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ABSTRACT

We consider the accuracy of an approximate posterior distribution in nonparametric regression problems
by combining posterior distributions computed on subsets of the data defined by the locations of the
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independent variables. We show that this approximate posterior retains the rate of recovery of the full data

posterior distribution, where the rate of recovery adapts to the smoothness of the true regression function.
As particular examples we consider Gaussian process priors based on integrated Brownian motion and the
Matérn kernel augmented with a prior on the length scale. Besides theoretical guarantees we present a
numerical study of the methods both on synthetic and real world data. We also propose a new aggregation
technique, which numerically outperforms previous approaches. Finally, we demonstrate empirically that
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spatially distributed methods can adapt to local regularities, potentially outperforming the original Gaussian
process. Supplementary materials for this article are available online, including a standardized description

of the materials available for reproducing the work.

1. Introduction

Gaussian processes (GPs) are standard tools in statistical and
machine learning. They provide a particularly effective prior
distribution over the space of functions and are routinely
used in regression and classification tasks, amongst others.
The monograph Rasmussen and Williams (2006) gives an in-
depth overview of the foundations and practical applications
of this approach. However, GPs scale poorly with the sample
size n. For instance, in regression the computational complexity
and memory requirements are of the orders O(n*) and O(n?),
respectively. This limitation has triggered the development of
various approximation methods, including sparse approxima-
tions of the empirical covariance matrices Gibbs, Poole Jr, and
Stockmeyer (1976), Saad (1990), and Quifionero-Candela and
Rasmussen (2005), variational Bayes approximations Titsias
(2009), David, Rasmussen, and van der Wilk (2019), Nieman,
Szabo, and Van Zanten (2022) or distributed methods. We focus
on the latter method in this article.

In distributed (or divide-and-conquer) methods, the compu-
tational burden is reduced by splitting the data over “local”
machines (or servers, experts, or cores). Next the computations
are carried out locally, in parallel to each other, before trans-
mitting the outcomes to a “central” server or core, where the
partial, local results are combined, forming the final outcome
of the procedure. This distributed architecture occurs naturally
when data is collected and processed locally and only a summary
statistic is transmitted to a central server. Besides speeding up
the computations and reducing the memory requirements, dis-
tributed methods can also help in protecting privacy, as the data

do not have to be stored in a central data base, but are processed
locally.

In the literature various distributed methods were proposed
to speed up Bayesian computation, in particular in the context
of Gaussian Processes. One can distinguish two main strategies
depending on the data-splitting technique. The first approach
is to partition the data randomly over the servers, computing
a posterior distribution on each server and finally aggregating
these local distributions by some type of averaging. Examples
include Consensus Monte Carlo Scott et al. (2016), WASP
Srivastava et al. (2015), Generalized Product of Experts Cao
and Fleet (2014), Bayesian Committee Machine Tresp (2000),
Deisenroth and Ng (2015), Distributed Bayesian Varying
Coeflicients Guhaniyogi et al. (2022) and Distributed Kriging
Guhaniyogi (2017). The second approach takes advantage of the
spatial structure of the data and splits the observations based
on a partition of the design space. Each machine is assigned
a specific region of the space, a local posterior distribution is
computed using the data in this region, and these are glued
together to form the final answer. This approach is referred to as
the Naive-Local-Experts model, see Kim, Mallick, and Holmes
(2005) and Vasudevan et al. (2009). We discuss various methods
of combining the local outputs in Section 4.2, including a new
proposal, which outperforms its competitors in the case that the
length scale of the priors is determined from the data.

A number of papers in the literature studied the randomly
split data approach, deriving theoretical guarantees, but also lim-
itations, for a range of methods and models. Under the assump-
tion that the regularity of the underlying functional parameter is
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known, minimax rate-optimal contraction rates and frequentist
coverage guarantees for Bayesian credible sets were derived in
the context of the Gaussian white noise Szabé and van Zan-
ten (2019) and nonparametric regression models Guhaniyogi
(2017), Shang and Cheng (2015), and Hadji, Hesselink, and
Szabo (2022). However, in practice the latter regularity is typ-
ically not known, but inferred from the data in some way. In
the mentioned references it is shown that with randomly split
data, standard adaptation techniques necessarily lead to highly
sub-optimal inference, see Szab6 and van Zanten (2019). In the
numerical analysis in the present article we observe this on both
synthetic and real world datasets.

In contrast, spatially partitioned distributed approaches have
received little theoretical attention, despite their popularity in
applications. In this article we aim to fill this gap in the litera-
ture. We derive general contraction rate theorems under mild
assumptions and apply them in the context of the nonparamet-
ric regression and classification models. We also consider two
specific GP priors: the rescaled integrated Brownian motion and
the Matérn process and show that both priors (augmented with
an additional layer of prior on the scale parameter) lead to rate-
adaptive posterior contraction rates. This is in sharp contrast to
the randomly split data framework, which necessarily results in
sub-optimal estimation. Thus, we provide the first adaptive dis-
tributed Bayesian method with theoretical guarantees. We also
demonstrate the superior performance of spatially distributed
methods on synthetic and real world datasets. Furthermore,
we propose a novel aggregation technique, which numerically
outperforms its close competitors, especially in the realistic sit-
uation that the length scales of the local posteriors are adapted
to the data. Finally, we also demonstrate numerically that the
spatially distributed GP methods can adapt to different local
regularities in contrast to the original GP. Therefore, spatially
distributing the data can not only speed up the computations,
but can potentially improve the accuracy of the GP method.

The article is organised as follows. In Section 2 we intro-
duce the spatially distributed general framework with GP priors
and recall the regression and classification models, considered
as examples in our article. Then in Sections 2.1 and 2.2 we
derive general contraction rate results under mild conditions in
the non-adaptive and adaptive frameworks, respectively, using
the hierarchical Bayesian method in the latter one. As specific
examples we consider the rescaled integrated Brownian motion
and the Matérn process in Sections 3.1 and 3.2, respectively.
For both priors we derive rate-adaptive contraction rates in the
regression and classification models using the fully Bayesian
approach. The theoretical guarantees are complemented with a
numerical analysis. In Section 4.1 we discuss various aggrega-
tion techniques. We investigate their numerical properties com-
pared to benchmark distributed and non-distributed methods
on synthetic and real world datasets in Sections 4.2 and 4.3,
respectively. We discuss our results and future directions in
Section 5. The proofs for the general theorems are given in
Section B and for the specific examples in Section C. A col-
lection of auxiliary lemmas is presented in Section D. Finally,
additional numerical analysis on real and simulated datasets are
provided in Sections E and E, respectively. We highlight that local
adaptation of the process is investigated in Section E3 of the
supplement.

