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Abstract—In recent years, convolutional neural networks
(CNNs) have been increasingly used for classifying radar micro-
Doppler signatures of various targets. However, obtaining large
amounts of data for efficient CNN training in defence and
surveillance scenarios can be challenging. Therefore, designing
techniques that maximize the use of available samples is critical.
In this paper, we propose an approach built on the hypothesis
that certain classes of radar spectrograms, such as those used for
discerning armed from unarmed walking personnel, do not have
information about the class encoded in the trajectory. Therefore,
our method entails segmenting each input spectrogram into
individual frames that correspond to a distinct step of human lo-
comotion. Subsequently, we classify each segment independently
and combine the resulting classification scores to obtain the final
score for the entire spectrogram. As a result of this segmentation,
the size of the training set is increased, whereas the dimensions
of each sample—and therefore the number of parameters in
the classifier—is decreased, reducing the risk of overfitting.
Our experimental results demonstrate the effectiveness of our
approach and its potential to enhance CNN-based classification
of micro-Doppler signatures.

Index Terms—micro-Doppler, human detection, target classifi-
cation, neural networks

I. INTRODUCTION

Security surveillance in public spaces, such as airports or
parks, is typically done using video systems. Optical cameras,
in general, are relatively cheap and provide high-resolution
imagery that is easy to interpret. However, the quality of the
images can be heavily degraded in environments with poor
lighting conditions, dust or smoke. In addition, simple cameras
cannot provide range information and their use is usually
restricted due to privacy concerns. Some of these drawbacks
could be mitigated by complementing camera systems with
radars, since radars are insensitive to light conditions, can
provide range information and incur less privacy problems [1],
[2].

This paper focuses on the classification of armed and
unarmed individuals in surveillance scenarios. This task is
usually performed with convolutional neural networks (CNNs)
taking spectrograms as input [3]-[5]. Unfortunately, CNNs
require a substantial amount of labeled data to be trained
effectively, which may be inadequate in defense and security
applications due to the high costs related to obtaining real-
world measurements. In such scenarios, CNNs may overfit
the limited available data, leading to the the memorization of
the training set by the model and rendering it incapable of
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generalizing its outcomes to unseen data. This issue could be
mitigated by leveraging appropriate data properties specific to
the application.

Components with periodic motion, such as the rotors in a
drone, the wings of a bird or the limbs of a walking person
will appear in the micro-Doppler signature (spectogram) of
the object of interest as quasi-periodic structures that repeat
over time, which we will refer to here as “cycles”. From the
point of view of classification, the optimal number of cycles
in a spectrogram will depend on the characteristics of the
component (rotor, wing, limb) and the correlation between the
cycles, which is related to the trajectory and maneuverability
of the main object (drone, bird, person). If the number of
cycles in the spectrogram is too large, the input to the CNN
will have high dimensionality, resulting in an unnecessarily
large model that will overfit the data. If the number of cycles
is too low, information about the trajectory or maneuverability,
which might be useful from classification purposes, will be
lost.

For our application, we hypothesize that the only difference
between unarmed or armed personnel is that the latter carries
an object, for instance, a rifle. This implies that the main
difference in their spectrograms will be in the presence or
absence of the signature corresponding to the swinging of the
arms [6]. Overall motion characteristics such as trajectory and
variations in target speed are not informative for inferring
the target’s class. This is, the key features are contained
within a single movement cycle, in this case a single step
of the human motion, rather than across the entire observation
time. As a result, the relationship between subsequent steps
could be overlooked with minimal loss of information for this
classification task. Note that this assumption may not be true
for other types of targets, such as unmanned aerial vehicles.

Based on this hypothesis, we propose a segmentation ap-
proach for the micro-Doppler spectrogram data, in which
individual steps are classified and their information is fused in
a subsequent stage. Such approach has the potential to yield
a smaller model size and a larger number of training samples,
mitigating the risk of overfitting the classifier to the training
data.

This paper is structured as follows: in Section II, we present
the dataset employed for the experimentation. In Section III,
we detail our proposed approach and discuss its contribution
to the state of the art. Section IV showcases the experimental
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Fig. 1: The setup used in the measurement campaign. The test
subject is walking towards the radar which is set on a table.

findings and evaluation of our proposed methodology. Finally,
in Section V, we provide a summary of the main conclusions
and suggest potential directions for future research.

