(τ †; ρ) = ζ (0 < ζ < 1) (cf. (54b)). Then for x̂ ∈ {m ∈
Rn|∥m∥1 ≤ ρ}, the following two conditions hold:

∥f(x̂)∥1 ≤ ρ, (52a)
∥∇f(x̂)∥1 ≤ ζ. (52b)

According to the Banach fixed-point theorem [32], with a large
enough kernel bandwidth τ and a good initialization x̂(0), the
fixed-point iteration converges to the unique solution of (51).
Detailed expression of ξ, Υ(τ), and Φ(τ) are given as follows.

ξ =

√
n
∑D
i=1 |z∗[i]| · ∥F∗[i]∥1

λmin
(∑D

i=1 σi(F
∗)
) , (53)

Υ(τ) =

√
n
∑D
i=1 |z∗[i]| · ∥F∗[i]∥1

λmin
(∑D

i=1 L̃τ (ēi(F
∗))σi(F∗)

) , (54a)

Φ(τ ; ρ) =

4
√
n
∑D
i=1

[
ēi(F

∗)∥F∗[i]∥1
(ρ∥σi(F∗)∥1 + ∥z∗[i]F∗[i]∥)

]
τ2λmin

(∑D
i=1 L̃τ (ēi(F

∗))σi(F∗)
) , (54b)

where σi(F∗) := F∗[i]⊤F∗[i], ēi(F∗) := |z∗[i]| + ρ∥F∗[i]∥1,

and L̃τ (x) := L2
τ (x)/(1 + x2).

Proof. The proof follows the same procedure as that of the
filters using the Gaussian kernel [23].

D. Computational Complexity
For robotic applications, the filtering algorithm should have

good real-time performance. The MLVC-EKF is more compu-
tationally expensive due to the various operations involved in
the fixed point iteration. To shed light on the applicability of
the MLVC-EKF, we will analyze its computational complexity
and evaluate how it scales with the number of agents as well
as the number of fixed-point iterations.

The computational complexity will be analyzed in terms of
the number of floating-point operations. Specifically, we con-
sider addition (subtraction), multiplication(division), trigono-
metric operation, matrix inversion, etc. The specific counting
rule for the mathematical operations is summarized in Table
I. Involved equations that are taken into account are (33)-
(38), (42)-(43), and (47)-(50). The number of floating point

TABLE I
COUNTING RULE OF MATHEMATICAL OPERATIONS

Math Operation Counting

M−1, CH(M) (M ∈ Rn×n) O(n3)

M1 ·M2(M1 ∈ Rm×n,M2 ∈ Rn×p) O(mnp)
M1 ±M2 (M1,M2 ∈ Rm×n) O(mn)
sin(a), cos(a), ln(a) (a ∈ R) O(1)

operations is associated with the number of neighbors Ni,
the number of fixed-point iterations T (k), and the number
of indirect measurements pid. We consider the sufficient worst
case in which full-observability is ensured such that pid = 2Ni
and choose Tm as the averaged number of fixed-point itera-
tions. Thus, the final results will be only dependent on Ni
and Tm, and the details are presented in Table II, where
we separately compute the complexity for each of the terms
O(Ni), O(N2

i ) and O(N3
i ). From the results in Table II,

TABLE II
COMPUTATIONAL COMPLEXITY

CRL Scheme O(Ni) O(N2
i ) O(N3

i )

EKF Estimation

nCRL 888 0 0
hCRL 187 289 335
fCRL 224 309 597

MLVC-EKF Estimation

nCRL 975 + 250Tm 0 0
hCRL 189 + 56Tm 309 + 5Tm 415 + 195Tm
fCRL 223 + 72Tm 325 + 21Tm 569 + 401Tm

the complexity can be high when the number of neighboring
agents Ni is big, especially for hCRL and fCRL schemes
where O(N2

i ) and O(N3
i ) terms are present due to the matrix

multiplication and inversion operations on high dimensional
matrices. Another factor that greatly influences the complexity
is the average number of fixed-point iterations Tm which
scales badly regarding O(N3

i ). In real experiments, it might
be necessary to restrict the maximum allowed number of
iterations when using kernel-induced EKF.



V. SIMULATION RESULTS & ANALYSIS

In this section, the simulation results will be presented
to demonstrate the advantages of using the fCRL scheme
combined with the MLVC-EKF. We will first describe the
simulation environment and setup. Next, we compare different
CRL methods, in which we investigate all three CRL models
with the EKF and the MLVC-EKF. Finally, in the fCRL
framework, we compare the kernel-induced Kalman filter with
different kernels to show the advantages of the Logarithmic-
Versoria kernel.

A. Modeling Setup & Parameters
In the following description, the unit of time, position

(distance) and angle are unanimously denoted as second [s],
meter [m] and radius [rad], respectively. We simulate a group
of 5 agents (N = 5) with each of them flying the same type
of nominal trajectory. The position trajectory is given as

x(t) = xc +R cos(2πft+ ϑ)

y(t) = yc +R sin(2πft+ ϑ)

z(t) = zc +Rz sin(2πfzt)

, (55)

where t ∈ [0s, 30s] is the time, and x(t), y(t), z(t) are
all global positions in a preset common reference frame.
The trajectories are designed such that the observability is
stimulated infinitely often. As for the heading, each agent
has a different initial heading ψ0, and it performs intermittent
heading turning within the simulation horizon. Specifically,
an agent changes its heading of a fixed angle ψt during time
interval [ti, ti + 2] at a constant heading rate. The parameters
describing the nominal trajectory (i.e., both the positions and
the heading) for each of the agents are summarized in Table III.
The nominal trajectory described above still differs from the

TABLE III
NOMINAL TRAJECTORY PARAMETERS

Agent 1 2 3 4 5

Position Parameters

xc[m] 0 2 −2 −2 2
yc[m] 0 2 2 −2 −2
zc[m] 7 8 9 6 5
R[m] 1 1.2 0.8 1.3 0.7
Rz[m] 4 4.5 6 3.5 2
f [s−1] 0.3 0.4 0.2 0.5 0.1
fz[s

−1] 0.2 0.4 0.3 0.35 0.25
ϑ[rad] 0 π/4 4π/3 −4π/3 −π/4

Heading Parameters

ψ0[rad] 0 2π/5 3π/5 4π/5 π/5
ψt[rad] π/6 π/6 −π/6 −π/6 π/6
ti[s] 3; 10; 20 6; 12; 15 4; 8; 11 5; 9; 12 7; 11; 25

real trajectory due to actuator noise. In this work, we assume
the actuator noise ∆ui = [nψ, nv,x, nv,y, nv,z]

⊤ obeys a zero-
mean Gaussian distribution with a constant covariance matrix
Qu = diag{σ2

ψ, σ
2
v , σ

2
v , σ

2
v}, where σψ = 0.4[rad · s−1] and

σv = 0.25[m · s−1]. Based on the nominal trajectory, we can
easily compute the nominal velocities as

vx(t) = −2πfR sin(2πft+ ϑ)

vy(t) = 2πfR cos(2πft+ ϑ)

vy(t) = 2πfzRz cos(2πfzt)

, (56)

ψ̇(t) =

{
0.5ψt, t ∈ [ti, ti + 2]

0, otherwise
. (57)

The real trajectory of each agent will be generated, given the
initial positions (xc, yc, zc) and heading (ψ0), using the noisy
velocity (i.e., the nominal velocity plus the actuator noise).

The PDF of the basic UWB noise follows (5), and we adopt
the validated parameters from [24]. As for the delay effects,
the PDF of νd depends on both djl and r̄ = η̄v̄, and it is
measurement dependent and thus time-varying. In general, a
smaller djl results in a larger variance, thus making νd more
tricky to handle. For modeling simplicity, we take djl = 3r̄ as
the worst case to make the noise distribution independent of
time, and the corresponding distribution will thus only depends
on η̄ and v̄. The parameters governing the noise distributions
are outlined in Table IV.

TABLE IV
MEASUREMENT NOISE PARAMETERS

UWB Noise ν

sht 0.2 µ[m] 0.1
λ 3.5 k 2

σ[m] 0.1

Delay Effects Noise νd

η̄[s] 0.01 v̄[m · s−1] 15

In the simulation, the filter run at the discrete time k∆t
with the sampling interval ∆t = 0.01[s]. When doing state
estimation, the filter receives the body velocities and heading
rate derived from the nominal input for prediction and then
uses the noisy distance measurements for state correction. In
the following, we will elaborate on the initialization settings
and the noise covariance settings of the filter.

First, the filter does not know the true initial state (i.e.,
the true relative position and relative heading). Given the true
initial global state tuple {ψ0, xc+R cos(φ), yc+R sin(φ), zc}
of all the 5 agents, the true initial state xij(0) for any
pair (i, j) can be computed, based on which the true state
xi(0) for the CRL task of agent i can be built by state
augmentation. Then, we manually add initial offset ∆xij(0) =
[∆ψ0,∆x0,∆y0,∆z0]

⊤ to the initial state, where the heading
uncertainty is simply ψ0 ∼ U(−ψ̄e, ψ̄e) and the position
uncertainty is designed as

∆x0 = r̄e cos(ϱ) cos(φ)

∆y0 = r̄e cos(ϱ) sin(φ)

∆z0 = r̄e sin(ϱ)

, (58)

where ϱ ∼ U(−π/2, π/2) and φ ∼ U(0, 2π). In other
words, the design rule in (58) ensures that the initial position
error has a fixed length r̄e whereas its direction is unknown.
Following the state augmentation modeling in Section IV, for
an agent i and its neighbors Ni, we first build ∆xi(0) =
vecNi

α=1{∆xijα(0)} where ∆xijα(0) are repeatedly generated
using the same uncertainty level pair (ψ̄e, r̄e), then the initial
state of the filter is given by x̂+(0) = xi(0)+∆xi(0). Corre-
spondingly, the initial covariance is set as P+(0) = INi ⊗Pe,
where Pe = diag{ψ̄2

e/3, r̄
2
e/4, r̄

2
e/4, r̄

2
e/2}.

Apart from the initialization, the filters should have some
prior knowledge of the noise. The velocity input uncertainty is
determined by the onboard hardware (i.e., IMU, gyroscope) of
the MAV itself, which means the actuator noise statistics can



be obtained offline beforehand. Therefore, we assume that the
filter has access to the true actuator covariance matrix Qu. For
nCRL scheme where pairwise localization is the foundation,
we set Qk = diag{Qu,Qu} (cf. step 22 of Algorithm 3),
whereas for fCRL and hCRL schemes, we have Qk = INi+1⊗
Qu (cf. step 14 of Algorithm 3).

The UWB noise ideally is Gaussian (i.e., sht = 0 in (5))
without accounting for practical issues (e.g., NLoS, multi-
pathing, transmission delay), and this ideal UWB noise in-
formation which is only related to the UWB device itself is
also available beforehand. The remaining tricky part is the
heavy-tailed component of the UWB noise which intrinsically
is environment-dependent as well as task-dependent. As a
consequence, the overall UWB noise information cannot be
accurately obtained in general, and how to assign a proper
measurement covariance matrix Rk to the Kalman-type filters
is difficult and may require additional adaptive or online
learning techniques which significantly increase computational
complexity. In this regard, we propose the following two
initialization strategies for Rk.

• Smart: The filter has access to the true heavy-tailed noise
statistics, and Rk is well initialized to balance the heavy-
tailed component.

• Inattentive: The filter only has information about the
basic Gaussian statistics of the UWB noise, and Rk is
badly initialized.

Based on the noise parameters given in Table IV, we can
numerically obtain σ2

ν ≈ 0.08 and σ2
νd

≈ 0.01. The details of
the measurement covariance matrix Rk for both of the above
strategies are summarized in Table V.

TABLE V
MEASUREMENT COVARIANCE MATRIX Rk

Smart Inattentive

fCRL diag{0.08INi , 0.09Ipid} 0.01I(Ni+pid)

hCRL 0.08INi 0.01INi

nCRL 0.08 0.01

In our simulation, we assume that for any agent i ∈
{1, 2, 3, 4, 5}, its neighbor set is Ni = {1, 2, 3, 4, 5} \ {i} (i.e,
all 5 agents are closed neighbors to each other). Given the
above condition, for fCRL scheme, the number of indirect
measurements is pid =

(
4
2

)
= 6. We select agent 1 to be the

interested agent that is going to localize its neighbors.

B. Comparison of Different CRL Methods

For each of the 3 localization schemes (i.e., fCRL, hCRL,
nCRL), it can be combined with either the MLVC-EKF or
the EKF. Thus, we have 2 × 3 = 6 different comparable
CRL methods in total. For a given scheme xCRL, if it is
combined with MLVC-EKF, the corresponding method will be
abbreviated as xCRL(MLVC) (e.g., fCRL(MLVC) stands for
the method based on the fCRL scheme using the MLVC-EKF
estimation algorithm), otherwise, it will be simply denoted as
xCRL if its embedded filter is the EKF.

To compare the different CRL methods, we run a Monte
Carlo simulation in which we vary both the initialization
setting and the noise sequences. We first set 6 uncertainty
level pairs {(ψ̄qe , r̄qe)} with (ψ̄qe , r̄

q
e) = (qπ/18, q/2), (q =

1, 2, · · · , 6). The unit of ψ̄qe and r̄qe is [rad] and [m], respec-
tively. Then, for a specific uncertainty level pair, we run 20
trials where each trial has its unique specific initialization and
it is simulated with randomly generated noise sequences (for
both actuator noise and measurement noise). Therefore, for a
given CRL method, we run 6× 20 = 120 trials in total.

For each trial, we will compute both the averaged heading
error and the averaged position error, and the mathematical
expression of the four considered error metrics are given as

TR-ERψ =
1

4Ns

4∑
α=1

k0∑
k=1

|ψ1jα(k)− ψ̂1jα(k)|, (59a)

SS-ERψ =
1

4Ns

4∑
α=1

Ns∑
k=k0+1

|ψ1jα(k)− ψ̂1jα(k)|, (59b)

TR-ERp =
1

4Ns

4∑
α=1

k0∑
k=1

∥p1jα(k)− p̂1jα(k)∥, (59c)

SS-ERp =
1

4Ns

4∑
α=1

Ns∑
k=k0+1

∥p1jα(k)− p̂1jα(k)∥, (59d)

where Ns = 30/Ts = 3×103 is the total number of discretized
time stamps, k0 = 103 is the separation time stamp which
separates the entire simulation horizon into the first 0s− 10s
transient interval and the last 10s− 30s steady-state interval.
Following the previous convention, jα ∈ N1 = {2, 3, 4, 5}
denotes the neighbors of agent 1, the variables without hat
(i.e., ψ1jα(k) and p1jα(k)) are ground truth derived from the
real trajectory and evaluated at kTs, and the variables with
hat (i.e., ψ̂1jα(k) and p̂1jα(k)) are the estimated state using a
specific CRL method.

First, we carried out the Monte Carlo simulation where the
embedded filter of each of the CRL methods is in smart mode.
For a given CRL method, the corresponding performance
evaluation quantities TR-ERψ , SS-ERψ , TR-ERp and SS-ERp

were computed for all the 120 trials. The results are shown
through the violin statistical plots in Fig. 6, where Fig. 6a and
Fig. 6b summarize the TR-ERψ (SS-ERψ) data and TR-ERp

(SS-ERp) data, respectively.
According to 6, it can be clearly observed that, for both

transient and steady-state performance, the fCRL gives the best
estimation results among the 3 CRL schemes for having lower
average position and heading error in general. In addition, for
all three CRL schemes, the MLVC-EKF exhibits strong power
to reject outliers, especially for the fCRL scheme where more
measurements are present. To demonstrate the improvements
of using fCRL combined with the MLVC-EKF, we apply
the bootstrapping technique to further compare the results
between various comparable CRL methods. Taking SS-ERp

as an example, the basic steps of the bootstrapping analysis
are outlined below, and a similar procedure applies also to
TR-ERp, TR-ERψ , and SS-ERψ .

1) Fuse the SS-ERp data of two CRL methods (i.e., denoted
as A∗

p and B∗
p, respectively) to form a hybrid data set

of size 120× 2 = 240.
2) From the hybrid data set, build data set Ap and Bp, both

being of size 240, by resampling with replacement.
3) Compute the average of Ap and Bp, respectively. The

results Āp and B̄p are further used to calculate ∆p =
|Āp − B̄p|.



(a) Heading Error

(b) Position Error
Fig. 6. Violin Plots of the Monte Carlo simulation for all 6 CRL methods
with all filters in smart mode, (a) Averaged Heading Error (b) Averaged
Position Error. For each subfigure (a) and (b), from left to right: 1) fCRL, 2)
fCRL(MLVC), 3) hCRL, 4) hCRL(MLVC), 5) nCRL, 6) nCRL(MLVC). For
each violin plot, the averaged error metric with respect to the trials is marked
as a black dot, the left part is the approximated PDF of the data with the two
boundaries of the shaded area representing the 25% and 75% quantile, and
the right part is the histogram.

4) Repeatedly execute Step 2 and 3 for Nbs times to form
the final data set {∆p(i)}Nbs

i=1.
5) Compute the nominal difference ∆p∗ = |Ā∗

p − B̄∗
p|.

6) Compute the p-value of {∆p(i)}Nbs
i=1 evaluated at p =

∆p∗, and the p-value represents the confidence level of
whether the original two data set A∗

p and B∗
p differs.

In this work, we set Nbs = 104, and the bootstrapping
results for evaluating the steady-state performance are sum-
marized in Fig. 7, where the plots for heading error statistics
and the position error statistics are, respectively, presented in
blue and purple. For each bootstrapping plot, the nominal
average difference is marked with a red vertical dashed line,
and the p-value is highlighted in red if it is smaller than one
(i.e., not 100% confident). Based on the bootstrapping results
in Fig. 7, it can be further concluded that, in terms of the
steady-state heading estimation performance, there is no sig-
nificant improvement when using hCRL which simply brings
correlation compared to the standard nCRL regardless of the
used filter, whereas the position estimation is clearly improved
if the MLVC-EKF is applied since the confidence level for
comparing nCRL(MLVC) and hCRL(MLVC) is 99.84%.

Next, to see how the CRL methods performs when the filters

are initialized with bad matching covariance matrices Rk, we
did the Monte Carlo simulation for all 6 CRL methods with
inattentive mode filters. The violin plots are given in Fig. 8,
and the bootstrapping plots are given in Fig. 9. Based on the
results in Fig. 8 and Fig. 9, we can draw similar conclusions
that i) the fCRL scheme outperforms the hCRL/nCRL scheme
in general, ii) the MLVC-EKF outperforms the EKF regardless
of the underlying CRL scheme, iii) the hCRL scheme does
not provide a statistically significant advantage over the nCRL
scheme.

However, when comparing the magnitude of each of the
error metrics presented in Fig. 6 and Fig. 8, we can observe
that the performance of the inattentive mode filter is worse than
that of its smart mode counterpart for all six CRL methods.
To highlight the difference between the filters of the smart
mode and the inattentive mode, we summarize the average
error metrics TR-ERψ SS-ERψ , TR-ERp, and TR-ERp with
respect to all 120 trials in Table VI and Table VII for transient
and steady-state performance, respectively. In both Table VI
and Table VII, the percentage increase of the error metrics of
CRL method using the inattentive mode filter with respect to
that of the same method using smart filter is also computed and
highlighted in red color, from which it is clear that the MLVC-
EKF is more robust than the EKF in terms of handling outliers
in cases where a good prior knowledge of the measurement
noise statistics is unattainable.