We write CP([a, b)) for the Holder space of order B > 0: the
space of functions f : [a, b] — R that are b times differentiable,
for b the largest integer strictly smaller than 8, with highest order
derivative f(?) satisfying |f®) (x) —f® (y)| < |x—y|#~?, for every
X,y € la, b]. We also write HP([a, b]) for the Sobolev space of
order B.

2. Spatially Distributed Bayesian Inference with GP
Priors

We consider general nonparametric regression models. The
observations are independent pairs (x1,Y1),..., (xn Yy),
where the covariates x; are considered to be fixed and the
corresponding dependent variables Y; random. We state our
abstract theorems in this general setting, but next focus on
two commonly used models: nonparametric regression with
Gaussian errors and logistic regression.

In the standard nonparametric regression model the observed
dataY = (Y}, Y2,...,Y,) € R” satisfy the relation

Yi = fo(x) + Zi, Zi %./\/'(0,02), i=1...,n (1)
The goal is to estimate the unknown regression function fp,
which is assumed to be smooth, but not to take a known para-
metric form. In the logistic regression model the observed data
Y = (Y1,Y2,...,Y,) € {0,1}" are binary with likelihood
function

Pr(Y; = 1|x;) = ¥ (fo(xi))s i=1,...,n ()
where ¥ (x) = 1/(1 4+ e™¥) denotes the logistic function. Addi-
tional examples include Poisson regression, binomial regression,
etc.

We consider the distributed version of these models. We
assume that the data is spatially distributed over m machines in
the following way. The kth machine, for k € {1, ..., m}, receives
the observations Y; with design points x; belonging to the kth
subregion D® of the design space D, that is x; € D®. In the
examples in Section 3 we take the domain of the regression func-
tion fy to be the unit interval [0, 1] and split it into equidistant
sub-intervals I® = ( }%1, %]. We use the shorthand notations
x® = {x;: x;, € DP},and YO = {Y; : x; € DX}. However,
our results hold more generally, also in the multivariate setting.
For simplicity of notation, we assume that |x®)| = n/m, but in
general it is enough that the number of points in each subregion
is proportional to n/m (with respect to a universal constant).

We endow the functional parameter f; in each machine
with a Gaussian Process prior (G;k) : t € D), with sample
paths supported on the full covariate space, identical in
distribution but independent across the machines. Gaussian
prior processes often depend on regularity and/or scale hyper-
parameters, which can be adjusted to achieve bigger flexibility.
Corresponding local posteriors are computed based on the
data YO = {v; : x € D®)} available at the local
machines, independently across the machines. These define
stochastic processes (supported on the full covariate space),
which we aggregate into a single one by restricting them to the
corresponding subregions and pasting them together, that is a



draw f from the “aggregated posterior” is defined as

f@) = 1pn@fP ), (3)

k=1

where f® is a draw from the kth local posterior. Formally, an
“aggregated posterior measure” is defined as

m
My (BIY) = [ [TI® (B [Y®), (4)
k=1

where B is a measurable set of functions, I"I(k)(-|Y(k)) is the
posterior distribution in the kth local problem corresponding
to the prior 1% (.), and By is the set of all functions whose
restriction to D®) agrees with the corresponding restriction of
some element of B, that is

By = {9:[0,1] > R‘ 3f € B such that
9(x) = f(x), ¥x € DV},

2.1. Posterior Contraction for Distributed GP for
Independent Observations

We investigate the contraction rate of the aggregate posterior
T, (-|Y) given in (4). Our general result is stated in terms of a
local version of the concentration function originally introduced
in van der Vaart and van Zanten (2008) for the non-distributed
model. This local concentration function is attached to the
restriction of the Gaussian prior process to the subregion D®.

Fork=1,...,m,let|fllook = Sup,ep® |f(x)| denote the Lo-
norm restricted to D% and define
(k) : 2
¢ () = inf Al
C HeH® fo—hloop<e B
—log n® (f: Ifllook < 8) , (5)
where || - || is the norm corresponding to the Reproducing

Kernel Hilbert Space (RKHS) H® of the Gaussian process
(ng) :t € DY) and 1™ denotes the law of this process.

We consider contraction rates relative to the semimetric d,,,
whose square is given by

hli~ 2
d}’l(f>g) - n = hl(f’g) > (6)
with

wth0 = [ (Vo7 = o) e

where py ; denotes the density of Y; given x; and f with respect to
some dominating measure j;, fori = 1, ..., n. The semimetrics
d, are convenient for general theory, but as we discuss below,
our results can be extended to other semimetrics as well, for
instance to the empirical L,-distance ||f — gll», for ||f||i =
n~1 Y f3(x;), in the case of the nonparametric regression
model.

The following standard and mild assumption relate the supre-
mum norm to the d,, semimetric and Kullback-Leibler diver-
gence and variation.
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Assumption 1. For all bounded functions f, g,
max {hi(f)g)za K(Pf,i;Pg,i)> V(Pf,i)Pg,i)} 5 ”f - g”io)k)

where K(pf,i> pg,i) = flog(Pf,i/Pg,i)Pf,i dui and V(pf > pei) =
[ log(pr,i/pgi) pr.i dpsi.

For instance, in the case of the nonparametric regression
model, the maximum in the left hand side is bounded above by
a multiple of (f(x;) — g(x,~))2 <|f — g||§o)k, for any x; € D,
see for example p. 214 of Ghosal and van der Vaart (2007). The
condition also holds for the logistic regression model; see for
instance the proof of Lemma 2.8 of Ghosal and van der Vaart
(2017).

The preceding assumption suffices to express the posterior
contraction rate with the help of the local concentration func-
tions. The proof of the following theorem can be found in
Section B.1.

Theorem 2. Let fy be a bounded function and assume that
there exists a sequence &, — 0 with (n/m?)e2 — 00 such
that ¢>J50k)(s,,) < (n/m)el, for k = 1,...
Assumption 1, the aggregated posterior given in (4) contracts
around the truth with rate ¢, that is

,m. Then under

Eo Hn,m(f sdn(fifo) > Mn8n|Y) — 0,

for arbitrary M,, — oo. In the distributed nonparametric regres-
sion model (1) or the classification model (2), the condition
(n/mz)afl — 00 may be relaxed to m = o(nsﬁ/ log n).

