
Abstract

Due to recent advances in the development of efficient uncertainty quantification

methods, the propagation of physical randomness in practical applications has be-

come feasible for smooth and steady computational problems. The current challenges

in modeling physical variability include problems with unsteadiness and discontinu-

ous solutions. In this paper two efficient non-intrusive approaches for unsteady prob-

lems are developed based on time-independent parametrization and interpolation at

constant phase. The interpolation of the samples is performed using both a global

polynomial interpolation and a robust Adaptive Stochastic Finite Elements formula-

tion with Newton-Cotes quadrature in simplex elements. Applications to an elastically

mounted cylinder, a transonic airfoil flow, and an elastically mounted airfoil illustrate

the efficiency, robustness, and straightforward implementation of the methodologies.

Keywords: uncertainty quantification, stochastic finite elements, fluid dynamics, fluid-

structure interaction, unsteady problems, shock waves, asymptotic behavior, limit cy-

cle oscillations, random parameters.

1 Introduction

Since the invention of the first modern computers in the mid-20th century, compu-

tational resources have increased by many orders of magnitude due to advances in

processor clock rate and memory storage. At the same time, the efficiency of numer-

ical algorithms has improved by even a larger factor. Numerical errors in industrial

simulations, therefore, start to reach acceptable engineering levels. Nowadays, physi-

cal variability tends to dominate the error in numerical predictions. Inherent physical

variations are caused by for example varying atmospheric conditions, and produc-
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tion tolerances through material properties, mass and stiffness distributions, and the

geometry. Accounting for physical variations is, therefore, vital for making reliable

predictions, which can be used for robust design optimization and reducing safety

factors.

A straightforward uncertainty quantification method for modeling physical vari-

ations by random parameters is Monte Carlo simulation [1], in which many deter-

ministic problems are solved for randomly varying parameter values. However, for

problems which are already computationally intensive in the deterministic case, such

as computational fluid dynamics and fluid-structure interaction simulations, the Monte

Carlo approach can easily lead to impractically high computational costs. More effi-

cient (non-intrusive) Polynomial Chaos methods [2, 3, 4, 5, 6, 7] have, therefore, been

developed, in which the number of deterministic solves is reduced by employing a

global polynomial interpolation of the samples in parameter space. An alternative

sampling in suitable Gauss quadrature points is employed in Probabilistic Colloca-

tion (PC) approaches [8, 9, 10]. Due to these developments the efficient propagation

of physical randomness has become possible for smooth and steady computational

problems over the last decade.

The current challenges in modeling physical variability include problems with un-

steadiness and discontinuous solutions. Uncertainty quantification methods usually

require a fast increasing number of samples with time to resolve the large effect of ran-

dom parameters in dynamical systems with a constant accuracy. It is, however, recog-

nized in the engineering community that there is an increasing need to move towards

unsteady simulations in computational fluid dynamics. This trend also dictates an

increasing application of uncertainty quantification methods to time-dependent prob-

lems. Since the asymptotic effect of physical variations is of interest in, for example,

post-flutter analysis of fluid-structure interaction systems [11], the increasing sam-

ple size in time can lead to thousands of required samples. The increasing number

of samples with time is caused by the increasing nonlinearity of the response sur-

face [12]. This effect is especially profound in oscillatory responses of which the

frequency is affected by the random parameters. The frequency differences between

the realizations lead to increasing phase differences with time, which in turn result in

an increasingly oscillatory response surface and more required samples. Discontinu-

ous responses are encountered in fluid dynamics and fluid-structure interaction in the

form of, for example, shock waves in supersonic flow and bifurcation phenomena of

dynamical systems. Resolving these singularities is important, since they can lead to a

high sensitivity to input variation, and oscillatory or unphysical predictions by global

polynomial approximations.

There is, therefore, a need to develop an efficient and robust methodology for

resolving the effect of physical variations in unsteady problems with singularities.

