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Abstract

Due to recent advances in the development of efficient uncertainty quantification
methods, the propagation of physical randomness in practical applications has be-
come feasible for smooth and steady computational problems. The current challenges
in modeling physical variability include problems with unsteadiness and discontinu-
ous solutions. In this paper two efficient non-intrusive approaches for unsteady prob-
lems are developed based on time-independent parametrization and interpolation at
constant phase. The interpolation of the samples is performed using both a global
polynomial interpolation and a robust Adaptive Stochastic Finite Elements formula-
tion with Newton-Cotes quadrature in simplex elements. Applications to an elastically
mounted cylinder, a transonic airfoil flow, and an elastically mounted airfoil illustrate
the efficiency, robustness, and straightforward implementation of the methodologies.

Keywords: uncertainty quantification, stochastic finite elements, fluid dynamics, fluid-
structure interaction, unsteady problems, shock waves, asymptotic behavior, limit cy-
cle oscillations, random parameters.

1 Introduction

Since the invention of the first modern computers in the mid-20th century, compu-
tational resources have increased by many orders of magnitude due to advances in
processor clock rate and memory storage. At the same time, the efficiency of numer-
ical algorithms has improved by even a larger factor. Numerical errors in industrial
simulations, therefore, start to reach acceptable engineering levels. Nowadays, physi-
cal variability tends to dominate the error in numerical predictions. Inherent physical
variations are caused by for example varying atmospheric conditions, and produc-



tion tolerances through material properties, mass and stiffness distributions, and the
geometry. Accounting for physical variations is, therefore, vital for making reliable
predictions, which can be used for robust design optimization and reducing safety
factors.

A straightforward uncertainty quantification method for modeling physical vari-
ations by random parameters is Monte Carlo simulation [1], in which many deter-
ministic problems are solved for randomly varying parameter values. However, for
problems which are already computationally intensive in the deterministic case, such
as computational fluid dynamics and fluid-structure interaction simulations, the Monte
Carlo approach can easily lead to impractically high computational costs. More effi-
cient (non-intrusive) Polynomial Chaos methods [2, 3, 4, 5, 6, 7] have, therefore, been
developed, in which the number of deterministic solves is reduced by employing a
global polynomial interpolation of the samples in parameter space. An alternative
sampling in suitable Gauss quadrature points is employed in Probabilistic Colloca-
tion (PC) approaches [8, 9, 10]. Due to these developments the efficient propagation
of physical randomness has become possible for smooth and steady computational
problems over the last decade.

The current challenges in modeling physical variability include problems with un-
steadiness and discontinuous solutions. Uncertainty quantification methods usually
require a fast increasing number of samples with time to resolve the large effect of ran-
dom parameters in dynamical systems with a constant accuracy. It is, however, recog-
nized in the engineering community that there is an increasing need to move towards
unsteady simulations in computational fluid dynamics. This trend also dictates an
increasing application of uncertainty quantification methods to time-dependent prob-
lems. Since the asymptotic effect of physical variations is of interest in, for example,
post-flutter analysis of fluid-structure interaction systems [11], the increasing sam-
ple size in time can lead to thousands of required samples. The increasing number
of samples with time is caused by the increasing nonlinearity of the response sur-
face [12]. This effect is especially profound in oscillatory responses of which the
frequency is affected by the random parameters. The frequency differences between
the realizations lead to increasing phase differences with time, which in turn result in
an increasingly oscillatory response surface and more required samples. Discontinu-
ous responses are encountered in fluid dynamics and fluid-structure interaction in the
form of, for example, shock waves in supersonic flow and bifurcation phenomena of
dynamical systems. Resolving these singularities is important, since they can lead to a
high sensitivity to input variation, and oscillatory or unphysical predictions by global
polynomial approximations.

There is, therefore, a need to develop an efficient and robust methodology for
resolving the effect of physical variations in unsteady problems with singularities.
For oscillatory time-dependent responses a Fourier Chaos basis [13] has recently
been proposed. Multi-element Adaptive Stochastic Finite Elements (ASFE) meth-
ods [14, 15, 16, 17, 18] have been developed in order to approximate discontinuities
by a more robust piecewise polynomial interpolation of the samples.