TABLE VI
TRANSIENT PERFORMANCE (SMART(S) & INATTENTIVE(I))

fCRL hCRL nCRL

Heading TR-ERψ [deg]

EKF
(S)12.8269
(I)21.8339
70.22%

(S)18.7618
(I)35.1224
87.20%

(S)17.6867
(I)33.1865
87.64%

MLVC-EKF
(S)8.8004
(I)13.8284
57.13%

(S)10.9913
(I)14.7124
33.86%

(S)10.0108
(I)13.0007
29.87%

Position TR-ERp [m]

EKF
(S)0.5614
(I)0.9397
67.39%

(S)0.9191
(I)1.6198
76.24%

(S)0.8925
(I)1.5380
72.32%

MLVC-EKF
(S)0.3719
(I)0.5080
36.60%

(S)0.6947
(I)0.8420
21.20%

(S)0.6991
(I)0.8351
19.45%

To better visualize the estimation performance and to see
the advantages of using fCRL with MLVC-EKF in detail, we
also present the state trajectory plots and the top-view plots of
some representative trials. To avoid dense plots, we only show
the results comparing the baseline CRL method (i.e., nCRL
with EKF) and the proposed most advanced CRL method (i.e.,
fCRL with MLVC-EKF).

For the top view plots, we present the instantaneous shot at
t = 0s, t = 5s, t = 15s, and t = 20s, and the trajectory of the
ground truth relative position over a short period following
each of the shown time instants is also presented. To also
show the relative position along the z-axis, the size of the
markers (agents) is scaled accordingly. Specifically, the size of
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Fig. 7. Bootstrapping statistical analysis for evaluating the steady-state performance of all comparable CRL methods with smart mode filters

(a) Heading Error

(b) Position Error
Fig. 8. Violin plots of the Monte Carlo simulation for all 6 CRL methods
with all filters in inattentive mode, (a) Averaged Heading Error (b) Averaged
Position Error. For each subfigure (a) and (b), from left to right: 1) fCRL, 2)
fCRL(MLVC), 3) hCRL, 4) hCRL(MLVC), 5) nCRL, 6) nCRL(MLVC). For
each violin plot, the averaged error metric with respect to the trials is marked
as a black dot, the left part is the approximated PDF of the data with the two
boundaries of the shaded area representing the 25% and 75% quantile, and
the right part is the histogram.

TABLE VII
STEADY-STATE PERFORMANCE (SMART(S) & INATTENTIVE(I))

fCRL hCRL nCRL

Heading SS-ERψ [deg]

EKF
(S)7.5088
(I)12.8731
71.44%

(S)10.5429
(I)18.3855
74.39%

(S)10.1980
(I)16.3452
60.28%

MLVC-EKF
(S)4.4992
(I)5.4510
21.15%

(S)6.6804
(I)8.8255
32.11%

(S)7.2203
(I)8.7587
21.31%

Position SS-ERp [m]

EKF
(S)0.4758
(I)0.8487
78.37%

(S)0.5913
(I)1.0393
75.77%

(S)0.5843
(I)1.0189
74.38%

MLVC-EKF
(S)0.2213
(I)0.2488
12.43%

(S)0.3663
(I)0.4041
10.21%

(S)0.3987
(I)0.4622
15.93%

the black circle (i.e., agent 1) is the default size, and if another
agent is higher (lower) than agent 1, it has a relatively bigger
(smaller) marker. In addition, the relative heading angle can
also be directly viewed in this top-view figure by observing the
bar-shaped heading indicator attached to each of the markers
(agents). Fig. 10 and 11 give the top-view plots for CRL
methods with smart mode filters and inattentive mode filters,
respectively. The state trajectories are given in Fig. 12 and Fig.
13, where all the four states (i.e., heading ψij , xij , yij , and
zij) are given separately, and we only show the state relating
to the localization for agent 2 for simplicity.

From both the state trajectory and the top-view plots,
it can be observed that, compared to the nCRL method,
the fCRL(MLVC) method converges faster in the transient
interval and also provides a more accurate estimation in the
steady-state interval. Moreover, the trajectory of nCRL method
exhibits frequent undesirable sharp peaks and it also deviates
from the ground truth trajectory even after convergence, espe-
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Fig. 9. Bootstrapping statistical analysis for evaluating the steady-state performance of all comparable CRL methods with inattentive mode filters
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Fig. 10. Top view of the localization performance, instantaneous shot at t = 0s, 5s, 15s, 20s (from left to right). The host agent 1 is the black circle always
located at (0, 0), the ground truth agents is the blue circles, the estimated agents using fCRL(MLVC) are the green hexagram, and the estimated agents using
nCRL are the red squares. (smart mode filters)
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Fig. 11. Top view of the localization performance, instantaneous shot at t = 0s, 5s, 15s, 20s (from left to right). The host agent 1 is the black circle always
located at (0, 0), the ground truth agents is the blue circles, the estimated agents using fCRL(MLVC) are the green hexagram, and the estimated agents using
nCRL are the red squares. (inattentive mode filters)
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Fig. 12. State trajectory of the localization for agent 2 (smart mode filters)
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Fig. 13. State trajectory of the localization for agent 2 (inattentive mode
filters)

cially in cases where the inattentive mode filters are used.

During the simulation, we also recorded the run time of
different CRL methods. For a given scheme, the run time of
each iteration k during trial i is denoted as ∆t(i, k), and this
time cost is recorded for all time instant and for all 120 trials.
The average time cost ∆t used for evaluation is computed as

∆t =
1

200Ns

200∑
i=1

Ns∑
k=1

∆t(i, k),

where Ns = 30/Ts = 3 × 103, and the results for all
6 CRL methods are given in Table VIII. Compared with
the baseline nCRL method, though using fCRL/hCRL and
incorporating MLVC-EKF both increase the computational
time. Specifically, the computational time increases by about
2 ∼ 3% when bringing more measurements (i.e., from hCRL
to fCRL), and it dramatically increases by about 260% when
considering the correlation (i.e., from nCRL to hCRL). As for
incorporating MLVC-EKF, the computational time increases
by about 11%, 15% and 57% for fCRL, hCRL and nCRL,
respectively.

TABLE VIII
AVERAGE RUN TIME (UNIT: 10−1ms)

fCRL hCRL nCRL

EKF 6.2822 6.0855 2.3901

MLVC-EKF 7.0136 6.9214 3.7712

C. Comparison of different kernels

In this section, we are going to compare the performance
of the kernel-induced EKF with different kernels. We only
consider applying the filters to the fCRL scheme, and we stick
to the smart mode filters in terms of setting measurement
covariance matrix Rk. We will compare the designed LV
kernel (cf. (40)), the Versoria kernel, and the Gaussian kernel.
The Versora kernel and Gaussian kernel are given as

Vτ (e) =
τ

τ + e2
, (60a)

Gτ (e) = exp(−e
2

τ
), (60b)

where τ is the bandwidth of each of the two kernels. For
the Gaussian kernel and Versoria kernel, the corresponding
maximum correntropy filter will degenerate to the standard
EKF and loses its ability to handle non-Gaussian heavy-
tailed noise if τ → ∞. One advantage of the LV kernel
is that the corresponding filter never degenerates and the
designer can simply choose a large enough bandwidth if he/she
would like to avoid the divergence issue of the fixed point
iteration without checking the conditions given in 1. In general,
choosing a smaller bandwidth leads to a more robust filtering
performance while also a larger number of iterations required
in the fixed point iteration on average [23]. To compare the
performance of the filters when the kernel-based measurement
update is effective, we set τ = 5.0 for all three kernels which
also guarantees the convergence of the fixed-point iteration as
stated in Theorem 1. We follow the Monte Carlo simulation
setting as that of the comparison for different CRL methods,
and we also use the same error metrics as in (59). The three
methods are abbreviated as fCRL(MLVC), fCRL(MVC), and
fCRL(MGC) for the CRL methods using the LV kernel, the
Versoria kernel, and the Gaussian kernel, respectively. The
violin statistical plots are given in Fig. 14, where Fig. 14a
and Fig. 14b summarize the TR-ERψ (SS-ERψ) and TR-ERp

(SS-ERp) data, respectively. Likewise, the bootstrapping plots
are given in 15. According to Fig. 14 and Fig. 15, there is no
much difference between the CRL methods using different
kernels, especially for steady-state performance. Another
important aspect that requires evaluation in kernel-based EKF
is the number of fixed-point iterations. For each of the three
methods, there are 3×103 time stamps for each trial, thus there
are 3× 103 × 120 = 3.6× 105 data for the number of fixed-
point iterations in total for the 120 trials. The histogram of the
3.6×105 numbers for each of the three methods is presented in
Fig. 16, where the average number of the fixed-point iteration
is also given. From the three histograms in Fig. 16, it is
clear that the LV kernel outperforms the Versoria kernel and
the Gaussian kernel for having fewer number of fixed-point
iterations, which is highly desired for running the estimation
algorithm online with limited computational resources.

A possible compromise is to restrict the fixed-point iteration
to run only once at each time instant k, which would further
reduce the computational complexity and is more suitable
for running the estimation algorithm online. To this end,
another round of Monte Carlo simulation was carried out
where the methods fCRL(MLVC), fCRL(MVC), fCRL(MGC)
are compared and the number of fixed-point iterations for all
three methods is uniformly set to one. In addition, the results
of the fCRL method (i.e., fCRL with the EKF), serving as the
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Fig. 14. Violin Plots of the Monte Carlo simulation for the 3 CRL
methods with the filters in smart mode, (a) Averaged Heading Error (b)
Averaged Position Error. For each subfigure (a) and (b), from left to right:
1) fCRL(MLVC) 2) fCRL(MVC) 3) fCRL(MGC). For each violin plot, the
averaged error metric concerning the trials is marked as a black dot, the left
part is the approximated PDF of the data with the two boundaries of the
shaded area representing the 25% and 75% quantile, and the right part is the
histogram.

baseline method, are also included for comparison purposes.
The corresponding violin plots are shown in Fig. 18, and
the accompanying bootstrapping results are given in Fig. 17,
from which it is clear that the fCRL(MLVC) outperforms the
other methods in terms of the position estimation for both the
transient and steady-state intervals.

VI. CONCLUSION & FUTURE WORK

In this work, a new CRL scheme is proposed for the
localization task of an agent which aims to localize all its
neighbors in its body frame. The new CRL scheme can
account for the correlation induced by the same velocity input
and benefit from indirect distance measurements between the
neighbors. Observability analysis using the augmented Lie
derivative is carried out on the CRL model, which shows
that bringing additional indirect measurements expands the
observable subspace. To handle the heavy-tailed UWB noise,
the kernel-induced Kalman filter with a novel-designed LV
kernel is applied to the state estimation problem. Sufficient
conditions for the convergence of the fixed-point iteration in
the filtering algorithm are derived. The advantages of using
the proposed CRL method in combination with the kernel-
induced EKF are demonstrated through a comparative study.
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Fig. 15. Bootstrapping statistical analysis for steady-state performance of the
methods fCRL(MLVC), fCRL(MVC), and fCRL(MGC).
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Fig. 16. Histogram of the number of fixed-point iterations. From left to right:
1) fCRL(MLVC) 2) fCRL(MVC) 3) fCRL(MGC).

Simulation results show that the proposed localization method
outperforms its other variations in terms of improved estima-
tion accuracy, robustness against measurement outliers, and
insensitivity to measurement covariance matrix initialization.
Moreover, the proposed filtering with the LV kernel also
outperforms those using other kernels in extreme cases when
the fixed-point iteration degenerates to the one-step kernel-
induced measurement update.
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1
Introduction

1.1. Background
Swarm behaviors are ubiquitous in natural world animals, social insects like termite building dwelling,
sardine forming bait balls to ward off predators, and a flock of birds navigating annual migration are all
concrete examples. Inspiration from these creatures motivates the development of swarm robotics or
multi-agent systems. Recent advances in ad hoc networking and miniaturization of electro-mechanical
devices nurture successful applications in terrain mobile robots [16], underwater vehicles [6] and aerial
vehicles [25]. Indeed, larger groups demonstrate their superiority to solve complex tasks (e.g., urban
surveillance [22], search and rescue [71], detection and exploration [9, 35]), where efficiency, robust-
ness, and autonomy are of major consideration, which in turn facilitates future researches on advanced
swarm intelligence to better serve these requirements.

In general, swarm intelligence, from a navigational perspective, can be sequentially categorized
into localization, perception, prediction, planning, and control. Though control is the final behavioral
manifest after completion of its previous phases, the overall performance is determined by the integra-
tion of all the tasks, among which localization is the cornerstone whose accuracy has a great impact
on all the following tasks, especially on planning and control. For swarm robotics where successful
cooperation among agents is of great importance, a more paramount issue is relative localization (RL)
which answers the question where are my teammates. RL provides essential feedback for collision
avoidance [25] and formation control [50] which are fundamentals for many higher-level tasks ranging
from crop monitoring [68] to parcel transportation [80]. Therefore, RL is a worthy research topic for
swarm robotics.

This review focuses on a special type of micro air vehicles (MAVs), the micro quadrotors. MAVs are
generally between 0.1 to 0.5m in length and 0.1 to 0.5kg in mass [83], their tiny structure directly leads
to advantages such as agile behavior and capability to work in environments with limited space (e.g.,
small indoor workshop and underground caves), while also brings extra challenges in RL for MAVs in
terms of accuracy, limited resources, and energy efficiency.

One simple but famous framework of RL is making each agent in the swarm aware of its global
position in a shared frame, then relative positions can be computed based on the communicated global
information among agents. Typical solutions within this framework use global positioning system (GPS)
[32, 78], optical motion tracking systems [34] and anchor-dependent positioning systems with fixed bea-
cons or ground stations [38, 120, 110]. Concerning GPS, whereas dramatic research has been carried
out to improve its accuracy, the most satisfactory error range still is between 0−10meters [33], which is
not suitable for MAVs where a centimeter-level of accuracy is required. Besides, the localization accu-
racy of GPS systems depends heavily on the measurement conditions of the client’s surroundings [33],
the accuracy degrades substantially in cluttered urban areas or indoor areas where MAVs, however,
have great potential to perform tasks. For the above reasons, it is necessary to turn to solutions without
GPS, and various researches have been published using infrared sensors [117], microphones [141],
Bluetooth [25] and also ultra-wideband (UWB) [110]. Even with all these alternatives being found to
replace GPS, a large group of existing solutions, see [131, 110, 166, 120, 38], are still intrinsically infras-
tructure dependent ones (i.e., optical motion tracking and anchor-based approaches) regardless of the
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communication hardware being used. Infrastructure-dependent solutions are disadvantageous in that
setting up the operation area brings extra cost, and some harsh or unknown environments (e.g., fire
scenes and forests) even render setting up impossible. Additionally, communication between ground
stations or fixed beacons causes increased communication workload and thus high energy consump-
tion during operation, which also thwarts applying them to MAVs whose flight time is quite short (i.e.,
10 to 20 minutes with a battery mass 30% of the total mass [83]) using Lithium batteries. Consequently,
it is imperative to develop GPS-denied and infrastructure-free RL solutions for swarm MAVs.

Regarding GPS-denied and infrastructure-free localization for swarm MAVs, onboard sensors play
more dominant roles. Ideally, one would place advanced sensors to tackle the problem, related ap-
proaches are localization using visual odometry with cameras [23, 75]. Nonetheless, due to the tiny
structure and limited battery supply of MAVs, using sensors with high computational cost (i.e., visual
information processing) also becomes problematic. As a result, the next-generation RL solutions for
swarm MAVs aim to use limited onboard sensors without visual information. For this purpose, making
good use of basic onboard sensors such as inertial-measurement-unit (IMU) is beneficial, the main
trend is to fuse IMU with other ranging sensors such as UWB [50, 95, 94] to compensate for the noise
and bias issues of IMU measurements. UWB is a low-power wireless radio communication technology
that can also provide distance measurements at the centimeter level, which makes it exceptionally suit-
able for the RL of swarm MAVs. Furthermore, since no external components (i.e., anchors and ground
stations) are present, inter-agent communication becomes indispensable, a popular trend is to com-
bine communication and sensing, which also motivates using UWB to serve RL. Taking into account
both communication capability and ranging accuracy, UWB takes precedence over infrared sensors,
microphone and Bluetooth [87]. In conclusion, it is of great interest to develop RL solutions for swarm
MAVs in GPS-denied and infrastructure-free environments using only IMU and UWB communication.

1.2. Related Work
One big family of localization for general multi-agent systems relies on sensor fusion which mainly
hinges on filtering theory, typical solutions include the Kalman filter (KF) [94, 130, 119, 56, 51, 81, 91,
166, 106], the particle filter (PF) [48, 46, 154] and the moving horizon estimation (MHE) [152, 113, 133,
102, 153]. However, most of them are only effective for 2-D localization, and experiments are carried
out for mobile robots. For those aiming for 3-D localization, most of the solutions use GPS, visual
sensors, and/or fixed beacons.

Two up-to-date and representative solutions which well fit the desired problem (i.e., 3-D RL for
swarm MAVs in GPS-denied and infrastructure-free environments using IMU and UWB communica-
tion) are [130] and [48]. The former uses two UWB units on some of the MAVs in the group to use
attitude information [130], while the latter uses 3 UWB units on one MAV to extract both distances and
bearing information for RL of a pair of MAVs [48]. Albeit they solve the RL problem in GPS-denied and
infrastructure-free environments without the assistance of visual sensors, their approaches place more
than one UWB unit on one drone, which is both uneconomic and energy inefficient. For the method
proposed in [130], even only two MAVs require more than one UWB unit, their solution lacks robustness
since the malfunction of any of these two agents will lead to failure of the RL. On the other hand, to
achieve RL for swarm MAVs with the configuration in [48], many agents in the group are required to
have 3 UWB units, which is costly and undesirable.

To achieve robust, energy-efficient, and economic RL, we further restrict our RL problem to the
case where each MAV is only equipped with one UWB unit, and thus only distance measurements
are attainable for a pair of drones [162]. Outstanding solutions are provided in [94], however, it triv-
ially solves 3-D localization with laser-based altimeter assisted, which fails to handle uneven ground
conditions. Though the distance is ambiguous information for the relative position, in terms of swarm
robotics, multiple distances are available between each pair of agents. Indeed, swarm though itself is
challenging, it also brings extra opportunities if the potential of cooperation is exploited. The idea of
cooperative localization (CL) originates from [84], and the concept of CL is firstly officially presented
in [116]. Toward CL, the main idea is a group of agents employs relative measurements concerning
each other to jointly estimate the poses (i.e., both position and orientation) of all team members without
external facilities (e.g., GPS, fixed beacons, and ground stations). CL has three components which are
1) cooperative localization algorithm 2) inter-agent sensing 3) wireless communication. This review
mainly deals with CL algorithm, inter-agent sensing and wireless communication using UWB yet will
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be briefly introduced, but no technological details will be treated regarding the latter two aspects and
the final thesis following this review will also not attempt to fill in gaps in terms of improving sensing
accuracy or communication protocol design.