For oscillatory time-dependent responses a Fourier Chaos basis [13] has recently

been proposed. Multi-element Adaptive Stochastic Finite Elements (ASFE) meth-

ods [14, 15, 16, 17, 18] have been developed in order to approximate discontinuities

by a more robust piecewise polynomial interpolation of the samples.
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In this paper, a combined methodology for unsteady problems with discontinu-

ities is developed. Two efficient approaches for unsteady oscillatory problems are

proposed, which both achieve a constant accuracy in time with a constant number

of samples, in contrast with the usually fast increasing number of samples for other

methods. The two approaches are based on:

1. Application of the uncertainty quantification interpolation to a time-independent

parametrization of the oscillatory samples instead of to the time-dependent sam-

ples themselves, which results in a time-independent interpolation error [19,

20];

2. Interpolation of the samples at constant phase instead of at constant time, which

results in the elimination of the effect of the increasing phase differences with

time [21].

In both these approaches the interpolation of the samples can be performed using

either a global or a piecewise polynomial approximation. For a robust interpolation

an alternative Adaptive Stochastic Finite Elements formulation is proposed based on

Newton-Cotes quadrature in simplex elements [18], which preserves monotonicity and

extrema of the low number of samples. The resulting Unsteady Adaptive Stochastic

Finite Elements (UASFE) approach [21] can be applied to problems in which the

phase of the oscillatory samples is well-defined.

The paper is outlined as follows. The time-independent parametrization of the sam-

ples in combination with a global polynomial interpolation is developed in section 2 in

application to an elastically mounted cylinder subject to a random uniform flow. The

Adaptive Stochastic Finite Elements formulation is illustrated for a steady random

transonic flow over a NACA0012 airfoil in section 3. In section 4 the combination of

the interpolation of oscillatory samples at constant phase and the Adaptive Stochastic

Finite Elements interpolation is applied to an elastically mounted airfoil with nonlin-

earity in the flow and the structure. The paper is concluded in section 5. The consis-

tence of the approaches has been verified by comparison of results for analytical test

problems with those of Monte Carlo simulations in previous studies [18, 19, 20, 21].

2 Flow past an elastically mounted cylinder

The concept of interpolating a time-independent parametrization of oscillatory sam-

ples instead of the time-dependent samples themselves is elaborated in section 2.1. In

section 2.2 the fluid-structure interaction system of an elastically mounted cylinder is

described. Results for a random free stream velocity are presented in section 2.3.
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2.1 Interpolation of time-independent parametrization

Consider a dynamical system subject to n uncorrelated second-order random input pa-

rameters a(ω) = {a1(ω), . . . , an(ω)}, which governs an oscillatory response u(x, t, ω)

L(x, t; u(x, t, ω)) = S(x, t), (1)

with operator L and source term S defined on domain D × T , and appropriate initial

and boundary conditions. The spatial and temporal dimensions are defined as x ∈ D
and t ∈ T , respectively, with D ⊂ R

d, d = {1, 2, 3}, and T = [0, tmax]. A realization

of the set of outcomes Ω of the probability space (Ω, F , P ) is denoted by ω ∈ Ω, with

F ⊂ 2Ω the σ-algebra of events and P a probability measure.

A suitable time-independent parametrization of the unknown oscillatory response

surface u(t, ω) is given by the following representation ũ(t, ω):

ũ(t, ω) = u0(ω) + eγ(ω)(tmax−t)A(ω)uperiod(τ(t, ω), ω), (2)

with τ(t, ω) = 2π(φ(ω) + (t − tmax)f(ω)) (mod 2π). The argument x has been

dropped here for convenience of the notation. The response u(t, ω) is parametrized

by (2) in terms of the time-independent functionals: frequency f(ω); relative phase

φ(ω); amplitude A(ω); reference value u0(ω); damping γ(ω); and normalized period

shape uperiod(τ(ω), ω), with τ(ω) ∈ [0, 2π]. These functions of ω are constructed us-

ing a Probabilistic Collocation approach [8] by solving (1) for the parameter values ak

which correspond to Gauss quadrature points in parameter space, with k = 1, . . . , Ns

and Ns the number of samples. The realizations of the time-independent functionals

fk, φk, Ak, u0k
, γk, and uperiod,k(τ) are then extracted from the computed samples

uk(t). These realizations are finally interpolated using a global polynomial interpola-

tion to the functions f(ω), φ(ω), A(ω), u0(ω), γ(ω), and uperiod(τ, ω), and substituted

in representation (2). The mean and variance of approximation ũ(t, ω) are determined

by numerically integrating of response surface (2). The distribution function is given

by sorting the function u-ω, with ω ∈ [0, 1], to a monotonically increasing reconstruc-

tion.