In this paper, a combined methodology for unsteady problems with discontinu-
ities is developed. Two efficient approaches for unsteady oscillatory problems are
proposed, which both achieve a constant accuracy in time with a constant number
of samples, in contrast with the usually fast increasing number of samples for other
methods. The two approaches are based on:

1. Application of the uncertainty quantification interpolation to a time-independent
parametrization of the oscillatory samples instead of to the time-dependent sam-
ples themselves, which results in a time-independent interpolation error [19,
201;

2. Interpolation of the samples at constant phase instead of at constant time, which
results in the elimination of the effect of the increasing phase differences with
time [21].

In both these approaches the interpolation of the samples can be performed using
either a global or a piecewise polynomial approximation. For a robust interpolation
an alternative Adaptive Stochastic Finite Elements formulation is proposed based on
Newton-Cotes quadrature in simplex elements [18], which preserves monotonicity and
extrema of the low number of samples. The resulting Unsteady Adaptive Stochastic
Finite Elements (UASFE) approach [21] can be applied to problems in which the
phase of the oscillatory samples is well-defined.

The paper is outlined as follows. The time-independent parametrization of the sam-
ples in combination with a global polynomial interpolation is developed in section 2 in
application to an elastically mounted cylinder subject to a random uniform flow. The
Adaptive Stochastic Finite Elements formulation is illustrated for a steady random
transonic flow over a NACAO0O012 airfoil in section 3. In section 4 the combination of
the interpolation of oscillatory samples at constant phase and the Adaptive Stochastic
Finite Elements interpolation is applied to an elastically mounted airfoil with nonlin-
earity in the flow and the structure. The paper is concluded in section 5. The consis-
tence of the approaches has been verified by comparison of results for analytical test
problems with those of Monte Carlo simulations in previous studies [18, 19, 20, 21].

2 Flow past an elastically mounted cylinder

The concept of interpolating a time-independent parametrization of oscillatory sam-
ples instead of the time-dependent samples themselves is elaborated in section 2.1. In
section 2.2 the fluid-structure interaction system of an elastically mounted cylinder is
described. Results for a random free stream velocity are presented in section 2.3.



2.1 Interpolation of time-independent parametrization

Consider a dynamical system subject to n uncorrelated second-order random input pa-
rameters a(w) = {a;(w), ..., a,(w)}, which governs an oscillatory response u(x, t, w)

L(xtu(x,t,w)) = S(x,b), (1)

with operator £ and source term S defined on domain D x 7', and appropriate initial
and boundary conditions. The spatial and temporal dimensions are defined as x € D
and t € T, respectively, with D C R?, d = {1,2,3}, and T' = [0, tnax]. A realization
of the set of outcomes (2 of the probability space (€2, F, P) is denoted by w € 2, with
F C 2% the o-algebra of events and P a probability measure.

A suitable time-independent parametrization of the unknown oscillatory response
surface u(t,w) is given by the following representation (¢, w):

At w) = ug(w) + W= AW uperioa (T(t w), w), 2)

with 7(t,w) = 27(d(w) + (t — tmax)f(w)) (mod 27). The argument x has been
dropped here for convenience of the notation. The response u(t,w) is parametrized
by (2) in terms of the time-independent functionals: frequency f(w); relative phase
¢(w); amplitude A(w); reference value ug(w); damping v(w); and normalized period
shape Uperiod (T(w), w), with 7(w) € [0, 27]. These functions of w are constructed us-
ing a Probabilistic Collocation approach [8] by solving (1) for the parameter values ay
which correspond to Gauss quadrature points in parameter space, with k = 1,..., Ny
and Ny the number of samples. The realizations of the time-independent functionals
frs ks Aks Uo,s Yes and Uperioa,k(7) are then extracted from the computed samples
ug(t). These realizations are finally interpolated using a global polynomial interpola-
tion to the functions f(w), p(w), A(w), up(w), y(w), and Uperioa (7, w), and substituted
in representation (2). The mean and variance of approximation (¢, w) are determined
by numerically integrating of response surface (2). The distribution function is given
by sorting the function u-w, with w € [0, 1], to a monotonically increasing reconstruc-
tion.