CL algorithms can be broadly categorized as centralized CL and decentralized CL. Centralized CL
requires a fusion center (FC) or a leader agent to collect information from all agents and then perform
most of the computation and finally broadcast the outcome and commands to the team. Typical early
achievements of centralized CL can be found in [119, 67, 118]. Obviously, for centralized CL, not only
robustness is sacrificed, but communication and computational costs also scale poorly concerning the
number of agents [167]. To avoid single point failure and also achieve high energy efficiency, most of
the recent research is devoted to decentralized CL. Decentralized CL can be further categorized into
tightly coupled and loosely coupled. Tightly coupled CL requires all to all communication at the time
of each information exchange [81], whereas loosely coupled CL permits more communication sparsity.
Many contributions have been made to distribute the computation for tightly coupled CL (see [108,
119, 143, 89]), but the all to all communication requirement still cannot be relaxed, which makes it
unsuitable for UWB based localization where each agent can only pair to only one another agent at a
time. Therefore, loosely coupled CL is preferable in our case.

The major issue involved in loosely coupled CL is how to properly account for intrinsic correla-
tions across the whole team when measurements only involve part of the agents. Early examples
which attempt to solve this problem are [9] and [17]. In [9], a bank of (extended Kalman filter) EKF is
maintained for each agent, which significantly increases computational complexity and requires large
memory storage. [17] assumes relative pose is attainable, which does not fit our problem since UWB
can only provide relative range measurements. One popular and effective technique to ensure esti-
mation consistency for EKF based approaches is covariance intersection, and many new results have
been developed [90, 20, 158, 151, 92]. Though they serve as concrete contributions for loosely cou-
pled CL, many of them exploit relative pose measurements and their algorithms are developed and
validated for 2-D mobile robots. There is no published work about CRL in 3-D cases using only range
measurements, and thus applying covariance intersection to RL is still a blank.

Focusing on CRL, the first infrastructure-free solution is given in [64], but it assumes relative pose
is viable for each agent through camera or laser sensors. More recent examples on CRL are [51, 50,
120, 111]. In [51], EKF is used for the localization of swarm MAVs but it only works for 2-D localization
(i.e., all MAVs fly in the same horizontal plane). [50] uses a consensus-based distributed algorithm
with convergent proofs provided without relying on filtering theory. However, [50] also only works for
2-D and it further assumes uniform orientation of the swarm, which restricts its applicability for general
swarms. A similar solution based on a consensus algorithm is given in [120] where a coalition game
framework is used, however, this work relies on fixed reference beacons. The only exceptional work
is [111] where RL is solved actively with part of MAVs performing orbital trajectories, which is also
restrictive for general swarm MAVs if performing operational tasks is placed at the highest priority.

Another direction for CRL is based on graph rigidity theory. Since only distance measurements are
available in our framework, we are interested in distance rigidity theory. For localization applications,
classical contributions have been made in [104, 8, 4]. Though these early examples concentrate on
exact localization with fixed nodes whose positions are known, they still inspire the RL algorithm in that
the basic mathematical foundations remain the same. The most common way to solve distance rigidity
problem for localization is using semidefinite programming (SDP) [134], which is further developed
to have decentralized(distributed) computation capability [14, 149]. Recent useful solutions for 3-D
relative localization are [72, 24, 103, 115, 96]. The frameworks in [103, 115] are also UWB based
but visual sensors are used. [72] provides conditions on the minimum number of required distance
measurements but it fails to account for intrinsic constraints imposed by UWB communication in our
case. [24] sheds light on Lie group system representation which is possibly helpful for 3-D localization.
Another example of realizing system transformation is [55] where barycentric coordinates are used.
Analysis of localization error is presented in [96] where Cramér–Rao lower bound (CRLB) is focused.
Moreover, a novel clock rigidity theory tailored for UWB based sensor network localization is presented
in [156]. Nonetheless, All the above-mentioned references are purely based on rigidity theory, the only
exceptional work is [155] which combines rigidity theory and KF, though it aims for exact localization
instead of RL. In conclusion, an integrated solution that combines rigidity theory and filtering theory for
3-D relative localization that uses only distance measurements and also fits the UWB communication
framework is still a gap that needs to be filled.
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1.3. Outline of the Review
The rest of the review is organized as follows. Before delving into CL and CRL algorithms, we will
first present some knowledge about UWB communication in Chapter 2 where UWB ranging principles
and its relating communication protocols for localization purposes are briefly introduced. In Chapter
3, an overview of the CL problem will be given where examples and algorithms will not be restricted
to only relative localization but also include exact localization. This kind of convention of combining
CL and CRL is also valid for the following chapters in that CL has a strong relation with CRL and thus
is beneficial to be investigated to provide useful insights. The core parts come with Chapter 4 and 5.
In Chapter 4, filtering based localization techniques are elaborated. The following Chapter 5 covers
graph theoretical approaches for localization. Finally, Chapter 6 concludes the review with summarizing
remarks and future research directions provided.



2
Ultra-wideband Ranging for Localization

In this chapter, we present some basic knowledge on UWB ranging technique used for positioning and
localization. We will first give the basic working principles of UWB ranging which sheds light on why
UWB has high position estimation accuracy. Besides, essential factors relating to estimation error of
UWB ranging will also be briefly visited. We then present the communication protocols used in UWB
ranging focusing on some of the recent developments for localization. In the last section, we will analyze
the distance measurement model using UWB ranging.

2.1. Ranging with Ultra-wideband
Ultra-wideband (UWB) signals, as the name suggests, are known for its large bandwidth compared to
conventional narrow-band/wide-band signals. UWB is defined, according to Federal Communication
Commission, to have an absolute bandwidth of at least 500MHz or a fractional bandwidth of larger than
20% [42], in which the upper frequency and lower frequency are determined by the −10dB bandwidth
rule. This large bandwidth in frequency domain leads to, in the time domain, a very short duration wave-
form which usually is on the order of nanosecond. Thus, commonly used UWB signals transmit impulse
pulses with low duty cycle, which results the alternative name impulse radio (IR) UWB. The information
is conveyed by the timings or the polarities of the pulses [42]. In addition, the large bandwidth brings
several advantages for positioning/localization, such as accurate position estimation, high-speed data-
transmission, penetration through obstacles as well as low power transceiver designs, which are all
desired properties for micro robotics applications.

2.1.1. Two-step Positioning
Depending on whether the (relative) position is estimated from the signal traveling between the agents
or not, estimation schemes mainly fall under categories one-step direct positioning or two-step indi-
rect positioning. One-step positioning refers to estimating position directly from the signals, whereas
two-step positioning first extracts positioning related parameters which are then used to estimate the
(relative) position in the second step. Two-step positioning methods are more commonly used due
to its low complexity in signal processing [44], our interested problem of distance-based cooperative
relative localization (CRL) is also two-step in nature.

There are various positioning related parameters, such as time-of-arrival (TOA), time-difference-
of-arrival (TDOA) and received signal strength (RSS). Applying a combination of different parameters
for more accurate positioning has also received much attention [122]. In our framework where each
MAV agent can only equip one UWB unit and peer-to-peer relative localization (RL) is a prerequisite,
distance measurements become the only available exteroceptive information. Therefore, TOA stands
out as a core parameter that perfect matches our framework. The basic principle of distance estimation
using TOA intrinsically is calculating the distance as the product of the time-of-flight (τ ) and speed of
light in certain medium (e.g., air, water). Correspondingly, to obtain unambiguous TOA-based distance
estimation requires clock synchronization between two agents or applying two-way ranging (TWR)
protocols [88]. Consider a signal s(t) transmitted from agent A, the received signal at another agent B
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is modeled as
r(t) = s(t− τ) + n(t) (2.1)

where n(t) is assumed as white Gaussian noise. The receiver generally employs a correlator/matched
filter (MF) to extract the estimated time delay (τ̂ ) [44], which is formally given as

τ̂TOA = argmax
τ̂

∫
r(t)s(t− τ̂)dt (2.2)

In practice, many advanced techniques (e.g., adaptive local signal copy with feedback control, first-path
detection) are also used on the receiver side [44].

2.1.2. Error Sources of UWB Ranging
Accuracy limits of TOA estimation can be quantified using Cramér–Rao lower bound. For the signal as
modeled in (2.1), the bound is given as [45]√

Var(τ̂) ≥
(
2
√
2π

√
SNR∆w

)−1 (2.3)

where SNR represents the signal-to-noise ratio and∆w is the bandwidth of the signal. (2.3) also reveals
that large bandwidth has better estimation accuracy. In practical UWB positioning systems, the four
major error sources are 1) multipath propagation, 2) multiple-access interference (MAI), 3) non-line-of-
sight (NLOS) propogation, 4) high time resolution of UWB signals [44]. As a fact, multipath propagation
is not a major issue for UWB ranging due to its large bandwidth, MAI can be mitigated through commu-
nication protocol design or nonlinear filters [123]. The most challenging tasks are mitigation of NLOS
bias and accounting for clock inaccuracy or drift. Since the research focus of the thesis corresponding
to this report is on cooperative localization algorithms, details relating to the NLOS or erroneous clock
issues will not be further treated here.

2.2. Communication Protocols for Ultra-wideband Ranging
This section gives a short introduction to communication protocols used in localization with UWB rang-
ing. Asmentioned before in 2.1.1, clock synchronization and TWR are two alternatives to obtain reliable
distance measurements. Clock synchronization is less preferable due to high time resolution of UWB
signal poses challenges, on the other hand, TWR is a more flexible solution which enables arbitrary
pair of nodes to band and perform distance measurements at any time [31]. However, TWR brings
challenges regarding proper access control to a shared communication channel, which necessitates
communication protocol design for TWR-based UWB ranging. To reduce the processing time of the re-
ceiver, medium access control (MAC) mechanism is exploited to coordinate the measurements across
all agents at a given location. Typical MAC-based solutions are code-division multiple access (CDMA),
frequency-division multiple access (FDMA) and time-division multiple access (TDMA).

CDMA [58], being a relatively old MAC strategy, uses spread spectrum technique to avoid inter-
ference in the same band. CDMA still requires time synchronization and thus contradicts the major
advantage of TWR. As for FDMA [107] where the bandwidth of a single channel is divided into multiple
sub-channels for different agents, it is obvious its performance degrades in terms of accuracy due to
reduced bandwidth (c.f., (2.3)). Though improvements have been made for FDMA [162, 129], it is still
not satisfactory enough [167]. TDMA [79, 99] is a promising solution to control access among multiple
agents in TWR, it divides the access into different time-slots which are (dynamically) assigned to each
agents. TDMA has attracted great attention recently and many variations of TDMA has been proposed,
such as TDMA for distributed netwrok [15], TDMA with adaptive slot assignment [136, 124], etc.

For swarm MAVs, a good communication protocol should satisfy the following requirements

Requirements of Communication Protocol

• If two drones are within range, then they must be able to communicate.
• The protocol should work in a dynamically changing network.
• The protocol should lead to energy efficient communication.
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2.3. Distance Measurement Model using Ultra-wideband
No sensor can perfectly capture the value of the physical quantity of interest, so the UWBmeasurement
will always be corrupted by some additional noise. In NLOS scenarios, bias also contributes to the
measurement inaccuracy. Denote the relative position as r ∈ Rn where n ∈ {2, 3} and the measured
distance as z, then the measurement model is given as

z = ||r||+ b+ vz (2.4)

where b is the bias in NLOS scenarios and cliunz is the general measurement noise. In line-of-sight
(LOS) scenarios, b is assumed as zero and only nz is effective.

2.3.1. Bias identification and Mitigation
In NLOS conditions, a positive bias exists due to the extra time travelled by the UWB signal between the
transmitter and the receiver when penetrating obstacles. To obtain accuratemeasurements, developing
strategies to identify and mitigate the bias are necessary. Bias identification can be broadly categorized
as offline methods and online methods. Offline methods rely on numerous experiments and tests to
extract the quantitative characteristics of measurements, respectively, in LOS and NLOS conditions,
and typical solutions are range-based methods [128], location-based methods [73] and statistics-based
methods [53, 59]. Offline methods are not so preferable due to their statistical nature which limits
their applicability when dealing with tasks in unknown environments. Recently, an online identification
solution which compares the received signal power and first-path power demonstrates satisfactory
results, though a threshold need to be chosen manually in advance.

Most recent bias mitigation techniques are machine-learning-based [159, 147, 166]. Machine learn-
ing requires large set of training data and thus requires numerous experiments beforehand. Future
trends on online bias mitigation with sparse data sources are of great interest, an iterative filter is re-
cently proposed [60] in which the bias is estimated in an active manner with control integrated.

2.3.2. Noise Modeling
Many theoretical and application-oriented projects, where sensors and actuators are analyzed, assume
the noises are white and Gaussian. However, experiments show that the noise in UWB distance mea-
surements is generally not white Gaussian noise [85, 86] and it is dependent on the relative pose. Cor-
respondingly, Gaussian process are used to model the measurement and learning-based techniques
are used to compute the parameters of the Gaussian process. It’s also possible to model the noise
using different distributions (i.e., Cauchy distribution [82], Gamma distribution [121]).



3
Overview of Cooperative Localization

In this chapter, an overview of CL for multi-agent systems will be given in terms of the basic categoriza-
tion of CL algorithms. In this report, CL refers to cooperative absolute localization, a research area that
have a rather long history and provides many useful concepts and ideas for recent research dealing di-
rectly with CRL which estimates relative pose without knowing absolute pose information in a common
reference frame. Specifically, CL frameworks can be broadly categorized as centralized and decentral-
ized ones, and decentralized frameworks can be further divided into tightly coupled and loosely coupled
ones depending on whether all to all communication is satisfied at any time when information exchange
among agents occurs. This chapter starts with several early examples where the idea of CL was first
introduced and implemented. Subsequently, centralized CL will be treated with representative solu-
tions of CL algorithms provided. Based on the insights gained from centralized algorithms, we then
move on to decentralized ones, most of which are developed to achieve equal performance to their
centralized counterparts. For decentralized CL, tightly coupled and loosely coupled solutions will be
introduced in detail and compared in terms of communication cost, computational complexity as well
as localization accuracy. After explaining the above essential property of general CL algorithms, in the
final section, several representative CRL solutions will be presented, and then some discussions on
the potential of using CRL to benefit the relative localization of systems with dynamic network topology
will be provided.

3.1. Early Days of Cooperative Localization
The idea of cooperative localization starts from the problem of the absolute positioning of mobile robots
[84]. Traditionally, given the initial position of robots in a common reference frame, their subsequent
positions can be obtained using an onboard dead-reckoning system (e.g., IMU). However, positions cal-
culated in this way are often inaccurate due to noise and bias issues intrinsically brought by the onboard
sensors, and the positioning error accumulates in long-time operations. To improve the positioning ac-
curacy without using external facilities (e.g., GPS, fixed beacons), a pioneering work published in 1994,
where robots are treated as beacons themselves, provides new opportunities [84], and the punchline
working principle is given below.

Principles of Cooperative Positioning [84]

1. Divide the entire robot team into two groups (i.e., Group A and Group B).
2. Fix all robots in Group A, let robots in Group B moving for a certain time interval ∆T .
3. Stop all robots in Group B, and for each robot in Group B, obtain the relative distance and

relative bearing angles (i.e., horizontal angle and elevation angle) with respect to all robots
in Group A.

4. Use the relative information to get the position of each robot in Group B.
5. Fix robots in Group B, and move robots in Group A and repeat step 3 and step 4 now for

members in Group A.

14



3.2. Centralized Cooperative Localization 15

6. Repeat step 2 to step 5 until all the robots reach their desired positions.

The working principle provided by Kurazume and Nagata [84], though lacks concrete experiments
and sensing device configurations, provides inspirations for infrastructure-free localization. We sum-
marize the highlights as follows.

General CL Highlight

• Divide the entire team into several groups
• Make part of the agents as beacons for the other robots that need to be localized

The term cooperative localization was first introduced by Rekleitis et al. in 2000 [116]. Their work
inherits the same principles from the work by Kurazume and Nagata [84], whereas their task requires
only two robots for terrain exploration. Besides, they provide practical solutions by using the camera
to get relative poses. However, their framework assumes that two robots can always see each other,
which imposes extra constraints for motion planning and prevents its capability to work in environments
with many obstacles.

These early examples are indeed pioneering, yet they fail to take into account the constraints
brought by sensing devices and to achieve localization with limited relative measurements. More im-
portantly, their proposed solutions replace the deck-reckoning systems instead of adding supplements
to improve the accuracy, and thus filtering theory was not applied there.

3.2. Centralized Cooperative Localization
Exploiting also on-board sensors and reducing inter-agent sensing complexity became a popular re-
search direction for CL. In this section, we further investigate early improvements in this direction and
we focus on a particular type of CL algorithms called centralized CL. By fusing both on-board sensors
and inter-agent relative measurements, CL requires quite amount of computations. The term central-
ized means that the computations are carried out, in a centralized manner, either by a leader robot in
the team or an external fusion center. Specifically, the leader robot or the fusion center, at each time
step, gathers information from all agents, perform the computation online by using its own resources,
then broadcasts the information (i.e., location and control commands) back to each agent. Follow the
problem formulated as in [119], centralized CL using KF essentially employs state augmentation which
collects all the states of each individual agent to build an integrated dynamical system at group level.

For a group of N agents, let xi(k) ∈ Rnxi and ui(k) ∈ Rnui denote the state and control input of
agent i(i ∈ Z+

N ), respectively. Besides, let wi(k) ∈ Rnxi and γi(k) ∈ Rnui be the input noise and
system noise, respectively. The original continuous-time nonlinear system dynamics of each agent i is
given as

ẋi = fi(xi, ui;wi, γi), (3.1a)
zi = hi(x̄, vi), (3.1b)

where x̄ = [x⊤
1 , x

⊤
2 , · · · , x⊤

N ]⊤ is the augmented state. From (3.1), it can be observed that the dynamics
of each agent is decoupled but the measurement is coupled. For instance, the measurement model
for agent i measures the relative distance between agent j and itself can be expressed as

zi,j = ||xi − xj ||2 + vi. (3.2)

Correspondingly, expressing the group dynamics in a compact form requires state augmentation with
vectorized dynamic equation and output equation. Typically, the augmented system is of the following
form

˙̄x = f̄(x̄, ū; w̄, γ̄), (3.3a)
z̄ = h̄(x̄, v̄), (3.3b)

where ū = [u⊤
1 , u

⊤
2 , · · · , u⊤

N ]⊤ and †̄ = [†⊤1 , †
⊤
2 , · · · , †

⊤
N ]⊤(† ∈ {w, v, γ}) are the augmented control input

and the augmented noise input, respectively.
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The centralized CL employing augmented system dynamics (3.3) requires information about inputs
u∗
i (k) of all agents. Moreover, even the dynamics of agents are decoupled, cross correlation will be

brought in by additional relative measurements among agents. Consequently, distributing the compu-
tation is not a trivial task.

Centralized CL Summary

• Working Principles

1. Gather information (i.e., inputs, local estimates) from all agents.
2. Build augmented system dynamics
3. Perform computation in the fusion center/leader robot according to the augmented

dynamics
4. Broadcast the estimated state to each agent

• Disadvantages

1. Not robust regarding single point failure (i.e., failure of the leader robot or the fusion
center).

2. Increased communication cost between each agent and the fusion center/(local)
leader robots.

3. Performance scales poorly for large group teams.

At this point, we only present the preliminary steps on the construction of system dynamics for a
group/subgroup of agents to illustrate the fundamental idea of state augmentation. Details on cross
correlation and its relating distributed computation require knowledge about KF which will be treated in
4.1.1 with rigorous mathematical foundations.

