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Executive summary

Being able to timely access and share accurate information to all stakeholders that can influence a supply
chain is referred to as supply chain visibility. Supply chain visibility is crucial for increasing the resilience
of a supply chain as this helps to proactively plan and design interventions to undesirable events. Various
methods are available to increase supply chain visibility, often by increasing the accuracy of estimating fu-
ture events. Many of these methods are reliant on (large volumes of) data, which is problematic because
data on supply chains is often not accessible, expensive to acquire, and difficult to process. Therefore, meth-
ods to increase supply chain visibility in situations with limited data availability are needed.

Modeling and simulation can be applied to situations with limited data availability, but has a limited
predictive power for complex systems. Data assimilation in discrete event simulation (DES DA) is a method
to increase the predictive power of modeling and simulation. This method aims to approximate system
states based on real-time measurements to increase the accuracy of simulation models.

DES DA has not yet been applied to supply chains and the dependency on data availability still needs to
be explored. The goal of this research is to develop a DES DA algorithm that can accurately estimate future
events in supply chains and test this algorithm for different levels of data availability. This will give insight
in the relation between data availability and the accuracy of the proposed DES DA algorithm.

During the development of this algorithm the typical supply chain challenges of high dimensionality
and future state estimation are addressed. The proposed DES DA algorithm shows to have a higher predict-
ive power (accuracy) than the results of a simulation exercise without assimilation. To allow for maximal
reproducibility and facilitate future work, all adjustments to the simulation algorithm are extensively de-
scribed in the body of this thesis.

Analysis of the performance of the proposed algorithm under different levels of data availability shows
that limited data availability does not necessarily result in less accurate estimations. Less observations can
can result in similar or even more accurate estimations. However, this can only be the case if the missing
data is not part of the set of crucial data sources.

If the missing data points are part of these crucial data sources the accuracy of the data assimilation
algorithm detoriates and the algorithm starts to underfit. Underfitting occurs when a model uses input
variables that are not significant enough to determine a meaningful relationship between the input and
output variables.

If limited data availability is the result of omitting data sources that are not part of the crucial data
sources, the accuracy of the data assimilation algorithm can increase. Using less data points helps com-
batting the curse of dimensionality which results in more accurate estimations.

This research has shown that crucial data points for supply chains are the data sources that serve as ar-
rival sensors of entities at the system boundaries. The arrival sensors reduce the uncertainty of future state
estimations by accurately estimating the number of the entities in the system and the moment of arrival
of these entities. Especially the accurate estimation of the moment of arrival reduces the variation in the
estimations of the particles and thereby increases the accuracy of the estimation of future events.

For future work, two directions of research are identified. First the development of the algorithm can be
taken to the next stage by testing this algorithm on data from a physical real system, incorporating structural
uncertainty and optimizing the hyperparameters of the algorithm.

The second direction of research should focus on the implementation of the algorithm. Research is
needed on the establishment of data lakes that combine all different data sources. Next to this the usability
of the framework can be improved by finding methods to communicate the shape of posterior probabil-
ity density functions to supply chain planners and establishing mechanisms that can detect errors in the
estimations at an early stage.
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1
Introduction

Supply chain (SC) Visibility is an important factor to increase the resilience of supply chains. Many of the
techniques to increase SC visibility are heavily reliant on data. But making supply chain data available is
challenging. Data assimilation in discrete event simulation (DES DA) have potential to increase SC visibility
in situations with low data availability. However, the performance of DES DA in situations with limited data
availability is unknown. Therefore, the goal of this research is to develop a DES DA algorithm suitable to in-
crease SC visibility and identify the effect limited data availability has on the performance of the algorithm.

This chapter serves as an introduction to this research. First more insights will be provided on the po-
tential of DES DA to increase SC visibility. Subsequently the knowledge gaps of the current state-of-the-art
are identified which shape the goal of this research. Thereafter, the research design and the corresponding
research questions will be discussed. At last a reading guide for the remainder of the thesis is provided.

1.1. Need for DES DA to increase supply chain visibility
The increasing globalization and digitization made the number of partnerships between firms and organ-
izations increase rapidly over the past decades. This resulted in a growing complexity of supply chains
(Ferdows, 2018). Combined with an increasingly growing focus on efficiency, supply chains have become
more and more vulnerable (Silva et al., 2017).