II. DATASET

Our classification approach will be evaluated on the dataset
described in [2]. Fig. 1 presents an overview of the experi-
mental setup that was used. The measurements were acquired
using a frequency-modulated, continuous-wave radar operating
in X-band. During the acquisition campaign, 35 subjects were
instructed to walk following a straight trajectory towards
the radar from a distance of 40 m at a consistent pace of
approximately 1.5 to 2 m/s. The subjects were left free to
walk without following a specific form, and exhibited different
walking behaviours (e.g. walking with their hands in their
pockets). The subjects were asked to walk without any objects
in their hands and then to walk while holding a metal object in
both hands to simulate the action of carrying a weapon. Each
subject was recorded performing each activity twice, resulting
in a total of 140 measurements.

To obtain the spectrograms, we computed the short-time
Fourier transform (STFT) of each measured radar signal. The
STFTs were computed from overlapping sequences of the
radar signals, with an integration length of 0.1 s and an overlap
of 80%. We then took the squared magnitude of the resulting
STFTs to obtain the spectrograms. Each captured spectro-
gram was then divided into frames in time of length 1.5 s,
corresponding to approximately one and a half human steps.
Finally, we further cropped the spectrograms in frequency to
a size of 72 frequency bins by 72 time bins, to focus only on
the relevant frequency content. The resulting dataset consists
of around 1000 spectrograms, which are equally distributed
between the two classes of interest: unarmed and armed.

Fig. 2 depicts two spectrograms representing the micro-
Doppler signature of individuals from the armed and unarmed
classes, respectively. It can be observed that the return due
to the swinging motion of the arms is highlighted, which
distinguishes it from the sample belonging to the armed class.

1.0

0.8
Q
E
> 0.6
S
S
g
@ 0.4
a
Q
o
[a]
0.2
0.0

Time (s)

(a) Unarmed

Doppler Velocity (m/s)

0.0 0.5 1.0 1.5
Time (s)

(b) Armed

Fig. 2: Framed spectrograms from the measured datasets be-
longing to (a) a subject walking hands-free and (b) a different
subject carrying a rifle. The micro-Doppler response from the
arm is highlighted in (a). The velocity is assumed positive
when walking away from the radar. The magnitude in dB scale
of the spectrograms is scaled to be within [0, 1].

III. APPROACH

In this study, we make the assumption that the primary
distinguishing factor between the spectrograms of unarmed
and armed personnel is the presence or absence of the micro-
Doppler signature produced by the arms, as illustrated in
Fig. 2. In view of this, we hypothesize that the correlation
between cycles does not provide significant information for
classification purposes. It is important to note that the cycles
analyzed in this study refer specifically to the individual steps
taken during human locomotion, rather than a complete gait
cycle which comprises a left step followed by a right step.

Under the aforementioned assumptions, it is feasible to
train a classifier that can predict whether a target is armed
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or unarmed by analyzing a single step of the target’s gait.
Traditional CNN-based approaches that utilise longer cyclic
spectrograms as input run into the risk of learning less
relevant dependencies between consecutive cycles, a symptom
of overfitting in low-data regimes. By training a classifier
on individual cycles, the model is compelled to concentrate
on the distinctive characteristics of each step rather than
on the properties of the entire spectrogram of the walking
motion, which has the potential to result in models that better
capture the underlying features of the data. Moreover, by
training a classifier on individual cycles, the dimensionality
of the input is reduced, resulting in a reduced number of
parameters required to model the input-output relationship
between spectrograms and class labels. This segmenting of
the input would also allow for the use of more data points in
the training process, which in turn would mitigate the risk of
overfitting to the training dataset when the number of training
spectrograms is limited.
Our pipeline is therefore defined as follows:

1) Segment the original spectrogram S into individual
cycles S; with i =1,2,3

2) Obtain the classification score d; for the respective
individual cycle S;

3) Fuse the classification scores d; originated from the
same initial spectrogram S to obtain a final classification
score d for S. The final decision is taken as the class
that corresponds to the maximum entry of d.

Fig. 3 shows a diagram of the classification pipeline. In
the first step, we segment the original spectrograms (Fig. 2)
into single cycles. The segmentation is performed by fitting a
sinusoid to the upper envelope of the spectrogram to maintain
phase consistency across cycles. To properly determine the
envelope, we first apply a hard threshold to remove the back-
ground noise. The threshold value is set to 65% of the maxi-
mum amplitude among the spectrogram bins. Subsequently,
we apply a rectangular window of 0.5 s, centered around
the peaks of the envelope of the micro-Doppler signature, to
perform the segmentation. For each spectrogram, we obtain
three framed cycles. The newly obtained dataset contains
approximately 3000 segments, with 3 segments per original
spectrogram. Each segment has a size of 72 frequency bins
by 24 time bins. As a result, the dataset has been expanded
threefold, providing a substantial increase in data quantity,
while simultaneously allowing for a reduction in the number
of parameters required for the classifier.

