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AbSRiM: An Agent-Based Security Risk Management
Approach for Airport Operations

Stef Janssen,∗ Alexei Sharpanskykh, and Richard Curran

Security risk management is essential for ensuring effective airport operations. This article
introduces AbSRiM, a novel agent-based modeling and simulation approach to perform se-
curity risk management for airport operations that uses formal sociotechnical models that
include temporal and spatial aspects. The approach contains four main steps: scope selection,
agent-based model definition, risk assessment, and risk mitigation. The approach is based
on traditional security risk management methodologies, but uses agent-based modeling and
Monte Carlo simulation at its core. Agent-based modeling is used to model threat scenarios,
and Monte Carlo simulations are then performed with this model to estimate security risks.
The use of the AbSRiM approach is demonstrated with an illustrative case study. This case
study includes a threat scenario in which an adversary attacks an airport terminal with an
improvised explosive device. The approach provides a promising way to include important
elements, such as human aspects and spatiotemporal aspects, in the assessment of risk. More
research is still needed to better identify the strengths and weaknesses of the AbSRiM ap-
proach in different case studies, but results demonstrate the feasibility of the approach and
its potential.

KEY WORDS: Agent-based modeling; airport terminal; security risk management

1. INTRODUCTION

Security risk management for airport operations
is a process aiming to identify, calculate, and mitigate
security risks of the airport by using a finite set of re-
sources. An important part of this process is security
risk assessment, in which security risks of the airport
are identified and calculated. Methods to perform se-
curity risk assessment can be classified into two cat-
egories: qualitative and quantitative risk assessment.
Qualitative risk assessment is, for instance, based on
questionnaires, intelligence data, and interviews. In
this work, we focus on quantitative security risk as-
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sessment. Several security risk management meth-
ods that use quantitative security risk assessment
have been proposed in the literature. Expert-based
methods such as the threat, vulnerability, and con-
sequence (TVC) methodology (Biringer, Matalucci,
& O’Connor, 2007; ISO 31000:2009, 2009; Landoll &
Landoll, 2005; Willis, Morral, Kelly, & Medby, 2006;
Washington, 2009) are commonly used in practice.
Furthermore, researchers have developed computa-
tional methods such as attack trees (Gadyatskaya
et al., 2016; Schneier, 1999), probabilistic meth-
ods (Chawdhry, 2009), and security games (Brown,
Sinha, Schlenker, & Tambe, 2016; Schlenker, Brown,
Sinha, Tambe, & Mehta, 2016).

It is often observed that these methods have
their limitations. For instance, these methodologies
struggle to incorporate diverse social interactions,
which are inherently present in many threat scenar-
ios in airport operations. Furthermore, the transition
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between standard operations and operations under
an attack is often not well modeled in current
computational models. Finally, most of the compu-
tational models cannot properly take into account
spatiotemporal aspects, such as the distribution of
passengers over time, that are present in airports.

We therefore propose AbSRiM, a novel agent-
based modeling and simulation approach to per-
form security risk management in airport operations.
The approach is based on traditional security risk
management methodologies, but has the potential
to overcome the above-mentioned limitations. An
agent-based model can be used to model realistic so-
ciotechnical processes by including rich cognitive, so-
cial, and organizational models. It can also be used to
explicitly represent spatiotemporal elements of the
agents and the environment. This then allows for the
modeling of the transition between standard opera-
tions of an airport and operations under attack.

The use of the AbSRiM approach is demon-
strated with an illustrative case study. This case study
includes a threat scenario in which an adversary at-
tacks an airport terminal with an improvised explo-
sive device (IED). This adversary aims to cause as
many fatalities in the open areas of the airport termi-
nal by choosing the area with most passengers. The
airport employs behavior detection employees who
can potentially detect an ongoing attack and stop it.

This article is structured as follows. An overview
of important related security risk management
methodologies, specifically the TVC methodology,
security games, and attack trees, is addressed in
Section 2. Then, Section 3 describes AbSRiM, the
agent-based security risk management approach
proposed in this work. This section also defines
the terms used throughout this work. A conceptual
comparison with existing methodologies is made
for the AbSRiM approach in Section 4. Finally, a
conclusion is provided in Section 5.

2. RELATED WORK

Here, three important methodologies for se-
curity risk management are introduced: the TVC
methodology, security games, and attack trees. Al-
though other methods, such as probabilistic tools
(Chawdhry, 2009) and the bowtie method (de Rui-
jter & Guldenmund, 2016), exist, we focus on these
three popular methodologies. These methodologies
are commonly used in practice, and can exemplify
many of the limitations that the other methods men-
tioned above also possess (Brown & Cox, 2011; de

Ruijter & Guldenmund, 2016). These methodologies
are later compared with AbSRiM while taking into
account a set of criteria. It should be noted that some
of these methods are not defined as security risk
management methodologies in the literature, but as
security-related resource allocation methodologies.
They can, however, easily be interpreted as security
risk management methodologies.

Apart from security risk management method-
ologies, other work has focused on assessing other
types of risks using agent-based modeling. That type
of work is introduced and compared to the AbSRiM
approach in Section 2.4.

2.1. TVC Methodology

Following the TVC methodology, a security
expert first characterizes important assets in the
organization. Based on these assets, the expert
identifies a set of threats that the assets are exposed
to. Threat likelihood, vulnerability, and consequence
are then estimated separately for each identified
threat. In practice, many different variants of the
TVC methodology exist (Biringer et al., 2007; ISO
31000:2009, 2009; Landoll & Landoll, 2005; Willis
et al., 2006; Washington, 2009), but we focus on
the overlap between these methods in this work.
Security experts use data provided by security
manufacturers, internal assessments, or employee
surveys to estimate vulnerability. Also, tools such as
vulnerability logic diagrams and event trees (Aven,
2007) can be used to better estimate vulnerability.
Furthermore, red-teaming (real-life simulation of a
threat scenario) can be used by experts. Vulnera-
bility estimates are sometimes “binned” following a
table like Table I to simplify the assessment process.

