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Fast and Compact Image Segmentation
Using Instance Stixels

Thomas Hehn ', Julian Kooij

Abstract—State-of-the-art stixel methods fuse dense stereo dis-
parity and semantic class information, e.g., from a Convolutional
Neural Network (CNN), into a compact representation of driveable
space, obstacles and background. However, they do not explicitly
differentiate instances within the same semantic class. We inves-
tigate several ways to augment single-frame stixels with instance
information, which can be extracted by a CNN from the RGB image
input. As aresult, our novel Instance Stixels method efficiently com-
putes stixels that account for boundaries of individual objects, and
represents instances as grouped stixels that express connectivity.
Experiments on the Cityscapes dataset demonstrate that including
instance information into the stixel computation itself, rather than
as a post-processing step, increases the segmentation performance
(i.e., Intersection over Union and Average Precision). This holds
especially for overlapping objects of the same class. Furthermore,
we show the superiority of our approach in terms of segmentation
performance and computational efficiency compared to combining
the separate outputs of Semantic Stixels and a state-of-the-art
pixel-level CNN. We achieve processing throughput of 28 frames
per second on average for 8 pixel wide stixels on images from
the Cityscapes dataset at 1792 x 784 pixels. Our Instance Stixels
software is made freely available for non-commercial research
purposes.

Index Terms—Autonomous vehicles,
machine vision.

image segmentation,

1. INTRODUCTION

ELF-DRIVING vehicles require a detailed understanding
S of their environment in order to react and avoid obstacles
as well as to find their path towards their final destination. In
particular, stereo vision sensors obtain pixel-wise 3D location
information about the surrounding, providing valuable spatial
information on nearby free space and obstacles. However, as
processing should be as fast as possible, it is essential to find
a compact and efficiently computable representation of sensor
measurements which is still capable to provide adequate infor-
mation about the environment [2], [3]. A common approach is
to create a dynamic occupancy grid for sensor fusion [4] and
tracking [5], which provides a top-down grid cell representation
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Fig. 1. Top: Input RGB image (corresponding disparity image not shown).
Middle: Semantic Stixels [1] use a semantic segmentation CNN to create a com-
pact stixel representation which accounts for class boundaries (stixel borders:
white lines, arbitrary colors per class). Note that a single stixel sometimes covers
multiple instances, e.g., multiple cars. Bottom: Our Instance Stixels algorithm
also accounts for instance boundaries using additional information learned by a
CNN and clusters stixels into coherent objects (arbitrary colors per instance).

of occupied space surrounding the ego-vehicle. Still, directly
aggregating depth values into an occupancy grid alone would
disregard the rich semantic information from the intensity image,
and the ability to exploit the local neighborhood to filter noise
in the depth image.

A popular alternative in the intelligent vehicles domain is
the “stixel” representation, which exploits the image structure
to reduce disparity artifacts, and is computed efficiently [6].
By grouping pixels into rectangular, column-wise super-pixels
based on the disparity information, stixels reduce the complexity
of the stereo information. Later, class label information obtained
from deep learning has been incorporated into the stixel com-
putation and representation, so-called Semantic Stixels [1]. Yet,
obstacles are still just a loose collection of upright “sticks” on
an estimated ground plane, lacking object level information. For
example, the car stixels in the middle row of Fig. 1 do not indicate
where one car starts and its neighboring car ends.

2379-8858 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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This paper introduces an object level environment repre-
sentation extracted from stereo vision data based on stixels.
Our method improves upon state-of-the-art stixel methods [1],
[7] that only consider semantic class information, by adding
instance information extracted with a convolutional neural net-
works (CNN) from the input RGB image. This provides sev-
eral benefits: First, we obtain better stixels boundaries around
objects by fusing disparity, semantic, and instance informa-
tion in the stixel computation. Second, stixels belonging to an
object are connected vertically and horizontally (see bottom
image of Fig. 1) by clustering them based on semantic and
instance information. Third, the processing is more efficient than
computing Semantic Stixels [1] and per-pixel instance labels
separately.

II. RELATED WORK

The idea of stixels, regarding objects as sticks standing per-
pendicular on a ground plane, was introduced by [6]. The stixel
algorithm has found diverse applications in the autonomous
driving domain. Stixels were used as an integral part of the
pipeline for the Berthe Benz drive [8]. [9] develop a collision
warning system using only stereo-based stixels and [10] used
stixels to detect small unknown objects, such as lost cargo.
The original idea was further extended in [11] to a multi-layer
representation which used a probabilistic approach, i.e., stixels
do not need to be connected to the ground plane anymore. In
the multi-layer representation, stixels segment the entire image
into rectangular super-pixels, classified as ground, object or sky.
Additionally, a dynamic programming scheme was presented
for efficient real-time computation of stixels. For even faster
computation, this dynamic programming scheme was then also
implemented for the Graphical Processing Unit (GPU) by [12].
In [13] stixels were compared with other super-pixel algorithms
as basis for multi-cue scene labeling.

The general stixel framework offers various possibilities for
extensions and modifications. For instance, [14] compared the
effects of different methods for initial ground manifold mod-
eling. Driven by the requirements of autonomous driving, [15]
applied a Kalman filter to track single stixels. Stixel tracking was
then further improved by [16]. Yet, stixels are generally tracked
independently and not as parts of an object. In order to obtain
object information [17]-[20] group the Dynamic Stixels based
on shape cues and graph cuts and thus rely on tracking Stixels
over time. Stixels are also applied in semantic scene segmenta-
tion with more general classes than ground, object and sky. For
this purpose, semantic information can be obtained by using
object detectors for suitable classes [21] or Random Decision
Forest classifiers [22] and then including that information in the
Stixel generation process. [1] extend this idea by incorporating
the output of a Fully Convolutional Neural Network (FCN) in
the probabilistic stixel framework. They named their approach
Semantic Stixels. Based on Semantic Stixels and focusing on
non-flat road scenarios, [7] generalize stixels to also model
slanted surfaces, e.g., not strictly perpendicular to the road
anymore, including piece-wise linear road surfaces.
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Meanwhile, many more deep neural network architectures
have been proposed in the computer vision literature to im-
prove classification and image segmentation tasks on per pixel
basis. For instance, Residual Neural Networks [23] facilitate
training of deeper networks by learning residual functions. Di-
lated Residual Networks [24] (DRN) improve on this work by
maintaining a higher resolution throughout the fully connected
network, while working with the same receptive field. As a
consequence, they are useful for applications that require spatial
reasoning such as object detection or, as in our case, instance seg-
mentation. In order to enforce consistency between semantic and
instance segmentation, recently the term panoptic segmentation
was introduced in [25] and has led to further improvement in the
field [26]. Unfortunately, one cannot treat instance segmentation
as a classification problem, as is done for semantic segmenta-
tion. A main reason is that the number of instances varies per
image, which prohibits a one-to-one mapping of network out-
put channels to instances. Instead of predicting instance labels
directly, [27] trains a CNN to map each pixels in an image onto
a learned low-dimensional space such that pixels from the same
instance map close together. Object masks are then obtained in
post-processing by assigning pixels to cluster centers in this
space. [28] instead use supervised learning to map pixels to
a specific target space, namely the 2D offsets from the given
pixel towards its instance’s center and then rely on clustering all
pixels into instances. The Box2Pix method [29] uses 2D center
offset predictions for instances, but instead of clustering they are
associated with bounding boxes found through a bounding box
detection branch. In order to avoid an additional bounding box
detection branch, [30] learn a clustering bandwidth and confi-
dence per pixel and thereby speed up the grouping of pixels to
instances.