3.3. Decentralized Cooperative Localization
In this section, we turn our focus to decentralized CL algorithms which are developed to resolve the
disadvantages (i.e., high communication cost and lacking robustness) of centralized CL. The term
decentralized refers to decentralized computation which means that the computation is divided into
sub-tasks and assigned to each of the agents. Therefore, the role of each agent is equally important
and each agent is only partially responsible for the overall localization algorithm of the entire team.
Still, the algorithm for decentralized CL is cooperative in that agents need to exchange information and
maintain consistency.

Elimination of the fusion center/leader agent is a major improvement of decentralized CL compared
to centralized CL. Correspondingly, communication among agents becomes more important. In terms
of temporal connectivity structure, decentralized CL can be further categorized into tightly coupled and
loosely coupled algorithms. Tightly coupled CL requires all-to-all communication either by directly build-
ing simultaneous communication links among agents or by indirectly achieving all-to-all communication
by transmitting a large amount of information containing not only the relative measurements between
the pair of agents that involved in this communication stream but also other (possibly outdated) relative
measurements obtained from other pairs of agents during previous streams. On the other hand, loosely
coupled CL, though suffers from conservative estimation (i.e., estimation with covariance matrix having
relatively big eigenvalues), has the advantage of imposing no connectivity condition on the team. We
summarize the main characteristics of tightly coupled and loosely coupled CL in the following Table 3.1.

Tightly Coupled CL Loosely Coupled CL
Communication all-to-all communication no communication constraints
Correlation full correlation partial correlation
Estimation optimistic conservative

Computational Load Low High

Table 3.1: Comparison of Tightly Coupled and Loosely Coupled CL
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3.3.1. Tightly Coupled Algorithms
The most straightforward fashion of tightly coupled CL is making each agent be an independent central-
ized working station, which results in multicentralized CL framework wherein each agent broadcasts
its information (i.e., control, state estimates, variance estimates) to all other agents in the team (entire
team or local team) [143], then each agent can perform centralized computation as a fusion center
since it obtains information from all other interested agents. By the same token, each agent is a leader
in this straightforward solution. multicentralized CL has a demanding computational cost for each agent
and also requires a large amount of simultaneous communication among agents.

Since cross-covariance propagation is the source of difficulty for distributed computation, several
methods have been developed to handle this issue without relying on a multicentralized CL framework.
We summarize some of the representative works as follows.

Representative Tighly Coupled Algorithms

• Singular-Value Decomposition (SVD) based decentralized computation [119]:
Split covariance matrix for the corresponding pair of agents between which the relative
measurements are taken. Then each agent only handle its own portion of computation,
whose results are further combined in update stage of the EKF algorithm.
Communication constraints: Direct all-to-all communication at update stages

• Interim Master decentralized CL (IMDCL) [81]:
Whenever a relative measurement is obtained, the agent making this relative measurement
is identified as the interim master which produces locally some intermediate variables and
broadcasts those intermediate variables to all other interested agent either directly or indi-
rectly (i.e., through intermediate agent(s)). At update stage of EKF, each agent makes use
of the intermediate variables to compute the state estimation without extra communication.
Communication constraints: Indirect all-to-all communication (i.e., spanning tree rooted at
the interim master)

• Replace EKF with maximum a posteriori (MAP) Estimation [108]:
In the least square formulation of the MAP optimization problem, the special structure of
the matrix enables the distribution of the computation of the solution by assigning corre-
sponding rows of the matrix to each agent.
Communication constraints: Direct all-to-all communication at update stages

3.3.2. Loosely Coupled Algorithms
Basic loosely coupled CL only updates state estimation for the pair of agents involved in the relative
measurements while neglecting possible benefits from past relative measurements. In EKF based
loosely coupled algorithms, an exact account of the cross-covariance terms of the entire team is not
maintained during any update phase triggered by obtaining new relative measurements. Correspond-
ingly, the localization consistency is lost according to the above basic formulation. Typical improve-
ments for EKF based loosely coupled CL to maintain consistency have been made, which are summa-
rized as follows.

Representative Loosely Coupled Algorithms

• Interleaved Update [9]:
Each agent keeps a bank of EKFs of size 2N of maximum with N being the total number
of agents. Each EKF has a well defined data structure to record all the agents that have
contribution to its correlation using the identity index of the agents. Every time an agent
broadcast its local information to others, the estimated states and covariance of all EKFs
as well as the record are transmitted.
Advantage(s): Consistent estimation with only distance or bearing measurements Disad-
vantage(s): Increased computational complexity; large memory demand; large transmitted
information bits

• Covariance Intersection [74]:
Intuitively, covariance intersection estimate unknown cross covariance by taking the inter-
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section of a pair of auto covariances. Details of this method will be elaborated in 4.1.3,
we here only summarize its advantages and disadvantages. Advantage(s): Consistent es-
timation; Small memory demand; computation can be distributed Disadvantage(s): Only
compatible with filters in which variances are accessible

3.4. Cooperative Relative Localization
This section will briefly introduce several representative algorithms for CRL, and our major concern is
direct CRL algorithms. Here, the term direct means solving relative localization (positioning) without
relying on absolute localization results, whereas indirect means computing relative pose using result
of absolute localization.

Since relative poses can be trivially computed given a set of the absolute poses in global coordi-
nates, absolute localization problems have been investigated intensively before direct relative localiza-
tion came to focus. Indirect methods can hardly be infrastructure-free since at least on agent needs
to interact with the global reference frame through either GPS or fixed beacons, otherwise the ab-
solute position is unattainable. Therefore, direct methods are more economic and more suitable for
infrastructure-free localization.

The main concepts (i.e., centralization/decentralization, loosely coupled/tightly coupled) in local-
ization problems were initially proposed for absolute localization. Howbeit, these essential concepts,
being related to universal aspects (i.e., computational framework, communication condition), are not
restricted to absolute localization, and thus can also be applied to relative localization.

Apart from centralization/decentralization and loosely coupled/tightly coupled categorizations, we
are also interested in whether a given solution works for 2-D/3-D as well as whether it is infrastructure-
free/infrastructure-dependent. Moreover, we do not consider solutions that benefit from GPS or visual
sensors. Given the above conditions, all interested categories are given as follows:

1. computation & communication framework: 1) centralized, 2) tightly coupled decentralized, 3)
loosely coupled decentralized

2. localization dimension: 1) 2-D only, 2) 2-D/3-D, 3) 2-D & altimeter
3. infrastructure dependency: 1) infrastructure-free, 2) infrastructure dependent
4. measurement type: 1) distance only, 2) bearing only, 3) hybrid (distance and bearing) 4) relative

pose
5. estimated variables: 1) relative position, 2) relative pose (i.e., both position and orientation)

3.4.1. Representative Solutions
CRL starts from an early work where relative poses are attainable for each robot [64] and the cooper-
ation simply means combining pose measurements from different agents to reduce the measurement
uncertainty. Since obtaining relative pose itself brings challenges to on-board sensors, solutions using
only distance measurements and rigidity theory [104] gained favor. However, solely relying on rigidity
theory to solve RL treats agents simply as nodes in a graph, which fails to provide orientation estimation.
To estimate relative pose, ego-motion information obtained from inertial sensors (e.g., IMU) becomes
popular, and a pioneering contribution, which exploits both IMU and relative distance, formulates the
relative pose estimation as a least square optimization problem [142]. The first consensus-based RL
was proposed for source localization where sampling effects of measurements were also considered
[18], yet their framework is infrastructure-dependent. Recently, infrastructure-free consensus-based
RL has been developed [50], but it only works for 2-D scenarios and it assumes a common reference
frame. A similar game-theoretic solution [120] has also been proposed, it still requires ground stations
and thus is also infrastructure-dependent.

Consensus-based solutions lead a popular trend in distributed CRL. Back in the early days, two
algorithms focusing on distributed computation were developed for CRL [26]. In this work, one solution
relies on degenerate motion assumption, while the other relies onmotion control and requires part of the
agents to be static. Therefore, both distributed solutions have limited applicability. Another direction for
distributed CRL is achieving peer-to-peer RL, solutions using single link range measurements [30, 137,
51] has also been developed. Nevertheless, those early peer-to-peer solutions mean the cooperation
of a pair of agents instead of benefiting from a large group.
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Most of the existing solutions, regardless of applications (i.e., aerial vehicles [18, 50], mobile robots
[64, 104], mobile users [95]), only solve RL in 2-D scenarios. For 3-D infrastructure-free RL which tasks
using MAVs greatly desire, altimeters are pervasively used [25, 51]. The only exceptions solving 3-D
RL without altimeter also fail to account for relative orientation [96, 72] since they purely rely on graph
optimization. There are also solutions aiming for swarm aerial vehicles that place more than one UWB
unit on each agent [130, 48], which makes them unsuitable for MAVs. We summarize and categorize
representative relevant works on CRL in Table 3.2.

Computation
& Communication Dimension Infrastructure

Dependency Measurement Estimated
Variables

Sensor Network
(Rigidity Theory) [104]

Decentralized
Tightly Coupled 2-D Free Distance Relative

Position
Ground Vehicle

(Weighted LS) [142] (Not Applicable) 2-D Free Distance Relative
Pose

UAV
(Consensus)[18]

Decentralized
Loosely Coupled 2-D Dependent Distance Relative

Position
Sensor Network

(Particle Filter) [64]
Decentralized
Tightly Coupled 2-D Free Relative Pose Relative

Pose
UAV

(EKF) [112] (Not Applicable) 3-D Free Distance
& Bearing

Relative
Position

Sensor Network
(NLS) [26]

Decentralized
Tightly Coupled 2-D Free Distance Relative

Pose
Mobile Vehicle

(Graph Theory)[30] (Not Applicable) 3-D Free Distance Relative
Position

UAV
(Graph Theory) [137] (Not Applicable) 2-D Free Distance Relative

Position
UAV & UWB
(EKF) [51]

Decentralized
Loosely Coupled

2-D
Altimeter Free Distance Relative

Position
UAV & Bluetooth

(EKF) [25]
Decentralized

Loosely Coupled
2-D

Altimeter Free Distance Relative
Pose

Mobile User
(Particle Filter)[95] Centralized 2-D Free Distance Relative

Position
UAV

(Consensus) [57]
Decentralized

Loosely Coupled 2-D Free Distance Relative
Position

UAV & UWB
(Consensus) [50]

Decentralized
Loosely Coupled 2-D Free Distance Relative

Position
Mobile Vehicle & UWB

(EKF) [19]
Decentralized

Loosely Coupled 2-D Free Distance Relative
Pose

UAV
(Graph Theory) [96]

Decentralized
Tightly Coupled 3-D Free Distance Relative

Position
UAV

(Game Theory) [120]
Decentralized
Tightly Coupled 3-D Dependent Distance Relative

Position
Sensor Network

(Rigidity Theory) [72]
Decentralized
Tightly Coupled 3-D Dependent Distance Relative

Position
UAV

(MHE + NLS) [27]
Decentralized

Loosely Coupled 3-D free Distance Relative
Pose

Table 3.2: Summary of Existing CRL solutions

Due to the limited onboard computational capability of MAVs, solutions using recursive filtering are
more favorable. Moreover, filtering-based solutions do not require a tightly coupled communication
setting in that they solve peer-to-peer relative localization as a prerequisite [94, 19].

The simplest recursive filtering technique for nonlinear systems is the EKF which provides subop-
timal estimation for the linear dynamics of the incremental states. Though the EKF has shown good
performance for many engineering applications, it does not have a solid theoretical foundation regard-
ing stability and convergence. One necessary condition for the successful implementation of the EKF
is having nonlinear observability [25, 94, 19, 66, 65], a property that was originally proposed to design
observers for deterministic linear systems. Another factor that influences the performance of the EKF
is initialization. In general, if the initial estimation of the filter deviates a lot from the true state, then
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the EKF can easily diverge. The main contribution of Chakraborty et al. [19] is using a bank of EKFs
with different initialization guesses to tackle the initialization sensitivity of the EKF, and they call this
technique the multi-hypothesis EKF (MHEKF).

In contrast to recursive filters where only one single distance measurement is used for estimation,
the batch filters that use multiple measurements for estimation in each step are also powerful for CRL,
and they provide more stability guarantees in practice [142, 26, 27]. One notable batch filter is the
MHE, and it also has other variant names such as the sliding window estimator [27]. The MHE and
many of its variant estimators intrinsically formulate the estimation problem as an optimization problem,
such as nonlinear least-square (NLS) [26, 27] that can be solved by Gauss-Newton algorithm or more
advanced Levenberg-Marquart algorithm for improved convergence.

There are also solutions where CRL is solved directly at the group level without solving peer-to-peer
RL, two classes or representative solutions are those using distributed optimization (e.g., consensus
[50], and game theory [120]) and graph rigidity theory [104, 137, 96]. Existing solutions fall in the group
level category all assume that a global reference frame is available for all agents [50] or simply treating
the robots as sensor nodes [104, 137, 96]. Since we are interested in pose estimation (i.e., relative
position estimation in body frame), they are not so applicable compared to filtering-based solutions.
Still, for distributed optimization approaches, adding the heading angle or the general attitude as the
extra learnable state may also lead to a valid solution to our interested problem. And in terms of rigidity
theory, it may serve as a complementary tool if used in combination with nonlinear filters.

3.4.2. Cooperation for Relative Localization of Dynamic Networks
In swarm robotics, all the agents in the swarm together form a network when the communication links
are built. Notably, the communication link between any pair of agents may not be valid all the time
(i.e., a link may be valid for an instant and then be destroyed after a while), which renders the whole
network dynamic in the sense of validity of the communication links. Another factor contributing to the
time-varying nature of the network is the number of participating agents. Specifically, incoming agents
joining the group and existing agents leaving the group also make the network dynamic.

We present some knowledge of graph theory for modeling swarm robotics. Each agent in the swarm
is regarded as a node and a valid sensing/communication link is an edge connecting its corresponding
nodes. Then the sensing topology of the swarm can be described by a directed graph G = {V, E},
where V = {1, 2, · · · , N} is the node set with N being the total number of agents and E ⊆ V × V
is the edge set. An ordered pair (i, j) ∈ E means that agent i can measure its distance to agent
j. Correspondingly, the undirected graph Ḡ = {V, Ē}, being the counterpart of its directed graph G,
describes the measurement(distance) topology of the swarm network in which (i, j) ∈ Ē if and only if
(j, i) ∈ Ē . Subsequently, we refer the dynamic behavior of the communication links as dynamic edge
and that of the participating agents as dynamic node. For convenience, we assign, for each graph G(Ḡ),
an square matrixMe ∈ {0, 1}N×N to its edge set E(Ē). The relation between E(Ē) and its corresponding
matrix Me is established according to the following rule

Me[i, j] = 1(i,j)∈E . (3.4)

Further denote the mapping from edge set to its corresponding matrix as fe (i.e., Me = fe(E)), then
apparently the mapping fe is bijective. Therefore, it is safe to completely use the edge matrix Me to
describe the coupling of the swarm whenever needed. In our framework where UWB ranging is used,
we denote the maximum communication range between any of the two agents as d̄. The agents are
moving in n-dimensional Euclidean space Rn(n ∈ {2, 3}) and their exact positions are denoted as
pi ∈ Rn, where i ∈ V . Additionally, we define range matrix Mr for a given node set V according to the
following rule

Mr[i, j] = 1||pi−pj ||≤d̄ . (3.5)

According to (3.4) and (3.5), we have Me[i, j] ≤ Mr[i, j]. As a result, we define the range graph as a
3-tuple G = {V,Me,Mr}whereMe characterizes the validity of sensing/communication andMr charac-
terizes ability of sensing/communication. In the sequel, we will simply use graph to indicate range graph.
Any sub-group of agents is denoted as S(S ⊆ V). Given S, it also has a corresponding directed graph
and undirected graph denoted respectively as G = {S,Me,Mr} and Ḡ = {S,Me,Mr}. Following the
discrete-time convention in 3.2, a graph is a function of time t ∈ T (i.e., G(t) = {S(t),Me(t),Mr(t)}). A
specific time interval is denoted as T [t1, t2] := {t1, · · · , t2}. To distinguish between the abovementioned
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two dynamic behaviors (i.e., dynamic node and dynamic edge), we need several formal definitions for
the network.

Definition 1 (Compact Graph) Given a group of agents S ⊆ V and its relating graph G, it is compact
if Mr1 ≥ 1. A compact graph is denoted as Gc

Definition 2 (Loosely/Tightly Compact Graph) Given a compact graph Gc, it is loosely compact if
Mr < 1, and it is tightly compact if Mr = 1.

Definition 3 (Fixed-node Graph) Given a group of agents S ⊆ V and its relating graph G, it is fixed-
node with respect to time interval T [t1, t2] if S(t) = S∗, ∀t ∈ T [t1, t2]

Subsequently, we present the definition of node joining(leaving) and edge changing as follows.

Definition 4 (Node Joining of Compact Graph) Given a compact graph Gc(t1) at t1 ∈ T , if ∃t2 ∈
T, t1 < t2 such that Mr(t2)1 ≥ 1 (i.e., graph is still compact at t2) and S(t1) ⊂ S(t2), then we define
this variation as node joining.

Definition 5 (Node leaving of Compact Graph) Given a compact graph Gc(t1) at t1 ∈ T , if ∃t2 ∈
T, t1 < t2 such that Mr(t2)1 has at least one 0 entry. then we define this variation as node leaving.
Remove the nodes corresponding to the 0 entries will generate a compact graph again.

Definition 6 (Edge Changing of Fixed-node Compact Graph) Given a fixed-node compact graph
Gc = {S∗,Me(t), 1} on T [t1, t2], if ∃ta, tb ∈ T [t1, t2], ta < tb such that Me(ta) 6= Me(tb), then we
define this variation as edge changing

Given the above definitions, we now present some insights on how cooperation benefits the RL
problem for dynamic networks

Insights for CRL for dynamic networks

• For agents forming a loosely compact graph, there exists at least a pair of agent which
cannot build a communication link and measure inter-agent distance directly and thus their
relative pose cannot be estimated directly. However, they are indirectly connect by other
agents, then if they respectively estimate their relative poses to the media agent(s), their
relative pose can also be obtained.

• For agents forming a general compact graph, the relative pose of any pair of agents may
be estimated both directly and indirectly, then fusing the direct and indirect estimation will
increase the estimation accuracy.



4
Filtering Theory Based Cooperative

Relative Localization
This chapter focuses on CRL solutions using different filtering techniques. In current literature, dom-
inant filters are the Kalman filter (KF), particle filter, and moving horizon estimation (MHE). In this
chapter, we will provide mathematical foundations for each of these filters and analyze some of the
representative examples in the existing literature. At last, a comparative analysis will be presented in
which we summarize the advantages and limitations of the different filters in terms of various aspects,
e.g., convergence, initialization impact, computational complexity, etc.

4.1. Kalman Filter Based Cooperative Relative Localization
This section deals with KF as well as some of its classical variations. Some Novel extensions in ex-
isting literature will also be covered. We will first explain the basic working principles of the extended
Kalman filter (EKF) which is a widely used nonlinear filtering algorithm. Then, we briefly summarize
the observability issue using KF, focusing on stochastic nonlinear systems. Covariance intersection,
being a powerful tool for computing unknown correlations, will be introduced from a CRL perspective.
We end this section by analyzing the initialization impact on estimation performance using EKF, and
several advanced extensions of EKF will also be presented.

4.1.1. Kalman Filter Introduction
The KF, also known as linear quadratic estimation, is an information extraction algorithm that uses
a system model and sequence of measurements to estimate unknown variables in the presence of
noise. It is named after Rudolf E. Kálmán, who is one of the founders of KF theory [77]. The algorithm
has a recursive nature, which forces the discretization of general continuous system equations before
applying the algorithm. Though a continuous version of KF (i.e., Kalman-Bucy filter [13]) also exists,
we only focus on discrete-time KF in this report.