The consequence of a threat scenario can be
quantified using consequence assessment techniques,

Table I. An Example Vulnerability Table That Is Used to
Categorize Vulnerabilities (Adapted from Washington, 2009)

Vulnerability Range (%) Bin Number

<3.11 0
3.12–6.24 1
6.25–12.4 2
12.5–24.9 3
25–49 4
50–74 5
75–89 6
90–100 7
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where, most commonly, they are expressed in
monetary values. The loss of a human life can, for in-
stance, be quantified by using a “value of a single life”
(VSL), as discussed in Reniers and Van Erp (2016)
and Robinson, Hammitt, Aldy, Krupnick, and Baxter
(2010). These consequences are commonly estimated
based on expert judgment. Risk mitigation is per-
formed by comparing the expected security risks for
potential controls with the current situation. Further-
more, costs and operational usability are also taken
into account.

A method closely related to the TVC methodol-
ogy is the TVA methodology (Whitman & Mattord,
2011). Following this methodology, a threat, vulner-
abilities, assets (TVA) worksheet is created. In this
worksheet, both threats and assets are ordered based
on importance, and vulnerabilities per threat–asset
pair are identified. The main difference between the
two methodologies is that in the TVA, methodology
uses a TVA worksheet as the basis for the risk miti-
gation step, whereas the calculated risks are used in
the TVC methodology.

2.2. Security Games

Methods based on game theory (Brown et al.,
2016; Farraj, Hammad, Al Daoud, & Kundur, 2016;
Pita et al., 2008) define a threat scenario as a security
game, with a defender and an attacker as the respec-
tive row and column players of a game. Columns rep-
resent the options an attacker has to attack a target,
whereas rows represent the available actions the de-
fender has to defend the target. Based on the chosen
options of the attacker and defender, an outcome (of-
ten a combination of vulnerability and consequence)
is determined. By analyzing such a game, an optimal
strategy for the defender can be obtained. An exam-
ple of a simple security game is visualized in Table II.
Contrary to the TVC methodology, a game-theoretic
formulation allows for intuitive incorporation of the
dynamic and strategic nature of an attacker. Security

Table II. An Example Security Game

Att. Checkpoint Att. Check-In

Def. checkpoint 10, −80 −100, 100
Def. check-in −80, 80 20, −100
Do not def. −90, 80 −90, 100

Note: The row player is the defender, the column player is the at-
tacker. The described payoffs are for the defender (first value) and
the attacker (second value).

games have found their application in a wide vari-
ety of areas, such as airports (Brown et al., 2016; Pita
et al., 2008), coastal protection (Shieh et al., 2012),
wildlife protection (Yang, Ford, Tambe, & Lemieux,
2014), and chemical plants (Zhang & Reniers, 2016).

2.3. Attack Trees

Attack trees provide a formal, methodical way of
describing the security of systems based on varying
threat scenarios (Schneier, 1999). The main concept
of an attack tree is that an attack against a system is
represented in a tree structure. The root node (also
top event) represents a successful attack on some
asset within the system. Internal nodes represent
events that depend on their subsequent child nodes,
whereas leaf nodes represent events that can inde-
pendently happen. Nodes can be attributed values
that represent their likelihood, their cost to execute,
and other parameters. Leaf nodes are valued by the
designer, whereas the value of other nodes are calcu-
lated from the values of their child nodes. Transitions
between nodes can be modeled to be deterministic
and nondeterministic. In the case of deterministic
transitions, a (combination of) child node(s) occur-
ring will certainly lead to the occurrence of the parent
node, whereas in nondeterministic transitions, this is
not the case. By analyzing the values of the root node
of the tree, controls can be taken accordingly. Fig. 1
presents an example of an attack tree that partially
models the threat scenario used in the illustration.

Alternatively, attack–defense trees form an ad-
dition to the attack trees described above. In attack–
defense trees, the designer can introduce defense
nodes. The addition of defense nodes in attack–
defense trees allows for the modeling of interac-
tions between attacker and defender, impossible in

Detonate
IED

Reach target
location

Move to
check-in
queue

More
passengers
at check-in

No defender
present at
check-in

Move to
checkpoint

queue

More
passengers at
checkpoint

No defender
present at
checkpoint

Failed arrest
by defender

Fig. 1. An example attack tree with two types of nodes: AND and
OR.



4 Janssen, Sharpanskykh, and Curran

attack trees. This allows for a more elaborate analy-
sis of the effectiveness of different controls, useful to
determining which controls should be installed. Some
important work in this area is by Kordy, Mauw,
Radomirović, and Schweitzer (2010), Bistarelli, Dal-
lAglio, and Peretti (2006), and Edge, Dalton, Raines,
and Mills (2006).

2.4. Agent-Based Risk Assessment

Other work has focused on assessing risks
(or related parameters) using agent-based mod-
eling as well. For instance, research has been
done in assessing vulnerability of financial insti-
tutes (Bookstaber, Paddrik, & Tivnan, 2018), risk
of flood disasters (Linghu, Chen, Guo, & Li, 2013),
mosquito-borne disease transmission (Jindal & Rao,
2017), and hazards in air traffic management (Bosse,
Sharpanskykh, Treur, Blom, & Stroeve, 2012).
Although all of this work relates to risk assessment
of some form, it often falls within the safety domain
or financial domain, but not the security domain.
An intelligent attacker does not necessarily need
to be present in these domains. While considering
security scenarios, intelligent attackers play an
essential role in the assessment of risk, and therefore
have to be modeled explicitly. This makes security
risk assessment “fundamentally different from risk
assessment for accidental events and other phenom-
ena with inherently random failures” (Guikema &
Aven, 2010). Our approach toward the assessment
of security risks and the inclusion of attackers will be
introduced in the next section.

