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1 Introduction

Image semantic segmentation is one of the fundamental tasks in remote sensing. Se-
mantic segmentation is the ability to assign labels to all pixels of an image (Garcia-Garcia
et al., 2017). Semantic segmentation proves to be an essential prerequisite for various ap-
plications such as urban planning, agriculture, and real-state (Kampffmeyer et al., 2016;
Zhu et al., 2016). For instance, classification between roads and buildings, from aerial
images, is important for change detection and updated cartography in the built environ-
ment (Saito et al., 2016). Traditionally, unsupervised and supervised methods are used
to tackle semantic segmentation problems with the use of statistical properties on the
feature space of the image (Rosenberger et al., 2006). Recently, automated segmentation
of aerial imagery has been a problem addressed over the past years with deep learn-
ing techniques that account for satisfactory results as it derived the labels to targeted
classification tasks (Yuan et al., 2021).

Most deep learning models consist of four phases. The first one is to obtain the data
for the problem to solve. Second, to label the data to Third, train the model. Finally, is to
inference the trained model into a real-image (Nikolenko, 2021; Liu et al., 2017). During
the whole process of developing a deep learning model, with not enough open datasets,
80% of the time goes to the annotation phase since it has to be done manually or man-
ually checked after an automatic process (Nikolenko, 2021). In addition, the acquisition
of labelled data is expensive for vast geographic regions (Kong et al., 2019). Several ap-
proaches have been made to tackle this problem. For instance, Maggiori et al. (2017)
created an extensive dataset with labelled data for five cities across the world, which
helped scientists to lower the time of the annotation phase. Nevertheless, despite being
large datasets, it lacks variability in real-world scenarios (Kong et al., 2019).

Another way to tackle the problem of annotation is to create synthetic data for train-
ing deep learning models. Synthetic data refers to imagery from a virtual world that
simulates the real-world (Nikolenko, 2021; Kong et al., 2019; Ros et al., 2016). Com-
pared to real imagery data, synthetic images have several significant advantages, such
as simulating different conditions (e.g., lighting, camera positions), lowering produc-
tion costs and producing unlimited possibilities of images with pixel-wise annotations
(Nikolenko, 2021). Nevertheless, the use of synthetic data has led to new challenges such
as the difference of domains between the real-world and the virtual-world (Nikolenko,
2021; Kong et al., 2019). For this problem, various domain adaptation techniques have
been developed to adapt the domain of synthetic imagery to the real imagery domain.

Synthetic training data gives a opportunity to improve models, lower the production
time and costs (Nikolenko, 2021; Kong et al., 2019). For these reasons, the current the-
sis aims to create a benchmark to produce synthetic data for automated aerial image
segmentation.

For this research, ESRI city engine is used to edit and use default virtual cities with
procedural architecture techniques following the renderization of images from a simu-
lated camera. In this process, the annotations are made. The next step to create different
3D features in the synthetic city in order to train existing deep learning models to evalu-
ate their performance. Finally, a domain adaptation technique exploration is performed
to the synthetic images to further improve the results. The images in which the model
will be performed are given by READAR and are in the Dutch context.

This proposal is organized as follows. In the second chapter, the related work is pre-
sented with relevant literature. In the third chapter, the research problem is defined
with the scope of the project. Furthermore, chapter 4 presents the methodology and the
proposed benchmark to create synthetic data for aerial images. In chapter 5, the time
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planning and tools and datasets to be used are presented.

2 Related work

2.1 Deep Learning for automated semantic classification

Semantic segmentation is one of the main tasks for remote sensing, giving each pixel
a meaningful class to the image (Zhu et al., 2016). Due to the variability, complex-
ity, heterogeneity of the remote sensing data, it is a complex problem to do semantic
segmentation in these images (Kampffmeyer et al., 2016). Nevertheless, deep learning
models have shown outstanding performance for semantic segmentation (Yuan et al.,
2021) making an impact in remote sensing.

Deep Learning is a machine learning technique that consists of methods that learns
complex representations from raw data input (Goodfellow et al., 2016). The deep learn-
ing model consist of a set of layers, called neural networks, which are non-linear func-
tions that compute mappings between the input and the output layer (Lecun et al., 2015).
A neural network is composed of an input layer that contains the observable data, one
or multiple hidden layers that extract features from the input data, and an output layer
that contains the requested information of the input data (Goodfellow et al., 2016).