Since the interpolation is performed at the level of the time-independent parame-
ters, the interpolation accuracy is independent of time for a constant number of sam-
ples. This approach can be applied to the asymptotic region of oscillatory responses
which allow for a time-independent parametrization of the form of (2).

2.2 The elastically mounted cylinder system

The two-dimensional fluid-structure interaction problem of an elastically-mounted cir-
cular cylinder in a laminar Navier-Stokes flow is given in Figure 1. The gas flow
around the cylinder with diameter d is governed by the two-dimensional compressible
Navier-Stokes equations [22]. The cylinder is only free to move in the cross flow y-
direction. The structural stiffness is modeled by a linear spring, which results in an
angular natural frequency of the structure of w, = /0.1 ~ 0.316.
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Figure 1: The elastically-mounted cylinder in a uniform free stream flow.

The flow equations are discretized on a circular spatial domain D with diameter
40d using a second-order finite volume method on a grid of 1.2 - 10* volumes. An
Arbitrary Lagrangian-Eulerian formulation is employed to couple the fluid mesh with
the movement of the structure. Time integration is performed using a BDF-2 method
with a stepsize of At = 0.25 until ¢ = 250. Initially the flow field is uniform and the
cylinder is at rest with an initial deflection of y.,1 = 0.5d with respect to its equilibrium
position.

The undisturbed velocity in the z-direction, V' (w), is assumed to be uncertain
described by a truncated lognormal distribution with a coefficient of variation of
CVy = 10%. The mean value of the velocity py = 0.3 corresponds to a Reynolds
number of Re = 1000. The truncated lognormal distribution limits the variation of the
Reynolds number to the range for which the frequency f of the periodic fluid motion
is typically given by a Strouhal number of St = fd/V = 0.2. This corresponds for py
to an angular frequency of wgey = 0.38. For this range the cylinder exhibits a period-1
oscillation. The variation in V' (w) affects the frequency of the vortex shedding behind
the cylinder and, therefore, influences the frequency of the motion of the cylinder.

2.3 Efficient approximation of oscillatory responses

The effect of the randomness in free stream velocity V' (w) on the evolution of the
mean and the variance of the cylinder displacement y(¢,w) is shown in Figure 2. The
approach based on the Probabilistic Collocation interpolation of the time-independent
parametrization is in the figure referred to as Probabilistic Collocation for Limit Cycle
Oscillations (PCLCO). The PCLCO approach is applied to the time domain in which
the samples are in their asymptotic range. This corresponds to the asymptotic stochas-
tic solution and part of the stochastic transient from the deterministic initial condition.
Probabilistic Collocation applied directly to the time-dependent samples is used in
the time domain in which the samples are in their transient. The locations where the
methodology switches from Probabilistic Collocation to PCLCO are denoted by the
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Figure 2: Deflection of the elastically-mounted cylinder for the combination of
PCLCO and Probabilistic Collocation (PC).

symbols. Results for Ny = {2,3,4} samples are shown to demonstrate the level of
convergence of the approximations.

Although the deterministic samples show a highly unsteady behavior, the stochas-
tic behavior is asymptotically steady. The mean is a decaying oscillation to zero due
the effect of the random free stream velocity V' (w) on the frequency of the oscillation.
The frequency differences result in increasing phase differences in time, such that re-
alizations with positive and negative sign increasingly cancel each other. The initially
fast increasing variance demonstrates the importance of resolving the large effect of
physical variations in unsteady problems. After the oscillatory stochastic transient the
variance approaches a steady asymptotic value of approximately 9.6 - 10~2 due to the
asymptotically constant amplitude of the samples.

The coinciding Probabilistic Collocation approximations for Ny = {2, 3,4} sam-
ples illustrate convergence for the short time interval ¢ < 50. For longer time integra-
tion Probabilistic Collocation would require a fast increasing number of samples with
time to resolve the asymptotic stochastic behavior. However, the time-independent
parametrization in PCLCO results in a converged approximation of the long-term
stochastic behavior of the system for only Ny, = 4 samples. These results illustrate
that interpolation of the time-independent parametrization is an efficient approach for
resolving the asymptotic effect of random parameters on oscillatory responses. In the
stochastic transient ¢ € [50, 150] the results of PCLCO seem to converge less rapidly.