Crises such as COVID-19 showed the reliance of societies on supply chains once again. The limited
distribution of protective equipment over hospitals and the current distribution of the various vaccines
emphasize how important it is to develop supply chains that are resilient to unexpected events. To this
extent visibility on the operations of a supply chain is considered to be crucial, this is explained in the
following sections.

1.1.1. How supply chain visibility leads to supply chain resilience
The term resilience comes from the word resilire, which is Latin for to rebound or to spring back. Research to
resilience finds its origin in social psychology and materials science. This is extended to various other fields
such as ecology and industrial safety, each having a slightly different definition for this term. The common
notion in these definitions is the "ability to successfully accommodate unforeseen environmental perturba-
tions or disturbances" (Laprie, 2008).

In supply chain management, supply chain resilience (SCR) is referred to as "the ability to proactively
plan and design the Supply Chain network for anticipating unexpected disruptive (negative) events [...] and
transcending to a post-event robust state of operations" (Ponis & Koronis, 2012). Pettit et al. (2019) noted that
firms should continuously "balance" their capabilities (results of investments to increase SCR) with vulner-
abilities (drivers of SC disruptions) to achieve a state of balanced resilience. The general question in this
matter is how to manage the portfolio of capabilities as good as possible given the fact that vulnerabilities
evolve over time.

To do so, sufficient insight in the vulnerabilities of a supply chain are essential to to allow for the op-
timization of the deployment of capabilities. Having this insight is defined by Wei & Wang (2010) as supply
chain visibility. Research shows that having a high degree of visibility enables firms to reconfigure their
supply chain resources for greater competitive advantage.

No unique definition for visibility exists, Caridi et al. (2010) identify two main components of visibility
based on a literature: 1) The emphasis on information accessibility/exchange and 2) different properties of
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information, typically timeliness, usefulness and accuracy. For the remainder of this research visibility is
defined as "The ability to timely access and share relevant and accurate information to all stakeholders that
can influence the supply chain".

1.1.2. Increasing supply chain visibility with limited data availability
In general one can identify three classes of methods to increase SC visibility: 1) Technological solutions such
as Radio-frequency identification (RFID) and blockchain. 2) Artificial Intelligence and Machine Learning
Techniques. 3) Modeling and simulation techniques. These techniques are generally dependent on data
(see chapter 2 for more insight on this matter). However, making supply chain data available is challenging
because of three aspects.

The first aspect that complicates the accessibility of data on supply chains is the limited availability of
data. As data becomes more and more important in supply chain management, more data on supply chain
events (e.g., the loading of containers) becomes available. However, many events remain unrecorded and
thereby inaccessible (Martindale et al., 2020).

The second aspect that makes it difficult to make data on supply chains accessible is the price of supply
chain data. Parts of the supply chain are often handled by second or third parties, if any data is collected
these parts of the supply chain, this generally cannot be accessed for free. Examples of data that can be
purchased are carrier data points (e.g., TradeLens data which can be purchased from Maersk) or third party
data points (e.g., Vessel tracking data which can be purchased from third parties such as VesselTracker)

The third challenging aspect of making supply chain data accessible is the difficulty of processing data.
Purchased data on supply chains generally comes in raw formats and therefore needs many processing
steps to be turned into usable data that can be transformed into information. These processing steps re-
quire expertise and knowledge, which is expensive and difficult to acquire.

Summarizing, the limited availability of supply chain data, the price of this data and, the difficulty
of processing the data make making supply chain data available a difficult process. Therefore, finding a
method that performs well in increasing supply chain visibility in situations with sparse or limited data is
essential.

1.1.3. The potential of data assimilation in discrete event simulation
Modeling and simulation techniques are the only method that can be applied in situations with low data
availability because domain knowledge can be used to adjust the internal logic of a model instead of data.
However, because simulation models are simplifications of reality (Box, 1976), the the ability to predict the
real behavior of complex systems is limited Darema (2004). This makes data assimilation an interesting
solution, because this technique aims to approximate system states based on real-time measurements and
thereby increases the accuracy and predictive power of simulation models.