Figure 1: Example of a Deep Learning Architecture with the neurons as the kernels inside
the circles. The hidden layers extracts different features of the image to the final layer
that identifies the object in the input layer. Image taken from: (Goodfellow et al., 2016)

Images are represented as 2D arrays in a computer. Thus, Convolutional Neural Net-
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works (CNN) are designed to deal with data in the form of arrays. CNNs is a neural net-
work that uses convolutional operations with four main types of layers: Convolutional
layers, which are filter layers; transposed convolutional layers that are for upsampling
operations; non-linear function layer, which activates the non-linearity into the network
and spatial pooling layers to reduce the size of the input volume (Liu et al., 2017)

Different architectures have been made to improve CNNs for semantic segmentation
in remote sensing. For instance, Kampffmeyer et al. (2016) and Maggiori et al. (2017)
used a Fully Convolutional Network (FCN) for semantic image segmentation. This
study obtained 87% accuracy in both ISPRS datasets, Postdam and Vaihingen (ISPRS,
2020). FCNs are composed of three phases: multi-layer convolution, deconvolution and
fusion. Specifically, FCNs use convolutional layers to get a score for each class. As pool-
ing is used for the convolutional processes, the output size is smaller than the original.
Thus, the deconvolution step returns the size back but loses spatial detail in the class
score. To get back the spatial details, an unsampled deep layer is extracted and fused
with a shallow layer by additional element-sum (Yuan et al., 2021).

Another architecture is U-Net which consist of convolutional and deconvolutional
layers and aims to use little training data. The U-Net is made of a contracting path to get
the context of an image and a symmetric expanding path to get precise localization of
features (Ronneberger et al., 2015). This architecture is used by Xu et al. (2018) using very
high-resolution aerial images, and performing a fusion with a DSM. For the Vaihingen
dataset the U-Net has an accuracy of 96% and for Postdam dataset, 98%.

The SegNet architecture (Badrinarayanan et al., 2017) consist of two sub-networks. An
encoder and decoder. The encoder is a structure of convolutional and pooling layers to
extract features. With this network, more meaningful classes are extracted, but spatial
information loses detail. In the next network, the decoder is used to recuperate the lost
spatial information using an upsampling process (Yuan et al., 2021). This architecture
is used by Audebert et al. (2018) for Vaihingen dataset with an accuracy of 89%. From
SegNet it was created the FuseNet, which uses three sub-networks, two encoders, the
RGB values and Depth values and the decoder that, with a fusion layer, process the RGB-
D values (Hazirbas et al., 2015). FuseNet was used by (Audebert et al., 2018) taking the
DSM from point clouds and with very high-resolution images, getting an accuracy for
both Postdam and Vaihingen datasets of 90%.

For this research the architecture used is the FuseNet because it enables the use of
4-band image (RGB-Z), it is all implemented on python and according to Mulder (2020)
the mIoU was 0.87 on experiments in Harleem in the Netherlands. These results were
better than using SegNet architecture.

2.2 Synthetic Imagery for training Deep Learning Models

Synthetic imagery is defined as ”imagery that has been captured from a simulated cam-
era operating over a virtual world” (Kong et al., 2019). Instead of training deep learning
models with costly aerial or satellite images, a synthetic imagery approach can have
several benefits, such as free labelled data as classes are defined by design, simulation
of different seasons or lighting conditions is adjustable, and the variability of the images
can be set in the design process of the virtual world. (Nikolenko, 2021; Kong et al., 2019).

One of the first approaches for synthetic imagery for training deep learning models
was the SYNTHIA dataset (Ros et al., 2016). This dataset was created to have pixel-
perfect semantic segmentation for automated car navigation. SYNTHIA is created in a
virtual environment using Unity, and it simulates a virtual array of cameras throughout
the city that simulates a real car. The research provided two sets, one for training data for
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Figure 2: FuseNET architecture. Two networks are used, one for the RGB and other for
Depth. These are used as an encoders. Later, a fused RGB-D decoder is used. Image
taken from Hazirbas et al. (2015)

deep learning and another to analyse spatio-temporal constraints of objects (Ros et al.,
2016). The first set consists of 13400 images trained in a FCN model and evaluated
in CamVid dataset, which are images from Cambridge, UK. The results showed that
only with CamVid dataset an accuracy of 78% and, adding the SYNTHIA dataset, the
accuracy increased to 84% (Ros et al., 2016). Nevertheless, for the CBCL dataset from
Chicago, USA, an initial 79% of accuracy with only its own dataset and with SYNTHIA
it showed 75% of accuracy. They believed the decremented is due to the combination of
early and late layers during upsampling, but no further evaluation was made (Ros et al.,
2016).