Our objective is to create efficient stixel representations rather
than pixel-accurate instance segmentation in images, and to
avoid overhead of clustering all pixels into instances before
reducing them to a compact representation. Still, we follow
insights from the work on per-pixel instance segmentation to
improve stixel computation, deal with the unknown number of
instances in an image, and enable the clustering of stixels into
instances. Building upon our prior conference publication [31],
the main contributions are thus summarized as:

® We present Instance Stixels, a method to include instance

information into stixels computation, which creates better
stixels, and allows grouping to instance IDs from a single
stereo frame.

® We investigate three different ways to include the instance

information, and show that adding the information into
the stixel computation itself results in more accurate in-
stance representations than only using it to cluster Seman-
tic Stixels or alternatively assigning Semantic Stixels to
instances using pixel-based methods. Further we compare
the trade-off between computation speed and instance
segmentation performance for these three variations to
showcase the favorable properties of Instance Stixels.

® We investigate the use of a novel regularizer for Instance

Stixels which replaces the former prior term in Stixels.
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Instance stixel pipeline applied to a RGB and disparity input image pair obtained from a stereo camera. The RGB image is processed by a Convolutional

Neural Network (CNN) to predict offsets to the instance centers (HSV color coded) and per-pixel semantic class probabilities (visualized as color gradient). The
class probabilities are fused with the disparity input image in the Stixel computation to provide a super-pixel representation of the traffic scene, which unifies
Semantics, Depth and additionally Instance output (left images). In the baseline algorithm (Semantic Stixels + Instance, dashed red arrow) the obtained stixels
are clustered based on the instance offsets to assign stixels to instances (not shown). In contrast, our proposed algorithm (Instance Stixels, blue arrow) fuses the
instance offset information with the other two channels in the Stixel Computation. Subsequently, stixels are also clustered to form instances, but with improved

adherence of stixels to instance boundaries (top right image, arbitrary colors).

This simplifies the model and leads to improved instance
segmentation.

® QOur entire implementation of the optimized pipeline for
Semantic Stixels and Instance Stixels is provided as open-
source to the scientific community for non-commercial
research purposes.

III. METHODS

This section will first briefly summarize the original disparity
Stixel and Semantic Stixel formulations in Section ITI-A. Section
III-B then explains how to integrate the instance information
from a trained CNN into the stixel computation itself for im-
proved stixel segmentation. Finally, Section III-C will discuss
how the instance information can be used to cluster stixels
belonging to the same object.

The clustering step could be applied to any stixel computation
method. We therefore consider two options:

® Clustering stixels from a standard Semantic Stixels

method [1], such that instance offset information is only
considered here at this final clustering step. This baseline
approach corresponds to the red arrow in Fig. 2. In our
experiments we shall refer to this combination as the Se-
mantic Stixels + Instance method.

® Clustering based on our novel instance-aware stixels com-

putation from Section III-B, see the blue arrow in Fig. 2. We
name this combination our novel Instance Stixels method.

Conceptually, Instance Stixels are a natural extension to
Semantic Stixels as they extend disparity and semantic seg-
mentation information with additional instance information to
compute a compact representation from a stereo image pair.
These stixels also receive an object id which groups them into
instances.

A. Stixels

In the following, an outline of the derivation of the original
Stixels and Semantic Stixels framework is presented. For a more
detailed derivation, see [32] and [1].

1) Disparity Stixels: Following the notation of [32], the full
stixel segmentation of an image is denoted as L = {L,|0 < u <
W} with W being the total number of stixel columns in the
image. Thus, given a selected stixel width w, it follows that
W = w. The segmentation of column u contains L, =
{sn|1 <n < N, < h} contains at least one but at most height
h stixels s,,. A stixel s, = (v2, 0%, cp, £ (v)) is described by
the bottom and top rows, respectively v¥ and v’ that delimit
the stixel. Additionally, a stixel is associated with a class ¢,, €
{g, 0, s} (i.e., ground, object, sky) and a function f,, which maps
each row of the image to an estimated disparity value.

The aim is to find the best stixel segmentation L* given a
measurement (e.g., a disparity image) D, i.e., it maximizes the
posterior probability

L* = argmaxp(L|D). (1
L
According to Bayes’ rule, this can be rewritten as
p(D|L)p(L)
p(L|D) = —————=~. 2)
D) ="=)

Here, the normalization factor p(D), constant in L, can be
discarded in the maximization task. Since each column u €
{0,...,W — 1} of the image is treated independently, the MAP
objective can further be simplified:

w-1
L* = arg max H p(Dy| L) p(Ly,)- 3)

u=0

Here, p(D,,|L.,) denotes the column’s likelihood of the disparity
data, and p(L,, ) is a prior term modeling the pairwise interaction
of vertically adjacent stixels. This is explained in more detail
in [11].

Assuming all rows are equally likely to separate two stixels,
the column likelihood term can be written as product of indi-
vidual terms for N, stixels, L, = {s1,...,sn, }- Since only
disparity values of the rows within each stixel contribute to its
likelihood, those terms can in turn be factorized over the rows
v? < v <! of each stixel n € {1,..., N, }. Hence, the final

n
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objective is [32]:

W-1 N, v,

L = argznax H H H p(dy|sn, v)p(Ly).

u=0 n=1 U:r[;g

“

Here the term p(d,|s,,v) includes different disparity mod-
els per geometric class. For sky stixels this model is sim-
ple: foy(v) = 0. The disparity of object stixels is assumed
to be normally distributed around the mean stixel disparity
fobject,n (V) = m ZZ,’*L:UI, d,,. Furthermore, ground stix-
elsrely on a prev?ous estimation of the ground plane parameters
« (the slope) and vyoriz0n (horizon estimate in the image), which
can be obtained for example from v-disparity [33]. The assumed
disparity model for ground stixels feround (v) = &(Vnorizon — )
is then linear and the same for all columns. For details, we refer
to [12].