Supply chains are characterized by non-Gaussian and complex behavior because state transitions in
supply chains are typically defined by decision rules triggered by events (Xie, 2019). This makes it very
difficult to capture this behavior by continuous models. Threfore, discrete event simulation (DES) is the
preferred modeling technique to study these types of systems.

Classical data assimilation techniques (see section 2.3.1) are unsuitable for DES models because of their
assumption of Gaussian errors. To this extent, sequential Monte Carlo (also known as particle filters) have
been developed as an alternative for classical data assimilation techniques. Over the past years sequen-
tial Monte Carlo methods have been applied to discrete event simulation. In literature, the application of
particle filters to assimilate data into discrete event simulation models is commonly referred to as data as-
similation in discrete event simulation (DES DA).

Recent research confirms the potential of DES DA to increase the accuracy and predictive power of DES
models in various fields. However, DES DA has not yet been applied to supply chains. Therefor this research
will explore if and how DES DA can be applied to increase SC visibility. More details on the suitability, the
application and limitations of this technique are given in chapter 2.
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1.2. Research goal
As DES DA is a new technique, still many unknowns on this topic exist. Especially related to the application
of DES DA to supply chains or more complex systems in general. Section 2.4 gives an overview of the dif-
ferent challenges that originate from the key characteristics of DES. Some of these challenges have already
been resolved, others are considered knowledge gaps for future work. In this section, the knowledge gaps
that form the foundation of this research are discussed. Based on these knowledge gaps, a research goal and
question is composed.

1.2.1. Knowledge gaps and research goal
The first knowledge gap in existing literature on DES DA is the fact that little is known how DES DA an be
applied to supply chains or other systems with a high degree of complexity and dimensionality (such as
supply chains). Literature shows that applying DES DA to systems with a high degree of dimensionality is
challenging since particle filters tend collapse in systems with a high-dimensional state space (see section
2.4.4 for more information).

Two root-causes to this collapse are identified: 1) As the number of dimensions increase, any two points
become more similar making distance metrics become less effective (Aggarwal et al., 2001). 2) As the
numbers of dimensions grow, data becomes sparse. This requires the numbers of particles to grow sub-
exponential with the number of dimensions in the system to make it still approximate a posterior distribu-
tion Bengtsson et al. (2008).

The second knowledge gap relates to the effectiveness of DES DA in situations with limited data avail-
ability. Cho et al. (2020) and Hu & Wu (2019) show that state estimations by DES DA generally become more
accurate if more data is available. However, no research has yet been done on the relation between data
availability and the accuracy of DES DA if different types of data are available.

The goal of this research is to fill in these two knowledge gaps. First, this research will discover how
the current state-of-the-art DES DA algorithms should be adjusted to allow for the increase of supply chain
visibility. One should think of adjustments based on the type of data that is available for supply chains,
adjustments based on the output and output of the algorithm, and measures to deal with complexity and a
high number of dimensions.

The second goal of this research is to study the effects limited data availability has on the accuracy of
DES DA as a method to increase supply chain visibility by providing real-time decision support. Studying
these effects will help to identify crucial data points for the application of DES DA to increase supply chain
visibility.

1.3. Research design
To reach the previously discussed research goals, a research method is presented. In this section first the
general research method (proof of concept) is discussed, after which the use case selection will be further
elaborated on. Based on this use case, combined with the aforementioned research goals the scope of the
research will be discussed based on which the research questions is determined.

As the goal of this research is to discover if and under what conditions DES DA can be used as a tool
to increase supply chain visibility, this research is exploratory in its nature. To bound this exploration, it is
decided to perform this research based on a use case which is used as a proof of concept.

Together with an external party, a use case is developed to proof that DES DA method can increase sup-
ply chain visibility by satisfying a real decision-support request. This will benefit the generalizability of the
developed algorithm and the results since the designed DES DA algorithm is tested on a real supply chain
structure. A real use case will also lead to realistic assumptions on both the data availability.