Since the interpolation is performed at the level of the time-independent parame-

ters, the interpolation accuracy is independent of time for a constant number of sam-

ples. This approach can be applied to the asymptotic region of oscillatory responses

which allow for a time-independent parametrization of the form of (2).

2.2 The elastically mounted cylinder system

The two-dimensional fluid-structure interaction problem of an elastically-mounted cir-

cular cylinder in a laminar Navier-Stokes flow is given in Figure 1. The gas flow

around the cylinder with diameter d is governed by the two-dimensional compressible

Navier-Stokes equations [22]. The cylinder is only free to move in the cross flow y-

direction. The structural stiffness is modeled by a linear spring, which results in an

angular natural frequency of the structure of ωn =
√

0.1 ≈ 0.316.
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Figure 1: The elastically-mounted cylinder in a uniform free stream flow.

The flow equations are discretized on a circular spatial domain D with diameter

40d using a second-order finite volume method on a grid of 1.2 · 104 volumes. An

Arbitrary Lagrangian-Eulerian formulation is employed to couple the fluid mesh with

the movement of the structure. Time integration is performed using a BDF-2 method

with a stepsize of ∆t = 0.25 until t = 250. Initially the flow field is uniform and the

cylinder is at rest with an initial deflection of ycyl = 0.5d with respect to its equilibrium

position.

The undisturbed velocity in the x-direction, V (ω), is assumed to be uncertain

described by a truncated lognormal distribution with a coefficient of variation of

CVV = 10%. The mean value of the velocity µV = 0.3 corresponds to a Reynolds

number of Re = 1000. The truncated lognormal distribution limits the variation of the

Reynolds number to the range for which the frequency f of the periodic fluid motion

is typically given by a Strouhal number of St = fd/V = 0.2. This corresponds for µV

to an angular frequency of ωflow = 0.38. For this range the cylinder exhibits a period-1

oscillation. The variation in V (ω) affects the frequency of the vortex shedding behind

the cylinder and, therefore, influences the frequency of the motion of the cylinder.

2.3 Efficient approximation of oscillatory responses

The effect of the randomness in free stream velocity V (ω) on the evolution of the

mean and the variance of the cylinder displacement y(t, ω) is shown in Figure 2. The

approach based on the Probabilistic Collocation interpolation of the time-independent

parametrization is in the figure referred to as Probabilistic Collocation for Limit Cycle

Oscillations (PCLCO). The PCLCO approach is applied to the time domain in which

the samples are in their asymptotic range. This corresponds to the asymptotic stochas-

tic solution and part of the stochastic transient from the deterministic initial condition.

Probabilistic Collocation applied directly to the time-dependent samples is used in

the time domain in which the samples are in their transient. The locations where the

methodology switches from Probabilistic Collocation to PCLCO are denoted by the
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Figure 2: Deflection of the elastically-mounted cylinder for the combination of

PCLCO and Probabilistic Collocation (PC).

symbols. Results for Ns = {2, 3, 4} samples are shown to demonstrate the level of

convergence of the approximations.

Although the deterministic samples show a highly unsteady behavior, the stochas-

tic behavior is asymptotically steady. The mean is a decaying oscillation to zero due

the effect of the random free stream velocity V (ω) on the frequency of the oscillation.

The frequency differences result in increasing phase differences in time, such that re-

alizations with positive and negative sign increasingly cancel each other. The initially

fast increasing variance demonstrates the importance of resolving the large effect of

physical variations in unsteady problems. After the oscillatory stochastic transient the

variance approaches a steady asymptotic value of approximately 9.6 · 10−2 due to the

asymptotically constant amplitude of the samples.

The coinciding Probabilistic Collocation approximations for Ns = {2, 3, 4} sam-

ples illustrate convergence for the short time interval t < 50. For longer time integra-

tion Probabilistic Collocation would require a fast increasing number of samples with

time to resolve the asymptotic stochastic behavior. However, the time-independent

parametrization in PCLCO results in a converged approximation of the long-term

stochastic behavior of the system for only Ns = 4 samples. These results illustrate

that interpolation of the time-independent parametrization is an efficient approach for

resolving the asymptotic effect of random parameters on oscillatory responses. In the

stochastic transient t ∈ [50, 150] the results of PCLCO seem to converge less rapidly.