In practice, the MAP problem equation (4) is written as an
energy minimization problem by turning the product over prob-
abilities into a sum of negative log probabilities, which is then
solved efficiently through Dynamic Programming (DP) [12],
[32]. DP will efficiently minimize the energy function

Ny,
E(Lu) =Y Bp(sn-1.50) + Ba(sn)

n=1

&)

for many stixel hypotheses L,, = {s1, ..., Sn, }» which consists
of unary terms E4(s,,) and pairwise energy terms Ey,(S,,—1, Sp).
Intuitively, the unary energy term F(s,, ) describes the disparity
deviation of the disparity models described above. The pairwise
term for n = 1 reads E, (s, s1) and is a special case since s is
not defined. In all other cases, this pairwise term only evaluates
the plausibility of a given stixel segmentation. Note that this in
particular means that this pairwise term is independent of the
disparity data. We have omitted these details here for simplic-
ity [32].

2) Semantic Stixels: The Semantic Stixels method [1] intro-
duced an additional semantic data term to associate each stixel
with one class label [,, € {1, ..., C}. Thus, Semantic Stixels are
characterized by s,, = (v2, vl ¢, fn(v),1,,). First, a semantic
segmentation CNN is trained on RGB images with annotated
per-pixel class labels. Then, when testing on a test image, the
softmax outputs o(p,!) for all semantic classes [ of all pixels
p are kept (note that in a standard semantic segmentation task,
only the class label of the strongest softmax output would be
kept). The unary data term E4(s,,) of the original disparity stixel
computation is then replaced by E, (s5,) = E4(s,) + wiEi(sn),
thereby adding semantic information from the network
activations,

E(sp) =— Z logo(p,l,).

PEP,

(6)
Here P, are all pixels in stixel s,,, and w; a weight factor.

B. Instance Stixels

Instance Stixels expand the idea of Semantic Stixels by ad-
ditionally training a CNN to output a 2D estimation of the
position of the instance center for each pixel. This estimation is

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 1, MARCH 2022

predicted in image coordinates, as proposed in [28], [29]. More
specifically, the CNN predicts 2D offsets €2, € R? (i.e., z and
y direction) per pixel, which are relative to the pixel’s location
in the image. As a consequence, for all pixels p belonging to the
same instance j, adding their ground truth offset flp to the pixel
location (z,, y,) will result in the same instance center location

frj =+ (2, ). )

We refer to such a network as the Offset CNN and an example of
its output is visualized in Fig. 2. The ground truth instance cen-
ters are defined as the center of mass of the ground truth instance
masks. Note that instances are commonly only considered for
certain semantic classes, e.g., cars, pedestrians and bicycles. Let
7 C N denote said set of instance relevant classes. For all other
classes, the target offset is (0, 0).

Instance Stixels incorporate the Offset CNN prediction into
the stixel computation. Let u,, denote the instance center es-
timate obtained from the CNN for some pixel p, and p, =
Zpepn ., the mean over all pixels in an instance stixel s,, =
(W2, vt cn, fu(V), ln, It,,). We model the instance term depend-
ing on the center estimates of the pixels and the mean instance
center of the current stixel hypothesis s,,:

Ez(sn) _ Zpe”Pn ||p’p - p’n”%’ if ln E.l- (8)
e, iy — (@, p)|[3,  otherwise,

In other words, for instance classes, the instance term favors
stixels which combine pixels that consistently point to the
same instance center. For non-instance classes, i.e., I, ¢ Z,
offsets €2, = p,, — (2p,y,) deviating from zero contribute to
the instance energy term. Without this, classes with instance
information would generally have higher energy and thus be
less likely than the non-instance classes.
With the instance energy term, the unary energy becomes

Eu(sn) = waFa(sn) + wsFEs(sn) + wiEi(sn)- 9)

This also introduces weights wy and w; for the disparity and
instance terms for more control on the segmentation.

A useful side effect is that each instance stixel receives a
mean estimate of its instance center pixel coordinates, which
will be used when clustering stixels into objects, discussed in
Section III-C.

C. Clustering Stixels With Instance Information

We now describe how output from an Offset CNN can be
used in a post-processing step to cluster stixels. Note the fa-
vorable computational complexity of grouping a low number of
stixels rather than individual pixels as in conventional instance
segmentation tasks, e.g., 2000 stixels vs. 1.4 M pixels.

First, the per-pixel offsets from the Offset CNN are aggre-
gated into a per-stixel offset estimate by averaging the CNN’s
predictions over the pixels in the stixel (this is already done for
Instance Stixels, as noted in Section III-B). Hence, each stixel
is equipped with an estimate of its instance center in 2D image
coordinates, as well as a semantic class label.

Then, the estimated instance centers and semantic class pre-
diction are used to group stixels to form instances. Separately
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for each semantic class, we aim to find clusters in the estimated
instance centers. Note that this condition on the semantic class
also qualifies Instance Stixels for panoptic segmentation. The
final clustering is done using the DBSCAN algorithm [34] as it
estimates the number of clusters (i.e., instances) and performs
well when the data has dense clusters. DBSCAN has only two
parameters: the maximum distance between neighboring data
points £ and the minimum size, as in cardinality, v of the
neighborhood of a data point in order to consider this point a
core point. Additionally, we introduce a size filter parameter
which prevents stixels that are smaller (i.e., cover less rows)
than p to be considered a core point. This modification prevents
small stixels, which lie on the border of two instances, to merge
those instances together. Nevertheless, they are assigned to one
of those adjacent instances during the clustering procedure.

D. Unary Regularization

The original Stixel MAP formulation considers a prior term
p(L.,,) equation (4) which models pairwise interactions of ver-
tically adjacent stixels. The prior term contains detailed models
of the expected segmentation. For example, it models the prob-
ability of a ground stixel to be found below a sky stixel and
vice versa. In the end, the modelled probabilities are usually
estimated heuristically.

At the same time, this prior term acts as a regularizer. Without
this regularization effect, the resulting stixels tend to be very
small simply to fit the data terms as well as possible. In an
extreme case with stixels of a width of 1 pixel, this would lead
to stixels of also height equal to 1 pixel, which means in the end
that each stixel corresponds to a single pixel. Consequently, the
stixel segmentation would not be any more compact than the
pixel-wise representation.

We argue that this modeling of pairwise interactions is espe-
cially useful for disparity-based stixels, since there more detailed
semantic information is missing. Instance Stixels however do
extract semantic and instance information from the RGB images
and thus this modeling may be unnecessary. Therefore, we pro-
pose to replace this prior term by a simple unary regularization
term

WR

Ey(sn) = P (10

which penalizes small stixels. The regularization constant wg, is
the only parameter that needs to be determined and is comparable
to the different weighting factors of the data terms.