Deploying a use case as proof of concept means that not every component of this research can be gener-
alized. On one hand, a generalizable algorithm for data assimilation with supply chains will be developed to
contribute to the academic relevance of this thesis. On the other hand, this will be tested on a case-specific
simulation model of the supply chain.
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1.3.1. Defining supply chain visibility as accuracy
For this research, it is decided to work together with a fashion retailer with an international supply chain,
further referred to as stakeholder. Together with the supply chain planning team a use case is selected to
serve as proof of concept:

The stakeholder has put out a request to increase the accuracy of the estimated dates of shipments ar-
riving at the distribution center. An increase in accuracy will help optimizing the inventory planning of
the warehouse. This specific request means that the broad definition of supply chain visibility is narrowed
down to the increase of accuracy the arrival estimations of shipments. More information on the use case
itself is presented in chapter 3.

As supply chain visibility is narrowed down to the accuracy of the arrival estimations of shipment, ac-
curacy will be used in the remainder of this document to assess the degree to which supply chain visibility
is increased by DES DA. To determine the accuracy, four different aspects of accuracy are assessed. The
aspects are briefly discussed below. More insights on the operationalization and implementation of these
aspects is given in chapter 5.

First, two metrics are identified to capture the accuracy of an arrival estimation for an individual ship-
ment. An accurate prediction has a low absolute distance between the estimated and the observed arrival
day. Next to this a high share of the particles should have estimated the observed arrival date correct which
is indicated by a high percentage.

Second, the the accuracy of a set of shipment arrival estimations needs to be calculated as well. A high
accuracy of a set of arrival estimations is indicated by two aspects: An accurate set of estimations indicated
by an accurate weighted average over the set of shipments and a high level of robustness indicated by a low
standard deviation for the estimations in this set.

1.3.2. Research questions and methods
Based on the twofold research goal and the selected use case, the following research question is composed:

Research Question: What is the effect of limited data availability on the accuracy of data assimilation in
discrete event simulation on supply chains?

To answer this question, a set of sub-questions has been composed that collectively help answering the
main research question. Each of the sub-research questions will be presented in this section.

The DES DA algorithm that will be constructed does not need to be built from the ground, this can be an
adjustment to the current state-of-the-art to make it suitable for supply chain simulation models. To give
clarity in the adjustments that are needed, the first sub-question is designed. The goal of this question is to
give insight on the different adjustments of the current state-of-the-art DES DA algorithms needed to make
the algorithm applicable to supply chains:

1. How should the current state-of-the-art data assimilation in discrete event simulation algorithms be
adjusted for application to supply chains?

The increase in accuracy of the shipment arrival estimations is as a proxy for the degree to which sup-
ply chain visibility is increased. Therefore, the metrics to capture this increase in accuracy should be well
defined. The accuracy metrics should be able to capture the average accuracy and the robustness of the
accuracy over a set of shipments. The formalization of these metrics will form the answer to sub-question
2:

2. What accuracy metrics should be used to determine the accuracy of data assimilation in discrete event
simulation algorithms for the estimation of future events?

Based on the identified accuracy metrics, the accuracy of the algorithm can be tested for different levels
of data availability. To do so, a set of experiments with different levels of data availability will be designed.
The accuracy metrics will be computed for each experiment and form the basis for a comparison of the
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different experiment. Based on this comparison, the effect the number of observations that are assimilated
into the simulation model has on the accuracy of DES DA forms the answer to sub-question 3:

3. What is the relation between the number of observations and the accuracy of data assimilation in dis-
crete event simulations on supply chains?

Literature on machine learning and feature selection shows that if different types of data sources are
used as input, some are show to be more important than others Koutroumbas & Theodoridis (2009). There-
fore, it is be expected that the relation between the number of observations and the quality of data assim-
ilation is not straightforward. If so, this is an indication that there are data points that are crucial for the
accuracy of data assimilation and data points that can be identified as noise.

The results from the analysis resulting from sub-question 3 will be further analyzed to make the distinc-
tion between crucial data points and noise. This distinction should form the answer to sub-question 4:

4. What sources of data are crucial for the the accuracy of data assimilation with discrete event simulation
on supply chains?