Remark 3. We note that the frequentist contraction rate guaran-
tees for the spatially distributed methods, given in Theorem 2,
hold more generally, beyond Gaussian Process priors. The gen-
eral results can be stated with the help of the appropriately
adapted versions of the prior small ball, remaining mass and
entropy conditions to the distributed setting. We provide such a
general result in Theorem 4, for the adaptive, hierarchical choice
of the prior.

2.2. Adaptation

It is common practice to tune the prior GP by changing its
“length scale” and consider the process t > G} := Gy, for a
given parameter 7 instead of the original process. Even though
the qualitative smoothness of the sample paths does not change,
a dramatic impact on the posterior contraction rate can be
observed when t = t,, tends to infinity or zero with the sample
size n. A length scale T > 1 entails shrinking a process on a
bigger time set to the time set [0, 1], whereas 7 < 1 corresponds
to stretching. Intuitively, shrinking makes the sample paths more
variable, as the randomness on a bigger time set is packed inside
a smaller one, whereas stretching creates a smoother process.
We show in our examples that by optimally choosing the scale
hyper-parameter, depending on the regularity of the true func-
tion fy and the GP, one can achieve rate-optimal contraction
for the aggregated posterior. We also show that this same rate-
optimal contraction (up to an arbitrary level set by the user) is
achieved in a data-driven way by choosing the length scale from
a prior, without knowledge of the regularity of the underlying
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function fy. Thus, we augment the model with another layer of
prior, making the scale parameter v a random variable, in a fully
Bayesian approach.

Each local problem, for k = 1,...,m, receives its own
scale parameter, independently of the other problems, and a
local posterior is formed using the local data of each problem
independently across the local problems. For simplicity we use
the same prior for 7 in each local problem. If this is given by a
Lebesgue density g and IT™® is the prior on f with scale T used
in the kth local problem, then the hierarchical prior for f in the
kth local problem takes the form

e® () Z/HT’(k)(-)g(r) dr. (7)

After forming a local posterior using this prior and the corre-
sponding local data in each local problem, an aggregated poste-
rior is constructed as in the non-adaptive case, that is a draw f
from the aggregated posterior is given in (3). The corresponding
aggregated posterior measure takes the form

m
M5 (BY) = [ [ 1#® B YY), (8)
k=1
for [1&® (.| Y(®)) the kth posterior distribution corresponding to
the prior (7).

Theorem 4. Let fy be a bounded function and assume that there
exist measurable sets of functions B;kgn such that for all local
hierarchical priors I18® given in (7) and &, — 0 such that
(n/m*)e2 — o0, it holds that, for some ¢, C > 0,

me® (f . f ¢ BO ) < e 40/me, )

? : —follook < €n) = € ﬁ) 1
ne®f - | lloo, ) > e~ (n/me (10)
log N(cen, BE, || - o) < Cln/m)e2. (11)

Then under Assumption 1, the aggregated hierarchical posterior
given in (8), contracts around the truth with rate &, that is

Eo I15 1 (dn(f.fo) = MyenlY) — 0, (12)

for arbitrary M,, — 00. In the distributed nonparametric regres-
sion model (1) or the classification model (2), the condition
(n/mz)aﬁ — 00 may be relaxed to m = o(nei/ log n).

The proof of the theorem is deferred to Section B.2.

Remark 5. One can consider adaptation to other type of hyper-
parameters as well, for instance choosing the regularity or trun-
cation parameters in a data driven way. Our results can be extend
to these cases as well in a straightforward way. However, such
approaches are, typically, computationally substantially more
expensive and hence less popular in practice than rescaling the
process. Therefore, we have refrained from including such cases
in our analysis.

3. Examples

In this section we apply the general results of the preceding sec-
tion to obtain (adaptive) minimax contraction rates for regres-
sion and classification, with priors built on integrated Brownian
motion and the Matérn process.

3.1. Rescaled Integrated Brownian Motion

The “released” £-fold integrated Brownian motion is defined as

t ozt

G :=B§:—{ +I'W), telo1], (13)
—
Jj=

with B > 0, and iid standard normal random variables (Z]-)]‘-Z=0
independent from a Brownian motion W. The functional oper-
ator I denotes taking repeated indefinite integrals and has the
purpose of smoothing out the Brownian motion sample paths.
Formally we define (If); = fotf(s) dsand next I' = Iand I =
I~ for £ > 2. Because the sample paths of Brownian motion
are Holder continuous of order almost 1/2 (almost surely), the
process t > (I*W); and hence the process t — Gy has sample
paths that are ¢ times differentiable with ¢th derivative Holder
of order almost 1/2. The polynomial term in t — G; allows this
process to have nonzero derivatives at zero, where the scaling
by B of this fixed-dimensional part of the prior is relatively
inessential. The prior process t — Gy in (13) is an appropriate
model for a function that is regular of order £ + 1/2: it is known
from van der Vaart and van Zanten (2008) that the resulting
posterior contraction rate is equal to the minimax rate for a 8-
Holder function fy ifand only if 8 = ¢ +1/2. For B # £ +1/2,
the posterior still contracts, but at a suboptimal rate. To remedy
this, we introduce additional flexibility by rescaling the prior.

Because the integrated Brownian motion is self-similar, a
time rescaling is equivalent to a space rescaling with another
coefficient. We consider a time rescaling and introduce, for a
fixed t > 0,

70 (zy

Gr® .— B, J+'+(14W<k>),t, telo,1]. (14)
J:

¢
j=0

The (Zj(k)) and W® are standard normal variables and a Brow-
nian motion, as in (13), but independently across the local
problems. This process has been studied in van der Vaart and
van Zanten (2007) (or see sec. 11.5 of Ghosal and van der Vaart
2017) in the non-distributed nonparametric regression setting.
The authors demonstrated that for a given 8 < £ + 1, the scale
parameter 7 := 1, = n({t1/2=A/(EH1/DCAFD) Jeads to the
optimal contraction rate in the minimax sense at a 8-regular
function fo, that is

% (£ 21 = folln > Man#/2FHDIY) — 0,

for arbitrary M, tending to infinity. Our first result shows that
this same choice of length scale in the local prior distributions
leads to the same contraction rate for the distributed, aggregated
posterior distribution.