3 Steady transonic flow over a NACA0012 airfoil

Global polynomial interpolation of the samples gives accurate results for smooth re-
sponses as illustrated in the previous example. However, it can result in unreliable
approximations near discontinuities. A more robust piecewise polynomial interpo-
lation is, therefore, needed for problems with singularities. An alternative Adaptive
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Figure 3: Discretization of two-dimensional parameter space using 2-simplex ele-
ments and second-degree Newton-Cotes quadrature points given by the dots.

Stochastic Finite Elements (ASFE) formulation based on Newton-Cotes quadrature
in simplex elements is developed in section 3.1. The ASFE approach is applied to a
steady transonic flow around a NACAOQO012 airfoil. The flow problem is described in
section 3.2 and results are presented in section 3.3.

3.1 Adaptive Stochastic Finite Elements with Newton-Cotes
quadrature and simplex elements

The non-intrusive Adaptive Stochastic Finite Elements (ASFE) interpolation based
on Newton-Cotes quadrature points in simplex elements [18] employs a piecewise
quadratic approximation of the response surface by dividing parameter space into [V,
simplex elements. The quadratic approximation in the elements is constructed by per-
forming deterministic solves for the values of the random parameters a(w) that cor-
respond to the (";2) second-degree Newton-Cotes quadrature points in the elements
shown in Figure 3a. The two-dimensional example of Figure 3 can geometrically be

extended to higher-dimensional parameter spaces.

The initial discretization of parameter space by the adaptive scheme consists of the
minimum of N, . = n! simplex elements and N;,_, = 3" samples, see Figure 3b. The
elements are adaptively refined as illustrated in Figure 3c using a refinement measure
based on the largest absolute eigenvalue of the Hessian, as measure of the curvature
of the response surface approximation in the elements, weighted by the probability
represented by the elements. The stochastic grid refinement is terminated when a L,
convergence measure for the mean and standard deviation is reached or at a threshold
for the maximum number of samples .

Due to the location of the Newton-Cotes quadrature points the required number
of deterministic solves is relatively low, since the deterministic samples are reused
in successive refinements and the samples are used in approximating the response
in multiple elements. Where necessary the elements are subdivided into Ny, = 2"
subelements with a linear approximation of the response without performing addi-
tional deterministic solves to preserve monotonicity and extrema of the samples. This
prevents unphysical predictions due to overshoots and undershoots near singularities



Figure 4: Transonic flow over a NACAOO12 airfoil for the mean free stream Mach
number g, -

at the expense that the method does not achieve exponential convergence for smooth
responses as Gauss quadrature Stochastic Finite Elements methods can.

3.2 The transonic airfoil flow problem

The Adaptive Stochastic Finite Elements formulation is applied to a transonic Euler
flow [23] over a NACAOO12 airfoil subject to a random free stream Mach number
Ma,,. The distribution of Ma,, is a truncated lognormal with a mean Mach number
of pna,, = 0.8 and a coefficient of variation of C'Vy, . = 1%. The angle of attack
is equal to 1.25° and the airfoil has a chord with length c. The two-dimensional flow
problem is discretized using a second-order upwind spatial finite volume scheme on a
unstructured hexahedral mesh with 3 - 10* spatial volumes. The steady state solution
is found by time integration with a CFL number of 0.5. In Figure 4 the flow field
in terms of the local Mach number is shown for the mean value of the free stream
Mach number iy, . Above the wing a large supersonic domain can be identified for
which Ma > 1, which ends at a shock wave at  ~ 0.6¢c. This shock wave appears
as a discontinuity in probability space, which can result in a high sensitivity for small
input variations.