In the second step, each segment obtained from the first step
is classified separately using the same classifier. To keep the
comparison consistent, the structure of this classifier is kept the
same as the one that was found to be most effective to classify
the entire spectrograms. This classifier comprises two stages.
First, a series of convolutional layers with increasing amount
of filters, separated by max pooling layers to reduce the
dimensionality of the input after each convolution operation.
Second, an stage where the previous output is flattened and
classified by means of three dense layers. The first two are

Original
Spectrogram

1 Individual
Cycles

M Combined
Score

Final Decision

Fig. 3: Schematic of the classification pipeline. The input
spectrogram is segmented into N cycles, each of which is
separately input to the classifier. The resulting softmax outputs,
{d;}, are then combined to obtain and unanimous decision on
the class.
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Fig. 4: Structure of the classifier used in the second step of
the proposed approach.
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followed by ReLU activation functions, while the last one
is followed by a softmax layer used to obtain the final
classification score. A diagram of the proposed architecture
is shown in Fig. 4.

The classification of distinct individual cycles belonging to
the same original spectrogram results in multiple classifier
outputs per spectrogram. Consequently, it is crucial to investi-
gate how the classification scores belonging to different cycles
can be combined to reach a unanimous decision which may
enhance the accuracy achieved when classifying the original
spectrograms as a whole. In fact, although the classification
is performed on a cycle basis, a unified decision can be made
by merging the predictions that the classifier produces for
each of the segments that compose the original micro-Doppler
spectrogram.

Therefore, as a third step, we perform the fusion of the
scores of the individual input cycles, by employing techniques
that can be adapted from the task of ensemble learning [7].
This area of study primarily concerns methods to combine
the output of multiple classifiers with the aim of enhancing
the accuracy of a given classification task. Although the
approach proposed in this study involves a single model, the
classification of multiple input cycles poses a similar challenge
in terms of determining an appropriate approach for integrating
multiple classification scores.

Among the approaches adopted for ensemble learning,
particularly relevant to our problem are voting techniques [8],
where each combined score is considered as a vote towards
the final decision on the input’s class. Voting strategies are
divided into the categories of hard and soft voting. Hard
voting involves the combination of the hard scores, which are
generated by applying a hard threshold to the each softmax
classification output. Among hard voting techniques, majority
voting treats each non-zero hard score as a vote for the
corresponding class. The final classification decision is made
based on the class with the highest number of votes. In the
event of a tie, no decision is made on the final class.

On the other hand, soft voting relies on the combination of
the soft scores, namely the softmax outputs of each separate
classification. To reach the final decision, different combi-
nation schemes of the soft scores can be considered, such
as the arithmetic mean, geometric mean, or median of the

scores. The first two are defined as < 7 d; and {/[],_, d
respectively, where d; is the classification score of the i-th
frame of the original spectrogram. The fusion via the median
rule, instead, is achieved by considering the median across
the different frames as the final score for each class. In all
cases, the decision on the final class label is then determined
by selecting the class that achieves the maximum score after

applying the chosen combination rule.

In the experimental work presented in this paper, we will
evaluate different voting schemes based on their achieved
classification accuracy on the experimental dataset.

IV. EXPERIMENTAL RESULTS

In this section, we aim to evaluate the performance of the
proposed classification approaches by analyzing their ability
to accurately classify samples from the experimental data.
To achieve this, we will use 20% of the available data to
create a test dataset, while the remaining samples will be
used for training purposes. The splitting will be performed
subject-wise, to increase the separation between training and
testing data. Additionally, we will analyze the performance of
the proposed approach in data-scarce scenarios by gradually
reducing the size of the training set through the removal of
subjects. We will validate the models on 100 random folds of
the datasets for each size of the training set to ensure statistical
significance of our results. For each training set size, 20% of
the training data will be used for validation

Following the computation of the baseline accuracy ob-
tained by utilizing the entire spectrograms (Fig. 2) as input
to the classifier, we will assess the impact of classifying
the individual cycles and applying five distinct combination
techniques: majority voting using the hard thresholded scores,
arithmetic mean, geometric mean and median of the soft
scores, and no fusion. Specifically, in the latter case when no
fusion is being performed, we consider the classification made
by observing only one cycle at a time, by directly inferring
the class from the scores of a single cycle. In all cases, the
final chosen class will be the one with the highest final score.
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Fig. 5: Accuracy achieved using different fusion techniques
over the amount of subjects used for training. Error bars
represent standard deviation.