Corollary 6. Consider the distributed nonparametric regression
model (1) or the classification model (2) with a function fy €
CP([0,1]), for B > 1/2. In each local problem endow f with
the rescaled integrated Brownian motion prior (14) with £ +
1/2 > Bwitht = 1, =< n&+1/2=0)/(+1/2)2B+1) 4nd

—142(¢=B)V0
exp{n/0+28) ymy > B2 > n~ %  m. Then for m =



o(n'/@P+1) /log n), the aggregated posterior (4) achieves the
minimax contraction rate, that is

IEO Hn,m (f : dn(f>f0) > Mnn_ﬂ/(2ﬁ+1)|Y) - 0>

for arbitrary M,, — oo. In case of the regression model
(1), the pseudo-metric d, can be replaced by the empirical
Ly-metric || - ||5.

Thus, the aggregated posterior contracts at the optimal rate,
provided that the number of machines does not increase more
than a certain polynomial in the number of data points.

Unfortunately, the corollary employs a scaling rate 7, that
depends on the smoothness g of the true function, which is
typically unknown in practice. To remedy this, we consider a
data-driven procedure for selecting 7. In each local problem we
choose a random scale factor 7, independently from the vari-

ables (Zj(k)) and W® and independently across the problems,
from a hyper-prior distribution with Lebesgue density g¢ ,m
satisfying, for every v > 0,

1 £+1/2
Ci exp{_Dlnz(Hl)f =T /m}

0+1/2
< Gnm(T) < Crexp{—DonT T 171 /m},  (15)

where Cy, D1, Cy, D are positive constants. The following corol-
lary shows that this procedure results in rate-optimal recovery of
the underlying truth.

Corollary 7. Consider the distributed nonparametric regression
model (1) or the classification model (2) with a function f; €
CA([0,1]), for B > 1/2. In each local problem endow f with the
hierarchical prior (7) built on the randomly rescaled integrated
Brownian motion prior given in (14) with £ + 1/2 > 8 and
exp{n'/@+20 /m} > B2 > n“=DV0p and hyper-prior density
ge.nm satisfying (15). Then, for m = o(nl/(M“‘z)/log n), the
aggregated posterior (8) adapts to the optimal minimax contrac-
tion rate, that is

Eo H‘gl,m (f dn(faf()) > Mnn_ﬁ/(25+l)|Y> — 0,

for arbitrary M, — o00. In case of the regression model
(1), the pseudo-metric d, can be replaced by the empirical
Ly-metric || - ||

The corollary shows that the aggregated posterior with ran-
domly rescaled local priors contracts at the optimal rate for a
true function of given Holder smoothness level, as long as the
hyper-prior and the number of experts are chosen appropriately.

Proofs for the results in this section are given in Section C.2.

3.2. Matérn Process

The Matérn process is a popular prior, particularly in spatial
statistics (see e.g., Rasmussen and Williams 2006, p. 84). It is a
stationary mean zero Gaussian process with spectral density

Pt (V) = Coat® (caat® + 1177492, (16)

where «, T > 0 are parameters, d is the dimension (we shall
restrict to d = 1) and ¢y 4, Cy g > 0 are constants. The sample
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paths of the Matérn process are Sobolev smooth of order «, and
7 isascale parameter: ift > G, is Matérn with parameter r = 1,
then t > Gy is Matérn with parameter 7. (For consistency of
notation we took T = 1/£ in Rasmussen and Williams (2006, p.
84)) The present time-rescaled Matérn process is different from
the space-rescaled version t — t*G; (for any «) and has been
less studied. In Section C.5 we derive bounds on its small ball
probability and the entropy of the unit ball of its reproducing
kernel Hilbert space. These quantities, in their dependence on
7, are important drivers of posterior contraction rates, and of
independent interest. For computation the Matérn process can
be spatially represented with the help of Bessel functions.

First we consider the non-adaptive setting where the regu-
larity parameter 8 > 0 of the unknown function of interest f;
is assumed to be known. We choose each local prior equal to
a Matérn process with regularlty parameter « satisfying 8 <

o, scaled by 7, = n#EH o compensate for the possible
mismatch between o and B. It is known that the Matérn prior
gives minimax optimal contraction rates if used on the full data
van der Vaart and van Zanten (2011). The following corollary
asserts that, in the distributed setting, the aggregated posterior
corresponding to this choice of prior also achieves the minimax
contraction rate.

Corollary 8. Consider the distributed nonparametric regression
model (1) or the classification model (2) with a function fy €
CA([0,1]), for B > 1/2. In each local problem endow f with
the rescaled Matérn process prior with regularity parameter o
satisfying « > B and @ + 1/2 € N and scale parameter
7, = n@~ )/ @(+20)) Then for m = o(nt/1+28) /log n), the
corresponding aggregated posterior (4) achieves the minimax
contraction rate n~#/(1+28) that is

Eo Hn,m(f : dn(faﬁ)) = Mn”_ﬁ/(2ﬁ+l)|Y) — 0,

for arbitrary M, — oo. In case of the regression model
(1), the pseudo-metric d, can be replaced by the empirical
Ly-metric || - || -

Next we consider the local hierarchical priors (7) with hyper-
prior density satistying, for every r > 0,

1 o
c1 exp{—din2+ g at172 /m}

< Ganm(T) < €2 exp{—dznﬁrﬁl/z/m}, (17)
where ¢}, dy, ¢z, d; are positive constants. The priors in the local
problems are then chosen to be Matérn with random scales
drawn from gy ,m, and the aggregated distributed posterior
follows our general construction in (8). The following corollary
shows that using Matérn processes yields rate-optimal contrac-
tion over a range of regularity classes, similarly to the integrated
Brownian motion prior case.

Corollary 9. Consider the distributed nonparametric regression
model (1) or the classification model (2) with a function fy €
CP([0,1]), for B > 1/2.In each local problem endow f with the
hierarchical prior built on the randomly rescaled Matérn Process
with regularity parameter « satisfyingoe > fando +1/2 € N
and scale drawn from a density satisfying (17). Then for m =
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o(n!/1+2%) /1og n) the aggregated posterior (8) adapts to the
optimal minimax contraction rate, that is

Bo T, (f + du(ffo) = Mun™#/CFHDIY) o,

for arbitrary M, — o00. In case of the regression model
(1), the pseudo-metric d, can be replaced by the empirical
Ly-metric || - ||5.

Proofs for the results in this section are given in Section C.4.

4. Numerical Analysis

In this section we investigate the distributed methods numeri-
cally by simulation and illustrate it on a real data problem. We
start by a discussion of more refined aggregation techniques than
(3). Our numerical analysis was carried out using the MatLab
package gpml.