Following the general system decribed in (3.1), we consider noise-affine nonlinear system of the
form

ẋ = f(x, u; γ) + gw(x)w, (4.1a)
z = h(x) + gv(x)v. (4.1b)

The real-time sampling interval is choosen to be δT , with which the set of discretized time instant is
Tdis = {0, δT, 2δT, · · · }. For simplicity, we use the time index set T = {0, 1, 2, · · · } to replace Tdis.
Applying Euler discretization, the discrete-time nonlinear system dynamics can be obtained from (3.1)
as

x(k + 1) = x(k) + δT f(x(k), u(k); γ(k)) + δT g(x)w := F (x(k), u(k); γ(k)) +Gw(x(k))w(k), (4.2a)
z(k) = h(x(k)) + gv(x(k))v(k), (4.2b)

22
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where ‡(k), ‡ ∈ {x, u, w, γ, v} represents the variable at time instant k ∈ T . To apply the EKF, we
linearize both the system dynamics (4.2a) and the output equation (4.2b) at xe := (x̂+(k), u∗(k); γ =
0, w = 0, v = 0), where x̂+

i (k) is the posteriori state estimation and u∗(k) is the input computed by the
controller. The final discrete-time linear system is given as

x̃(k + 1) =
∂F

∂x

∣∣∣∣
xe

x̃(k) +
∂F

∂u

∣∣∣∣
xe

(ũ(k) + γ(k)) +Gw(x̂
+(k))w(k)

= (Inx +
∂f

∂x

∣∣∣∣
xe

)x̃(k) +
∂F

∂u

∣∣∣∣
xe

(ũ(k) + γ(k)) +Gw(x̂
+(k))w(k)

:= A(k)x̃(k) +B(k)(ũ(k) + γ(k)) +Gw(x̂
+(k))w(k) (4.3)

And the linearized output equation is given as

z̃(k) =
∂h

∂x

∣∣∣∣
xe

x̃(k) + gv(x̂
+(k))v(k) (4.4)

= H(k)x̃(k) + gv(x̂
+(k))v(k). (4.5)

Further, we assume that the input increments ũ(k) is negligible compared to the actuator noise γ(k). Be-
sides, denote Gw(x̂

+(k)) and gv(x̂
+(k)) as Gw(k) and D(k), respectively. Then (4.3) can be simplified

to

x̃(k + 1) = A(k)x̃(k) +B(k)γ(k) +Gw(k)w(k), (4.6a)
z̃(k) = H(k)x̃(k) +D(k)v(k). (4.6b)

we assume that the input noise γ(k), process noise w(k) and measurement noise v(k) are independent
and Gaussian distributed (i.e., (F γ(0:T−1), Fw(0:T−1), F v(0:T−1)) ∈ CI). Denote η(k) = [γ(k)⊤, w(k)⊤]⊤

and G(k) = [B(k), I], the resulting system equation is given as

x̃(k + 1) = A(k)x̃(k) +G(k)η(k), (4.7a)
z̃(k) = H(k)x̃(k) +D(k)v(k). (4.7b)

We further denote the parameters of the Gaussian distribution as η(k) ∈ G(0, Q(k)) and v(k) ∈
G(0, R(k)), The EKF algorithm is given as follows.

EKF Algorithm

Given the initial mean x̂+(0) and the initial covariance P+
x (0) of the state x. For k = 0, 1, 2, · · · ,

1. State Propagation

x̂−(k + 1) = F (x̂+(k), u∗(k)) (4.8)

2. State Covariance Propagation

P−
x (k + 1) = A(k)P+

x (k)A(k)⊤ +G(k)Q(k)G(k)⊤ (4.9)

3. Kalman Gain Computation

K(k) = P−
x (k + 1)H(k)⊤(H(k)P−

x (k + 1)H(k)⊤ +D(k)R(k)D(k)⊤)−1 (4.10)

4. Posterior State Update

x̂+(k + 1) = x̂−(k + 1) +K(k)(z∗ − h(x̂+(k))) (4.11)

5. Posterior State Covariance Update

P+
x (k + 1) = (I −K(k)H(k))P−

x (k + 1) (4.12)

where z∗ is the real-time measurement obtained from sensors.
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Before applying EKF to perform estimation, a problem needs to be formulated where discrete-time
system equations are built. We first present possibly useful physical quantities for system modeling in
Table 4.2. Four types of variables are defined: 1) known prior variables are available after experimen-
tal setup, 2) computed variable means they can be algebraically computed directly using measured
variables or known prior variables, 3) Measured variable are obtained using sensors that are only avail-
able during online experiments, 4) estimated Variables are those needed to be estimated using filters
running online. The modeling framework in some of the representative solutions are summarized as

Physical Quantity Notation Variable Type
Exact Position pi Estimated/Computed Variable

Exact Height (Altitude) hi Measured Variable
Initial Position p0i Known Prior Variable

Initial Relative Position ∆p0ij Estimated/Computed Variable
Displacement ∆pi Estimated Variable

Relative Displacement ∆pij Estimated Variable
Relative Distance dij Measured Variable
Relative Position ∆pij = pj − pi Estimated Variable
Exact Heading ϕi Measured Variable

Relative Heading ∆ϕij = ϕj − ϕi Estimated/Computed Variable
Transformation Matrix Rij(ϕi, ϕj) Computed Variable

Velocity vi Measured Variable
Relative Velocity ∆vij Estimated/Computed Variable

Table 4.1: Physical Quantity for System Modeling, where i, j are the agent identity indices following the convention in 3.4.2.

follows along with their limitations.

Representative RL Solutions Using KF

• 3-D Relative Position Estimation of UAV Using UWB Range Measurements and Al-
timeter[51]
– State: ∆p0ij ,∆pij
– Measurement: dij ,∆pij
– Comments

Relative heading is not estimated and thus all relative position estimation is assumed
in the same global reference frame. Moreover, it is not clearly stated how the exact
relative displacement is measured.

• 3-D Relative Pose Estimation of UAV Using Bluetooth Range Measurements and Al-
timeter[25]
– State: ∆pij , vi, vj , ϕi, ϕj , hi, hj

– Measurement: dij , vi, vj , ϕi, ϕj , hi, hj

– Comments
Relative pose is estimated in local coordinate, which is good, however, altimeter is
used and thus it is still a 2-D RL.

• 2-D Relative Pose Estimation of Ground Mobile Robots Using UWB Range Measure-
ments [19]
– State: ∆pij ,∆ϕij

– Measurement: dij
– Comments

Good solution that directly estimates relative pose with only inter-agent distance mea-
surement, but it is for 2-D localization.
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4.1.2. Observability Analysis
After building the systemmodel, we then need to analyze whether the filter can perform state estimation.
More specifically, given the limited measurements and the chosen states, can all the interested states
be reconstructed using the measurements. This question is answered by evaluating the rank of the
observability matrix. For deterministic linear time-invariant (LTI) systems, the observability matrix is also
invariant (i.e., both time-independent and state-independent) [76]. For forward Gaussian stochastic LTI
systems, the equivalence between the stochastic observability matrix being full-rank and the system
being stochastic observable is guaranteed only if the stochastic supportability holds.

For general deterministic nonlinear systems of input-affine form, controllability and observability are
defined similarly to those of the LTI systems, yet the controllability/observability matrix is constructed
using the Lie derivatives [69]. Consequently, the controllability/observability matrix for input-affine non-
linear systems is state-dependent and thus controllability/observability can only hold locally in general.
For forward Gaussian stochastic nonlinear systems of input-affine form, the equivalence between the
stochastic observability matrix being full-rank and the system being stochastic observable is also es-
tablished only if the stochastic supportability holds. All existing localization solutions (e.g., [100, 119,
94]) analyze the observability incorrectly by directly borrowing the rank condition of the observability
matrix for deterministic nonlinear systems [62], given the system model for localization is stochastic in
nature.

4.1.3. Covariance Intersection
For loosely coupled CRL, only achieving peer-to-peer RL fails to provide convincing results since con-
sistency is lost in most cases, and thus we need cooperation among agents to ensure estimation con-
sistency as well as to improve estimation accuracy.

Consider a demonstrative scenario where a set of 3 agents {i, j, k} performs local RL. For sim-
plicity, we only consider relative position estimation at this time. Assume that agent i estimates the
relative position ∆pij and ∆pik, and agent k also makes estimation ∆pkj . Agent k broadcasts its esti-
mation ∆pkj and its heading ϕk to agent i such that agent i can recalculate ∆pikj in its local coordinate.
Therefore, the relative position of agent j with respect to agent i estimated by agent i has a direct
estimation ∆pij and an indirect estimation ∆pik +∆pikj . Since ∆pij ,∆pik,∆pkj are obtained indepen-
dently, ∆pij 6= ∆pik +∆pikj in general, which causes estimation inconsistency. As a conclusion, fusing
direct and indirect estimation is imperative. The major challenge is that the correlation between the
direct estimation and indirect estimation is hard to compute and it is not 0 in general by virtual of the
motion of agent i itself.

Covariance intersection [74] has been developed to perform information fusion with unknown cor-
relations, the basic algorithm is given as follows.

Covariance Intersection Algorithm

Given random variable a and b as estimations for the same physical quantity with estimatedmean
being ā and b̄, respectively. The estimated covariance of a and b are denotd as Paa and Pbb, Then
a consistent [70] fused estimation c can be computed according to the following equations

P−1
cc = λP−1

aa + (1− λ)P−1
bb

P−1
cc c̄ = λP−1

aa ā+ (1− λ)P−1
bb b̄

(4.13)

where c̄ is the estimated mean of c, Pcc is the covariance of the fused estimation c, and λ is a
tunable weighting parameter.

Covariance intersection has proved to be effective for decentralized sensor fusion, which perfectly
fits the problem of decentralized CRL. Existing CL examples exploiting covariance intersection are all
used for exact localization [49, 17, 90, 20, 92, 158] where some focus on implementation of the tradi-
tional algorithm [17, 49, 90, 20] and the others [92, 158] made contributions on developing variations
of covariance intersection algorithm that have improved performance.
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4.1.4. Initialization & Extensions
The EKF is widely applied for localization due to its computational efficiency. However, since the EKF
only exploits first-order dynamics of the system and produces a suboptimal solution, its estimation per-
formance greatly degrades with initialization parameters being poorly chosen. Therefore, it is beneficial
to investigate the initialization impact on the EKF. To get rid of the curse of initialization, extensive con-
tributions have been made to cover higher dynamics of the system and cater to non-Gaussian noise,
which will also be elaborated on afterward.

We first highlight the initialization impact in terms of 1) measurement noise covariance matrix R(0),
2) Initial state estimate x̂+(0) and its corresponding covariance P+

x (0), 3) augmented process noise
covariance matrix Q(k).

Initialization for EKF

• Measurement Noise Covariance R(k)
R(k) is assumed to be constant in most applications (i.e., R(k) = R), and it mainly comes
from device imperfections with details readily available from the manufacturer’s documen-
tation. A common used form isR = diag(kRσ2

i ), where σi is the nominal standard deviation
of the ith measurement and kR ≥ 1 is a scaling parameter to model possible device degra-
dation. In general, choosing larger R or kR makes the filter more robust to measurement
noise, yet choosing too large values would underestimate the effect of measurement, thus
making the Kalman gain K(k) vanish in limit case.

• Initial State Estimate x̂+(0) and Covariance P+
x (0)

In general, x̂+(0) and P+
x (0) are rarely known in practice with sufficient accuracy. However,

it can be estimated using the upper (x(0)max) and lower (x(0)min) bound of the initial state
x(0), both of which can in practice be reasonably estimated. One simple and consistent
framework [127] is formally given as

x̂+(0) = 0.5(x(0)max + x(0)min),

P+
x (0) = 0.25diag((x(0)max − x(0)min)

⊤(x(0)max − x(0)min)).
(4.14)

• Augmented Process Noise Covariance Q(k)
Choosing a reasonable Q(k) is the most challenging part in initialization phase. As iden-
tified in 4.2, we have actuator noise γ(k) and process noise w(k). First, we can safely
handle the actuator noise γ(k) the same way as we deal with sensor noise whose uncer-
tainty level is provided in the documentation of the device. As for process noise w(k), its
major correlating factors are parametric uncertainty and structure uncertainty. For micro
quadrotors, its system dynamics is well established using classical mechanics, thus lead-
ing us to confidently only consider parametric uncertainty. The modified process equation
is then given as

x(k + 1) = F (x(k), u∗(k), p∗x) +B(k)γ(k) +Bp(k)δp(k), (4.15)

where p∗x is the nominal parameter value, andBp(k) =
∂F
∂p

∣∣∣∣
x̂+(k),u∗(k),p∗

x

, and the covariance

of δp(k) can be similarly computed as in 4.14 with known bounds pmax and pmin.

Notably, the KF provides the only optimal solution for linear systems, the EKF extends the algorithm
to nonlinear systems but it only approximates the optimal solution taking into account only the first-order
impact [150]. The above flaw of the EKF motivates the development of the UKF algorithm.

UKF specifies the state distribution using a minimal set of carefully chosen sample points (called
sigma points), with which the 3rd order impact of the posterior mean and covariance of the state is
captured [150] for any nonlinearity. Given random variable x ∈ Rnx with its mean x̄ and covariance
matrix Px, the sigma points and their corresponding weights are designed as
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Sigma Points Generation of UKF

• Sigma Points

s0 = x̄

si = x̄+ α
√
nx + κL[:, i], i = 1, 2, · · · , nx

si = x̄− α
√
nx + κL[:, i− nx], i = nx + 1, nx + 2, · · · , 2nx

(4.16)

• Weights for Sigma Points

– Weights of the mean

Wm
0 = [α2(nx + κ)− nx]/[α

2(nx + κ)]

Wm
i = 1/[2α2(nx + κ)], i = 1, 2, · · · , 2nx

(4.17)

– Weights of the covariance

W c
0 = Wm

0 + (1− α2 + β)

W c
i = Wm

i , i = 1, 2, · · · , 2nx

(4.18)

where L is the square root of the covariance Px (i.e., Px = LL⊤), α is a tuning variable controlling
the spread of the points and β is another tuning variable that helps incorporating prior knowledge
of x.

Before applying the algorithm, we first construct xa(k) = [x(k)⊤, u(k)⊤, w(k)⊤, v(k)⊤]⊤. In the
following UKF algorithm, we only need to work with the augmented state xa(k).

UKF Algorithm

Initialization

x̂+
a (0) = [x̂+(0)⊤, u∗(k)⊤, 0, 0]⊤

P+
a (0) = diag{P+

x (0), Pγ(0), Q(0), R(0)}
(4.19)

For k = 0, 1, 2, · · · ,

1. State and Covariance Propagation

Sa(k) =

[
x̂+
a (k), x̂

+
a (k)± α

√
na + κLa

]
(c.f., (4.16) to (4.18))

Sa(k + 1) = F (Sa(k))(apply to each column of Sa(k)c.f., (4.2))
x̂−
a (k + 1) = Sa(k + 1) vec{Wm

0 ,Wm
1 , · · · ,Wm

na
}

P−
a (k + 1) =

2na∑
i=0

W c
i (Sa(k + 1)[:, i]− x̂−

a (k + 1))(Sa(k + 1)[:, i]− x̂−
a (k + 1))⊤

Ya(k) = h∗(Sa(k))(apply to each column of Sa(k))

ŷ(k) = Ya(k) vec{Wm
0 ,Wm

1 , · · · ,Wm
na
}

(4.20)

2. Kalman Gain Calculation

Pyy(k) =

2na∑
i=0

W c
i (Ya(k)[:, i]− ŷ(k))(Ya(k)[:, i]− ŷ(k))⊤

Px−y(k) =

2na∑
i=0

W c
i (Sa(k + 1)[:, i]− x̂−

a (k + 1))(Ya(k)[:, i]− ŷ(k))⊤

K(k) = Px−y(k)Pyy(k)
−1

(4.21)
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3. Update with New Measurement

x̂+
a (k + 1) = x̂−

a (k + 1) +K(k)(z∗ − ŷ(k))

P+
a (k + 1) = P−

a (k + 1)−K(k)Pyy(k)K(k)⊤
(4.22)

where measurement model h∗(x, v) := h(x)+Dv is defined as a general measurement equation
whose effective attributes are state x and measurement noise v.

As shown in the above algorithm, the UKF scales poorly when the system dimension is high and
it also requires computing the square root of a high-dimension matrix. On the other hand, apart from
its ability to capture higher nonlinearity, UKF also eliminates the computation of Jacobian and Hessian
matrices. We summarize and compare the major properties of the EKF and the UKF in the following
Table 4.2. As pointed out in Table 4.2, the UKF uses many sigma points equal to 2(nx + nu + nw +

EKF UKF
Matrix Computation Closed-form Jacobian and Heissian Matrix Square Root
Dimension Scalability Good Poor
High Nonlinearity No Yes

Estimation Accuracy Fine Good
Sensitivity to Initialization Sensitive Not Sensitive

Table 4.2: Comparison of EKF and UKF

nv) + 1, which significantly increases computational complexity and desired memory storage. Another
drawback is the computation of the square root of a given matrix of high dimensions. To overcome the
above-mentioned issues, the cubature Kalman filter (CKF) and its slight extension square-root CKF
(SCKF) was developed [5]. The CKF (SCKF) also needs to propagate a bunch of data points of size
2(nx + nu + nw + nv), thus making it less preferable for online implementation. Notably, the idea of
propagating the square root of a given matrix is effective for online computation and hardware coding.

Another direction to improve the KF is to expand its capability for handling non-Gaussian noise.
Recent contributions leverage other types of error metrics (e.g., centered error entropy (CEE) [161],
minimum error entropy (MEE) [21, 29]) instead of the commonly used minimum mean squared error
(MMSE).

4.2. Particle Filter Based Cooperative Localization
In this section, we put our attention on the PF and some of the RL solutions using the PF. We will first
present an introduction to the statistical theory behind the PF and then move on to some illustrative
localization examples.

4.2.1. Introduction to Particle Filter
The PF is closely related to the Bayesian filtering theory for Markov processes whose theoretic princi-
ples will be illustrated first as preparation. In the sequel, we use Z(k) = {z(0), z(1), · · · , z(k)} to denote
the concatenated sequence of measurement up to time instant k. For simplicity, we do not distinguish
actuator noise (γ(k)) and process noise (w(k)) and only use the augmented process noise η(k) as
the process noise. Given a discrete-time dynamical system following process equation (4.2) and the
general output equation in (4.20), we have a discrete-time Markov process of the following form:

x(k + 1) = F (x(k), u(k), η(k)),

y(k) = h(x(k), v(k)).
(4.23)

Since η(k) is stochastic, the state x(k) is also a stochastic process that can be assigned with a prob-
ability distribution function (pdf) at each time instant k. In this section, p(·) will be the notation for any
pdf functions. Alongside with Markov property, we have the following relation:

p(x(k + 1)|X(k), Z(k)) = p(x(k + 1)|x(k))
p(z(k)|X(k)) = p(z(k)|x(k))

(4.24)
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A slightly modified Bayesian rule that fits our problem would be

p(A|B,C) =
p(B|A,C)p(A|C)

p(B|C)
=

p(B|A,C)p(A|C)∫
p(B|A,C)p(A|C)dA

(4.25)

The Bayesian filter attempts to make the posterior state estimation by computing the conditional pdf
p(x(k)|Z(k)), which is interpreted as the distribution information of the current state given all the previ-
ous information of the measurement up to the current instant. The recursive algorithm of the Bayesian
filter is illustrated as follows.