Figure 3: Examples of SYNTHIA images plus the depth image. SYNTHIA dataset is for
unmanned vehicles purposes. Image taken from: Ros et al. (2016)

ProcSy (Khan et al., 2019) is a synthetic dataset from ESRI City Engine; it is used for
automatic driving semantic segmentation. They used different weather conditions like
cloud and rain. They created 8000 images for experiments. The training data is input
to a DeepLab v3+ model into the real-world dataset CityScapes, obtaining good results
with mIoU (mean intersection over union) between 70 and 75% (Khan et al., 2019). The
virtual city was made from a real city in Canada, and they used the dataset to study the
effect of different conditions in the current deep learning algorithms. This study did not
show how the dataset will perform in another location and how it adapt from the virtual
to the real domain.
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In the case of synthetic data for aerial or satellite images, Kong et al. (2019) created
a dataset called Synthinel. Using ESRI City engine, a virtual city was created from the
program’s default settings. It used 1640 images to train a DeepLab v3+ and a U-net
model for building classification. The study used real and synthetic training data to
evaluate it on the INRIA (Maggiori et al., 2017) and ISPRS (ISPRS, 2020) datasets. For
U-net using INRIA dataset, the improvement of mIoU was 0.3%, from 69.0 to 69.3%.
For DeepLab v3+ the improvement was greater (1.1%) from 72.2 to 73.3%. Nevertheless,
the research also performed blind segmentation, which evaluates the ISPRS dataset with
training data from both the Synthinel and INRIA datasets. In this case, the domain is
changed. Thus the results decreased, but the impact of the synthetic imagery increased.
Using a U-net without the synthinel the mIoU was 45.0%, and with it increased to 47.7%.
On the other hand, for DeepLab v3+ the increment is greater from 58.1% to 63.5% (Kong
et al., 2019)

Figure 4: Synthetic city from ESRI City Engine used in (Kong et al., 2019). Default set-
tings from City Engine creates this city. Image taken from: Kong et al. (2019)

2.3 Domain Adaptation for Synthetic Imagery

Real and synthetic imagery have different distributions, which leads to a shift on its do-
mains. This shift decreases the performance of the models. To reduce this difference,
Domain Adaptation (DA) techniques come handily (Wang and Deng, 2018; Sankara-
narayanan et al., 2017). Three different groups of DA have been classified, discrepancy-
based, adversarial-based and reconstruction-based (Wang and Deng, 2018).

In discrepancy-based DA, the first method is Class Criterion that consists of labelling
a small portion of the target (real) domain to train the synthetic domain (Wang and
Deng, 2018). The second method is the Statistics Criterion. Rozantsev et al. (2016) uses
the concept of Maximum Mean Discrepancy (MMD), that takes two distributions and
through a kernel-based sample, tests if the domains distributions are different (Gretton
et al., 2008). This technique is used in the DL model as a loss function to minimize
this distribution difference. Another method of the statistics criterion is the Correlation
Alignment (CORAL). This method used a second-order statistic, the correlation, to align
the distribution between the training and the target set (Sun et al., 2016). Even though
these methods have been used to train DL models, most are for object recognition tasks
where clear borders and edges are present, different from segmentation.

The adversarial-based methods of DA consist of a generative model and an adversar-
ial model. The generative models take the training images to feature real images. The
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adversarial model creates a binary label from the training and the real images (Wang
and Deng, 2018; Liu and Tuzel, 2016). An approach to this model is the Coupled Gen-
erative Adversarial Networks (CoGAN) (Liu and Tuzel, 2016). This method uses two
GAN sharing parameters to force the models to learn the same domain. Then, the train-
ing data is used to create new synthetic data that is further used as training data to the
DL model.

Furthermore, the reconstruction-based methods are reconstructed real images from
the synthetic one, which facilitates DL models to perform in similar domains. Methods
such as Cycle-Consistent GAN (CyCADA) mapped the trained images to the real images
while removing the difference between the domains. First, an image-space adaptation is
performed to map the synthetic data to the real imagery domain using GAN. Then, the
model learns to operate in real imagery with adapted data and the labels from the syn-
thetic data. Finally, another round of adaptation in feature-space between the adapted
synthetic data and the real data is performed (Hoffman et al., 2018).

Figure 5: CyCada Domain Adaptation takes a synthetic image and outputs the same
image with similar domain to a real world image. Image taken from: Hoffman et al.
(2018)

3 Research questions

The main objective of this thesis is:
To what extent synthetic data can improve the current Deep Learning based models for auto-

mated semantic segmentation for aerial images?
The following sub-questions are listed to help the previous question be solved:

• How to create an automatic virtual city to take synthetic imagery for training data?