3. AbSRiM: AGENT-BASED SECURITY
RISK MANAGEMENT

Here, we introduce AbSRiM: an agent-based se-
curity risk management approach for airport oper-
ations and a set of relevant definitions that we use
throughout this article. Although many definitions
exist, in this work we employ a commonly used def-
inition of risk (Cox, 2008; Elias, 2009; Roper, 1999;
Washington, 2009).

Definition 1 Security risk. The potential for loss or
harm due to the likelihood of an unwanted event and
its adverse consequences.

We use the terms security risk and risk in this
work interchangeably. Risk is often expressed in
terms of threats, vulnerabilities, and consequences.

Their respective definitions are shown in Washington
(2009) and are repeated below for convenience.

Definition 2 Threat. Any indication, circumstance, or
event with the potential to cause the loss of, or damage
to, an asset.

Definition 3 Threat scenario. A set of events, associ-
ated with a specific threat or multiple threats, partially
ordered in time.

Definition 4 Vulnerability. Any weakness in an asset’s
or infrastructure’s design, implementation, or opera-
tion that can be exploited by an adversary.

Definition 5 Consequence. The outcome of an event
occurrence, including immediate, short- and long-
term, and direct and indirect losses and effects.

Conditional risk is another commonly used term
in the literature, and used in this work. It is defined
as follows.

Definition 6 Conditional risk. A measure of risk that
focuses on consequences, vulnerability, and adversary
capabilities, but excludes intent.

As assets are an important element in the defini-
tions above, we provide the International Organiza-
tion for Standardization (ISO) definition of an asset
below (ISO 55000:2014, 2014).

Definition 7 Asset. Item, thing, or entity that has po-
tential or actual value to an organization.

To be able to reduce risks, organizations can take
measures. Such a measure is defined as a control and
its definition is stated below.

Definition 8 Control. Measure that is modifying risk.

An overview of the different steps in the Ab-
SRiM approach is outlined below. The approach fol-
lows several of the main steps of the traditional TVC
methodology, but steps 2 and 3 differ significantly.

(1) Scope selection
(i) Characterize assets

(ii) Identify threats
(iii) Construct n threat scenarios

(2) Agent-based model definition
(i) Define operational model M

(ii) Define sec. models M = {M1, . . . , Mn}
(3) Risk assessment

(i) Estimate threat likelihood
(ii) Estimate conditional risk

(4) Risk mitigation
(i) Define maximum risks Rmax
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(ii) Identify controls K
(iii) Determine control strategy

The first step is used to determine the scope of
the risk management. Relevant assets of the airport
have to be characterized, and based on the charac-
terized assets, a set of security threats is identified.
They are, in turn, used to construct a set of n threat
scenarios. Next, an agent-based model M, the oper-
ational model, is defined. The operational model is
a representation of operations in the airport and at
least includes the identified assets. This model forms
the basis for the subsequently created security mod-
els. Security models M1, . . . , Mn extend operational
model M, and are defined for each of the constructed
threat scenarios in S. A security model extends the
operational model and includes a nonempty set of
adversary agents who execute the attacker actions in
the threat scenario. These security models are later
used to estimate security risks.

Then, threat likelihood is estimated using a tra-
ditional approach, whereas conditional risk is esti-
mated using Monte Carlo simulations. Finally, risk
mitigation is done by treating risks that are consid-
ered too high. This consists of defining the maximum
risk per threat scenario and identifying a set of fea-
sible controls that can be implemented. Based on
these, the best control strategy is determined using
different analysis techniques.

3.1. Scope Selection

The selection of scope is the first step of the Ab-
SRiM approach. It consists of three parts: (1) iden-
tification of assets, (2) identification of threats, and
(3) construction of threat scenarios. Each of these
parts are used to determine the focus of the rest of
the steps in the approach.

A set of assets is identified that will be used in
the risk assessment. An asset can, for instance, be the
physical structure of an airport terminal or passen-
gers who visit it. Ideally, a complete set of assets is
identified. However, identification of a subset of im-
portant assets still allows for the execution of a secu-
rity risk management with a narrower focus.

Based on the identified assets, different threats
that relate to these assets are identified. Threats are
identified using a method that is similar to the classic
TVC methodology. In this method, security experts
generate a list of threats based on their experience,
intelligence data, and historic data. Similar to the
identification of assets, a subset of important threats

Fig. 2. The airport layout of the case study, with indicators for dif-
ferent areas. A, B, and C are facility areas. D is the check-in area
and E is the queuing area. F is the checkpoint area and G is the
gate area.

can also be chosen. This gives the security risk man-
agement procedure a narrower focus. The identified
threats are then used by security experts to construct
threat scenarios. These threat scenarios are used to
estimate security risks in the subsequent steps. The
selected scope in this step forms the basis for the def-
inition of agent-based models in the next step.

Illustration. Here, we illustrate the use of
AbSRiM with a case study in a regional airport ter-
minal. A more extensive discussion of this illustration
can be found in a technical report (Janssen, Blok,
& Knol, 2018). A visualization of the airport termi-
nal under consideration and its different areas is pre-
sented in Fig. 2.

A single asset, namely, the people present at the
airport terminal (both passengers and employees), is
characterized. We focus this illustration on a single
threat: an IED attack. Based on this threat, a single
threat scenario sied, in which an attacker aims to det-
onate an IED in the open areas of the airport, is de-
fined. In this threat scenario, an attacker enters the
open areas of the airport terminal, and chooses to
detonate an IED in a region that leads to most fatal-
ities. A behavior detection employee aims to detect
and stop the attacker.