4.1. Aggregation Techniques

In spatially distributed GP regression a draw from the aggre-
gated posterior takes the form (3), where the D® are the sub-
regions into which the design points are partitioned and f® ~
110 (.|Y®). The output can be considered a weighted average
of the local posteriors, with the indicator functions 1pa (x) as
weights. Although the procedure provides optimal recovery of
the underlying truth, as shown in the preceding sections, the
sample functions (3) are discontinuous at the boundaries of the
regions D (k). The optimality implies that the discontinuities are
small, but they are visually unappealing.

Various approaches in the literature palliate this problem. In
the Patched GP method neighboring local GPs are constrained
to share nearly identical predictions on the boundary, see Park
and Huang (2016) and Park and Apley (2018). In Tresp (2001),
Rasmussen and Ghahramani (2002), and Meeds and Osindero
(2006) a two-step mixture procedure was proposed, following
the mixture of experts architecture of Jacobs et al. (1991). A
prediction at a given point is drawn from an expert (local poste-
rior) that is selected from a pool of experts by a latent variable,
which is endowed with a prior to provide a dynamical, Bayesian
procedure.

Another method, more closely related to (3), is to consider
continuous weights instead of the discontinuous indicators
1pw (x). Since the pointwise variances of a local posterior is
smaller in the region where the local data lies than outside of
this region, inverse pointwise variances are natural as weights.
Following this idea, Ng and Deisenroth (2014) introduced as
aggregation technique

AP s 1
f& = Z /g Ukz(X)’

2 Ukz(x) (18)

where sz (x) is the variance of f ® (%) if f &~ n®y®),
This approach provides data-driven and continuous weights.
However, as shown in our numerical analysis, this leads to sub-
optimal behavior in the adaptive setting, where the scale param-
eter is tuned to the data. Perceived local smoothness in the data
in region D® will induce a small variance in the induced local

posterior distribution, due to the adaptive bandwidth choice.
This posterior variance will then also be relatively small outside
the local region, where the local posterior is not informed by
data, no matter the nature of the data in this region. The inverse
variance weights then lead to overly large weights even outside
of the experts’ domain. That is to say that an expert will be
overly confident about their knowledge of the true function in
the whole space when this function is particularly smooth in this
expert’s own domain.

In view of these observations we propose a new approach,
which introduces more severe shrinkage outside of the local
domain. As samples from the aggregated posterior, consider the
weighted average

0 =Y wf P /3w,
k=1 k=1

with weights, for ¢ being the geometric center of D®,

(19)

P (=)’
wi(x) = 20
for some p > 0. These weights are also continuous and data-
driven and impose an exponential shrinkage, which depends on
the distance from the subregion. Furthermore, we note, that by
choosing p = Clogn and considering the one dimensional,
unit interval case D® = 1® the proportion of the exponential
weights for points in the kth region and away from it can be
bounded by e‘pmz(}'_‘:k)z/e_‘””z("_‘:")2 < nC, forx € I and
y € 19, with |[j — k| > 2. Hence, the contribution of the local
posteriors built on datasets not in the neighbourhood of the kth
interval is negligible for x € I®. This approach provides there-
fore a continuous aggregated posterior which at the same time
better resembles the localization properties of the standard, glue
together approach than the one proposed in Ng and Deisenroth
(2014). We show below numerically, both on synthetic and real
world datasets, that this new aggregation technique substantially
improves the performance of the distributed GP procedure,
especially when the scale hyper-parameter is selected in a data-
driven way.

4.2. Synthetic Datasets

In this section we investigate the performance of various
distributed Gaussian process regression methods on synthetic
datasets, and compare them to the benchmark: the non-
distributed approach that computes the posterior distribution
on all data.

We consider recovery and confidence statements for the
functional parameter fy based on n independent data points

X1, Y1),..., Xy, Yy,) from the model
Yi=fX) + 2 Zi S NO,6Y), XS U@,

We simulated the data with noise standard deviation ¢ = 1 and
the function fy defined by coefficients fy ; relative to the cosine
basis /j(x) = ﬁcos(n(j —1/2)x),j=1,2,....

Next to the true posterior distribution, based on all data, we
computed distributed posterior distributions, using four meth-
ods. Method 1 (M1) is the consensus Monte Carlo method



proposed by Scott et al. (2016) and applied to Gaussian Processes
in Szab6é and van Zanten (2019) and Hadji, Hesselink, and
Szabo (2022). This method splits the data randomly between
the machines (i.e., the kth machine receives a random subset
of size ny = n/m from the observations) and compensates for
working with only partial datasets by scaling the priors in the
local machines by a factor 1/m. A draw from the aggregated
posterior is constructed as the average f(x) = m~! Y7, f®(x)
of independent draws f® from each (modified) local posterior.
Methods 2-4 all split the data spatially (i.e., the kth machine
receives the pairs (Xj, Y;) for which X; € 10 = (k;ml, %]), and
differ only in their aggregation technique. Method 2 (M2) uses
the standard “glue together” approach displayed in (3), Method
3 (M3) uses the inverse variance weighted average (18), and
Method 4 (M4) uses the exponential weights (19).

All distributed methods were carried out on a single core,
drawing sequentially from the local posteriors. Parallelizing
them over multiple cores or machines would have shortened
the reported run times substantially, approximately by a factor
m.

First we considered the Matérn covariance kernel. We stud-
ied both a version with sample paths rescaled deterministically
by the optimal length scale 7, for the given true function fy
and versions with data-based rescaling (via both empirical and
hierarhical Bayes approaches) that do not use any information
about fy. While for the oracle choice (depending on the typically
unknown regularity 8 of the underlying function fy) of the
scaling parameter all methods performed similarly well, for the
data driven choices of the hyper-parameter there were substan-
tial differences between the distributed Methods 1-4. Spatially
distributing the data (Methods 2 and 4) clearly outperformed
random distribution (Method 1). This is in agreement with the
theory, and can be explained by the inability to determine suit-
able scale parameters from the data in the randomly distributed
case. However, it was also observed that the benefits of spatial
distribution can be destroyed when smoothing out the inherent
spatially discontinuities using aggregation weights that depend
on the local length scales in the wrong way (Method 3).