1.4. Structure of this thesis
The thesis consists of eight different chapters each intended to provide argumentation and clarification on
the conclusions that are drawn. The first three chapters serve as an introduction to this research with a
literature review and a description of the research. The argumentation for the answers to each of the sub-
questions can be found in chapter 4 to 7. At last the sub-questions and the main research question are
answered in chapter 8. The relation between the sub-questions and the different chapters is visualized in
figure 1.1.

Figure 1.1: Relation between sub-questions and chapters

Chapter 2 is a literature review to give insight in related work. In this chapter, supply chain visibility, dis-
crete event simulation and data assimilation methods are discussed, resulting in an overview of the current
state-of-the art and potential challenges for the application of DES DA on supply chains.

As this research is based on a use-case, this use-case will be introduced in chapter 3. In this chapter, the
current supply chain operations and planning practices, the decision support request and the data availab-
ility for this use case are discussed.

Based on the decision-support request of the use-case and the challenges for applying DES DA to sup-
ply chains that are identified a data assimilation algorithm is developed. This algorithm is presented in
chapter 4 by discussing each of the functions that form this algorithm to guarantee the reproducibility of
this algorithm for future research. This will form the basis for answering sub-question 1.
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In chapter 5 the different experiments will be introduced as well as the formalization of the accuracy
metrics that are used to assess the accuracy of the data assimilation algorithm. This formalization will form
the basis for the answer to sub-question 2.

Subsequently the results of the different experiments will be presented in chapter 6, based on which
the relation between limited data availability and the accuracy of the data assimilation algorithm can be
identified. This is the answer to sub-question 3.

The results of the experiments will be discussed in chapter 7. This discussion will focus on a comparison
with existing literature, a reflection on the generalizability of the results, and discussing the limitations and
implications of this research. By discussing the results, the crucial data points are identified. This forms the
answer to sub-question 4.

At last, the answers to all sub-questions are presented in chapter 8. These answers together form the
answer to the main research question presented in the same chapter.



2
Related work

Chapter 1 introduced the concept of supply chain visibility and how this can be achieved. It shows that
DES DA is a technique with a lot of potential to increase SC visibility. Especially when considering real-time
decision support. However, DES DA is still an underdeveloped field particularly regarding supply chains.
The goal of this chapter is to to provide a more solid academic foundation for these claims. Next to this, a
literature review on DES DA is presented to give the reader a better understanding on the current state-of-
the art as well as the remaining challenges that form the basis for this research.

First the choice for data assimilation in discrete event simulation (DES DA) as a method to increase
SC visibility is discussed. Subsequently more background information on discrete event simulation (DES)
will be given, followed by a review of the different data assimilation techniques. Thereafter, the DES DA
algorithm will be explained together with the framework of in which this algorithm is generally placed. The
last section of this chapter discuss various challenges / knowledge gaps for DES DA which form the basis for
the research questions.

2.1. Increasing supply chain visibility
SC visibility has a positive effect on supply chain resilience by helping balancing both the supply chain
capabilities and vulnerabilities. Several methods to increase SC visibility are discussed below. Based on a
comparison of the different techniques in situations with low data availability, argumentation is provided
on why DES DA is the technique that forms the basis for this research.

2.1.1. Methods to increase supply chain visbility
SC visibility can be improved by various methods. In the the next section the different methods are grouped
into three distinguishable classes of methods. Each of these classes will be briefly discussed.

Technological solutions form the first class of methods. These methods deal with the development of
technical means to increase visibility. Both Radio Frequency Identification (RFID) as well as blockchain are
the two most frequently mentioned developments within this field. Both methods aim to increase visibility
by increasing the volume and accuracy of data on the identity, location and status of entities in the supply
chain (Angeles, 2005, Caridi et al., 2013, Cole et al., 2019).

The second class of methods are Artificial intelligence (AI) and machine learning (ML) techniques. AI
and ML are rapidly increasing fields of research, becoming more and more dominant within almost every
field of application. In SC management, a similar pattern is visible. Baryannis et al. (2019) identify three
general fields of application for AI and ML in SC management: the automated identification of, assessment
of and response to SC risks.

The third class of methods are modeling and Simulation (M&S) techniques that are often used to con-
struct digital counterparts (twins) of the supply chains (Ivanov et al., 2019) or to test different SC configura-
tions on an operational, design or strategic level (Huan et al., 2004) both aiming to increase visibility.