3.3 Robust approximation of discontinuities

The effect of the random Ma is shown in Figure 5 in terms of the mean Mach num-
ber and the 99% confidence range along the upper surface of the airfoil. Adaptive
Stochastic Finite Elements are applied with 4 elements, which results in 9 determin-
istic solves. The results are compared with Probabilistic Collocation based on 5 de-
terministic solves. Adaptive Stochastic Finite Elements predict that the randomness
smears the shock wave in the mean Mach number along the upper surface around its
deterministic location. The 99% confidence range shows that the nonlinear system
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Figure 5: Mean Mach number and 99% uncertainty range of Adaptive Stochastic Fi-
nite Elements (ASFE) and Probabilistic Collocation (PC) along the upper surface of
the transonic NACAO0012 airfoil.

amplifies the 1% input randomness to a variation of the shock wave location between
x/c = 0.5 and z/c = 0.8. The position of the shock wave is, therefore, sensitive
to small variations in free stream Mach number, while the shock wave strength is
nearly unaffected. The global polynomial interpolation of Probabilistic Collocation
gives an oscillatory approximation near the discontinuity, which results in unphysical
negative Mach numbers and unrealistically high Mach numbers of up to 3. Increasing
the number of samples further increases the oscillatory behavior of the Probabilis-
tic Collocation approximation. The robust extrema preserving approximation of the
Adaptive Stochastic Finite Elements formulations, therefore, results for problems with
discontinuous solutions in a more reliable approximation than a global polynomial in-
terpolation.

4 Stochastic bifurcation behavior of an elastically
mounted airfoil

The stochastic bifurcation behavior of an elastically mounted airfoil is studied us-
ing the second approach for unsteady problems based on interpolation of the oscil-
latory samples at constant phase. The interpolation is performed using the Adaptive
Stochastic Finite Elements formulation described the previous section. In addition to
a constant number of samples in time, interpolation at constant phase has the advan-
tages over time-independent parametrization that it is not subject to parametrization
error and that it is applicable to problems which do not allow for a time-independent
parametrization. The concept of interpolation at constant phase is developed in in
section 4.1. The deterministic system governing the elastically mounted airfoil with
nonlinearity in the flow and the structure is described in section 4.2. Results of the
straightforward implementation of the non-intrusive Unsteady Adaptive Stochastic Fi-



nite Elements (UASFE) approach are presented in section 4.3.

4.1 Interpolation at constant phase

The non-intrusive approach is based on performing deterministic solves for the pa-
rameter values aj, which correspond to the Newton-Cotes quadrature points in the
elements in parameter space. In order to interpolate the samples wy(t) at constant
phase, first, their phase as function of time ¢y (t) is extracted from the deterministic
solves u(t). Second, the time series for the phase ¢ (t) are used to transform the sam-
ples u(t) to functions of their phase u}(¢y) instead of time. Third, the transformed
samples u; (¢y) are interpolated to the function u*(¢,w) using Adaptive Stochastic
Finite Elements interpolation. This step involves both the interpolation of the sampled
phases ¢ (t) to the function ¢(t,w) as well as the interpolation of the samples ()
to the function u*(gz;, w) at constant phase o. Repeating the latter interpolation for
all phases ¢ results in the function u*(¢,w). Finally, transforming u* (¢, w) back to
u(t,w) using ¢(t,w) yields the unknown response surface of the system response as
function of the random parameters a(w) and time ¢.

The phase ¢(t) is extracted from the samples based on the local extrema of the
time series uy(t). A trial and error procedure identifies a cycle of oscillation based on
two or more successive local maxima. The selected cycle is accepted if the maximal
error of its extrapolation in time with respect to the actual sample is smaller than a
threshold value &, for at least one additional cycle length. The function for the phase
¢r(t) in the whole time domain ¢ € T is constructed by identifying all successive
cycles of uy(t) and extrapolation to t = 0 and ¢ = ., before and after the first and
last complete cycle, respectively. The phase is normalized to zero at the start of the
first cycle and a user defined parameter determines whether the sample is assumed to
attain a local maximum at ¢t = 0.

4.2 The elastically mounted airfoil system

The nonlinear structural stiffness is modeled by a cubic spring stiffness term in a two-
degree-of-freedom model [24] for coupled pitch and plunge motion of the airfoil with
chord c, see Figure 6a. The values of the structural parameter correspond to those used
in [25]. Randomness is introduced in the ratio of natural frequencies @W(w) = we/wq,
with w¢ and w,, the natural frequencies of the airfoil in pitch and plunge, respectively.
The randomness is described by a symmetric unimodal beta distribution with param-
eters f; = (o = 2 around a mean of uz = 0.2 in the domain w(w) € [0.15;0.25].