3.2. Agent-Based Model Definition

The definition of the agent-based model is the
second step of the AbSRiM approach. Two types
of agent-based models are defined in this step: an
operational model M, and a set of security models
M1, . . . , Mn. The operational model is used to model
standard operations that take place in the airport.
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In an airport, this consists of processes such as the
check-in process and the security check. The model
should include a representation of each of the assets,
in an operational context, which had been identified
in the scope selection. A security model extends the
operational model M and includes a representation
of the attackers in a specific threat scenario. These
attackers execute the attacker behavior in the threat
scenario that was specified in the scope selection step.

Formally, in operational model M, an environ-
ment that represents the relevant airport operations
is defined. Furthermore, a set of agents executing
standard operations in the airport is defined. This
can, for instance, be check-in employees or security
officers. Finally, a set of defender agents is defined
who can have operational tasks, such as answering
passenger questions, and security-related tasks.

The operational model M forms the basis of the
security models M1, . . . , Mn. A security model Mi ex-
tends model M by including a set of attacker agents
who execute the attacker behavior in threat scenario
si . These attacker agents interact with the defend-
ing agents by trying to prevent them from stopping
their attack. The defenders, earlier defined in model
M, in turn aim to stop an ongoing attack by the at-
tacker agents.

These models require the selection of a model-
ing language. The selection of the language largely
depends on the selected scope of the security risk
management, but certain aspects are required to be
present. The desiderata for a modeling language in-
clude the following abilities: (1) to represent discrete
and continuous time; (2) to specify stochastic pro-
cesses; (3) to specify both qualitative and quanti-
tative aspects; and (4) to represent behavioral and
cognitive properties of agents and interaction be-
tween agents.

Discrete and continuous time specification is
needed to be able to specify the dynamics of an at-
tack in progress. Other dynamic processes can also
be present: passengers moving in the airport termi-
nal and checking in of passengers. Stochastic pro-
cesses are inherently present in airport operations,
for instance, the random arrival process of passen-
gers, and random luggage checks at the security
checkpoint. Furthermore, stochasticity is required
for Monte Carlo simulations (see Section 3.3). Mod-
eling of human behavior involves reasoning, which
requires the language to be able to express qualita-
tive aspects. Quantitative aspects and relations are
commonplace in airport operations. For instance, the
number of flights on a day is important, as is the num-

ber of passengers who fly with a specific flight. Fi-
nally, representing cognitive and behavioral proper-
ties is important for modeling human agents, and is
elaborated in the architecture desiderata.

The architecture should be capable to represent
a range of functions for the agents in the model: (1)
making observations and performing actions; (2) to
store information; (3) to maintain goals; and (4) to
reason. Observing other agents and the environment,
as well as performing actions, is essential for any
agent to perform its task. Another important aspect
of an agent is that it should be able to store informa-
tion that can be used later. For instance, this infor-
mation can be used for maintaining internal goals of
the agent. A goal of an airport passenger can, for in-
stance, be to reach his or her gate in time, whereas
a goal of an attacker can be to cause as many fatali-
ties as possible. Finally, agents should be able to rea-
son about their goals and store information to make
decisions. As with the selection of the language, the
selection of the architecture largely depends on the
scope of the security risk management.

Example languages that can be used are the
Temporal Trace Language (TTL) (Bosse, Jonker,
Van der Meij, Sharpanskykh, & Treur, 2009) and
LEADSTO (Bosse, Jonker, Van Der Meij, & Treur,
2007). Example architecture is the BDI architec-
ture (Bratman, 1987), the CLARION architec-
ture (Sun, 2007), or the Desire architecture (Brazier,
Dunin-Keplicz, Jennings, & Treur, 1997).

After the operational model and the security
models are specified, the models are validated. A
large body of research is devoted to model vali-
dation (Fossett, Harrison, Weintrob, & Gass, 1991;
Heath, Hill, & Ciarallo, 2009; Windrum, Fagiolo, &
Moneta, 2007). Model validation is a difficult task,
but most existing validation frameworks contain at
least the following elements: ensure the face validity
of the model, ensure the internal validity, and per-
form sensitivity analysis.

When ensuring face validity, domain experts ver-
ify if they think the model results are considered rea-
sonable (Klügl, 2008). Then, internal validity is, for
instance, verified by checking if the model produces
similar outputs for different random seeds (Xiang,
Kennedy, Madey, & Cabaniss, 2005). As part of in-
ternal validation, one can also perform tracing. In
this case, agent traces are compared to expected be-
havior of agents. Sensitivity analysis is then done to
determine the effects of changing model parameters
on the output parameters (Saltelli, Tarantola, Cam-
polongo, & Ratto, 2004). The interested reader is
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referred to the work of Windrum et al. (2007) for an
overview of agent-based model validation.

It can be hard to validate models related to secu-
rity. Often, limited or no data are available in this do-
main and performing field tests might be hard to do.
In this case, experts play an essential role in the pro-
cess of validating the model. In some cases, real-life
experiments can be done (Ford, 2017; Gholami et al.,
2017), potentially improving validity of the model.
Furthermore, operational aspects of the models can
more readily be validated using data.

Illustration. Here, we describe the definition of
the two models used in the illustrative case study, M
and Mied. We do not include a full description of the
model, but rather show parts of the process to illus-
trate this step. A full description of the architecture
and the baseline model used in this work is provided
in a technical report (Janssen, Blok, & Knol, 2018).