• To what extent does 3D feature models (trees, buildings or roads) of a virtual city
affects the results of semantic segmentation of aerial images?

• To what extent the distribution of classes can be changed in virtual cities to im-
prove semantic segmentation of aerial images?

• Which is the most suitable ratio between real and virtual training data for semantic
segmentation of aerial images?

• Which domain adaptation technique is more effective for adapting from synthetic
imagery to real imagery domain?
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3.1 Scope of research

The scope of this research is to create a pipeline to generate a virtual city with class
distribution parameters and take images with its semantic segmentation labels to
be used in existing deep learning models. This thesis will not evaluate the be-
haviour of a DL architecture. Instead, it will use a current, well-known model to
evaluate the quality of the synthetic imagery. Furthermore, this thesis will focus
on creating synthetic training data and how it fits to train real-world imagery for
semantic segmentation.

4 Methodology

In this section the methodology to perform a automated semantic segmentation of the
aerial images from synthetic imagery is explained. This approach will detect three
classes; Buildings, roads and other that consist in vegetation and other features in the
real-world. In the following steps is explained from the synthetic city generation to the
evaluation of DL in real imagery.

4.1 Synthetic City Creation

The first objective of this thesis is to create a virtual city. For this purpose I will used pro-
cedural building modeling from Esri CityEngine. This program is used mainly because
the default rules that enables to create random virtual worlds which could be easily cus-
tomizated either manually and automatically through a python API. In addition, the
software focus mainly in urban planning and building modelling which makes the best
option to build a virtual city with different building models.

First, The CityEngine pipeline consists in input layers. A DTM and a land-use map
are optionally input in the model. The DTM is to align the city to the terrain and land-
use to restrict areas of the city for specific use. Furthermore, the street network (graph)
is created followed by lots and streets shapes (blocks). Finally, a 3D model is created by
applying a set of procedural rules from the 2D shapes.

In the current thesis the CityEngine pipeline will be built with the help of the python
API.

4.2 Parameters for 3D models

Having the network with the streets and lots created, the next step is to use the computer
generated architechture (CGA) to assign rules to the 2D shape in order to create 3D
models (Figure 7). It consist of a series of rules that performs instructions to the initial
shape selected. In this case the initial shape is either the lot or the street shape. The
instructions perform geometry operations such as extrusion, transformation, division,
adding textures or even changing the level of detail.

In this work, the InternationalCity.cga (IC) rule that comes from default in the basic
CityEngine licence will be used and edited. In CGA the procedural modeling starts
always with the ”start rule”. In the case of the IC rule, the starting rule is to classify
the lot in a normal, inner or corner lot. Then depending on the area of the lot, different
types of block are assign to the lot. The types of block can be ”residential”, ”apartment
buildings”, ”office buildings” or ”open space”. Now, for every type of blocks, there are
some rules to form the 3D model of the lot. For instance, there is a rule that controls the
angle of the roof, being 0 a flat roof and 45 a gable roof.
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Figure 6: City Engine model generation. The box of attributes refers to the graph net-
work consisting in roads and lots. Assets and textures are images from real buildings
or roads to make realistic looks of the models. CGA rules are for the modeling of the
attributes. Image taken from: https://doc.arcgis.com/en/cityengine

Figure 7: CGA rules are applied to a simple 2D shape to build complex building 3D
models. Image taken from: https://doc.arcgis.com/en/cityengine

In this work, different distributions of blocks will be adjusted in the IC rule, this dis-
tribution will be according the classes to detect. For instance, a distribution of a city can
be 30% of buildings, 20% roads and 50% other.

In addition, I will build rules to create more variety of buildings to focus on a specific
area. For example, for the Dutch case in which the synthetic images will be tested,
common building types will be added to be further evaluate.

Furthermore, three different types of tree models will be tested. It is important that
the model has a balance between storage space and realism (Figure 8).

For modeling roads, the Streets Advanced.cga (SA) will be used. SA is a set of rules
made from ESRI to create realistic roads. It is composed of streets layouts, sidewalks
and green space. For this rule different attributes can be added such as bike lines, lights,
cars, or pedestrians. This rule package will be edited to evaluate the importance of
different 3D models that are present in the real world.

Finally, the city model will be imported as an OBJ file to be further processed.