IV. IMPLEMENTATION

We provide an open source Instance Stixels implementation
which has been optimized for computational performance on
the Cityscapes dataset [35]. As input it requires the RGB and
disparity image of a scene and outputs a set of stixels comprising
information about 3D position, semantic class and instance label.
Note that in general, Instance Stixels may also operate only on
the RGB image without relying on an disparity image and as a
result do not compute the depth of a stixel.

The first step in the Instance Stixel pipeline as depicted in
Fig. 2 is the CNN which predicts for each pixel the probability
of each semantic class and the 2D instance center offset vec-
tors in pixels. On Cityscapes this results in an output depth
of 19 4+ 2 = 21 channels in total. Any standard semantic seg-
mentation network architecture could be used as the basis for
the Semantic Segmentation and Offset CNN by increasing the
output depth by 2 channels and training those to predict instance
offset vectors. In our implementation, we use Dilated Residual
Networks [24] (DRN) as our underlying architecture due to their
favorable properties for these tasks, as discussed in Section II.
Furthermore, we exploit the fact that, unlike the general method
presented in that paper, our implementation is computes stixels
of a fixed width of 8 pixels and remove any upsampling layers in
the DRN architecture. The implementation of the DRN is largely
based on the PyTorch [36] code provided by the authors of [24].
In order to optimize CNN inference for efficiency, we make use
of mixed precision capabilities of NVIDIA Volta GPUs using
the Apex utilities [37] without loss of accuracy.

The second step in the pipeline consists of the actual stixel
computation. For this purpose, we extended the open-source
disparity Stixel CUDA-implementation introduced in [12].
Amongst other features, such as the computation of Seman-
tic Stixels according to [1] and handling of invalid disparity
measurements, our extension comprises the Instance Stixels
presented here. Techniques to optimize for efficiency, such as the
use of prefix sums (aka. cumulative sums), have been adapted
and reused from the original implementation. [12] provides a
detailed explanation of those ideas.

Lastly, the stixels are clustered based on the mean instance
center estimate. To this end, we utilize the GPU-based DBSCAN
implementation of cuML [38] and customize it to include the
size filter p described in Section III-C.

In summary, all components are implemented on the GPU
which reduces the effective number of required host-device
copy operations to two, namely copying the RGB and disparity
images to device memory and retrieving the resulting stixel
segmentation from device memory. The source code of our
implementation is available online.'

V. EXPERIMENTS
A. Dataset, Metrics and Pre-Processing

The computation of stixels require a RGB camera image and
the corresponding disparity image obtained from a stereo camera
setup. We use the Cityscapes dataset [35] for our experiments, as
it consists of challenging traffic scenarios. Further, it provides
ground truth annotations for semantic and instance segmenta-
tion. The performance on these two tasks is evaluated using the
standard Cityscapes metrics [35].

Semantic segmentation performance is measured by the
Intersection-over-Union (IoU) = %, where TP, FP,
and FN denote the number of true positives, false positives and
false negatives over all pixels in the dataset split. An instance
mask is considered correct if the overlap with its ground truth

ICode available at https://github.com/tudelft-iv/instance-stixels
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mask surpasses a specific threshold. The Average Precision (AP)
corresponds to an average over the precision for multiple thresh-
olds. Average Precision (AP?%) only considers an overlap of
at least 50% as true positive. The metric also allows to provide
confidence score for each instance mask. We did not make use
of this option and always set the confidence score to 1 for all
compared algorithms.

The disparity images provided in the Cityscapes dataset ex-
hibit noisy regions introduced due to bad disparity measure-
ments at the vertical image edges and the hood of the car. Inaccu-
rate disparity data may harm the performance of disparity based
Stixels. Although Semantic Stixels are already more robust due
to the second modality, we aim to suppress such effects. There-
fore, we crop all images symmetrically (top: 120px, bottom:
120px, left: 128px, right: 128px) to ensure that our experiments
are notinfluenced by disparity errors. Following [ 1], we are using
the official validation as test set. Therefore, we split the official
training set into a separate training subtrain and validation set
subtrainval (validation cities: Hanover, Krefeld, Stuttgart).

B. Training the CNN

The CNN takes an RGB image as input and predicts the
semantic class probabilities and two channels for the offset
vectors. Thus, it is a single CNN that provides the output of the
Semantic Segmentation and Offset CNN, which were discussed
separately in Section III. For training, we construct a loss that
allows us to steer the focus between consistency and accuracy of
the prediction. Here, we consider a prediction consistent when
all pixels of a ground truth instance mask point towards the
same 2D position, i.e., all predictions for the instance center
equation (7) are the same. Offset accuracy is directly measured
by the deviation of each single pixel from the center of mass of
the ground truth instance mask. We argue that, for the predicted
offsets, consistency is more important than accuracy. This is best
illustrated by an example: consider a single instance in an image
and all predicted offsets of that instance do not point to the center
of mass of the instance, but instead to a different single point.
As a result, this prediction would be consistent, as all offsets
point to the same point, and at the same inaccurate as that point
does not match the ground truth instance mask’s center of mass.
Despite the fact that this single point is not the training target,
the clustering on this inaccurate, but consistent prediction would
work perfectly since all the pixels of the instance are mapped to
a single point and thus form a distinct cluster. This observation
holds for both the instance-aware stixel computation and the
clustering. Nevertheless, enforcing a certain degree of accuracy
avoids trivial solutions such as all pixel offsets in the image
point to the same single point which would render clustering
impossible.

Letj € J denote all ground truth instance masks in an image,
P; all pixels of that mask and Pp all background pixels which
are not part of any instance mask. For all pixels p the CNN
predicts an offset {2, and using equation (7) the predicted center
1, can be computed. Further, fi; = ﬁ ZpEP]. 1, denotes the

corresponding mean of the predicted centers and fi; the center
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of mass of the ground truth instance mask. Our offset loss
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thus comprises a consistency term based on fi;, an accuracy
term based on fi; and a background term. The weights «, and
a. provide the means to find a favorable trade-off between those
terms. The full loss £ = Lo + Lg further includes a semantic
loss Lg, namely a 2D cross-entropy semantic segmentation loss,
on the the first 19 semantic output channels.

It is important to note that the output (not the input) of the
CNN is downscaled by a factor 8. We also downscale the ground
truth output by that factor for training. The reason for this is that
upscaling, unless nearest neighbor upscaling is used, introduces
interpolation errors that result in a smooth transition of the
offset vectors between two instances. As a consequence, this
would also result in an interpolation of the predicted means
of two neighboring instances at pixels close to the borders,
which in the end yields worse clustering results. To overcome
this issue, we use nearest neighbor upscaling when passing the
predicted images to the Stixel algorithms. The loss of resolution
is compensated by the fact that our Stixels work at a resolution
of width 8.