The aerodynamic force and moment coefficients are determined by solving the
nonlinear Euler equations for inviscid flow [23] using a second-order finite volume
scheme on an unstructured hexahedral mesh with 7.5 - 10® volumes in spatial domain
D with dimensions 30c x 20c. Time integration is performed using the BDF-2 method
with stepsize A7 = 0.4 until nondimensional time 7,,,, = 1000. The initial condition
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Figure 6: The elastically mounted airfoil in uniform Euler flow.

is given by the steady state solution for the initial deflection of a(0) = 0.1deg and
£(0) = 0 shown in Figure 6b in terms of the static pressure field p. In the determin-
istic case the airfoil exhibits a supercritical Hopf-bifurcation at the linear flutter point
U*/U; = 1, which consists of a decaying oscillation below the flutter point and a
diverging oscillation towards a limit cycle oscillation for U* /U; > 1.

4.3 Straightforward implementation of non-intrusive approach

By propagating the randomness in the frequency ratio @(w) through the system for a
range of values of bifurcation parameter U*/U;, the stochastic bifurcation behavior
of the system can be explored. Due to the random frequency ratio W(w), the sys-
tem bifurcation can no longer be described by a single deterministic flutter point, but
rather by a P-bifurcation region for the probability distribution. A typical P-bifurcation
can be recognized in the evolution of the probability density of amplitude A, (w) for
U*/U; € [0.95;1.05] and AU*/U; = 0.0125 at 7 = 800 in Figure 7. In the pre-
bifurcation domain of U*/U; < 0.9625 the probability density resembles a Dirac
delta function at A, = 0. At U*/U; = 0.9875 the probability still has a maximum
at A, = 0 and decays monotonically to zero for positive values of A,. The random-
ness in w(w), therefore, results in an earlier onset of unstable post-flutter behavior
than a deterministic analysis would point out. At the deterministic bifurcation point
U*/U; = 1 the probability density develops a local maximum at a positive ampli-
tude A, of 5.7deg. The local maximum increases and occurs at increasing values
of A, until it turns into the global most probable point at U*/U; = 1.025. In the
post-bifurcation domain of U*/U; > 1.025 the unimodal probability density function
allows for positive A, values only.

Due to the straightforward implementation of the non-intrusive Unsteady Adaptive
Stochastic Finite Elements formulation these results are obtained by reusing a deter-
ministic solver for fluid-structure interaction simulation. The increased insight in the

11
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bifurcation behavior of the elastically mounted airfoil through these detailed stochas-
tic results demonstrates the additional value of a stochastic analysis compared to a
deterministic simulation for complex physical systems.

5 Conclusions

Modeling physical variability is vital for making reliable flow and fluid-structure inter-
action predictions, since unsteadiness and shock waves can amplify input randomness
to the onset of unstable behavior. In this paper, two methodologies for unsteady prob-
lems with discontinuities are developed based on interpolation of a time-independent
parametrization of the samples and interpolation of the samples at constant phase.
These two ideas result both in a constant accuracy in time with a constant number
of samples, in contrast with the usually fast increasing number of samples for other
methods. Interpolation at constant phase has the advantages over time-independent
parametrization that it is not subject to parametrization error and that it is applicable
to problems which do not allow for a time-independent parametrization.

The interpolation of the samples is performed using both a global and a piece-
wise polynomial approximation. For a robust interpolation an alternative Adaptive
Stochastic Finite Elements (ASFE) formulation is developed based on Newton-Cotes
quadrature in simplex elements, which preserves monotonicity and extrema of the
low number of samples. The resulting Unsteady Adaptive Stochastic Finite Elements
(UASFE) formulation can be applied to problems in which the phase of the oscillatory
samples is well-defined.

The converged approximation of the asymptotic stochastic behavior of an elasti-
cally mounted cylinder in random uniform flow based on four deterministic samples
shows the efficiency of the time-independent parametrization approach. The steady
random transonic Mach number flow around a NACAO0O012 airfoil shows that the
Adaptive Stochastic Finite Elements formulation results in a robust approximation of
discontinuous response surfaces. The application of the Unsteady Adaptive Stochastic
Finite Elements approach to study the stochastic bifurcation behavior of an elastically
mounted airfoil illustrates that the implementation of the non-intrusive approach is
straightforward by reusing an existing deterministic solver.
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