Bayesian Filter Algorithm

1. Initialization:
Given the first measurement, and the pdf of the measurement noise v(0), compute the
posterior state estimation p(x(0)|Z(0)).

2. State Propagation (Prior Estimation):
Given the posterior state estimation p(x(k)|Z(k)) at step k, an initial estimate of the next
state is given as

p(x(k + 1)|Z(k)) =

∫
p(x(k + 1), x(k)|Z(k))dx(k)

=

∫
p(x(k + 1)|x(k), Z(k))p(x(k)|Z(k))dx(k) =

∫
p(x(k + 1)|x(k))p(x(k)|Z(k))dx(k)

(4.26)

where p(x(k + 1)|x(k)) is obtained from the process equation
3. Measurement Incorporation (Posterior Estimation):

In the Bayeian rule (4.25), let A = x(k + 1), B = z(k + 1), and C = Z(k), we obtain

p(x(k + 1)|Z(k + 1)) =
p(z(k + 1)|x(k + 1), Z(k))p(x(k + 1)|Z(k))∫

p(z(k + 1)|x(k + 1), Z(k))p(x(k + 1)|Z(k))dx(k + 1)

=
p(z(k + 1)|x(k + 1))p(x(k + 1)|Z(k))∫

p(z(K + 1)|x(k + 1))p(x(k + 1)|Z(k))dx(k + 1)

(4.27)

where p(x(k + 1)|Z(k)) is provided by the results of prior estimation.

In practice, the integral in (4.26) and (4.27) can only be computed under strong assumptions and
may also increase computational complexity if the state dimension is high. Therefore, numerical meth-
ods need to be developed to fix this problem, which leads to the famous PF. The basic idea of the
particle filter is approximating the probability distribution using a set of discrete particles. We present
the details of the algorithm as follows:

PF Derivation (without Sampling)

1. Initialization:
Given the first measurement, and the pdf of the measurement noise v(0), choose a set of
Ns samples x+

i (k) that obeys the initial pdf p(x(0)|Z(0)). In general, each dimension l of
xi(k) requires ml sample points, thus the total number of samples is Ns =

∏nx

l=1 ml.
2. State Propagation (Prior Estimation):

Given the approximated posterior state estimation p(x(k)|Z(k)) =
∑Ns

i=1 α
k
i δ(x(k)−x+

i (k))

at step k with
∑Ns

i=1 α
k
i = 1 and δ(·) being the generalized Dirac pulse function, the prior
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estimate of the next state is given as

p(x(k + 1)|Z(k)) =

∫
p(x(k + 1)|x(k))p(x(k)|Z(k))dx(k)

=

∫
p(x(k + 1)|x(k))

Ns∑
i=1

αk
i δ(x(k)− x+

i (k))dx(k)

=

Ns∑
i=1

αk
i

∫
p(x(k + 1)|x(k))δ(x(k)− x+

i (k))dx(k)

=

Ns∑
i=1

αk
i p(x(k + 1)|x(k) = x+

i (k))

=

Ns∑
i=1

αk
i δ(x(k + 1)− F (x+

i (k), u
∗, ηi(k)))

:=

Ns∑
i=1

αk
i δ(x(k + 1)− x−

i (k + 1))

(4.28)

where ηi(k) is a sampled noise according to its distribution
3. Measurement Incorporation (Posterior Estimation):

Given the prior estimation, we construct the posterior estimation using the Bayesian rule
by substituting (4.28) into (4.27)

p(x(k + 1)|Z(k + 1)) =
p(z(k + 1)|x(k + 1))p(x(k + 1)|Z(k))∫

p(z(K + 1)|x(k + 1))p(x(k + 1)|Z(k))dx(k + 1)

=
p(z(k + 1)|x(k + 1))

∑Ns

i=1 α
k
i δ(x(k + 1)− x−

i (k + 1))∫
p(z(K + 1)|x(k + 1))

∑Ns

i=1 α
k
i δ(x(k + 1)− x−

i (k + 1))dx(k + 1)

=

∑Ns

i=1 α
k
i p(z(k + 1)|x−

i (k + 1))δ(x(k + 1)− x−
i (k + 1))∑Ns

i=1 α
k
i

∫
p(z(K + 1)|x(k + 1))δ(x(k + 1)− x−

i (k + 1))dx(k + 1)

=

∑Ns

i=1 α
k
i p(z(k + 1)|x−

i (k + 1))δ(x(k + 1)− x−
i (k + 1))∑Ns

i=1 α
k
i p(z(k + 1)|x−

i (k + 1))

=

Ns∑
i=1

αk
i p(z(k + 1)|x−

i (k + 1))∑Ns

j=1 α
k
j p(z(k + 1)|x−

j (k + 1))
δ(x(k + 1)− x−

j (k + 1))

(4.29)
where we further define αk

i p(z(k+1)|x−
i (k+1))∑Ns

i=1 αk
i p(z(k+1)|x−

i (k+1))
as αk+1

i which is nothing but the updated
weights. The resulting posterior estimation is now using x−

i (k + 1) as particles but their
weights is adjusted with the new measurements.

An unresolved important issue involved in PF is how to (re)sample particles given an approximated
distribution instead of the real continuous one. Sampling techniques are not just useful for initialization
but also for avoiding degeneracy problems [52]. We here present several efficient sampling algorithms
that are commonly used in engineering applications [36]

Sampling Algorithms [63]

All the sampling methods explained below do not impose constraints on the number of particles
(i.e., the number of particles before and after sampling can be different) and they all rely on
cumulative sum of the weights αk

i . First, the desired number of particles at step k is denoted as
Ns(k). Besides, we define the cumulative weights {Qk

i }
Ns(k)
i=1 with Qk

i =
∑k

i′=1 α
k
i′ .

• Multinomial Sampling:
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Generate Ns(k + 1) points ui ∼ U [0, 1]. Then for each ui, search for index j such that
Qk

j−1 ≤ ui < Qk
j . The posterior sampled points are x+

i (k + 1) = x−
j (k + 1).

• Stratified Sampling:
Generate Ns(k + 1) points ui obeys the rule ui = (i − 1)/Ns(k + 1) + ũi, where ũi ∼
U [0, 1/Ns(k + 1)]. Then do Multinomial sampling.

• Systematic Sampling:
Generate Ns(k + 1) points ui obeys the rule ui = (i − 1)/Ns(k + 1) + ũ∗, where ũ∗ ∼
U [0, 1/Ns(k + 1)]. Then do Multinomial sampling.

Multinomial sampling directly generates points that obey the uniform distribution, whereas strati-
fied sampling and systematic sampling both first divide the [0, 1] into Ns(k+1) intervals and pick
points in those intervals. Further, stratified sampling picks those points in a stochastic way for
each interval, while systematic sampling generates a uniform shift for all intervals. Regardless
of the methods, after sampling, all the weights are reset as αk+1

i = 1/Ns(k + 1)

It is clear to see that systematic sampling is the most computational efficient since it only requires
generating 1 points that obey the uniform distribution. Another strategy is to apply sampling in an
event-triggered manner and only perform sampling when x−

i (k) is not informational enough. There are
various criteria to determine the number of effective filters using the weights αk

i [101].
Determining weights usingmeasurements andmaximum likelihood (ML) is a commonly usedmethod.

Properly weighing particles is the most crucial factor that influences the performance of the PF. There
are other alternatives to determine weights, among which a big family combines the EKF or the UKF
with the PF where each particle is regarded as a refined estimated state using the EKF or the UKF
[146]. Nonetheless, these approaches have great computational complexity and thus are not suitable
for distributed state estimation for MAVs.

Still, combining the KF and the PF to exploit their advantages each other is a favorable choice. The
most famous hybrid solution is the Rao-blackwellized particle filter (RBPF) which handles the curse of
dimensionality of the PF.

RBPF algorithm (simplified)

• State Decomposition:
Decompose states into linear ones xL and nonlinear ones xR, where the dynamics of non-
linear states only relates to the nonlinear states themselves and after fixing the nonlinear
states, the remaining dynamics of the linear states is linear.

• PF for Nonlinear States:
Perform PF on nonlinear states given the posterior estimation of both linear and nonlinear
states

• KF for linear States:
Perform standard KF on linear states given the estimated nonlinear states obtained from
PF

Notably, the traditional RBPF works better for systems where the measurement function explicitly
depends on both the linear and nonlinear states. For the 3-D peer-to-peer RL problem with distance
measurement, the naive measurement model only depends on the relative distance without touching on
the relative heading (yaw). Besides, Gaussian measurement noise is a valid assumption but unsuitable
for UWBmeasurements. To apply RBPF to our interested problem, we present some potential solutions
listed below.

Insights on Applying RBPF for 3-D peer-to-peer RL

• Modifying the Measurement Model:
The UWB unit is not placed at the geometric center of the MAV, thus making the distance
measurement between two UWB units also a function of the headings. This modification
will expand the observability space.

• Integrating with EKF:
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Regardless of modifying the measurement model or not, the measurement model is a
nonlinear mapping to the states. Thus, RBPF needs to combine EKF. The satisfactory
trait of using RBPF is now the nonlinearity only occurs in measurement function and it is
quadratic which has at most second-order nonlinearity.

• Incorporating other forms of KF:
It is of great interest to combine particle filter with MEE-KF or CEE-KF to improve perfor-
mance against non-Gaussian noise.

4.2.2. Relative Localization Using Particle Filter
After introducing the theoretical foundations of PF, we now present some applications for relative local-
ization using PF. To see different steps of implementing PF in practice, we first give a succinct summary
of the entire PF algorithm.

PF algorithm (Complete Version)

Initialization:
Initialize the particles based on the distribution of the initial state p(x+(0)).
For each step k = 0, 1, 2, · · ·

1. Particle Propagation:
Generate the Ns(k) particles x−

i (k + 1) according to the dynamics with randomly chosen
noise particles ηi(k)

x−
i (k + 1) = F (x+

i (k), u
∗, ηi(k)) (4.30)

2. Weight Update:
Given the new measurements z(k + 1), update the weights for each particles using the
likelihood

αk+1
i =

αk
i p(z(k + 1)|x−

i (k + 1))∑Ns

j=1 α
k
j p(z(k + 1)|x−

j (k + 1))
(4.31)

3. Particle Resampling:
Determine whether resampling is required based on the number of effective particlesNeff =

[
∑Ns(k)

i=1 (αk
i )

2]−1 (or alternative criteria). Then resampleNs(k+1) particles x+
i (k+1) based

on the updated weights if needed. If resampling is not necessary, simply keep x+
i (k+1) =

x−
i (k + 1) for the next iteration.

4. Implication:
The mean (ˆ̄x(k + 1)) and variance (σ̂2

x(k + 1)) of the state is given as

ˆ̄x(k + 1) =

Ns(k+1)∑
i=1

αk+1
i x−

i (k + 1)

σ̂2
x(k + 1) =

Ns(k+1)∑
i=1

αk+1
i (x−

i (k + 1)− ˆ̄x(k + 1))(x−
i (k + 1)− ˆ̄x(k + 1))⊤

(4.32)

One early work using particle filter for distance-based localization aims for exact localization [95],
and their localization is computed in a centralized framework with state augmentation. Specifically, at
each iteration, a large group of particles is created for the augmented states which contain the 2-D pose
information of all the agents. Consequently, the number of particles is (3N)mp where N is the number
of agents and mp is the number of particles assigned to each state, rendering a huge computational
cost. Besides, though they are motivated to favor the PF over the KF for dealing with non-Gaussian
noise, their noise model is still Gaussian.

An improved decentralized 2-D RL solution using a particle filter has been developed recently [93].
In this work, each agent receives multiple distances from all its neighbors and constructs relative pose
estimation in the local frame for all the neighboring agents in a peer-to-peer manner. Notably, they
initialize the particle filter using the relative pose estimation from the geometric kinematics of any pair
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of agents with a sequence of distance measurements between them, which is solved by weighted
least square (WLS) optimization [144]. Besides, in the particle filtering process, an average consensus
auxiliary variable [160] is introduced to assist the particle filter. Still, this work assumes too simple
dynamics of the agents and Gaussian distributed noise.

Other PF-based localization solutions [48, 64, 46] do not fit our framework in that they either use
more than one UWB unit, fixed beacons, or assume relative pose is directly measured. Therefore, we
do not elaborate more details on them at this point.

Unlikemost of the existing solutions [64, 93, 95, 48] where the emphasis is put on applying PF theory
to the system models, there are some attempts on improving the PF algorithm for localization. Since
the basic principle of utilizing particles to approximate the posterior distribution itself is computationally
inefficient, it is more practical to modify the baseline of the PF without introducing more complex tools
to PF. An interesting modification is swapping the sequence of applying new measurement information
and propagating through dynamics, which leads to the dual PF (DPF) and the mixture PF (MPF) [135].

4.3. Moving Horizon Estimation Based Cooperative Relative Local-
ization

Bayesian filter, owing to its generic theoretical framework, leads to many different variations. Specifi-
cally, when assuming linearity of system dynamics and Gaussian distributed noise, the Bayesian filter
becomes the KF; while if approximating prior and posterior distributions using particles, the Bayesian
filter becomes the PF. In this section, we introduce the MHE which is another popular variation of the
Bayesian filter. Same as in previous sections, we will first introduce the basic theory of the MHE, recent
advances in the MHE, and practical issues involved when applying the MHE. Subsequently, we present
several examples built on the MHE framework.

4.3.1. Introduction to Moving Horizon Estimation
We start from some of the intermediate results of the Bayesian filter algorithm as in (4.26) and (4.27).
First, substituting (4.26) into (4.27), we obtain

p(x(k + 1)|Z(k + 1)) ∝
[
p(z(k + 1)|x(k + 1))p(x(k + 1)|x(k))

]
p(x(k)|Z(k)). (4.33)

From 4.33, by mathematical induction, we have the following result

p(x(k + 1)|Z(k + 1)) ∝ p(x(0)|z(0))
k∏

i=0

p(x(i+ 1)|x(i))
k∏

i=0

p(z(i+ 1)|x(i+ 1)). (4.34)

Then from the probabilistic perspective, the best posterior estimate of state x(k + 1) would be

x̂(k + 1) = arg max
x(k+1)

p(x(k + 1)|Z(k + 1))

= arg max
x(k+1)

p(x(0)|z(0))
k∏

ι=0

p(x(ι+ 1)|x(ι))
k∏

ι=0

p(z(ι+ 1)|x(ι+ 1))

= arg max
x(k+1)

log p(x(0)) +

k∑
ι=0

log p(x(ι+ 1)|x(ι)) +
k∑

ι=0

log p(z(ι)|x(ι)).

(4.35)

Intuitively but not rigorously, p(x(ι + 1)|x(ι)) and p(z(ι)|x(ι)) are characterized by distribution of the
augmented process noise (η(ι)) and measurement noise (v(ι)), respectively. Consequently, we are
interested in maximizing an objective function of the following form

J(x(0), {η(ι)}kι=0) = L({η(ι)}kι=0, {v(ι)}k+1
ι=0 ) + Γ0(x(0)), (4.36)

where v(ι) is explicitly shown in the objective but can be implicitly expressed as a function of the mea-
surement z(ι) and states x(ι). Further, the states x(ι) can be implicitly expressed using x(0) and
{η(ι)}ι−1

ι=0. Thus, the final decision variables of the objective function is
{
x(0), {η(ι)}kι=0

}
.

The formulated objective function takes all past measurements up until step k + 1 as parameters,
rendering the optimization problem more difficult to solve as more measurements are available. To
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resolve this issue, the dynamic programming principle is borrowed, and the resulting objective function
with truncated state trajectory is given as

J(x(k −W + 1), {η(ι)}kι=k−W+1) = L

(
{η(ι)}kι=k−W+1, {v(ι)}k+1

ι=k−W+2

)
+ Γk−W

(
x(k −W + 1), x̂(k −W + 1)

)
, (4.37)

which can also be deduced from applying induction onlyW times backward according to (4.33). Corre-
spondingly, the best estimate x̂(k) is obtained from the latest W measurements (i.e., z(k −W + 1) to
z(k)) and an estimated state x̂(k −W ) by solving an optimization problem. We call L(·) the measure-
ment cost and Γk−W (·) the arrival cost.

Solving the optimization problem returns an updated estimate for x(k − W + 1) and a best noise
sequence {η(ι)}k−1

ι=k−W , with which an optimal state trajectory x̂(k), x̂(k − 1), · · · , x̂(k −W + 1) can be
inferred. At the next iteration, x̂(k − W + 1) will be used as the parameter for the new arrival cost,
and the new measurement z(k + 1) will serve as one of the parameters for the measurement cost. In
summary, the state estimation is performed with a moving horizon of size W , which is the reason why
we call this estimation strategy moving horizon estimation.

The MHE intrinsically performs state estimation using optimization, which makes incorporating con-
straints in the optimization formulation very convenient. In addition, it also shows better performance
against EKF when dealing with nonlinear systems since it theoretically aims to find the optimal esti-
mation instead of a sub-optimal one. The major curse is that the computational cost will significantly
increase if the system is nonlinear. Moreover, if the function describing the system dynamics and/or
the measurement model is non-convex, the optimization may fall into local optimum and fails to return
a satisfactory estimation.

Remark 1 (Relation between MHE and KF) The MHE not only provides an estimate of the current
state, but it also serves as a smoother which improves the estimation for previous states. Under the
conditions that the system is linear with Gaussian noise disturbance, and the window size is 1, the MHE
degenerates to the KF.

Based on (4.37), we move one step further and present the commonly used MHE optimization
formulation [102, 43] with quadratic norm.

MHE Optimization Formulation (Quadratic Norm)

Assume that the measurement noise is additive and the augmented process noise is only con-
sisted of actuator noise, obtaining the latest state estimation x̂(k) without smoothing can be
achieved by solving the following optimization problem

• Objective Function:

J({x(ι)}kι=k−W , {u(ι)}k−1
ι=k−W ) = ||x(k −W )− x̂(k −W )||P−1

x (k−W )

+

k∑
ι=k−W

||z∗(ι)− z(ι)||R−1(ι) +

k−1∑
ι=k−W

||u∗(ι)− u(ι)||Q−1(ι) (4.38)

• Constraints:

– Dynamic Constraints:
x(ι+ 1)− F (x(ι), u(ι)) = 0, ∀ι ∈ {k −W,k −W + 1, · · · , k − 1}

– Measurement Constraints:
z(ι)− h(x(ι)) = 0, ∀ι ∈ {k −W,k −W + 1, · · · , k}

– Input Constraints:
u ≤ u(ι) ≤ ū, ∀ι ∈ {k −W,k −W + 1, · · · , k − 1}

– State Constraints:
x ≤ x(ι) ≤ x̄, ∀ι ∈ {k −W,k −W + 1, · · · , k}
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Remark 2 (MHE with non-Gaussian noise) Most of the existing literature assumes that the cost func-
tion of the MHE is of the quadratic form (i.e., using quadratic norm to characterize the distance), which
is generally NOT true if the system is perturbed by non-Gaussian noise. More importantly, they also
assume that the noise is single-modal, while current MHE cannot handle multi-modal noise distribu-
tions. Nonetheless, MHE still exhibits convincing results even in systems with non-Gaussian noise
since quadratic norm can capture the tendency of the true single-modal (non-Gaussian) distribution.