In practice, we found that training the drn_d_38 architecture
with o, = o, = le — 4 and the drn_d_22 architecture with
o, = le — 5 and o = le — 4 worked well. We minimize the
loss function using the Adam optimization [39] (learning rate of
0.001, 81 = 0.9 and B2 = 0.999). Further, we apply zero mean,
unit variance normalization based on the training data to the
input data and use horizontal flipping to augment our training
data. The networks were trained for 500 epochs and with a batch
size of 20 images. From these 500 epochs, we chose the best
performing model for each architecture based on the semantic
IoU on the validation set.

C. Hyperparameter Optimization

The stixel algorithms we evaluate offer several hyperparam-
eters that require tuning: the weighting of the data terms for
the Stixel computation wy, ws and w;, as well as the DBSCAN
parameters ¢, v and p. The stixel framework provides more pa-
rameters from which we set the stixel width to 8§ pixels through-
out our experiments. Remaining parameters are set based on
recommendations from [32] and [12]. For the Pixelwise baseline
we only need to tune € and ~. Additionally, in this baseline the
large number of data points requires the clustering algorithm
to process the data in batches which leads to non-deterministic
results.

The parameter tuning is performed using Bayesian optimiza-
tion [40] on the subtrainval validation set for 100 iterations.
The score is computed as Semantic IoU +1.5- Instance AP.
We weighted Instance AP higher as this is our main focus. The
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Trade-off between segmentation performance and processing speed. Each data point represents the average performance of an algorithm on the Cityscapes

validation set (all classes, cropped to 1792x784 pixels). The colors indicate different CNN architectures (drn_d_22 or drn_d_38), the symbols differentiate the
base algorithm to obtain the instances (triangle: Instance Stixels, square: Semantic Stixels + Instance, circle: Semantic Stixels + UPSNet, cross: Pixelwise. If the
symbol is filled with color, the unary regularization term was used instead of the pairwise energy term in the stixel computation (Section III-D).

optimization is performed separately for each algorithm unless
noted otherwise.

D. Comparison of Algorithmic Variations

To analyze the capabilities of our proposed method, we vary
four different aspects of computing stixels with instance infor-
mation.

1) Pixelwise: In this baseline setup, the pipeline as shown in
Fig. 2 is run entirely without stixels, by removing the Stixel
Computation. The semantic class is determined according
to the largest class probabilities. During the clustering
step, pixels of the same semantic class are clustered based
on their predicted instance centers.

2) SS+UPS: Represents the combination of state-of-the-art
methods to augment stixels with instance information.
Based on a separate instance segmentation method, a
stixel is assigned to an instance by majority vote of the
pixel-level prediction. For this purpose, we utilize the
following state-of-the-art methods: a pretrained instance
segmentation method called UPSNet [26] and Semantic
Stixels [1]. On pixel-level, UPSNet achieves AP perfor-
mance of 33.1% on the cropped validation set.

3) Semantic Stixels + Instance vs. Instance Stixels (SS+7
vs. 1S): Corresponds to setting w; = 0, which resembles
Semantic Stixels [1]), versus w; > 0 in the stixels compu-
tation (see 9).

4) Pairwise vs. unary: Describes whether the stixel computa-
tion takes the pairwise term into account or instead regular-
izes the height of a stixel based on the unary regularization
term as described in Section III-D.

5) drn_d_22 vs. drn_d_38: Denotes the different base ar-
chitectures of the Dilated Residual Network [24] used to
predict semantic probabilities and instance offsets. The ar-
chitecture drn_d_38 is deeper and requires more memory.

Due to the fact that our subtrainval set overlaps with the
training set of the UPSNet, we cannot use the subtrainval set

for hyperparameter tuning. Hence, we use the same weights for
the Semantic Stixels of SS+UPS as the corresponding SS+1.

1) Processing Speed Vs. Segmentation Performance: In the
following we compare the different stixel methods for instance
segmentation regarding the trade-off of segmentation perfor-
mance and processing speed. The main indicators for segmen-
tation performance are the instance AP and the semantic IoU as
described in Section V-A. Processing speed is measured as the
number of frames the pipeline can process per second. Here, to
compute the frames per second we average the processing time
of the frames in the validation set, which takes into account the
processing time of all three modules (CNN, Stixel Computation
and Clustering, see Fig. 2), but neglects data loading and visu-
alization. All frames are processed sequentially on a NVIDIA
Titan V GPU.

Fig. 3 illustrates the trade-off between processing speed and
instance as well as semantic performance in a compact manner.
Table I extends the figure by providing further segmentation
metrics and also the complexity of the image representation as
the average number of stixels per frame on the official Cityscapes
validation set.

In terms of segmentation performance, the illustrations show
that the choice of the network architecture of the CNN, indicated
by the color of the points, has the most prominent effect (green:
drn_d_38 and blue: drn_d_22). For both segmentation metrics,
even the best algorithm based on drn_d_22 performing worse
than the worst stixel algorithm based on drn_d_38. Within
the same architecture however, Instance Stixels (IS) generally
perform better than Semantic Stixels + Instance (SS+7) in terms
of instance AP, but not always in terms of semantic loU. Further,
for both algorithms (IS and SS+1), using the unary regularization
term (filled symbols) surpasses its pairwise counterpart (non-
filled symbols) or at least remains on par. Interestingly, the CNN
architecture choice also affects the comparison in instance AP
of Instance Stixels and Semantic Stixels + UPSNet (SS+UPS).
For drn_d_22, IS 22 with unary regularization achieves similar
instance AP as SS+UPS 22. For drn_d_38, SS+UPS obtains
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TABLE I
PERFORMANCE OF THE PIXELWISE BASELINE AND DIFFERENT VARIATIONS OF STIXEL ALGORITHMS THAT PROVIDE INSTANCE SEGMENTATION (ROWS) WITH
RESPECT TO VARIOUS METRICS (COLUMNS). RESULTS ARE COMPUTED ON THE CITYSCAPES VALIDATION SET (ALL CLASSES, CROPPED TO 1792x784 PIXELS).
BEST RESULTS PER METRIC ARE HIGHLIGHTED IN BOLDFACE. * THE RESULTS OF THE PIXELWISE BASELINE WERE AVERAGED OVER THREE RUNS AND ARE
REPORTED WITH THE CORRESPONDING STANDARD DEVIATION. ALL OTHER ALGORITHMS ARE CONSISTENT OVER MULTIPLE RUNS. ** THE RESULTING
SEGMENTATION IS REPRESENTED AS 1792 - 784 = 1404 928 PIXELS, SINCE NO STIXELS ARE INVOLVED HERE