The common denominator for the aforementioned fields is the reliance on data. Technological solu-
tions aim to increase the availability and accuracy of data. AI and ML are known to be heavily reliant on
large training data sets (Huck, 2019). M&S does not necessarily have to depend on large datasets but does
generally require a good understanding of the system under study (Huang, 2013). Over the past years the
M&S community made large steps in improving the application of M&S under uncertainty (Deelen et al.,
2020), which is caused by sparse data availability (Sankararaman & Mahadevan, 2013). Examples of this are

7
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exploratory modeling and analysis (EMA) Kwakkel (2017) or the deployment of sensitivity analysis (Baroni
& Tarantola, 2014).

2.1.2. Suitable methods with low data availability
As not all data is available by default or can be made available when working on supply chains it is decided
to limit the scope of the research to M&S techniques. However, traditional M&S techniques show one clear
limitation when applied for providing real-time decision support. Traditional simulations are generally con-
ducted in a what-if setting with data inputs that are fixed at the time the application commences execution.
The result of this is that even elaborate complex models of systems fail to predict the real behavior of those
systems (Darema, 2005).

This limitation was acknowledged in an early stage of M&S development. Because simulations require
data and business rules to be manually embedded within them by (simulation) experts, continuously re-
configuring a simulation to accommodate real-world changes is often too (labour) expensive (Goodall et
al., 2019) and what-if simulations can lack accuracy (see also section 2.3.

A response to this limitation was the emergence of dynamic data driven simulation, which is an ap-
proach where the simulation is parameterised by providing data through a set of data inputs (J. Wang et
al., 2011). Which relates to symbiotic simulation: a simulation paradigm where a physical system and a
simulation system are closely related to each other. In this paradigm the simulation system benefits from
real-time measurements about the physical system, provided by corresponding sensors (Aydt et al., 2009).
However,When the entire state of the physical system can not directly be observed, these real-time simula-
tion techniques generally lack accuracy.

If unobservable (hidden) states should be estimated, data assimilation is a suitable technique. This is
an emerging field of research within the field of M&S and refers to "the process of incorporating observation
data into a running model to produce improved estimates of state variables of interest" (Hu & Wu, 2019).
This fits closely to the goal of the research, therefore the research is further scoped to data assimilation for
modeling and simulation.

2.1.3. Data assimilation for supply chains
Data assimilation (DA) finds its origin in the field of numerical weather prediction and is further developed
within the field of earth sciences. A large share of the current state-of-the-art methods are inspired by and
adapted from atmospheric or oceanic data assimilation systems. These conventional DA techniques such
as the Kalman filter rely on linear theory and assume Gaussian data distributions (Reichle, 2008). These
techniques are referred to as parametric techniques because of their reliance on analytic properties (i.e.,
means and covariance matrices) that can be derived from the numerical models.

Supply chains are nonlinear and complex in its nature (S. Wang, 2010) which limits the usefulness of
conventional DA techniques. Besides this it is considered undesirable to represent these systems by means
of continuous models. Discrete-event simulation (DES) is better suited for analyzing supply chains because
it is able to embody the nonlinear and complex characteristics of supply chains (Blanco et al., 2011). A
downside of using DES models is the fact that DES models do not have a numerical model from which ana-
lytic properties can be derived. This means that conventional, parametric, DA techniques do not work for
DES models.

To this extent, a non-parametric data assimilation method is developed based on Sequential Monte
Carlo (SMC) techniques (Hu & Wu, 2019). SMC techniques, also referred to as Particle Filters (PF) are
sample-based methods using Bayesian inference, stochastic sampling and importance resampling to es-
timate (hidden) system states in an iterative manner (Cho et al., 2020). Instead of using the analytic prop-
erties to estimate the probability density functions, these distributions are approximated by a large set of
random samples, also known as particles. This is a very new technique, developed over the past years and
previous applications have proved its potential in application areas such as wildfire spread simulations (Gu
& Hu, 2008, Long & Hu, 2017, Xue et al., 2012) and transport simulations (Hu & Wu, 2019, Xie, 2019). To give
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the reader a better understanding of this, first the concept of discrete event simulation will be discussed in
the next section.