4.3 Rendering Images

Once the city model is in OBJ format, a python-based pipeline called BlenderProc will
be used. BlenderProc is a procedural pipeline to create, from virtual scenes, realistic
images to be used in DL models. This pipeline provides quality rendering, perfect se-
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Figure 8: Different types of tree models available in City Engine. Image made in City
Engine

mantic segmentation and depth images in a open source 3D model software, blender.
(Denninger et al., 2019). In this thesis, first the OBJ model is imported and then saved
the whole scene. Furthermore, a path is created with different positions of the camera
to take the imagery. Additionally, every object in the scene has to be categorized for
the semantic segmentation of the image. For this purpose, every texture is categorized
with the predefined classes. (Buildings, roads and other). With this attributes, the light-
ing parameters are set with the light angle and light intensity. Finally, the scene goes
through BlenderProc to get three different images for each location of the camera. The
color image, the semantic segmentation image (labelled image) and the depth image
(DSM) (Figure 9).

Figure 9: Left: Color image from synthetic city. Centre: Semantic segmentation of the
image. Right: DSM of the synthetic city.

4.4 FuseNet implementation Details

After having the training data ready, a FuseNet model will be performed. The param-
eters will be constant as the focus is to evaluate the quality of the training data rather
than the model.The parameters will be taken as the average of the top five best epochs
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in the model. The number of epochs will be until a defined threshold for the networks
convergence. The loss function is the cross entropy function for the imbalance of the
classes and for classification purposes (Fleuret, 2021). Adam optimizer, that consists of
a gradient descent moving average (Fleuret, 2021) is used with a initial learning rate of
1e-4. These parameters are also used by Mulder (2020) in her model for the Netherlands.

4.5 Evaluation

For the evaluation of the model, a 1X1 km of imagery from The Hoorn, Netherlands is
used. The ground truth is made from the Basisregistratie Grootschalige Topografie (BGT)
(PDOK, 2021). A cleaned version is taken from different layers and then performed
raster operations to get the ground truth. The main idea of this project is to evaluate all
different training datasets with the same model parameters to study the importance of
the design of the synthetic city. Thus, the models will be assessed with precision, recall,
accuracy (Tempfli et al., 2009) and mIoU (Garcia-Garcia et al., 2017).

• Precision: It reflects on how the model classifies a class as positive. It is the ratio
between true positives to true positives plus false positives.

Precision = TP/(TP + FP) (1)

• Recall: It reflects how the model identifies positives samples. It is the ratio between
true positives to true positives plus false negatives.

Recall = TP/(TP + FN) (2)

• Accuracy: It refers to the samples that were correctly predicted over the total sam-
ples. It is the ratio between true positives and false negatives over the total number
of samples. It has one big problem and is the class imbalance, Very important in
this research as the real world is not balance. Nevertheless it is important to com-
pute as most of the related work use this metric to evaluate their results.

Accuracy = TP + TN/(TP + TN + FN + FP) (3)

• mean Intersection over Union: It is the average of ratio between the intersection
and the union of the predicted samples and the ground truth between different
classes. It can also be the mean ratio between true positives between the sum of
true positives, false negatives and false positives (Garcia-Garcia et al., 2017).

mIoU =
1

Classes ∑ (TP/(TP + FN + FP)) (4)

4.6 Domain Adaptation

Finally, two methods of domain adaptation will be assessed. The first one is the Statistics
Criterion. The MMD (Gretton et al., 2008) and the CORAL (Sun et al., 2016) techniques
will be used to statistically align the synthetic domain to the real domain. On the other
hand, CyCADA (Hoffman et al., 2018) model will be used to adapt the synthetic domain
to the real world domain.

11



5 Time planning

The Following figure 10 shows the time planning for the current research. Most of the
weeks will consist of at least one day of writing and one day of coding.

Figure 10: Gantt Chart for the time management of the thesis

6 Tools and datasets used

6.1 Tools

To create the synthetic city ESRI City Engine will be used. It is a 3D city model tool
for different purposes such as urban planning and urban analysis. The student licence
will be used. In addition, to prepare the city model for the semantic segmentation, the
images and the DSM map will go through Blender. To recreate the images, the pipeline
of Blender Proc will be used (Denninger et al., 2019). Python will be used for running
the baseline approach Fuse-Net (Hazirbas et al., 2015; Mulder, 2020). For the evaluation
and domain adaptation, python scripts are made. QGIS is used for the creation of the
ground truth.

6.2 Datasets

For the creation of the the real training set and the test set, true orthophotos of 10cm of
resolution will be given by READAR. These true orthophotos are composed by 4 bands;
RGB and one additional band indicating if the pixel was interpolated in the creation of
the true orthophoto. Additionally a DSM maps are also given by READAR. The ground
truth will be made from the BGT of the Netherlands and the ISPRS (ISPRS, 2020) and
INRIA (Maggiori et al., 2017) datasets.

Furthermore, ESRI library will be used for the creation of the synthetic city assets of
textures.
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