The models and architecture are formalized in
the LEADSTO language. The reader is referred to
the work of Bosse et al. (2007) for details on this
language. The AATOM architecture is used as a ba-
sis for the agents in models M and Mied. This archi-
tecture specifies different models and layers that de-
fine the functioning of the agents. The architecture
contains specific modules that ensure a representa-
tion of human behavior, such as the goal module,
the reasoning module, and the activity module. An
overview of the different components of the archi-
tecture is shown in Fig. 3.

The environment of the models is defined to
be an airport terminal, which consists of different
physical objects such as walls, desks, and X-ray sen-
sors. Furthermore, different areas, such as shops and
checkpoint areas, are defined to indicate functions of
the airport terminal, as illustrated in Fig. 2.

Two types of agents are defined for model
M: passengers and employees, both based on the
AATOM architecture. Passenger agents execute the
behavior of passengers in an airport terminal, and,
for instance, go to check-in desks, through the se-
curity checkpoint, and so on. Different types of em-
ployees are defined, for instance, check-in employees
are located at check-in desks and interact with pas-
sengers to perform their check in. Security employ-
ees are located in the checkpoint area and perform
security-related tasks, such as searching luggage and
operating the X-ray sensor. Finally, behavior detec-
tion employees are defined to observe and possibly
arrest agents (i.e., passengers or attackers) who are
showing deviant behavior.

Fig. 3. The AATOM architecture consists of three different lay-
ers: the strategic layer, the tactical layer, and the operational layer.
Each of these layers is responsible for a different aspect of the be-
havior of the agent.

Fig. 4. The different types of agents and their interactions in
model Mied . Model M contains the same agents and interactions,
but does not include the attacker agent.

The model Mied extends model M and defines an
attacker agent. An overview of the different agents
and their interactions in Mied is shown in Fig. 4. The
attacker agent executes the behavior of the terror-
ist in the constructed threat scenario sied. It carries
an IED and aims to cause fatalities in the airport
terminal by choosing a target area (check-in area or
checkpoint area) that contains most other agents to
maximize fatalities. After choosing the target area,
it moves to that area and detonates the IED. In the
meantime, it can be arrested by a behavior detec-
tion employee. If the agent observes that it is being
arrested, it tries to detonate the IED on the spot.
Similar behavior is, for instance, observed in at-
tacker behavior at the 2016 Atatrk Airport attack
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(Pearson, 2016). This interaction between behavior
detection employees and passengers and attackers
is an example of social interactions present in the
model. The above-described behavior of the attacker
agent is formalized in the LEADSTO language as
shown below.

internal(A)|empty(path(target)) �0,0,1,1

internal(A)|path(target)

internal(A)|path(target)) �1,tmove,1,1

output(A)|performed(move(target) ||
input(A)|obs(arrest)

input(A)|[obs(target) ∨ obs(arrest fail)] �0,0,1,1

output(A)|performed(detonate())

output(A)|performed(detonate()) ||
input(A)|obs(arrest) �0,0,1,1

internal(A)|activi ty state(attacker activi ty,

finished)

3.3. Risk Assessment

The assessment of risks is the third step in the
AbSRiM approach. For each threat scenario si ∈ S
constructed in step 1(iii), a corresponding security
risk ri is calculated based on simulation results
of model Mi defined in step 2. A security risk ri

is defined as a function of Threat Likelihood and
Conditional Risk, and holds for some time period T.
By estimating conditional risk, we ensure that de-
pendencies between vulnerability and consequence
are captured as well:

R(si , T) = f (P(si , T), Rc(si )).

Conditional risk Rc(si ) is estimated as follows.
For each security model Mi and asset al , a real-valued
consequence function C(Mj

i , al) is defined. This func-
tion is used to determine the consequence value for
asset al of simulation run j in model Mi . It takes both
direct losses and indirect losses into account. Direct
losses can, for instance, include casualties of a simu-
lated threat scenario. Indirect losses, like longer-term
business disruptions, are then based on historical
data and the estimated direct losses. If this conse-
quence is 0, the attacker was unsuccessful in Mj

i .

By performing Monte Carlo simulations, the
conditional risk is estimated based on N simulation
runs. This is done as follows:

R̂c(si ) =
∑N

j=1

∑
al∈A C(Mj

i , al)

N
,

where C(Mj
i , al) is the obtained consequence with

respect to a specific asset al in threat scenario si ,
and R̂c(si ) is the estimator of the conditional risk for
threat scenario si , Rc(si ). From a Monte Carlo per-
spective, conditional risk can be seen as the expected
value of the consequence functions. The vulnerabil-
ity of the scenario can be obtained by calculating the
ratio between the number of nonzero consequence
values and N (i.e., the total number of consequence
values). The consequence of the scenario can be cal-
culated by averaging the nonzero consequence val-
ues. Vulnerability and consequence values are not
needed to calculate risks, but they can be used to
guide the subsequent risk management step.

The total risk of all threat scenarios, denoted as
Rtotal(T), is obtained by adding all risks for individual
threat scenarios:

Rtotal(T) =
∑

si ∈S

R(si , T).

Threat likelihood P(si , T) for threat scenario si

is estimated by security experts independently from
model Mi , as is commonly done in the TVC method-
ology. They base their estimates on historic data, in-
telligence data, and experience.

Illustration. For the constructed threat scenario
and characterized asset, we define a consequence
function. This consequence function determines the
number of fatalities after the detonation of an IED.
Although injuries are often a consequence of such an
IED attack as well, the focus of this illustration is on
fatalities. We consider two causes of fatalities of an
IED attack: blast wave fatalities and fragmentation
fatalities, following the work of Pope (2011).