Then we investigated whether the methods can adapt to
different local regularities. We considered a true function fo,
which is rough in the first half of the co-domain and smooth in
the second half. It is well known that stationary Gaussian pro-
cesses are not appropriate for picking up different local behavior
as they localize the signal at the spectral not at the spatial
domain. This can be also observed in our numerical analyzis
for the non-distributed and the randomly distributed methods
(BM and M1). However, by spatially dividing the data over
the local machines one can pick up different local behaviors
and can achieve substantially better estimations and uncertainty
quantification for the smoother part of the signal than using
the standard, non-distributed approach. Hence, in addition to
significantly speeding up the computations, spatially distributed
methods have the additional advantage of better learning the
local properties of the signal by adapting to the local regularity.
We deferred the corresponding numerical analysis to the sup-
plement.

Finally, we have also investigated the popular squared
exponential covariance kernel with data driven rescaling hyper-
parameter, using both the empirical and hierarchical Bayes
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methods. Although this prior is not explicitly covered in our
examples, we observe similar phenomenas as for the Matérn
covariance kernel. The corresponding simulation studies are
deferred to the supplement.

As mentioned earlier, for adaptation we have used both the
hierarchical and empirical Bayes procedures. In the empiri-
cal Bayes method we took the maximum marginal likelihood
estimator (MMLE) of the scale parameter v, while in hierar-
chical Bayes we have endowed it with another layer of prior
distribution. The (MMLE) empirical Bayes method has been
shown to behave similarly to the hierarchical Bayes method,
considered in our theoretical study (see for instance Szabd,
van der Vaart, and van Zanten 2013; Sniekers and van der Vaart
2015; Rousseau and Szabo 2017; Sniekers and van der Vaart
2020). In both approaches we computed first the marginal log-
likelihood function on a (fine enough) grid using the gpm1 Mat-
lab package. Then in the empirical Bayes method we selected the
maximizer of this likelihood. In the hierarchical Bayes approach
we used an exponential hyper-prior distribution on t (which
was approximated by a truncated geometric distribution on the
chosen grid) and derived the corresponding marginal posterior
of the hyper-parameter. Alternatively, one could also use the
minimize function built in the gpml package for estimating
the hyper-parameters of the GP prior. However, this Matlab
function approximates simultaneously various additional hyper-
parameters as well. Since in our theoretical framework we have
tuned only the length scale parameter 7, for better connection to
the preceding sections, we have refrained from using this built
in optimizer in the synthetic dataset.simulation study.

To assess the quality of the recovery we report the L; error of
estimating fo with the posterior mean. As a measure of the size
of Ly-credible balls we report twice the root average posterior

variance
1
r=2 / o2(x|X,Y) dx.
0

We consider the true function to be in the credible ball if its L,-
distance to the posterior mean is smaller than r. Furthermore,
we also investigate the point-wise behavior of the posterior. We
report both the length of the 95% confidence interval 4o (x) for
some selected points x and the corresponding local coverage
probabilities. In case of the hierarchical Bayes approach we
report the average credible bands with respect to the hyper-
posterior.

4.2.1. Matérn Kernel

In our study with the Matérn prior, we used this kernel with
regularity hyper-parameter « = 3 (see (16)), and generated
the data from the true parameter fy with coefficients fo; =
1.5sin(j)j~"/>7#, with g = 1,forj > 4and fy; = 0 forj < 3,
with respect to the cosine basis. This function fq is essentially
B smooth: fy belongs to the Sobolev space HY ([0, 1]) for all
y < . The optimal length scale parameter of the prior is then
7, = n@ P/A+2B)/a 45 seen in Section 3.2.

We considered pairs (n,m) of sample sizes and numbers
of machines equal to (2000, 10), (5000,20) and (10,000, 50).
In all test cases we repeated the experiment 100 times, except
in the adaptive settings with n > 5000, where we considered



8 B. SZABO, A. HADJI, AND A. VAN DER VAART

Non-distributed Oracle Method 1 Method 2 Method 3 Method 4

05 0.5

-0.5

n=2000, m=10
3 o
o o o -
o A
S
2 o "

o
o
o
o
e
o
=
o
o

05 0.5

n=5000, m=20
& o
o =) o -
o
o IS -
S
2 IS a

N
<

o
o
o
o
2
o
o
o
o

0.5

-0.5

n=10000, m=50
3 o
o o o -
o -

o

0.5

=}

0.5

o

0.5 1 0 0.5 1 0 0.5 1

Figure 1. Deterministic (oracle) rescaling of the Matérn process prior (¢« = 3). Benchmark and distributed GP posteriors. True function fo(x) = Z}’i“ 1.5j_3/2 sin() ¥ ()

drawn in black. Posterior means drawn by solid lines, surrounded by 95% point-wise credible sets shaded between two dotted lines. The five columns correspond (left to
right) to the non-distributed method, the distributed method with random partitioning, and the distributed methods with spatial partitioning without smoothing, with
inverse variance weights and with exponential weights. From top to bottom the sample sizes are n = 2000, 5000, 10,000 and the number of experts m = 10, 20, 50.

Empirical Bayes EB Method 1 EB Method 2 EB Method 3 EB Method 4

0.5

-0.5

n=2000, m=10
=) -
S o
o ) o -

o
o
o
o
o
o

0.5 05

-0.5 -0.5

n=5000, m=20
) o
S o

o
o
o
o
o
o

0.5

-0.5

n=10000, m=50
) -~
& o
B ) o -

o

0.5

=}

0.5

=}

0.5 1 0 0.5 1 0 0.5 1

Figure 2. Empirical Bayes (MMLE) approach for the rescaled Matérn process prior (@« = 3). Benchmark and distributed GP posteriors. True function fo(x) =
Z‘?=°4 1.5j_3/2 sin(j);j(x) drawn in black. Posterior means drawn by solid lines, surrounded by 95% point-wise credible sets, shaded between two dotted lines. The five
columns correspond (left to right) to the non-distributed method, the distributed method with random partitioning, and the distributed methods with spatial partitioning
without smoothing, with inverse variance weights and with exponential weights. From top to bottom the sample sizes are n = 2000, 5000, 10,000 and the number of
expertsism = 10, 20, 50.

only 20 repetitions, due to the overly slow non-distributed the sizes and frequentist coverages of the L, credible sets
approach. Posterior means and 95% point-wise credible bands and the run times are reported in Tables 1-2 and Table E1
for a single experiment are visualized in Figures 1-3, for the in the supplement for the deterministic scaling, in Tables 3—
oracle (deterministic, optimal rescaling), empirical Bayes and 5 for the empirical Bayes method, and in Tables 6-8 for
hierarchical Bayes scaling, respectively. The average L,-errors, the hierarchical Bayes approach. Due to space restriction
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Figure 3. Hierarchical Bayes methods for the rescales Matérn process prior (o

= 3). Benchmark and distributed GP posteriors. True function fo(x) =

Z;’; 1.Sj*3/2 sin(j) ¥ (x) drawn in black. Posterior means drawn by solid lines, surrounded by 95% point-wise credible sets, shaded between two dotted lines. The five

columns correspond (left to right) to the non-distributed method, the distributed method with random partitioning, and the distributed methods with spatial partitioning
without smoothing, with inverse variance weights and with exponential weights. From top to bottom the sample sizes are n = 2000, 5000, 10,000 and the number of

expertsism = 10, 20, 50.