3 Steady transonic flow over a NACA0012 airfoil

Global polynomial interpolation of the samples gives accurate results for smooth re-

sponses as illustrated in the previous example. However, it can result in unreliable

approximations near discontinuities. A more robust piecewise polynomial interpo-

lation is, therefore, needed for problems with singularities. An alternative Adaptive
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(a) Element (b) Initial grid (c) Adapted grid

Figure 3: Discretization of two-dimensional parameter space using 2-simplex ele-

ments and second-degree Newton-Cotes quadrature points given by the dots.

Stochastic Finite Elements (ASFE) formulation based on Newton-Cotes quadrature

in simplex elements is developed in section 3.1. The ASFE approach is applied to a

steady transonic flow around a NACA0012 airfoil. The flow problem is described in

section 3.2 and results are presented in section 3.3.

3.1 Adaptive Stochastic Finite Elements with Newton-Cotes

quadrature and simplex elements

The non-intrusive Adaptive Stochastic Finite Elements (ASFE) interpolation based

on Newton-Cotes quadrature points in simplex elements [18] employs a piecewise

quadratic approximation of the response surface by dividing parameter space into Ne

simplex elements. The quadratic approximation in the elements is constructed by per-

forming deterministic solves for the values of the random parameters a(ω) that cor-

respond to the
(

n+2
2

)

second-degree Newton-Cotes quadrature points in the elements

shown in Figure 3a. The two-dimensional example of Figure 3 can geometrically be

extended to higher-dimensional parameter spaces.

The initial discretization of parameter space by the adaptive scheme consists of the

minimum of Neini
= n! simplex elements and Nsini

= 3n samples, see Figure 3b. The

elements are adaptively refined as illustrated in Figure 3c using a refinement measure

based on the largest absolute eigenvalue of the Hessian, as measure of the curvature

of the response surface approximation in the elements, weighted by the probability

represented by the elements. The stochastic grid refinement is terminated when a L∞

convergence measure for the mean and standard deviation is reached or at a threshold

for the maximum number of samples N̄s.

Due to the location of the Newton-Cotes quadrature points the required number

of deterministic solves is relatively low, since the deterministic samples are reused

in successive refinements and the samples are used in approximating the response

in multiple elements. Where necessary the elements are subdivided into Nlin = 2n

subelements with a linear approximation of the response without performing addi-

tional deterministic solves to preserve monotonicity and extrema of the samples. This

prevents unphysical predictions due to overshoots and undershoots near singularities
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Figure 4: Transonic flow over a NACA0012 airfoil for the mean free stream Mach

number µMa∞ .

at the expense that the method does not achieve exponential convergence for smooth

responses as Gauss quadrature Stochastic Finite Elements methods can.

3.2 The transonic airfoil flow problem

The Adaptive Stochastic Finite Elements formulation is applied to a transonic Euler

flow [23] over a NACA0012 airfoil subject to a random free stream Mach number

Ma∞. The distribution of Ma∞ is a truncated lognormal with a mean Mach number

of µMa∞ = 0.8 and a coefficient of variation of CVMa∞ = 1%. The angle of attack

is equal to 1.25o and the airfoil has a chord with length c. The two-dimensional flow

problem is discretized using a second-order upwind spatial finite volume scheme on a

unstructured hexahedral mesh with 3 · 104 spatial volumes. The steady state solution

is found by time integration with a CFL number of 0.5. In Figure 4 the flow field

in terms of the local Mach number is shown for the mean value of the free stream

Mach number µMa∞ . Above the wing a large supersonic domain can be identified for

which Ma > 1, which ends at a shock wave at x ≈ 0.6c. This shock wave appears

as a discontinuity in probability space, which can result in a high sensitivity for small

input variations.

3.3 Robust approximation of discontinuities

The effect of the random Ma∞ is shown in Figure 5 in terms of the mean Mach num-

ber and the 99% confidence range along the upper surface of the airfoil. Adaptive

Stochastic Finite Elements are applied with 4 elements, which results in 9 determin-

istic solves. The results are compared with Probabilistic Collocation based on 5 de-

terministic solves. Adaptive Stochastic Finite Elements predict that the randomness

smears the shock wave in the mean Mach number along the upper surface around its

deterministic location. The 99% confidence range shows that the nonlinear system
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Figure 5: Mean Mach number and 99% uncertainty range of Adaptive Stochastic Fi-

nite Elements (ASFE) and Probabilistic Collocation (PC) along the upper surface of

the transonic NACA0012 airfoil.