Blast wave fatalities are modeled as follows. We
employ the Kingery and Bulmash (1984) relation be-
tween the distance to the explosive, its mass, and the
incident pressure P. This relation is formalized as fol-
lows:

z = d
mass1/3

,

U = k0 + k1 log10 z,

P = c0 + c1U + c2U2 + · · · + cnUn,
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where d is the distance in meters between the tar-
get and the IED. Furthermore, mass is the mass of
the IED in kilograms. The ki s and ci s are constant,
while P is the incident pressure in kilopascal. The
pressure is then translated to a fatality probability for
each agent based on the work of Zipf and Cashdollar
(2018). The number of human fatalities caused by the
incident pressure is referred to as fblast .

Fatalities can also occur due to the movement
of fragments. The initial speed vini t of a fragment is
assumed to be a constant, while the initial direction
�ini t is generated using a uniform distribution. Af-
ter the detonation of the IED, each fragment moves
in the environment following a Newtonian motion
model. If the fragment intersects with a human agent,
the distance that it covers within the human body,
called depth of penetration, DOP, is recorded. This,
in turn, is translated to a fatality probability. The
number of fatalities caused by fragmentation is re-
ferred to as f f rag .

The consequence function is finally defined to be
the sum of the fatalities caused by both fragmenta-
tion and blast wave. It should be noted that this func-
tion is generally an overestimation of actual conse-
quences and can be seen as an upper bound on the
fatalities:

C(Mj
ied, a1) = fblast + f f rag.

Threat likelihood estimation is based on the
work of Grant and Stewart (2017). They argue that
there is a 0.5–2% likelihood of an attack at a large
hub airport in the Western world each year. This es-
timation is based on historic data originating from
a terrorist database (LaFree & Dugan, 2007). Re-
gional airports seem less likely to be a target for ter-
rorists, so we chose a likelihood of 0.5% for such an
attack.

3.4. Risk Mitigation

Risk management is the last step of the AbSRiM
approach and is used to reduce the risks that were
quantified above. In this step, specific controls (as
part of control strategies) are investigated to reduce
the risks to the system. To do this, acceptable risks
per security threat are defined. If the estimated risks
exceed the acceptability criteria, a control has to be
implemented to reduce these risks.

This effectiveness to reduce risks is estimated
as follows. The operational model and the security
models are adapted such that the control is incorpo-

rated in the model as well. Then, step 3 of this ap-
proach is repeated to estimate the risk with the up-
dated models. These newly estimated risks are then
compared to the previously obtained estimates to de-
termine their effectiveness to reduce risks. Controls
are finally ranked based on their operational costs,
operational usability, and their effectiveness to re-
duce risks. Based on this ranking, airport managers
can determine which (set of) control(s) is most suit-
able to implement.

Illustration. We illustrate the risk management
step by showing how three factors influence the esti-
mated conditional risks.

� The presence of a behavior detection employee.
� The interarrival time of passengers.
� The number of security lanes open.

The presence of a behavior detection employee
can influence the risk by ensuring a lower success
rate of attackers. Furthermore, the interarrival rate
of passengers influences the number of passengers
present in the airport, and therefore the number of
potential fatalities. A high interarrival time leads to a
low number of passengers, and vice versa. The num-
ber of security lanes open influences the passenger
buildup in front of the security checkpoint, and there-
fore the number of potential fatalities. A total of
N = 200 simulation runs per configuration were per-
formed, and the results of the experiment are shown
in Fig. 5.

These results show the impact of opening extra
security lanes and hiring a behavior detection em-
ployee under different passenger loads (i.e., different
interarrival times). It can be observed that the
range of conditional risk varies from 8.8 (minimal
theoretical value) to 67.2 (maximum theoretical
value). If only conditional risk is taken into account,
it is always beneficial to open an extra lane and hire
a behavior detection employee. However, under low
passenger loads (high interarrival times), the benefits
become small.

Although it is beneficial to take these measures,
it certainly is not the most cost-effective option. Air-
ports have to consider the effects of a control on the
risk reduction, but also the costs that they incur. In
Table III, the total number of employees (both se-
curity employees and behavior detection employees)
are shown for different situations. Furthermore, this
table shows whether the specified setup is accept-
able under different maximum risk levels. A Rmax
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(a) (b)

Fig. 5. The conditional risks (and the 95% confidence intervals) for the IED threat scenario. Rows correspond to different numbers of
security lanes open, whereas columns correspond to different interarrival time of passengers.

Table III. The Acceptability of the Security Setups (with Their Respective Number of Employees)
Based on Different Maximum Risk Levels

Lanes Sec Empl. BDE Empl. Rmax of 25% Rmax of 33% Rmax of 50% % Red. of Empl.

2 8 0 8 N N N 53
3 13 0 13 N N N 24
4 16 0 16 Y Y Y 6
2 8 1 9 N N N 47
3 13 1 14 N N Y 18
4 16 1 17 Y Y Y 0

of 25% implies that the airport only accepts risks in
the first 25% quartile of the risk range. Finally, the
table shows the percentage reduction of employees
as compared to the maximum number of employ-
ees. From the table it can be seen that in the case
of a Rmax of 50%, different options are available.
However, the reduction of employees is higher in the
setup with a behavior detection employee and three
security lanes open.

It is evident that the AbSRiM approach provides
reference baseline results (see Fig. 5) that can be
used by operational security decisionmakers to make
tradeoffs that lead to radically different operational
decisions and solutions (see Table III) in addressing
their difficult tradeoff decision making in practice.
In this illustration, a single threat scenario was
investigated. It should be noted that, for a complete
security risk management, other relevant threat
scenarios should be investigated as well. The con-
sidered controls in this illustration could potentially
have a different effect on the risk of these other
threat scenarios.