Table 1. Average L-distance between fy and posterior mean for deterministic
(oracle) rescaling of the Matérn process prior (with o« = 3).

(n,m) (2000, 10) (5000, 20) (10,000, 50)
BM 0.091(0.014) 0.068 (0.008) 0.054 (0.007)
M1 0.093 (0.014) 0.070 (0.008) 0.057 (0.007)
M2 0.105 (0.016) 0.086 (0.009) 0.080 (0.007)
M3 0.090 (0.015) 0.070 (0.008) 0.069 (0.007)
M4 0.094 (0.015) 0.075 (0.008) 0.065 (0.007)

NOTE: BM: Benchmark, Non-distributed method. M1: Random partitioning, M2:
Spatial partitioning, M3: Spatial partitioning with inverse variance weights, M4:
Spatial partitioning with exponential weights. Average values over 100 replica-
tions of the experiment with standard error in brackets.

Table 2. Deterministic (oracle) rescaling of the Matérn process prior (¢ = 3).

(n,m) (2000, 10) (5000, 20) (10,000, 50)
Benchmark 0.897s (0.406s) 9.379s (3.9865) 53.865 (15.49s)
Random 0.121s (0.081s) 0.260s (0.120s) 0.46s (0.43s)
Spatial 0.114s (0.084s) 0.2355 (0.098s) 0.44s (0.45s)

NOTE: Average run time for computing the posterior. Benchmark: Non-distributed
method. Method 1: Random partitioning, Method 2: Spatial partitioning.

we report the point-wise analysis of these approaches in the
supplement.

In the non-adaptive setting, where the GP was optimally
rescaled, all methods performed similarly well. They all resulted
in good estimators and reliable uncertainty statements. The run
time of the distributed algorithms were similar and substantially
shorter than for the non-distributed counterpart (on average
below 1s in all cases).

In the adaptive setting we considered both the empirical and
hierarchical Bayes approaches. In the first method we estimate
the scaling hyper-parameter with the MMLE, while in the sec-

Table 3. Empirical (MMLE) Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)

BM 0.092 (0.013) 0.067 (0.008) 0.053 (0.006)
M1 0.136 (0.027) 0.109 (0.026) 0.118(0.015)
M2 0.102 (0.018) 0.083 (0.009) 0.084 (0.009)
M3 0.184(0.019) 0.197(0.011) 0.205 (0.003)
M4 0.091(0.017) 0.069 (0.009) 0.057 (0.006)

Average L,-distance between fy and posterior mean.

(n,m) (2000, 10) (5000, 20) (10,000, 50)

BM 0.160 (0.010) 0.118(0.007) 0.093 (0.005)
M1 0.125 (0.020) 0.090 (0.010) 0.067 (0.006)
M2 0.182(0.011) 0.151(0.006) 0.155(0.003)
M3 0.187 (0.008) 0.162 (0.002) 0.176 (0.001))
M4 0.172(0.010) 0.143 (0.006) 0.149 (0.002)

Average radius of the L-credible ball.

NOTE: BM: Benchmark, Non-distributed method. M1: Random partitioning, M2:
Spatial partitioning, M3: Spatial partitioning with inverse variance weights, M4:
Spatial partitioning with exponential weights.

Table 4. Empirical (MMLE) Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)
BM 1.00 1.00 1.00
M1 0.49 0.25 0.00
M2 0.98 1.00 1.00
M3 0.45 0.00 0.00
M4 0.96 1.00 1.00

NOTE: Proportion of experiments when the true function fy was inside in the L;-
credible ball.

ond one we endow it with another layer of prior, resulting in
a fully Bayesian, hierarchical procedure. In the latter case, as
hyper-prior, we chose the exponential distribution with param-
eter . = 1/5 and approximated the hyper-posterior on a fine
enough grid. One can observe that both data driven Bayesian
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Table 5. Empirical (MMLE) Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)
Benchmark 90.325(17.51s) 895.15 (86.55) 47675 (611s)
Random 6.315 (1.95s) 14.4s (3.3s) 22.55 (4.0s)
Spatial 6.365 (2.49s) 13.85(3.0s) 21.25 (4.95)

NOTE: Average run time for computing the posterior. Benchmark: Non-distributed
method. Method 1: Random partitioning, Method 2: Spatial partitioning.

Table 6. Hierarchical Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)
BM 0.093 (0.016) 0.067 (0.008) 0.056 (0.006)
M1 0.189(0.019) 0.095 (0.016) 0.096 (0.007)
M2 0.120 (0.020) 0.075 (0.009) 0.074 (0.007)
M3 0.225(0.001) 0.087 (0.011) 0.099 (0.005)
M4 0.100 (0.021) 0.060 (0.007) 0.055 (0.007)
Average Ly-distance between fy and posterior mean.
(n,m) (2000, 10) (5000, 20) (10,000, 50)
BM 0.183 (0.025) 0.117 (0.005) 0.091 (0.004)
M1 0.122 (0.069) 0.091 (0.006) 0.066 (0.002)
M2 0.194 (0.031) 0.147 (0.011) 0.148 (0.001)
M3 0.100 (0.003) 0.184(0.001) 0.211(0.001)
M4 0.157 (0.019) 0.151(0.001) 0.152(0.001)

Average radius of the L,-credible ball

NOTE: BM: Benchmark, Non-distributed method. M1: Random partitioning, M2:
Spatial partitioning, M3: Spatial partitioning with inverse variance weights, M4:
Spatial partitioning with exponential weights.

Table 7. Hierarchical Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)
BM 1.00 1.00 1.00
M1 0.18 0.45 0.00
M2 0.98 1.00 1.00
M3 0.00 1.00 1.00
M4 0.96 1.00 1.00

Table 8. Hierarchical Bayes rescaling of the Matérn Gaussian process prior.