CNN Unary AP [%] AP50 %] IoU [%] catIoU [%] FPS  Avg. number
regularization of stixels
Pixelwise drn_d_38 - 12.5+0.3% 25.3+£0.7% 68.2 85.0 0.5 1404928
SS+I drm_d 22 - 113 254 64.1 80.2 275 2095
SS+I drn_d_ 22 v 11.3 25.7 64.6 81.8 282 1765
SS+I drn_d_38 - 14.7 30.3 66.6 80.8 220 1270
SS+I drn_d_38 v 15.3 31.6 66.5 81.3 22.1 4795
SS+UPS  dm_d_ 22 - 12.7 28.5 64.1 80.2 53 2095
SS+UPS  dm_d_38 - 14.1 30.8 66.6 80.8 5.1 1270
IS drm_d 22 - 1.8 26.3 638 79.9 277 1384
IS drm_d 22 v 12.6 26.8 64.3 81.1 281 2673
IS drn_d_38 - 15.8 31.1 66.4 80.5 220 1421
IS drn_d_38 v 16.3 324 66.9 81.9 222 2278

worst instance AP of all stixel methods. The semantic IoU of
SS+UPS is limited by its SS+/ counterpart by construction.
Overall, Instance Stixels based on the drn_d_38 architecture and
using the unary regularization outperforms all other stixel-based
algorithms in both segmentation metrics. Only the Pixelwise
algorithm surpasses this performance in the semantic IoU, but
not the instance AP. The same observations generally also hold
for the extended instance and semantic segmentation metrics
AP?°% and the category IoU [35] as listed in Table I.

To a certain degree, segmentation performance comes at
a trade-off regarding processing speed. Notably, the speed is
mainly determined by the choice of the CNN as well. The
Pixelwise pipeline is by far the slowest algorithm for these tasks
atonly 0.5 frames per second. Stixel methods based on drn_d_38
are favorable compared to methods relying on UPSNet, but
not as fast as methods based on drn_d_22. Among the same
architecture the differences in processing speed are only minor
and are listed in Table I. Additional analysis showed that the
processing speed is steady over all frames, regardless of the
number of instances or stixels in an image. The complexity of
the segmentation, quantified by the average number of stixels
per frame, varies between algorithms exhibiting no obvious
correlation. Among the Instance Stixels the highest average
number stixels per frame is at most 2673.

2) Qualitative Analysis: The consequences of the different
algorithm variations as described in Section V-D are depicted
in Fig. 4 when applied on an real traffic scene image from the
subtrainval set. Figs. 4(a) and 4(b) show the input data. Instance
segmentation results in the left column (4 4(c), 4(e), 4(g) and
4(i)) based on the drn_d_22 architecture show in general more
errors than in the right column (4 4(d), 4(f), 4(h) and 4(j)) which
is based on the drn_d_38 architecture. Especially Figs. 4(g), 4(i)
and 4(j) show several stixels which overlap two instances.

Fig. 5 visualizes the full results (3D position, semantic and
instance segmentation) of Instance Stixels (drn_d_38, unary
regularization) on three scenes (columns). Based on the input
RGB images (top row), the CNN predicts the offset vectors
(center rows). The offset vectors are visualized in HSV color
space, where the hue indicates the direction and the saturation the
magnitude of the offsets. The fourth row shows the segmentation

of the scenes. The overlaid colors illustrate the semantic class
per pixel, whereas the white contours around objects mark the
borders of instances. The bottom row shows top down views of
the scene based on the per stixel disparity information and loca-
tion within the input image. In these illustrations the road and the
sidewalk are illustrated as polygons. Their boundaries are based
on the ground plane estimation. Sky stixels are discarded and
non-instance stixels are drawn as circles. Their radius indicates
the size of the respective stixel in the image. Stixels of the same
instance are connected by a line. Per column, we only connect
the stixel that are closest to the ego-vehicle. As a result of our
instance segmentation, we can also filter outliers. Specifically,
we do not include stixels that are further than 3 meters away from
the mean top down position of the instance. Also, we removed
the stixel artefacts of the Mercedes-Benz Star from the top down
view based on their position in the image.

VI. DISCUSSION

Results presented in Section V-D show that adding the in-
stance term, that distinguishes IS and SS+1, increases instance
AP. Minor drawbacks in terms of semantic IoU may be due to
hyperparameter optimization which values instance AP more
than semantic IoU. Despite the increased instance AP, the seg-
mentation for far away objects (e.g., the truck in the left-hand part
of Fig. 4(a)) and tightly overlapping objects (e.g., pedestrians
in the left-hand part Fig. 5(a)) remain challenging. Overall,
the choice of the CNN appears to be more important to the
segmentation than the effect of the instance term. Notably,
using a state-of-the-art pixelwise instance segmentation CNN,
such as UPSNet [26], and combining it with Semantic Stixels
falls behind significantly in terms of processing speed. UPSNet
requires on average 0.15 seconds of processing time per frame
which on its own yields only 6.6 frames per second. Compared
to the pixelwise UPSNet result, the instance AP of SS + UPSNet
has decreased by more than 50%. A drop in overall accuracy is
likely, since the stixels group pixels along predefined coarse
column borders and thus inherently decrease the granularity
of the prediction. Further, SS do not consider the instance
term introduced for IS, thus stixels may overlap two different
instances. UPSNet cannot change this afterwards which leads
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(a) Input: Original image. (b) Input: Disparity image.

(c) Instance Stixels 22, unary regularization (ours). (d) Instance Stixels 38, unary regularization (ours).

(e) Instance Stixels 22 (ours). (f) Instance Stixels 38 (ours).
(g) Semantic Stixels + Instance 22, unary regularization (baseline). (h) Semantic Stixels + Instance 38, unary regularization (baseline).
(i) Semantic Stixels + Instance 22 (baseline). (j) Semantic Stixels + Instance 38 (baseline).