Figure 5 illustrates the accuracy achieved using the various
classification and fusion approaches at different levels of data
scarcity. Results indicate that approaches based on data seg-
mentation and score fusion outperform the baseline obtained
by classifying the entire spectrograms, especially when the
amount of training samples is scarce. The results also indicate
that a similar level of accuracy is achieved regardless of the
chosen fusion technique. Despite the soft output providing
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additional information regarding the prediction’s confidence
level, there seems to be no considerable improvement in the
fusion process in comparison to utilizing only hard thresholded
labels.

Upon examining the performance curve obtained by classi-
fying single cycles without any fusion, it can be observed that
segmenting the data results in a significant accuracy improve-
ment in the low-data regimes, due to the increased amount
of training samples and the reduced number of parameters of
the classifier. However, when the training set size is larger,
the accuracy achieved without fusion becomes slightly worse
than the baseline one. This is due to the fact that relying
on a single segment for classification lacks the additional
information available in the baseline case, resulting in less
accuracy. Therefore, fusing scores from multiple cycles is
necessary to improve performance in such cases.

In order to evaluate the impact of incorporating the output
of classification for additional cycles, we assessed the classifi-
cation accuracy over different training sizes when utilising the
Ist cycle of the original spectrogram, the 1st and 2nd cycles
and all the cycles respectively. The results, as presented in
Fig. 6, demonstrate that including more cycles in the classifi-
cation process leads to an increase in the final accuracy on the
test data. Notably, the greatest increase in accuracy is achieved
through the inclusion of the second cycle, with performance
appearing to reach saturation upon the addition of the third and
final frame of the original spectrogram. This observation aligns
with the expectation that the individual segments representing
a human step are not independent realizations, but rather
the representation of actions performed consecutively by the
same subject. Consequently, the inference of the class label
is affected by the correlation between subsequent steps and
the accuracy does not increase linearly with the number of

considered frames.

V. CONCLUSION

This study highlights the importance of critically assessing
the information content of a micro-Doppler spectrogram and
its connection to the physics of the generating target before
designing a classification strategy.

We have designed a classification approach based on the
hypothesis that the main difference between the spectro-
gram of unarmed and armed personnel is in the absence
or presence of the swinging arms micro-Doppler signature,
respectively. The proposed approach involves segmenting the
original spectrograms into individual cycles and separately
classifying them, while combining their classification scores
to improve accuracy and mitigate overfitting. Results reveal
that this approach enhances classification performance and
is particularly effective in data-scarce scenarios. Furthermore,
our results demonstrate that the accuracy improvement tends to
saturate with an increase in the number of cycles considered.
This observation is consistent with the fact that all cycles
are generated by the same dynamical processes (i.e., limb
swinging), and suggests that there may be a limit to the
amount of information that can be extracted by considering
additional steps. Note that although all the subjects in the
experiments are walking in straight line towards the radar, the
hypothesis behind our methodology remains applicable even
in scenarios where subjects follow different trajectories during
their movement.

Further research could investigate the applicability of our
approach in scenarios where the relationship between individ-
ual cycles bears relevance to the classification task. Although
we assumed that a single cycle captures all the relevant
features for classification in this work, our approach might
also be employed in situations where this assumption does
not hold. For instance, in drone classification, the information
about the type of drone is encoded both within a single cycle
(type of rotor, rotation speed) and within the relationship
between cycles (trajectory, maneuverability). However, in a
drone spectrogram, the time scale of the features related
to maneuverability might be an order of magnitude larger
(or more) compared to the time scales associated with the
rotation of the drone’s blades, depending on the drone inertia.
This means that in a given observation time, the features
related to blade rotation would be observed more frequently
than those characterizing the drone’s maneuverability. If the
available data is too scarce, it might be preferable to focus the
model in the well represented single cycles than in the poorly
represented trajectories.

In addition, future research could explore alternative strate-
gies for combining cycle scores other than voting. One
possibility could be to apply weights to the score of each
segment before the fusion. The weights could be determined
by properties of the input cycles, such as an estimate of the
signal-to-noise ratio. Such approaches may offer improved
accuracy and robustness in the classification task.
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