(n,m) (2000, 10) (5000, 20) (10,000, 50)
Benchmark 35.855 (6.485) 1292.25 (84.9s) 10,000s (1362s)
Random 4.975(1.32s) 26.75 (0.8s) 61.45(12.8s)
Spatial 5.25s (2.49s) 25.8s (1.7s) 58.65 (12.1s)

NOTE: Average run time for computing the posterior. Benchmark: Non-distributed
method. Method 1: Random partitioning, Method 2: Spatial partitioning.

methods performed similarly. In case of randomly distributing
the data to local machines (M1) the aggregated posterior is over-
smoothed and provides too narrow, overconfident uncertainty
quantification. The standard spatially distributed approach (M2)
performed well, but produced visible discontinuities. The aggre-
gation approach (M3) provided poor and overconfident esti-
mator using empirical Bayes method as is very evident in Fig-
ure 2. Using hierarchical Bayes, Method 3 performed better, but
the estimation accuracy and the size of the credible sets were
still sub-optimally large, see Figure 3 and the corresponding
tables. Our approach (M4) combined the best of both worlds:
it provided continuous sample paths and maintained (and even
improved) the performance of the standard glue-together spatial
approach (M2), while substantially reducing the computational
burden compared to the non-distributed approach.

Here again we note, that by parallelized implementation of
the algorithms the run time could be further reduced by a factor

Table 9. RMSE and runtime of non-distributed (BM) and distributed (M1-M4) GP
regression with squared exponential covariance kernel for the Superconductivity
dataset Hamidieh (2018b).

Methods BM M1 M2 M3 M4
RMSE 12.63(0.21) 15.58(0.19) 13.14(0.35) 16.63(1.40) 12.69(0.32)
Runtime 18,740s (1720s) 248s(82s)  220s(23s)  220s(23s)  220s (23s)

of m. For instance, in the last scenario of the hierarchical Bayes
approach with (n,m) = (10,000,50) this would reduce the
computation time of 10,000 sec needed for the non-distributed
method to around 1 sec.

4.3. Real World Dataset: Superconductivity

Superconducting materials lose their resistance when they are
cooled down below a certain temperature, called critical tem-
perature, and as a consequence can conduct current with zero
resistance. Materials with this property are used for instance
in magnetic resonance imaging (MRI) and nuclear magnetic
resonance (NMR) applications. Therefore, predicting the critical
temperature is an important problem of wide interest.

In our analysis we consider the Superconductivity dataset
Hamidieh (2018a, 2018b). It contains 81 covariates describing
the superconductor’s elemental properties and the goal is to pre-
dict the critical temperature based on them. In total 21,263 mea-
surement points were collected. In our analysis we have divided
the data randomly into a training and testing dataset consist-
ing of 15,000 and 6263 measurements, respectively. We have
repeated the experiment 10 times to measure the variability of
the result. We compared the different distributed GP approaches
(M1-M4) to the benchmark non-distributed approach (BM). In
the spatially distributed methods we have split the data amongst
the machines with respect to the wtd_mean_atomic_mass vari-
able. We have considered the squared exponential covariance
kernel and selected the hyper-parameters with the minimize
subroutine built in the gpml MATLAB package. In Method 4
we set the weight parameter p = 4. The results are reported in
Table 9.

One can conclude that the naive (M2) and the exponentially
re-weighted (M4) spatially distributed methods performed the
best, similarly well to the benchmark non-distributed approach.
At the same time, the product of experts method (M1) and
the spatially distributed method with aggregation weights pro-
portional to the inverse of the posterior variance (M3) per-
formed sub-optimally, providing around 30% bigger error. At
the same time the distributed methods were around two mag-
nitudes faster than the non-distributed counterpart, and their
speed could further increase by parallelizing the computations
instead of sequentially executing them, as in our analysis. Finally,
we have also considered splitting the data in the spatially dis-
tributed methods with respect to other covariates as well. In view
of Table 10, methods M2 and M4 are robust with respect to the
splitting approach and provide similarly accurate predictions.
The only requirement is that the feature used for splitting does
not contain too many repetitions, which would result in imbal-
anced group sizes.



Table 10. RMSE for spatially distributed GP regression methods with squared expo-
nential covariance kernel using different feature variables (in all cases we omitted
the “_atomic_mass” from their names) for splitting the data in the Superconductiv-
ity dataset Hamidieh (2018b).

Methods wtd_range mean wtd_mean gmean wtd_entropy
M2 13.72(0.51) 13.46(0.35) 13.14(0.35) 13.69(0.64) 13.49(0.31)
M3 19.25(1.28) 24.34(0.88) 16.63(1.40) 27.57(1.50) 28.16(1.14)
M4 13.27(0.42) 13.14(0.42) 12.69(0.32) 13.10(0.41s) 12.91(0.23)

5. Discussion

The article provides the first theoretical guarantees for the
method of spatial distribution applied to Gaussian processes.
Our general results show that the resulting approximation to
the posterior provides optimal recovery (both in the case of
known and unknown regularity parameter) of the underlying
functional parameter of interest in a range of models, including
the nonparametric regression model with Gaussian errors and
the logistic regression model. As specific examples of priors
we considered the popular Matérn process and integrated
Brownian motion, but in principle other GP priors could be
covered as well. The theoretical findings are complemented
with a numerical analysis both on synthetic and real world
datasets, where we also proposed a novel aggregation technique
for aggregating the local posteriors together, which empirically
outperformed the close competitors.

The main advantage of spatial distribution of the data is
the ability to adapt the length scale of the prior in a data-
driven way, which was highlighted by both theory and numerical
illustration. The latter showed that the combination technique
of the local posteriors is highly important and can substantially
influence the performance of the method. We also demonstrated
that spatially distributed GPs can adapt to different local regu-
larities of the true function, hence, can potentially outperform
the original GP.

Our results, although formulated for Gaussian processes, in
principle rely on general Bayesian nonparametric techniques,
adapted to the spatially distributed architecture and hence can be
potentially extended to other classes of priors. Also, in the theo-
retical results univariate functional parameters were considered
for simplicity, but the results could be extended to higher dimen-
sional covariates. Another interesting extension is to derive the-
oretical guarantees for the proposed aggregation techniques
beyond the “glue together” approach covered by this article.
These extensions, although of interest, are left for future work.

Supplementary Materials
The supplement contains appendices A-F. A: Comparison with other scal-
able approximations. B, C, D: Proofs of main results and examples and

auxiliary results. E and F: Details on synthetic and real-world numerical
experiments and additional experiments.
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