In general, moving horizon theory for state estimation of nonlinear systems has three major chal-
lenges: 1) how to formulate a statistically rational arrival cost without requiring too much extra com-
putation, 2) how to solve the general nonlinear optimization online 3) how to prove the stability of the
estimator. For swarm applications or multi-agent systems, designing distributed MHE algorithms with
consensus guarantees becomes an additional challenge.

The first challenge on arrival cost is trivial if neglecting process noise [113]. For general systems
with actuator noise and/or parametric uncertainty, determining the uncertain level (i.e., the covariance
matrix P̂x(k−W )) is difficult since this information is not provided by the MHE itself. Most of the existing
solutions are using auxiliary nonlinear filters which can provide covariance information. Representative
examples either utilize the EKF [140], the UKF [114], or the PF [145, 98].

Solving online optimization and achieving estimator stability are closely related in that the stability
of the MHE is not determined by the formulated optimization problem solely. In general, this problem
boils down to nonlinear programming, thus leading to gradient-based methods [1, 105]. There are also
solutions that apply a feed-forward neural network [2] to help accelerate the computation.

Distributed MHE theory is an appealing extension for the localization of multi-agent systems. How-
ever, many current algorithms focus on estimation for linear systems [41, 39, 10, 54]. For nonlinear
systems, either additional consensus estimator [40] or auxiliary observer [164] are designed for each
agent, suggesting the MHE itself cannot handle nonlinear multi-agent systems with satisfactory results.

4.3.2. Relative Localization Using Moving Horizon Estimation
One early work that applies the MHE for RL deals with mobile robots [102]. Their proposed solution
typically relies on the ACADO toolbox [43] designed for MHE, and they provided no theoretical contri-
bution regarding the localization problem. More importantly, their framework relies on both distance
measurements and bearing measurements, which fails to fit our requirements of only permitting dis-
tance measurements. Another more suitable application for localization of mobile robots also applies
average consensus to assist the MHE[133].

For UAV applications, an MHE-EKF algorithm is proposed for CL of multiple UAVs [153]. Still, their
framework contains a ground station, and each UAV is also equipped with an altimeter to retrieve height
information, thus making it also unsuitable for our problem where both ground station and altimeter are
unavailable. Another similar work for the AUV application also relies on a depth measurement device
[152] which is the counterpart of the altimeter for aerial vehicles.

4.4. Comparison of Different Filters
As a summary of previous sections where details of filters are examined, we compare different filters in
this section from various aspects. We finally present possible directions for developing nonlinear filters
for improved localization performance.

We first present a concise table where all filters are compared from different evaluation criteria. In
Table 4.3, for example, nonlinearity means the ability to handle nonlinearity, the same interpretation
also works for non-Gaussian noise and multimodal noise. The ability level is generally categorized as
good, poor, and limited, where limited typically means a method requires case-by-case analysis (i.e.,
the performance differs per application).

Insights on Developing Nonlinear Filtering Theory for CRL

• Combine PF and EKF, apply PF to the relative heading and apply EKF for the position
states.

• Leverage other error norms (e.g., CEE, MEE) and combine it with EKF
• Transform the non-convex dynamics and convex ones and apply KKT condition to explicitly
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EKF UKF PF MHE
Nonlinearity Poor Good Good Good

Non-Gaussian Noise Poor Poor Good Limited
Multimodal Noise Poor Poor Good Poor

Source of
Computational Curse None Sigma Points Particles Arrival Cost

& Nonlinear Optimization
Convergence Limited Limited Good Limited

Sensitivity to Initialization High Medium Low Limited
Smoothing No No No Yes

Incorporating
Constraints No No No Yes

Table 4.3: Comparison of Different Filters

solve the optimization problem for MHE.
• Apply MHE in an event-triggered manner.
• Apply consensus algorithm in an event-triggered manner.



5
Graph Rigidity Theory Based

Cooperative Relative Localization
This chapter will introduce another big family of localization solutions where geometry is of our prior
interest. Due to our hardware setting, inter-agent distance is the only available exteroceptive informa-
tion, thus we focus on geometric properties relating to lengths and neglect angles. Based on the graph
formulation of the swarm where agents are nodes(joints) and the communication links are edges(bars),
the resulting problem is the well-known geometric rigidity problemwith an old history dated back to 1776
when the famous mathematician Euler made conjectures about the rigidity of polyhedrons. During past
decades, many promising results have been presented in terms of rigidity theory for bar-and-joint frame-
works, which further benefits several research areas ranging from swarm robotics to structural biology
[132]. This chapter starts with a rather mathematical section where essential definitions, propositions,
and theorems of rigidity theory are provided. Equipped with the mathematical foundations, we then
analyze some of the RL solutions using rigidity theory. Subsequently, we delve into the details of the
optimization tools used in solving rigidity problems. The final section of the chapter will discuss mis-
cellaneous topics in rigidity theory such as clock rigidity for UWB localization, rigidity-assisted filtering
techniques, and rigidity in barycentric coordinate.

5.1. Introduction to Graph Ridigity Theory
We first revisit some of the concepts in graph theory that have been introduced in 3.4.2. Only consider
the distances between agents, a group of agents can be described by an undirected graph Ḡ = {V, Ē}
where V = {1, 2, · · · , N} is the set of nodes representing the agents, and Ē ⊆ V ×V is the set of edges
that specify all measured distances. In the sequel, we will drop the upper bar notation ( ¯cdot) and simply
use G = {V, E} to denote the undirected graph. The distance of edge eij ∈ E is denoted as lij , (lij > 0).

Definition 7 (Bar-and-joint Configuration) Given an undirected graph G = {V, E} with the distance
lij of all edges eij ∈ E specified, a d-dimensional bar-and-joint configuration is a mapping p : V 7→ RNd

such that ∀i, j ∈ V , (i, j) ∈ E , p(i) 6= p(j).

Definition 8 (Bar-and-joint Framework) Given an undirected graph G = {V, E}, a d-dimensional bar-
and-joint framework is a pair P := (G, p) where p is a configuration.

Definition 9 Bar-and-joint Linkage Given an undirected graph G = {V, E} with the distance lij of all
edges eij ∈ E specified, a d-dimensional bar-and-joint linkage is a pair (G, δ) where δ is a mapping
δ : V 7→ RNd such that ∀i, j ∈ V , (i, j) ∈ E , ||p(i)− p(j)|| = lij .

Given a graph G and a fixed dimension d, there are infinitely many frameworks. To clarify the relation
among the frameworks, we need the following definitions.

Definition 10 (Equivalent Frameworks (Equivalence) ) Two frameworksP1 = (G, p1) andP2 = (G, p2)
are equivalent if ∀(i.j) ∈ E , ||p1(i)− p1(j)|| = ||p2(i)− p2(j)||.

37
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Definition 11 (Congruent Frameworks (Congruence)) Two frameworksP1 = (G, p1) andP2 = (G, p2)
are congruent if ∀i, j ∈ V , ||p1(i)− p1(j)|| = ||p2(i)− p2(j)||.

Remark 3 (Equivalence & Congruence) Equivalence between two frameworks is characterized only
by the length of the bars in that framework, while congruence is a stronger condition that requires
distance equivalence to be held for all pairs of joints in the framework. Apparently, any congruent
frameworks are also equivalent but not vice versa.

Another important aspect of a framework is how it changes inRd and then results in a new framework.
Therefore, we define the concept of motion of Euclidean spaces as well as the motion of frameworks.

Definition 12 (Motion (Continuous Flex)) A motion of Rd is a continuous family Φ(t) of isometries of
Rd such that Φ(0) is the identity isometry. Without loss of generality, we can restrict the starting time
and ending time of the motion to be 0 and 1. Correspondingly, motion is a mapping [0, 1] 7→ Iso(Rd).

Definition 13 (Motion (Continuous Flex) of Frameworks) A motion of any framework P = (G, p) is
a continuous family of frameworks P (t) := (G, p(t)) that are all equivalent to (G, p), ∀t ∈ [0, 1] such that
P (0) = P . In addition, we call a motion of a framework to be trivial if it is induced by a motion of Rd

(i.e., P (t) = Φ(t) ◦ P, ∀t ∈ [0, 1])

Definition 14 (Framework Space) Given a Linkage (G, δ), all the corresponding congruent frame-
works that permit up to trivial motions and satisfy the distance constraints imposed by δ comprise a
class. All classes further comprise a framework space F(G, δ).

With the above definitions, we are able to concisely define rigidity for bar-and-joint frameworks.

Definition 15 ((Generic) Rigidity) A framework is rigid if one of the following condition holds

• All the admissible motions of the framework are trivial.
• Implicitly introducing the distance mapping δ and the linkage (G, δ), the corresponding framework
space F(G, δ) is of 0-dimension.

otherwise, it is called flexible.

The above-defined rigidity is commonly referred to as the generic rigidity (i.e., rigidity of generic
frameworks) since it is desired to characterize rigidity as a property of the graph itself instead of the
configuration. That also motivates why always explicitly keep the notation G in the definition of frame-
work and why favor framework space over configuration space. The term generic means that there
does not exist a non-zero polynomial h : RNd 7→ R such that h(p(1), p(2), · · · , p(N)) = 0 (e.g., colinear
points). From a probability perspective, generic is equivalent to having no polynomial algebraic rela-
tion in the framework space is almost surely. A stronger definition of rigidity attempts to eliminate the
differences between equivalent classes of frameworks, which is given as follows.

Definition 16 (Global rigidity) A framework is globally rigid if one of the following condition holds

• All equivalent frameworks are congruent.
• Implicitly introducing the distance mapping δ and the linkage (G, δ), the corresponding framework
space F(G, δ) has a single point if taking all frameworks in a congruent class to be the same).

otherwise, it is only rigid or even flexible.

Remark 4 ((Global) Rigidity of Linkages) Given a linkage (G, δ), it directly inherits the (global) rigidity
from its corresponding frameworks or framework space.

Definition 17 (Local Rigidity) We define local rigidity as the rigidity of the frameworks of the sub-
graphs.

Remark 5 Some textbooks or papers use local rigidity as the definition for the (generic) rigidity and
simply use rigidity as the definition for the global rigidity.
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Definition 18 (Minimally Rigid & Redundant Rigid) A rigid framework is minimally rigid if it becomes
flexible after removing any edge from its original graph. On the other hand, redundant rigidity is defined
as a rigid framework maintains rigidity upon the removal of any edge.

In general, it is co-NP hard to check whether a given framework is rigid or not for d ≥ 2 [7], though
it is only proved for d ≥ 1 [125]. Luckily, the tangent space of F(G, δ) provides tractable and algebraic
properties of rigidity, which will be introduced next.

Definition 19 (Tangent Space of Framework Space) The tangent space ∂F(G, δ) is formally given
as

∂F(G, δ) = {(G, p)|(p(i)− p(j))(v(i)− v(j))⊤ = 0, ∀(i, j) ∈ E} (5.1)

where v(i) is defined as v(i) := ∂p(i), which is the derivative of the mapped position with respective to
time, or rather, the velocity of the mapped position.

Definition 20 (Infinitesimal Motion) The infinitesimal motion of a framework is a vector of instanta-
neous velocity v⃗ = [v(1), v(2), · · · , v(N)] of all joints that is admissible of the tangent space ∂F(G, δ).
The infinitesimal motion is called trivial if either v(i) = 0, ∀i ∈ V or the velocities together induce an
trivial motion.

Definition 21 (Infinitesimal Rigidity) A framework is infinitesimal rigid if the tangent space of its cor-
responding framework space does not permit any non-trivial infinitesimal motion.

Theorem 1 (Infinitesimal Rigidity & Generic Rigidity [7]) Given a generic framework (G, p), then it
is rigid if and only if it is infinitesimally rigid.

Based on the formal definition of the tangent space and the definition of infinitesimal motion, it can
be observed that characterizing infinitesimal motion is closely related to linear algebra. First, [p(i) −
p(j), p(j) − p(i)][v(i), v(j)]⊤ = 0 can be expressed in a compact form of group level, Specifically, we
have rij v⃗

⊤ = 0, rij ∈ RdN , where the d(i− 1) + 1-th to di-th entries of rij equal to p(i)− p(j) and the
d(j−1)+1-th to dj-th entries equal to p(j)−p(i). Further, if append all row vectors rij((i, j) ∈ E) to form
a matrixM(G, p), then a valid infinitesimal motion belongs to the null space ofM(G, p). Subsequently, it
is convenient to perform a rank check on thematrixM(G, p) to determine infinitesimal rigidity. Therefore,
we call M(G, p) the rigidity matrix of a framework, and the details of the rank check is provided in the
following theorem.

Theorem 2 (Rank Condition on Infinitesimal Rigidity[7]) Given a generic framework (G, p) with at
least 2 joints, then it is infinitesimal rigid if and only if rank(M(G, p)) = s(N, d), where

s(N, d) =

{
Nd−

(
d+1
2

)
, N ≥ d+ 2;(

N
2

)
, N ≤ d+ 1

(5.2)

Moreover, if we restrict the dimension to be d = 2, the above rank theorem degenerates to part of the
famous Laman’s theorem. In planer 2-dimension scenarios, global rigidity can also be clearly charac-
terized [12].

Still, the rank check can provide concrete help in determining generic rigidity in 3-dimension. Specif-
ically, we are interested to have the rank of the rigidity matrix equal to 3N − 6 in localization in 3-D. Re-
garding RL, where the translation is not important, we still have 3(N − 1)− 3 = 3N − 6 rank constraints
on the reduced rigidity matrix which is defined as follows

Definition 22 (Reduced Rigidity Matrix) For a framework with N joints, assume the i∗-th joint is the
reference joint without loss of generality (i.e., fix p(i∗) = 0). The edge set is still E . Expressing all
distance constraints lij with respect to the i∗-th joint leads to

lij =

{
(p(i)− p(j))(p(i)− p(j))⊤, i, j 6= i∗

p(j)p(j)⊤, i = i∗
. (5.3)
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where the case j = i∗ is neglected since it is equivalent to i = i∗. Next, append all lij into a column
vector l⃗, the reduced rigidity matrix is defined as

Mre(G, δ, i∗) =
∂l⃗

∂p⃗
, Mre(G, δ, i∗) ∈ R|E|×(N−1) (5.4)

where |E| is the cardinality of E , and p⃗ = [p(1)⊤, p(2)⊤, · · · , p(i∗ − 1)⊤, 0, p(i∗ +1)⊤, · · · , p(N)⊤]⊤ is the
concatenated relative position vector.

On checking global rigidity on higher dimensional spaces (i.e., d ≥ 2), the most recent results use
the shared stress matrix of a graph and the Gauss map from differential geometry [47]. Nonetheless,
there do not exist any combinatorial conditions for checking global rigidity in R3 [47]. Therefore, taking
into account that computing (relative) positions of a rigid framework are more paramount than checking
rigidity, a more viable solution for 3-D localization is constructing a global rigid framework for sub-graphs.
The most recent results is bonding tetrahedrons (i.e., the simplex in R3 that satisfy the rank condition
of reduced rigidity matrix) to form a 2-star-4-vertex-connected framework in R3 [28].

Focusing on computing the (relative) positions, it is a question that whether knowing the distances
suffices to uniquely localize the agents in a network. To this end, the concept of universal rigidity has
been proposed to characterize the localizability of a network [168]. The definition is given as follows.

Definition 23 ((Generic) Universal Rigidity) A framework (G, p) is (generically) universally rigid if and
only if it is (generically) globally rigid for any dimension d ≥ 1.

Universal rigidity further eliminates the dependence of the dimension for rigidity since global rigidity,
being its weaker condition, still implicitly relies on the dimension of the embedded space. At this point,
we eventually reach the strongest definition of rigidity and thus end this section on the mathematical
foundations of rigidity theory.

5.2. Rigidity Theory for Cooperative Relative Localization
Applying geometric properties to solve localization problems starts from trilateration and representative
early solutions [8, 37, 168], though benefit from rigidity theory, still heavily relies on trilateration by
proposing trilateration graphs with pertinent constructions and solutions.

Later improvements regarding localization using rigidity theory put emphasis on noisy distance mea-
surements [104, 163]. Considering that UWB also produces noisy distance measurements, it is desired
to elaborate more on this aspect. As already identified in the previous section, tetrahedrons are con-
crete and reliable frameworks in R3, and it is also treated as a robust quadrilateral to bound the local-
ization error [104]. However, the algorithm based on their proposed robust quadrilateral only provides
the lowest probability of correctly computing the positions of joints in a graph. A completely different
approach focusing on individual distance measurements and outlier inaccuracy has been developed
[163] where the concept of verifiable edge was proposed to determine whether any outlier exists for
given distance measurement with the rigidity of the rest of the graph. Still, checking the verifiability
of the edges lacks probability analysis of the measurements themselves and it greatly increases the
computational complexity by introducing a bunch of rigidity checks.

Notably, most existing solutions using rigidity [104, 163, 8, 37, 168] assume that part of the agents
in the network has access to their global position information while the major task is determining the
relative positions to these fixed beacons. At first glance, a slight modification can be made to serve the
RL problem by assigning a reference node as what is defined in the reduced rigidity matrix. However,
it is still an unanswered question that how many fixed beacons are necessary to uniquely compute the
relative positions in existing solutions using rigidity theory.

Therefore, the most recent example on 3-D RL using geometric graph properties abandons the
rigidity theory and instead exploits sequential distance measurements between a pair of agents [72],
which was first proposed for 3-D relative pose estimation with quaternion formulation and WLS solver
[144]. Indeed, simply applying rigidity theory to retrieve accurate pose estimation strongly relies on the
accuracy of the distance measurements and the synchronization of the distances obtained at different
time instants, both of which are far too strong requirements for UWB-based swarms. Correspondingly,
it may be helpful to combine sequential distance measurements and make predictions based on the
dynamics to guide the rigidity computation.
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5.3. Optimization for Rigidity Theoretic Approaches
In this section, we delve further into the computational perspective of rigidity theory, and we will focus
on SDP optimization which is a commonly used formulation of rigidity problems. Besides, SDP also
demonstrates good performance for the problem formulation using sequential distance measurements
[72]. As a supplement, the relaxation issue of SDP will also be briefly discussed.

5.3.1. Introduction to Semidefinite Programming
The most well-known formulation of SDP is given in the following block.

SDP Primal Formulation

LetX ∈ Rn×n
s be the decision variable, andC,Ai(i = 1, 2, · · · ,m) ∈ Rn×n

s be constant symmetric
matrices. Besides, let b = [b1, b2, · · · , bm]⊤ ∈ Rm be a constant vector. The primal SDP is given
as the following optimization problem

X∗ = argmin
X

C •X

s.t. Ai •X = bi, ∀i = 1, 2, · · · ,m, (5.5a)
X � 0, (5.5b)

where the bullet dot • is the notation for matrix inner product, i.e., A•B =
∑n

i=1

∑n
j=1 = tr(A⊤B).

C contains all parameters of the objective function, and Ai • X = bi(i = 1, 2, · · · ,m) form m
linear equations. In addition, X � 0 is equivalent to X ∈ Rn×n

spds , which states that each of the n
eigenvalues of X is non-negative.

Remark 6 (Matrix Inner Product Formulation of Quadratic Form) Given a column vector a ∈ Rn

and a matrix X ∈ Rn×n, we have the following equality

a⊤Xa = (aa⊤) •X (5.6)

which suggests that a quadratic form can be converted to a matrix inner product. Thus, many optimiza-
tion problems with quadratic equality constraints can also be posed as SDP.