amplifies the 1% input randomness to a variation of the shock wave location between

x/c = 0.5 and x/c = 0.8. The position of the shock wave is, therefore, sensitive

to small variations in free stream Mach number, while the shock wave strength is

nearly unaffected. The global polynomial interpolation of Probabilistic Collocation

gives an oscillatory approximation near the discontinuity, which results in unphysical

negative Mach numbers and unrealistically high Mach numbers of up to 3. Increasing

the number of samples further increases the oscillatory behavior of the Probabilis-

tic Collocation approximation. The robust extrema preserving approximation of the

Adaptive Stochastic Finite Elements formulations, therefore, results for problems with

discontinuous solutions in a more reliable approximation than a global polynomial in-

terpolation.

4 Stochastic bifurcation behavior of an elastically

mounted airfoil

The stochastic bifurcation behavior of an elastically mounted airfoil is studied us-

ing the second approach for unsteady problems based on interpolation of the oscil-

latory samples at constant phase. The interpolation is performed using the Adaptive

Stochastic Finite Elements formulation described the previous section. In addition to

a constant number of samples in time, interpolation at constant phase has the advan-

tages over time-independent parametrization that it is not subject to parametrization

error and that it is applicable to problems which do not allow for a time-independent

parametrization. The concept of interpolation at constant phase is developed in in

section 4.1. The deterministic system governing the elastically mounted airfoil with

nonlinearity in the flow and the structure is described in section 4.2. Results of the

straightforward implementation of the non-intrusive Unsteady Adaptive Stochastic Fi-
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nite Elements (UASFE) approach are presented in section 4.3.

4.1 Interpolation at constant phase

The non-intrusive approach is based on performing deterministic solves for the pa-

rameter values ak, which correspond to the Newton-Cotes quadrature points in the

elements in parameter space. In order to interpolate the samples uk(t) at constant

phase, first, their phase as function of time φk(t) is extracted from the deterministic

solves uk(t). Second, the time series for the phase φk(t) are used to transform the sam-

ples uk(t) to functions of their phase u∗

k(φk) instead of time. Third, the transformed

samples u∗

k(φk) are interpolated to the function u∗(φ, ω) using Adaptive Stochastic

Finite Elements interpolation. This step involves both the interpolation of the sampled

phases φk(t) to the function φ(t, ω) as well as the interpolation of the samples u∗

k(φ̃)
to the function u∗(φ̃, ω) at constant phase φ̃. Repeating the latter interpolation for

all phases φ̃ results in the function u∗(φ, ω). Finally, transforming u∗(φ, ω) back to

u(t, ω) using φ(t, ω) yields the unknown response surface of the system response as

function of the random parameters a(ω) and time t.

The phase φk(t) is extracted from the samples based on the local extrema of the

time series uk(t). A trial and error procedure identifies a cycle of oscillation based on

two or more successive local maxima. The selected cycle is accepted if the maximal

error of its extrapolation in time with respect to the actual sample is smaller than a

threshold value ε̄k for at least one additional cycle length. The function for the phase

φk(t) in the whole time domain t ∈ T is constructed by identifying all successive

cycles of uk(t) and extrapolation to t = 0 and t = tmax before and after the first and

last complete cycle, respectively. The phase is normalized to zero at the start of the

first cycle and a user defined parameter determines whether the sample is assumed to

attain a local maximum at t = 0.

4.2 The elastically mounted airfoil system

The nonlinear structural stiffness is modeled by a cubic spring stiffness term in a two-

degree-of-freedom model [24] for coupled pitch and plunge motion of the airfoil with

chord c, see Figure 6a. The values of the structural parameter correspond to those used

in [25]. Randomness is introduced in the ratio of natural frequencies ω(ω) = ωξ/ωα,

with ωξ and ωα the natural frequencies of the airfoil in pitch and plunge, respectively.

The randomness is described by a symmetric unimodal beta distribution with param-

eters β1 = β2 = 2 around a mean of µω = 0.2 in the domain ω(ω) ∈ [0.15; 0.25].