Fig.4. Qualitative analysis of instance segmentation results from Semantic Stixels + Instance (baseline) and Instance Stixels (proposed algorithm) using different
architectures as well as comparing the pairwise energy term and the unary regularization. Fig. 4(a) and 4(b): The input RGB and disparity image. Below, the left
column shows instance segmentation results obtained using the drn_d_22 architecture as basis for the CNN. Likewise, the right column Instances are indicated by
arbitrary colors. White areas denote stixels that cannot be assigned to specific instances, but their predicted semantic class is an instance class. Black areas indicate
that the predicted semantic class is not an instance class.
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(a) Input RGB image. (b) Input RGB image. (c) Input RGB image.
(d) Input disparity image. (e) Input disparity image. (f) Input disparity image.
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(g) Intermediate offset prediction. (h) Intermediate offset prediction. (i) Intermediate offset prediction.
(j) Instance Stixels, unary regularization. (k) Instance Stixels, unary regularization. (1) Instance Stixels, unary regularization.
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(m) Instance Stixels 38, unary regularization. (n) Instance Stixels 38, unary regularization. (o) Instance Stixels 38, unary regularization.
Fig.5. Tllustration of stixel segmentations including spatial top down view of the scene. Each column is a separate scene, the top two rows show the corresponding

inputs, the center row shows the offsets predicted by the CNN and the bottom two rows visualize the output of Instance Stixels (drn_d_38, unary regularization).
In the third row from the top, the overlaid color indicates the semantic class of a stixel, whereas the white contour around objects indicate the segmented instances.
The last row shows the top view of the scene. Instances are visualized as lines, road and sidewalk stixels are plotted as polygons based on the obtained ground plane
estimation. Stixels of class sky are discarded in this illustration. All remaining stixels (e.g., buildings and poles) as points and their radius indicates the stixels size.

to worse performance. Lastly, a pixelwise clustering approach
shows weak instance segmentation performance at a runtime of
0.5 FPS that is dominated by the clustering algorithm suffering
from the large amount of points.

The benefits of a purely stixels-based instance segmentation
method however is not only observed in processing speed, but

also in term of segmentation complexity. Pixelwise methods
result in more than 1.4 million independent predictions. Our In-
stance Stixels on average require between 1384 and 2673 stixels
per frame to describe the same amount of pixels. This means
Instance Stixels reduce the complexity of the representation by
factors between 525.6x - 1015.1x.
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Aside from image segmentation, Instance Stixels provide
position estimates in 3D space. As a result, top down views of a
scene can be extracted, similar to a grid map. In contrast to a grid
map, our representation is continuous and does not discretize
3D space. In this top down representation, imperfect disparity
measurements, become apparent, for example in that the back of
cars do not appear as straight lines. Further, it also show the in-
accuracies of the ground plane and horizon estimation, which is
here based on v-disparity [33]. In the stixel model, stixels above
the horizon cannot be classified as ground. This leads to artefacts
as seen on the road behind the two cars in Fig. 5(j). As the ground
plane estimation is crude, the polygons of the road stixels overlap
sometimes with stixels of obstacles. Combining Instance Stixels
with LiDAR measurements as shown in [41] may improve both,
the depth estimation and the ground plane estimation. As this
is an orthogonal approach, not related to instance segmentation,
we made use of our object based representation to for example
filter outliers in the depth measurements of a single object.

The rich information about both, the static and dynamic sur-
rounding, contained in Instance Stixels can benefit subsequent
utilization in an autonomous driving pipeline. For example,
Instance Stixels provide a rich and efficient representation for
path planning, object tracking, and mapping.

VII. CONCLUSIONS

This paper introduced Instance Stixels to improve stixel seg-
mentation by considering instance information from a CNN, and
performing a subsequent stixel clustering step. Our experiments
showed multiple benefits of including the instance information
already in the segmentation step, opposed to only clustering Se-
mantic Stixels. First, quantitative and qualitative analysis show
that Instance Stixels adhere better to object boundaries. Second,
Instance Stixels provide more accurate instance segmentation
than Semantic Stixels augmented with instance information
from a pixel-level instance segmentation network. Third, In-
stance stixels still preserve the favorable stixel characteristics
in terms of compactness of the segmentation representation (on
average less than 2673 stixels per image) and computational
efficiency (up to 28 FPS at a resolution of 1792x784). In future
work, the integration of additional sensor modalities as shown
in [41] and temporal information to enforce consistency are
potential research directions.

ACKNOWLEDGMENT

The authors would like to thank the authors of [12] and [24]
for kindly providing their code and pre-trained CNN models to
the scientific community.

REFERENCES

[1] L. Schneider et al., “Semantic stixels: Depth is not enough,” in Proc. IEEE
Intell. Veh. Symp., 2016, pp. 110-117.

[2] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A
survey of vision-based vehicle detection, tracking, and behavior analysis,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 4, pp. 1773-1795, Dec. 2013.

[3] M.Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “Eurocity persons: A novel
benchmark for person detection in traffic scenes,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 8, pp. 1844—1861, Aug. 2019.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

55

D. Nuss, T. Yuan, G. Krehl, M. Stiibler, S. Reuter, and K. Dietmayer, “Fu-
sion of laser and radar sensor data with a sequential Monte Carlo Bayesian
occupancy filter,” in Proc. IEEE Intell. Veh. Symp., 2015, pp. 1074-1081.
R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking the
driving environment with a particle-based occupancy grid,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 4, pp. 1331-1342, Dec. 2011.

H. Badino, U. Franke, and D. Pfeiffer, “The stixel world-a compact
medium level representation of the 3d-world,” in Proc. 31st DAGM Symp.
Pattern Recognit., Berlin, Heidelberg, Germany: Springer-Verlag, 2009,
pp- 51-60.

D. Hernandez-Juarez et al., “Slanted stixels: Representing San Fran-
cisco’s steepest streets,” in Proc. Brit. Mach. Vis. Conf. 2011, Sep. 2017,
pp- 87.1-87.12, doi: 10.5244/C.31.87.

J.Ziegler et al., “Making bertha drive - an autonomous journey on a historic
route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8-20, Summer
2014.

W. Sanberg, G. Dubbelman, and P. de With, “From stixels to asteroids:
Towards a collision warning system using stereo vision,” in Proc. IS&T
Int. Symp. Electron. Imag., vol. 2019, no. 15, 2019, pp. 34-1-34-7, doi:
10.2352/ISSN.2470-1173.2019.15.AVM-034.

S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting
unexpected obstacles for self-driving cars: Fusing deep learning and
geometric modeling,” IEEE Intell. Veh. Symp., 2017, pp. 1025-1032.

D. Pfeiffer and U. Franke, “Towards a global optimal multi-layer stixel
representation of dense 3D data,” Proc. British Mach. Vis. Conf., 2011,
pp. 51. 1-51. 12.

D. Hernandez-Juarez, A. Espinosa, J. C. Moure, D. Véazquez, and A.
M. Lépez, “GPU-accelerated real-time stixel computation,” IEEE Winter
Conf. Appl. Comput. Vis., 2017, pp. 1054-1062.

M. Cordts, T. Rehfeld, M. Enzweiler, U. Franke, and S. Roth, “Tree-
structured models for efficient multi-cue scene labeling,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 7, pp. 1444—1454, Jul. 2017.

N. H. Saleem, H. Chien, M. Rezaei, and R. Klette, “Effects of ground
manifold modeling on the accuracy of stixel calculations,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 10, pp. 3675-3687, Oct. 2019.