SDP is an extension of linear programming (LP) [148]. Same as LP, SDP also has its dual formula-
tion, and there are strong connections between the solution of the primal problem and the dual problem.
Unlike LP, SDP intrinsically is a special type of convex optimization and thus duality gap exists in gen-
eral. The dual problem sometimes can be solved more efficiently [148], thus we also present the dual
formulation.

SDP Dual Formulation

Let y = [y1, y2, · · · , ym]⊤ ∈ Rm be the decision variable, and C,Ai(i = 1, 2, · · · ,m) ∈ Rn×n
s be

constant symmetric matrices. Besides, let b = [b1, b2, · · · , bm]⊤ ∈ Rm be a constant vector. The
dual formulation of the primal SDP is given as the following optimization problem.

X∗ = argmax
y

b⊤y

s.t. C −
m∑
i=1

yiAi � 0 (5.7a)

Any feasible value of the primal and the dual problem maintains the following relation in general

C •X − b⊤y = ϵ ≥ 0 (5.8)

where ϵ is the duality gap. (5.8) also refers to as the weak duality relation. Moreover, having ϵ = 0 is
the strong duality relation. Similar to the duality theorem for general convex programming problems
[11], if the primal problem or the dual problem is strictly feasible, then strong duality holds.

The most efficient algorithm for solving SDP is the interior-point method [148]. For computer-based
simulation, SEDUMI [138] is a very popular on-the-shelf solver, and it is also embedded in YALMIP [97].
For real experiments of embedded system testing, extra coding for the optimization solver is necessary.
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5.3.2. Semidefinite Programming for Cooperative Relative Localization
After introducing the basics of SDP, we now formulate the intermediate CRL problem from a rigidity
perspective. Given a group ofN agents described using a graph G = (V, E) with its framework realized
in Rd, assume that a sub-group of agents, called virtual ground beacons, have already performed
relative pose estimation within themselves. Thereupon, the coming task is performing a state estimation
to get the relative pose of the remaining agents with respect to the virtual ground beacons using only
distance measurements. For the set of virtual ground beacons denoted as B ⊂ V , we can assign a
reference position p(k∗) = 0 to an arbitrarily chosen agent k∗ ∈ B. Correspondingly, the absolute
positions of other beacons k ∈ B \ k∗, in this reference, become the known relative positions.

To diffuse future ambiguities, we denote the known position of agents k ∈ B as βk, k = 1, 2, · · · , |B|,
and k will be the index for agents in B. Regarding the unknown agents in A = V \ B, we use i(j) =
1, 2, · · · , |A| as the index, and their positions (i.e, the relative position) is denoted as xi(xj). Neglecting
the edges within the virtual beacons, we further divide the remaining edges into two sets Eaa and
Eab representing the edges within the undecided agents and the edges between virtual beacons and
unknown agents, respectively. Based on the above formulation, the distance constraints within the
group is given as

||βk − xj ||2 = l2jk, ∀(j, k) ∈ Eab, (5.9a)
||xj − xi||2 = l2ij , ∀(i, j) ∈ Eaa. (5.9b)

For compactness, we build a concatenated matrix Xp = [x1, x2, · · · , |A|] to represent all the unknown
relative positions, with which the distance constraints in (5.9) can be rewritten as

[βk;−ej ]
⊤[I X]⊤[I X][βk;−ej ] = l2jk, ∀(j, k) ∈ Eab, (5.10a)

(ei − ej)
⊤X⊤X(ei − ej) = l2ij , ∀(i, j) ∈ Eaa. (5.10b)

Therefore, we can formulate the intermediate CRL problem into SDP as follows.

SDP Formulation of Intermediate CRL

Computing the unknown relative positions is equivalent to solving the following optimization prob-
lem

Z∗ = argmin
X

C • Z

s.t. (eie
⊤
i ) • Z = 1, ∀i = 1, 2, · · · , d (5.11a)

([βk;−ej ][βk;−ej ]
⊤) • Z = l2jk, ∀(j, k) ∈ Eab (5.11b)

([0; ei − ej ][0; ei − ej ]
⊤) • Z = l2ij , ∀(i, j) ∈ Eaa (5.11c)

Z =

[
I X

X⊤ Y

]
� 0 (5.11d)

where Y = X⊤X ∈ Rd×d
s , and Z ∈ R(d+|A|)×(d+|A|)

s are both symmetric matrices. Besides,
C = 0 is the naive setting since we are looking for feasible solutions. Upon obtaining Z∗, X∗

can be trivially retrieved thereafter.

This intermediate CRL formulation is not the whole story, as it assumes part of the agents has
already obtained relative position information. Fortunately, this formulation is quite general such that
the assumption itself can also be solved using the same SDP formulation, which leads to an iterative
CRL. Again, it is compatible with peer-to-peer RL using nonlinear filtering techniques introduced in the
previous chapter 4. To enlighten future research, we summarize the insights as follows.

Insights on Rigidity Guided CRL using SDP

• Iterative SDP:
Pick a candidate agent as the starting agent and perform a rigidity-based CRL for a small
universally rigid group (i.e., four agents forming a tetrahedron) locally. Subsequently, treat
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this small rigid group as the group of virtual ground beacons and perform estimation for the
other agents that are linked to them but relatively more spatially far away from the starting
agent. Repeat the above procedure either locally or globally until all interested agents are
visited at least once. To draw an analogy, this approach is like the spread of public opinions
among people.

• Guided Filtering with SDP:
Perform peer-to-peer RL using nonlinear filtering in a parallel manner for different pairs of
agents. Correspondingly, many different groups of virtual ground beacons are available,
with which a bunch of SDP computations directly follow and have desired decentralized
property. An analogous example is burning a thick and big canvas by igniting multiple
scattered points simultaneously.

• Accelerated Convergence by Alternating SDP and Filtering:
Since peer-to-peer RL takes time to converge and initialization also influences the speed
of convergence, it is beneficial to apply SDP and filtering in an overlapped manner. Viable
strategies are as follows.

1. Apply SDP to provide initialization.
2. At the intermediate point before nonlinear filtering converges, use that information as

the initialization of the SDP and perform SDP to get a progressed solution which is
then feedback to the nonlinear filtering in its next iteration. The solution obtained by
the filter can then be feedback to the SDP in the next iteration of SDP.

• Event-triggered SDP:
This idea directly follows the guided filtering with the SDP approach. Since the computation
of SDP is more demanding than filtering, it is reasonable to apply SDP in an event-triggered
manner such that it interferes with the filter at selected iterations instead of every step.

5.3.3. Relaxation in Semidefinite Programming
The SDP formulation presented for intermediate CRL in the previous subsection is a relaxed version
since the hard equality relation Y = X⊤X is relaxed as Y � X⊤X. In the original formulation with-
out relaxation, there is a rank constraint rank(Z) = d on the variable Z, which makes the resulting
formulation non-convex and intractable to solve. To fix this problem, an alternating rank minimization
algorithm (ARMA) [149] has been recently proposed where the rank condition is reformulated as a sub
optimization problem.

An old attempt to handle the relaxation for quadratic constrained quadratic programming (QCQP)
problems uses reformulation-linearization-technique (RLT) to retain the substantial feasible region re-
moved by semidefiniteness constraints.

Without relying on multiple distance measurements of the big group. peer-to-peer RL using se-
quential distance measurements can also be posed as SDP optimization. This approach also uses a
relaxation of the original problem to fit the SDP framework, and it applies singular-value-decomposition
(SVD) to tighten the relaxed problem.

5.4. Advances in Rigidity Theory
This final section discusses several miscellaneous topics in rigidity theory, which are all recent advances
dealing with different aspects in RL for multi-agent systems. The first topic originates from the UWB
sensor where rigidity is considered directly for the time measurements. We then focus on some recent
solutions where rigidity is combined with filtering techniques. The last part in this section introduces
some basics on applying rigidity theory to Barycentric coordinates, which is an alternative to tackle the
non-convex optimization of the formulated rigidity problem without relaxation.

5.4.1. Rigidity Theory Meets Ultra-wideband
The mechanism of measuring distances using UWB has been introduced in chapter 2. The transmitted
signal has a timestamp recording the time of transmission using the local time of the transmitter. On
the receiver’s end, the recorded arrival time of the signal obtained by the matched filter is also in the
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local time of the receiver. For agent i ∈ V , denote its local time as ti, then the first-order relation to the
global reference clock t is as

t = αiti + ϕi, (5.12)

where αi ∈ R+ and ϕi ∈ R. Further, the recorded local transmission time of agent i to agent j is
T i
i,j , where the superscript shows the local time belongs to which agent and the subscript clarifies the

direction of the transmission. The two directed measurements can be easily computed as

c(αjT
j
(i,j) + ϕj − αiT

i
(i,j) − ϕi) = lij , (5.13a)

c(αiT
i
(j,i) + ϕi − αjT

j
(j,i) − ϕj) = lji. (5.13b)

Assuming the distance measurements are identical (i.e., lij = lji), combine (5.13a) and (5.13b) further
leads to

f c
ij = αiT̄

i
ij + ϕi − αj T̄

j
ij − ϕj = 0, (5.14)

where T̄ i
ij = 0.5(T i

(i,j) + T i
(j,i)) and T̄ j

ij = 0.5(T j
(i,j) + T j

(j,i)).
Treating (αi, ϕi) as the variable that need to be determined, a similar clock framework (G, φ) can be

defined with φ being the set of all clock parameter pairs (αi, ϕi). The number of The equality in (5.14)
equals the cardinality of the edge set |E|. Appending all fij generates a vector function of the clock
parameters, and taking the partial derivative of this vector function with respect to the clock parameters
leads to the infinitesimal clock rigidity matrix. Subsequently, trivial clock motion and rank check on the
clock rigidity matrix can be further characterized [156, 157].

In addition, when working with one of the directed distance measurements as well as the position
embedding information p(i), a biased equality directly follows as

f c,p
ij = ||p(i)− p(j)||2 − c(αjT

j
(i,j) + ϕj − αiT

i
(i,j) − ϕi) = 0. (5.15)

Following the same procedure as in constructing clock rigidity matrix, taking the derivative of the vec-
torized f c,p

ij function with respect to both positions and clock parameters results in the infinitesimal joint
clock-position rigidity matrix [156, 157].

This pioneering work that combines UWB and rigidity theory still suffers from several flaws. First,
it does not discuss how to eliminate the bias in the joint clock-position rigidity theory. Besides, their
approach for clock parameter estimation and joint estimation both use gradient-descent approaches on
a predefined Lyapunov energy function while did not provide details about hyper-parameter tuning and
initialization. A rather severe problem is they applied incorrectly the Barbashin’s theorem on positive
invariant set.

5.4.2. Rigidity Theory Meets Filtering Theory
Apart from the novel insights we presented in subsection 5.3.2, there is already an attempt trying to
leverage rigidity theory and filtering theory [3]. This work aims for beacon-free localization of gun
projectiles using radio-frequency (RF) communication, and it uses Kalman Filter to partly eliminate
the ambiguities brought by simply relying on rigidity theory which fails to handle reflection. Indeed,
reflection is a tricky problem even in cases where global rigidity is guaranteed, and the resulting position
estimation using rigidity produces multiple hypotheses, which are further tested using KF. Therefore,
this also inspires future research to design multi-hypothesis KF with rigidity theory.

Other irrelevant papers where (E)KF is also presented simply use the filter to verify the results in the
simulation [126, 61]. Nonetheless, they still provide some interesting results. For instance, inspired by
the observability analysis using Lie derivatives, a higher-order dynamic analysis is performed for the
bearing rigidity matrix, which sheds light on a possible direction for analyzing higher-order dynamics
also for the distance rigidity matrix.

5.4.3. Rigidity in Barycentric Coordinates
As identified in subsection 5.3.3, the SDP formulation does not exactly correspond to the true problem
due the relaxation (c.f., (5.11d)). However, without the relaxation, the optimization problem is not con-
vex and thus becomes difficult to solve. Barycentric coordinate system, being a useful tool in affine
geometry, can describe the geometric constraints of a given framework embedded in Euclidean space
using linear equations [55, 139].
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Let s1, s2, · · · , sd+1 be n + 1 affinely independent points in a general affine space S of dimension
n. Then for any point s∗ and an arbitrary point o, there exists a unique set of scalar parameters
λ1, λ2, · · · , λn+1 independent of o such that the following equations hold:

−→
os∗ =

n+1∑
i=1

λi
−→osi,

n+1∑
i=1

λi = 1, (5.16)

and the scalars λi(i = 1, 2, · · · , n+ 1), being not identically zero, are the barycentric coordinates of s∗
with respect to si. In real life where the affine space degenerates to the 3-D Euclidean space, we need
4 points which can form a tetrahedron to serve as the basis points.

Another prominent characteristic of the barycentric coordinate system is its invariance concerning
the isometry of a Euclidean space (e.g., translation, rotation, and reflection). Consequently, it is not
necessary to know the exact true position of the basis points for computing the barycentric coordinates.
An effective approach is to first construct a congruent framework based on the distance measurements,
then compute the barycentric coordinates based on the Euclidean position of the vertices of the con-
gruent framework [55].

It should be emphasized that localization using barycentric coordinates requires at least 4 nodes to
be the anchors. By the same token, it is necessary to have at least 4 neighbors that are communicating
with the agent that needs to be localized, which is a rather stringent requirement in dynamic networks.
Imagine a scenario where a new agent is joining a group and it needs to be localized (i.e., the other
agents in the group need to determine the relative pose of this newcomer), this new agent may fly
within the communication range of only 1 or 2 agents, which renders applying barycentric coordinates
infeasible.



6
Conclusion

We conclude this review by summarizing important remarks on different solutions we analyzed, formu-
lating the research questions as well as the research objective, and finally providing future research
directions.

6.1. Concluding Remarks of Different Techniques
Thus far, we covered three types of nonlinear filtering techniques (i.e., the KF, the PF, and theMHE). Due
to the nonlinear nature of theMAV dynamics and the UWBmeasurement model, the EKF is the baseline
filter that can solve the state estimation problem in localization. However, though enjoying simple
applicability, the EKF fails to capture higher nonlinearities and cannot handle general non-Gaussian
noise. Moreover, there does not exist rigorous proof to guarantee the convergence of the EKF, and it is
indeed sensitive to initialization. Other variations of the Bayesian filter provide prominent advantages
compared to the KF, typical examples are PF which approximates posterior distribution, and the MHE
which exploits optimization. Notwithstanding, improved estimation performance of the PF and the MHE
comes with a price of increased computational complexity.

Nonlinear filtering is an effective solution for peer-to-peer localization but benefiting from the big
group to achieve a cooperative and consistent solution requires extra tools. For filtering-based solu-
tions, covariance intersection has demonstrated its potential to fuse direct and indirect measurements
with unknown correlations. An alternative solution is to exploit graph rigidity theory and its SDP for-
mulation for position estimation. The computation of covariance intersection can be distributed but its
performance greatly depends on that of the underlying filter. The rigidity theoretical approach provides
position estimation with group information, but it requires solving an online optimization whose compu-
tation is hard to be distributed. Besides, it needs prior information and even fails to take effect when
some of the agents only have a sparse local connection.

6.2. Research Questions & Research Objectives
This section formulates the research questions, research objective, and sub-goals of the research
objective, motivated by the analysis provided in the literature review.

6.2.1. Research Questions
The main research question is how to design a well-suited CRL algorithm that can consistently esti-
mate 3-D relative pose (i.e., relative position in local coordinate) for swarm MAVs in infrastructure-free
and GPS denied environments using only onboard IMU and inter-agent distance measurements from
UWB, where the meaning ofwell-suited is three-fold: 1) loosely coupled decentralized 2) computational
efficient for online implementation 3) centimeter-level localization accuracy. According to different re-
quirements, this main research question can be divided into several sub-questions which are listed as
follows.

1. (Reconstructability Problem) How to achieve peer-to-peer 3-D relative localization using only
inter-agent distance measurements and onboard IMU?

46
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2. (Consistency Problem) How to benefit from the cooperation of the group to achieve consistent
estimation (i.e., the estimated variables of different agents match) as well as more accurate esti-
mation (i.e., centimeter-level accuracy) given the loosely coupled communication constraints?

3. (Decentralization Problem) How to decentralize the computation of the estimation algorithm?
4. (Computational Problem) How to reduce the computational complexity such that it can be im-

plemented online while satisfying centimeter-level accuracy?

These four sub-questions are closely related. The baseline would be designing an effective estimation
algorithm that can reconstruct the 3-D relative pose state variables using only IMU and UWB distance
measurements for a pair of MAV agents. Then for a swarm of large group size, it is desired to fuse direct
and indirect measurements. Further, virtual constraints provided by physical truth can serve as addi-
tional measurements to enhance estimation performance and ensure consistency. When cooperation
of the group is utilized to provide consistent and more accurate localization, we need to investigate the
computation requirements of this integrated algorithm. This integrated cooperative algorithm is a good
design if it mathematically does not require a centralized computation, otherwise, it needs to be decen-
tralized. It is possible that the cooperative design is not decentralizable, and if this is the case, we need
to redesign the cooperative algorithm. The last question is to evaluate the algorithm’s computational
complexity for each MAV agent and try to reduce the computational cost if possible.

6.2.2. Research Objective
The main research objective is to achieve consistent and accurate (i.e., centimeter-level accuracy) 3-D
relative pose estimation for swarm MAVs in infrastructure-free and GPS-denied environments using
only IMU and UWB distance measurements using designing the next generation CRL algorithm that
has decentralized online computational capability and suits loosely coupled communication constraints.

The first sub-goal is to derive and design a CRL algorithm that fits our problem framework by leverag-
ing stochastic systems theory, graph rigidity theory, and optimization techniques. The algorithm should
have strong mathematical foundations in terms of stochastic observability check, convergence proof,
error bound derivation, and computational complexity analysis. After successfully designing the CRL
algorithm, the second sub-goal is to implement the algorithm in computer programs and to perform sim-
ulations thereafter. The final sub-goal is applying the algorithm to real MAVs to test the effectiveness
of the algorithm in real experiments.

Achieving the first sub-goal and the second sub-goal is interleaved since the development of the
algorithm has different phases and it is beneficial to construct modular simulations between phases and
check intermediate performance at the end of each phase. At the same time, the algorithm should be
modified based on the result of the simulations. Programming for real embedded controllers of MAVs
and subsequent online flight tests is only permitted after the simulations produce convincing results.

6.3. Inspiring Future Research Instruction
The future requirements of RL for swarm MAVs as four levels. Firstly, it should be more accurate.
Then, it should take less time to produce accurate enough results, or rather, the algorithm should
converge faster. Further, it should be robust not only to noise but also to network configuration, which
means it should be able to handle different kinds of noise and dynamic network topology. To fulfill
these requirements, several insights have been proposed in previous chapters. We here present a
final uniform instruction for future research as follows.

1. Leverage PF and EKF with MEE or CEE.
2. Apply covariance intersection on the peer-to-peer filter in step 1 to fuse direct and indirect esti-

mation but not measurements.
3. Interleave the filtering-based method developed in 2 and the rigidity theoretic method and apply

rigidity theory in an event-triggered manner.
4. Provide proof of convergence, derived error bound, and computational complexity analysis.

The above instruction may fail to produce good results in the beginning or even may not be feasible.
Changes will be made when necessary and more literature research will also be carried out in parallel.
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