The aerodynamic force and moment coefficients are determined by solving the

nonlinear Euler equations for inviscid flow [23] using a second-order finite volume

scheme on an unstructured hexahedral mesh with 7.5 · 103 volumes in spatial domain

D with dimensions 30c×20c. Time integration is performed using the BDF-2 method

with stepsize ∆τ = 0.4 until nondimensional time τmax = 1000. The initial condition
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Figure 6: The elastically mounted airfoil in uniform Euler flow.

is given by the steady state solution for the initial deflection of α(0) = 0.1deg and

ξ(0) = 0 shown in Figure 6b in terms of the static pressure field p. In the determin-

istic case the airfoil exhibits a supercritical Hopf-bifurcation at the linear flutter point

U∗/U∗

L = 1, which consists of a decaying oscillation below the flutter point and a

diverging oscillation towards a limit cycle oscillation for U∗/U∗

L > 1.

4.3 Straightforward implementation of non-intrusive approach

By propagating the randomness in the frequency ratio ω(ω) through the system for a

range of values of bifurcation parameter U∗/U∗

L, the stochastic bifurcation behavior

of the system can be explored. Due to the random frequency ratio ω(ω), the sys-

tem bifurcation can no longer be described by a single deterministic flutter point, but

rather by a P-bifurcation region for the probability distribution. A typical P-bifurcation

can be recognized in the evolution of the probability density of amplitude Aα(ω) for

U∗/U∗

L ∈ [0.95; 1.05] and ∆U∗/U∗

L = 0.0125 at τ = 800 in Figure 7. In the pre-

bifurcation domain of U∗/U∗

L ≤ 0.9625 the probability density resembles a Dirac

delta function at Aα = 0. At U∗/U∗

L = 0.9875 the probability still has a maximum

at Aα = 0 and decays monotonically to zero for positive values of Aα. The random-

ness in ω(ω), therefore, results in an earlier onset of unstable post-flutter behavior

than a deterministic analysis would point out. At the deterministic bifurcation point

U∗/U∗

L = 1 the probability density develops a local maximum at a positive ampli-

tude Aα of 5.7deg. The local maximum increases and occurs at increasing values

of Aα until it turns into the global most probable point at U∗/U∗

L = 1.025. In the

post-bifurcation domain of U∗/U∗

L ≥ 1.025 the unimodal probability density function

allows for positive Aα values only.

Due to the straightforward implementation of the non-intrusive Unsteady Adaptive

Stochastic Finite Elements formulation these results are obtained by reusing a deter-

ministic solver for fluid-structure interaction simulation. The increased insight in the
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Figure 7: Probability density of amplitude Aα(ω) for U∗/U∗

L ∈ [0.95; 1.05] at τ = 800
for the elastically mounted airfoil.
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bifurcation behavior of the elastically mounted airfoil through these detailed stochas-

tic results demonstrates the additional value of a stochastic analysis compared to a

deterministic simulation for complex physical systems.

5 Conclusions

Modeling physical variability is vital for making reliable flow and fluid-structure inter-

action predictions, since unsteadiness and shock waves can amplify input randomness

to the onset of unstable behavior. In this paper, two methodologies for unsteady prob-

lems with discontinuities are developed based on interpolation of a time-independent

parametrization of the samples and interpolation of the samples at constant phase.

These two ideas result both in a constant accuracy in time with a constant number

of samples, in contrast with the usually fast increasing number of samples for other

methods. Interpolation at constant phase has the advantages over time-independent

parametrization that it is not subject to parametrization error and that it is applicable

to problems which do not allow for a time-independent parametrization.

The interpolation of the samples is performed using both a global and a piece-

wise polynomial approximation. For a robust interpolation an alternative Adaptive

Stochastic Finite Elements (ASFE) formulation is developed based on Newton-Cotes

quadrature in simplex elements, which preserves monotonicity and extrema of the

low number of samples. The resulting Unsteady Adaptive Stochastic Finite Elements

(UASFE) formulation can be applied to problems in which the phase of the oscillatory

samples is well-defined.

The converged approximation of the asymptotic stochastic behavior of an elasti-

cally mounted cylinder in random uniform flow based on four deterministic samples

shows the efficiency of the time-independent parametrization approach. The steady

random transonic Mach number flow around a NACA0012 airfoil shows that the

Adaptive Stochastic Finite Elements formulation results in a robust approximation of

discontinuous response surfaces. The application of the Unsteady Adaptive Stochastic

Finite Elements approach to study the stochastic bifurcation behavior of an elastically

mounted airfoil illustrates that the implementation of the non-intrusive approach is

straightforward by reusing an existing deterministic solver.
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