D. Pfeiffer and U. Franke, “Efficient representation of traffic scenes by
means of dynamic stixels,” in Proc. IEEE Intell. Veh. Symp., Jun. 2010,
pp. 217-224.

B. Giinyel, R. Benenson, R. Timofte, and L. Van Gool, “Stixels motion
estimation without optical flow computation,” in Proc. Eur. Conf. Comput.
Vis. Berlin, Heidelberg, Germany: Springer, 2012, pp. 528-539.

F. Erbs, A. Barth, and U. Franke, “Moving vehicle detection by optimal
segmentation of the dynamic stixel world,” in Proc. IEEE Intell. Veh.
Symp., 2011, pp. 951-956.

F. Erbs, B. Schwarz, and U. Franke, “Stixmentation-probabilistic stixel
based traffic scene labeling.” in Proc. Brit. Mach. Vis. Conf., 2012,
pp. 1-12.

F. Erbs, B. Schwarz, and U. Franke, “From stixels to objects—A condi-
tional random field based approach,” in Proc. IEEE Intell. Veh. Symp.,
2013, pp. 586-591.

F. Erbs, A. Witte, T. Scharwichter, R. Mester, and U. Franke, “Spider-
based stixel object segmentation,” in Proc. IEEE Intell. Veh. Symp., 2014,
pp- 906-911.

M. Cordts, L. Schneider, M. Enzweiler, U. Franke, and S. Roth, “Object-
level priors for stixel generation,” in Proc. German Conf. Pattern Recognit.,
2014, pp. 172-183.

T. Scharwichter and U. Franke, “Low-level fusion of color, texture and
depth for robust road scene understanding,” in Proc. IEEE Intell. Veh.
Symp., Jun. 2015, pp. 599-604.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770-778.

F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in Proc.
Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 472-480.

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar, “Panoptic seg-
mentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,Jun. 2019,
pp. 9396-9405.

Y. Xiong et al., “Upsnet: A unified panoptic segmentation network,” in
Comput. Vis. Pattern Recognit., 2019, pp. 8818-8826.

B. De Brabandere, D. Neven, and L. Van Gool, “Semantic instance
segmentation with a discriminative loss function,” in Proc. Deep Learn.
Robot. Vis., Workshop Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1-2.
A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 7482-7491.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 28,2022 at 12:48:22 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.5244/C.31.87
https://dx.doi.org/10.2352/ISSN.2470-1173.2019.15.AVM-034

56

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

J. Uhrig, E. Rehder, B. Frohlich, U. Franke, and T. Brox, “Box2pix: Single-
shot instance segmentation by assigning pixels to object boxes,” in Proc.
IEEE Intell. Veh. Symp., 2018, pp. 292-299.

D. Neven, B. D. Brabandere, M. Proesmans, and L. V. Gool, “Instance seg-
mentation by jointly optimizing spatial embeddings and clustering band-
width,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 8829-8837.

T. M. Hehn, J. F. P. Kooij, and D. M. Gavrila, “Instance stixels: Segmenting
and grouping stixels into objects,” in Proc. IEEE Intell. Veh. Symp.,
Jun. 2019, pp. 2542-2549.

D. Pfeiffer, “The stixel world,” Ph.D. dissertation, Mathematisch-
Naturwissenschaftliche Fakultdt II, Humboldt-Univ., Berlin, Germany,
2012.

R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection in
stereovision on non flat road geometry through v-disparity representation,”
in Proc. IEEE Intell. Veh. Symp., 2002, pp. 646-651.

M. Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise,” in Proc. 2nd Int. Conf. Knowl. Discov. Data
Mining, pp. 226-231, 1996.

M. Cordts et al., “The cityscapes dataset for semantic urban scene un-
derstanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 3213-3223.

A. Paszke et al., Advances in Neural Information Processing Systems
32, Red Hook, NY, USA: Curran Associates, Inc., 2019, pp. 8024—
8035, [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf
NVIDIA Corporation, Apex: A pytorch extension: Tools for easy mixed
precision and distributed training in pytorch, (visited on: 2019-11-26),
[Online]. Available: https://github.com/NVIDIA/apex

R. D. Team, RAPIDS: Collection of Libraries for End to End GPU Data
Science, 2018. [Online]. Available: https://rapids.ai

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic gradient
descent,” in Proc. ICLR: Int. Conf. Learn. Representations, 2015.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 2951-2959.

F. Piewak, P. Pinggera, M. Enzweiler, D. Pfeiffer, and M. ZolIner, “Im-
proved semantic stixels via multimodal sensor fusion,” in Proc. German
Conf. Pattern Recognit., 2018, pp. 447-458.

Thomas Hehn received the bachelor’s and master’s
degrees in physics from Heidelberg University, Hei-
delberg, Germany, in 2014 and 2017, respectively.
He is currently working toward the Ph.D. degree
with the Delft University of Technology, Delft, The
Netherlands. His research focuses on computer vision
for autonomous driving. In 2018, he was the recipient
of the Best Paper Award of the German Conference
on Pattern Recognition for his research on decision
tree algorithms done at the Heidelberg Collaboratory
for Image Processing.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 1, MARCH 2022

Julian Kooij (Member, IEEE) received the Ph.D.
degree in 2015 in artificial intelligence from the Uni-
versity of Amsterdam, Amsterdam, The Netherlands,
where he worked on unsupervised machine learning
and predictive models of pedestrian behavior. In 2013,
he was with Daimler AG, Stuttgart, Germany, on
path prediction of vulnerable road users for highly-
automated vehicles. In 2014, he joined the Computer
Vision Lab, Delft University of Technology, Delft,
The Netherlands, and since 2016, he has been an As-
sistant Professor with the Intelligent Vehicles Group,
part of the Cognitive Robotics Department with the same university. His research
interests include developing novel probabilistic models and machine learning
techniques to infer and anticipate critical traffic situations from multimodal
sensor data.

Dariu Gavrila (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Maryland, College Park, MD, USA, in 1996. In 1997,
he was with Daimler R&D, Ulm, Germany, where
he became a Distinguished Scientist. In 2016, he
moved to the Delft University of Technology, Delft,
The Netherlands, where he since heads the Intelligent
Vehicles Group, as a Full Professor. His research
interests include sensor-based detection of humans
and analysis of behavior, recently in the context of the
self-driving cars in urban traffic. He was the recipient
of the Outstanding Application Award 2014 and the Outstanding Researcher
Award 2019, both from the IEEE Intelligent Transportation Systems Society.

Authorized licensed use limited to: TU Delft Library. Downloaded on April 28,2022 at 12:48:22 UTC from IEEE Xplore. Restrictions apply.


http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/NVIDIA/apex
https://rapids.ai


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