3.5. Discussion

Earlier versions of the AbSRiM approach as
presented in this work have been applied in previous
work as well (Janssen & Sharpanskykh, 2017; Knol,
Sharpanskykh, & Janssen, 2019). These works have
focused on vulnerability of the security checkpoint
in particular, as compared to the illustration of an
entire regional airport in this work. They give an
indication how AbSRiM can be used in different
environments and for different types of threats.
However, other types of threats and other airports
have to be considered in the future as well. Further-
more, AbSRiM can be applied to different domains,
such as shopping malls and stadiums, to investigate
the practical applicability of the approach. This can
be done by modeling stadium visitors instead of pas-
sengers, and including the spatial layout of a football
stadium instead of an airport. Specified behavior of
passenger agents cannot readily be transferred to
football stadium visitors as the environment of their
visit is different, and their goals are different.
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4. COMPARISON OF AbSRiM WITH
RELATED WORK

In this section, we provide a comparison be-
tween AbSRiM and existing security risk manage-
ment methodologies based on the following set of
criteria: independence from experts, human aspects,
transition to threat, spatiotemporal aspects, quality of
assessment, availability of tools, and ease of assess-
ment. It should be noted that this comparison is of-
ten on a more conceptual level, but provides insights
from the illustrative case study where possible.

4.1. Independence from Experts

The TVC method relies on estimations from se-
curity experts who are used to estimate parame-
ters such as vulnerability and consequence, but also
perform the risk management step. Security games
still rely on security experts to determine values for
the specification of payoffs. In comparison with Ab-
SRiM, the definition of a security game is easier to do
than the definition of an agent-based model. Agent-
based models require the definition of a large set of
parameters, whereas security games only require a
few. This leads to a larger dependency on domain ex-
perts by AbSRiM.

Compared to security games, more parameters
need to be determined by security experts for attack
trees, as each leaf node needs to be valued by an ex-
pert. However, compared to AbSRiM, fewer param-
eters have to be defined for attack trees and it is eas-
ier to validate an attack tree.

AbSRiM can also be combined with machine-
learning techniques that allow for automatic identi-
fication of different threats. Based on the defined op-
erational model (see Section 3.2), an attacker agent
can be defined to learn which actions lead to con-
sequences in the defined operational model. Learn-
ing of the attacker agent can be accomplished by
using reinforcement learning techniques, such as Q-
learning (Watkins & Dayan, 1992). A sequence of
successful actions of the attacker (i.e., actions lead-
ing to a nonzero consequence) is then considered a
threat scenario. This can further reduce the depen-
dency on security experts and potentially improve
the quality of this step. This machine-learning pro-
cess to identify threats cannot straightforwardly be
included in the alternative methodologies.

4.2. Inclusion of Human Aspects

The incorporation of intelligence and other dy-
namic, human aspects into the risk assessment is dif-

ficult for security experts. It is often noted in the lit-
erature that security experts cannot be expected to
estimate parameters well (Cooke & Goossens, 2008;
Leung & Verga, 2007), certainly in dynamic environ-
ments with many actors. Leung and Verga (2007)
mention that “limitations of human memory and
information processing capacity often lead to sub-
jective probabilities that are poorly calibrated or
internally inconsistent, even when assessed by
experts.”

An important underlying assumption of game
theory is that the players take rational decisions.
However, researchers note that “human decision-
making does not conform to the traditional game
theoretic assumption of perfect rationality” (Abbasi
et al., 2015; Yang, Kiekintveld, Ordóñez, Tambe, &
John, 2013). Although researchers try to overcome
this limitation by, for instance, employing prospect
theory (Kahneman & Tversky, 2013) and quantal
response (McKelvey & Palfrey, 1995), the problem
remains an active area of research. Furthermore,
it should be noted that security games often fo-
cus on one-to-one interactions between an attacker
and a defender. However, general social interactions,
such as group decision making, are present in many
threat scenarios.

Attack trees suffer from similar limitations as do
security games. Attack–defense trees have the possi-
bility to include higher-level interactions between the
attacker and defender. However, authors also note
that they are “not suitable for including human inter-
action such as that of social engineering, because the
attacker may combine different persuasion principles
to different degrees, with different associated suc-
cess probabilities” (Bullée, Montoya, Pieters, Junger,
& Hartel, 2015). Countless examples of the incorpo-
ration of this social human behavior in agent-based
models can be found in the literature (Jager et al.,
2017), and it has been modeled in, for instance, the
interaction between behavior detection employees
and attackers in the illustrative case study of this
work.

4.3. Transition from Normal Operations to Threat

As many systems mostly operate following stan-
dard operations, the transition from these standard
operations to the defense against an attack form an
important aspect of security. In the TVC methodol-
ogy, experts often consider this aspect, but have no
formal way of doing so.
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This transition is also hard to model in security
games as they assume the system to be in a state of
attack. This transition can be modeled well by using
agent-based models, as the standard operations are
already modeled in the defined operational model M.

Similar to security games, the transition from
standard operations to the defense against an attack
is hard to model for attack trees. They are defined
to model a specific threat and therefore struggle with
representing a transitional phase. As time can explic-
itly be taken into account by agent-based simulation
models, this transition can be modeled and investi-
gated. In the illustration of this work, the behavior
detection employee transitions from regular observa-
tions of passenger behavior to the arrest of a (poten-
tial) attacker.

4.4. Inclusion of Spatiotemporal Aspects

Security games struggle with incorporating spa-
tiotemporal elements into their models. These spa-
tiotemporal elements, such as the structures of build-
ings and the distribution of people in a shopping mall
over time, can have significant impact on the conse-
quence of an attack. Some recent work in security
games aims to incorporate spatial elements by using
deep learning on images of forests (Kamra, Gupta,
Fang, Liu, & Tambe, 2018). However, it is unclear if
this can also be used in other domains.

Similarly, attack trees struggle with the incorpo-
ration of spatiotemporal elements. The concepts of
time and space are not intuitively represented in an
attack tree, and therefore this method cannot easily
include these elements in the risk assessment. Agent-
based modeling allows for intuitive incorporation for
both space and time, and therefore allows for a po-
tentially more accurate risk assessment.

4.5. Quality of Assessment

The quality of assessment refers to the accuracy
of the risk assessment that each of the methodologies
produce. It is often stated that it is hard to validate
risk assessments (Zhuang, Bier, & Guikema, 2016),
but some high-level remarks are relevant here.

The TVC method heavily relies on basic an-
alytic tools and security experts, leading to possi-
bly inaccurate estimates. Cox (2008) provides an ex-
tensive overview of the different limitations of the
TVC methodology. The TVC methodology estimates
risks by multiplying threat likelihood, vulnerability,
and consequence. However, basic probability the-

ory states that this is only allowed if these values
are completely independent. Dependencies are cer-
tainly present between these risk components, and
the TVC methodology therefore violates this rule.
The use of Monte Carlo simulations to estimate con-
ditional risks directly in the AbSRiM approach over-
comes this limitation of interdependencies between
vulnerability and consequence, whereas dependen-
cies between threat likelihood and conditional risks
still remain in AbSRiM.

The three methodologies generate results based
on validated computational models, and indeed secu-
rity games and attack trees were shown to be useful
in practice. AbSRiM has the potential to overcome
the limitations mentioned above and lead to better
estimates but has to show usefulness in a wider vari-
ety of applications.

4.6. Availability of Tools

Once an attack tree is defined, results can be ob-
tained with relative ease. Researchers have devel-
oped an extensive tool set to automate the risk esti-
mation process (Kordy, Kordy, Mauw, & Schweitzer,
2013). The same holds for security games. Although
many of these security games are proven to be NP-
hard, researchers have developed fast algorithms for
both approximations and exact solutions (Schlenker
et al., 2016). Contrary to AbSRiM, results for attack
trees and security games have to be obtained only
once and can be interpreted quickly. In AbSRiM, a
time-consuming and extensive sensitivity analysis has
to be performed.

4.7. Ease of Assessment

A major advantage of the TVC methodology is
that it can be performed with relative ease. No model
needs to be defined and so results can be obtained
quickly. As mentioned before, this is not the case
with AbSRiM, as defining agent-based models is a
time-consuming process. Finally, security games and
attack trees also require the definition of models, but
they are easier to define than agent-based models.
This allows for an easier risk assessment and man-
agement than in AbSRiM.

5. CONCLUSION AND FUTURE WORK

This article introduced AbSRiM, a novel agent-
based security risk management approach for air-
port operations. The approach contains four main
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steps: scope selection, agent-based model definition,
risk assessment, and risk management. AbSRiM
is based on traditional security risk management
methodologies, but uses agent-based modeling as the
main paradigm to assess security risks. The approach
is illustrated by showing how to apply it to a case
study involving an IED at an airport terminal. It was
shown that opening an extra security lane and hir-
ing a behavior detection employee can be beneficial,
depending on the maximum risk the airport is will-
ing to accept and the maximum costs it is willing
to pay.

AbSRiM provides a promising way to include
important elements, such as human aspects and spa-
tiotemporal aspects, in the assessment of risk. How-
ever, AbSRiM requires an extensive modeling effort
and a lot of input from domain experts to be effec-
tive.

More research is needed to better identify the
strengths and weaknesses of AbSRiM in different
case studies. For instance, AbSRiM can be applied
to other threat scenarios related to airport opera-
tions, and different domains, such as shopping malls
and stadiums. Finally, the automatic identification of
threat scenarios using machine-learning techniques
will be investigated in more detail. This technique
can potentially be used to complement the threats
that security experts identify.
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Klügl, F. (2008). A validation methodology for agent-based simu-
lations. Proceedings of the 2008 ACM Symposium on Applied
Computing (pp. 39–43). New York: ACM Press.

Knol, A., Sharpanskykh, A., & Janssen, S. (2019). Analyz-
ing airport security checkpoint performance using cognitive
agent models. Journal of Air Transport Management, 88,
39–50.

Kordy, B., Kordy, P., Mauw, S., & Schweitzer, P. (2013). Adtool:
Security analysis with attack–defense trees. International Con-
ference on Quantitative Evaluation of Systems (pp. 173–176).
Los Angeles, CA: Springer.

Kordy, B., Mauw, S., Radomirović, S., & Schweitzer, P. (2010).
Foundations of attack–defense trees. International Workshop
on Formal Aspects in Security and Trust (pp. 80–95). Los Ange-
les, CA: Springer.

LaFree, G., & Dugan, L. (2007). Introducing the global terrorism
database. Terrorism and Political Violence, 19(2), 181–204.

Landoll, D. J., & Landoll, D. (2005). The security risk assessment
handbook: A complete guide for performing security risk assess-
ments. Boca Raton, FL: CRC Press.

Leung, K., & Verga, S. (2007). Expert judgement in risk assessment.
Defence R&D Canada Report 57.

Linghu, B., Chen, F., Guo, X., & Li, W. (2013). A concep-
tual model for flood disaster risk assessment based on agent-
based modeling. 2013 International Conference on Computer
Sciences and Applications (CSA) (pp. 369–373). Piscataway, NJ:
IEEE.

McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equi-
libria for normal form games. Games and Economic Behavior,
10(1), 6–38.

Pearson, M. (2016). What you need to know about the
Turkey airport attack. Retrieved from http://edition.cnn.com/
2016/06/29/europe/turkey-attack-up-to-speed/index.html.

Pita, J., Jain, M., Marecki, J., Ordóñez, F., Portway, C., Tambe,
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