2.2. Discrete event simulation background
To study and predict the behavior of complex systems, modeling and simulation (M&S) is a desirable method
since these types of models are iteratively built until it can represent a real system with sufficient accuracy.
Verified and validated simulation models are the rusult of an iterative process of verification and validation
until the differences between the real and simulated system are within acceptable bounds. Banks (1998)
These models can help to understand system behavior, and are very useful to test different system config-
urations on operational, design or strategic levels (Huan et al., 2004).

However, even the most elaborate, complex models are not able to model reality perfectly; as supported
by the famous saying of George Box (1976) goes: "All models are wrong". This imperfection results in uncer-
tainty which limits the predictive power of most simulation models (Darema, 2004).

However, as Box (1976) claims that all models are wrong, he also claims that "some models are useful".
The increase of computational powers in the last decade made the development of useful simulation models
more important. Simulation models are especially useful to understand systems and evaluate eventual
strategies to improve the operations of the systems.

2.2.1. Discrete event system specification
For modeling and simulation, three different basic system specification formalisms exist, each suitable to
model different types of system systems. The suitability of each formalism to represent a certain system
depends on the representation of both the state variables and the time base (continuous or discrete) (Xie,
2019) the different classifications of systems are displayed in figure 2.1.

Figure 2.1: System classification according to the representation of time base/state variables, derived from Xie (2019)

The discrete event system specification (DEVS) formalism fits to the system classification as shown in
figure 2.1 c. In this formalism, a system is represented by piecewise constant state trajectories over a con-
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tinuous timebase (Xie, 2019). This means that state changes are only captured at discrete random points in
time (instances); such a moment is called referred to as an event (Nance, 1981). The fact that everything that
happens between two consecutive instances is omitted can make discrete event simulation very efficient.

For discrete event simulation, various formalisms exist, of which DEVS is the most used one. In DEVS,
the system behavior is described on two different levels; an atomic level and a coupled level. An atomic
DEVS model describes the autonomous behavior of a discrete event system as well as how it reacts to input
(events) and generate output (events). Atomic models are coupled to form a larger model. More elaborate
descriptions of this formalism can be found in Zeigler et al. (2000) and Xie (2019). The most important factor
to note from this formalism is that atomic model states remain unchanged even despite events happening
on the coupled model level (i.e., in other atomic models that are part of the coupled model).

2.2.2. Systems for discrete event simulations
Discrete event simulation is generally used to study the behavior of man-made dynamic systems (Xie, 2019).
Examples of systems where DES is effectively applied are healthcare (Günal & Pidd, 2010), factories (Kádár
et al., 2004) and supply chains (Ivanov et al., 2019, Tako & Robinson, 2012). The state transitions of these
systems are generally defined by decision rules, for which the decisions are triggered by events. This makes
the behavior of discrete event simulations highly nonlinear and non Gaussian. This is very difficult to be
defined by differential equations and therefore a discrete event approach is needed for these systems. This
makes DES the preferred M&S tool to study and predict the behavior of supply chains.

The last important notion on systems that are studied by discrete event simulation is the fact that many
of these systems are open system. This means that model components (entities) can flow in and out through
the system boundaries which makes the number of components in the system dynamic instead of fixed (Xie
& Verbraeck, 2019). One could think of this as the flow of goods through a supply chain; goods arrive at the
system boundaries (e.g., after production) and leave the system as well (e.g., after delivery).

Summarizing, discrete event simulations are the most suitable technique to study supply chains. This
M&S approach is defined by a set of distinctive characteristics which impact the way data assimilation is
performed. The most important characteristics are reiterated:

• The system state is represented by a collection of continuous and discrete state variables
• The system state is changed at events which can take place at random moments (instances) because

of the continuous time base
• Between two events in an atomic model component, the atomic model state remains piecewise con-

stant
• System state changes happen based on rules which makes the behavior non-linear and non-gaussian
• Discrete event systems are often open systems with a dynamic number of components

2.3. Data assimilation background
Over the past decades, not only computing power made rapid advancements. Also the possibilities to meas-
ure system states in a real-time manner have developed rapidly. The combination of progress in sensors,
data management systems and (online) data sharing systems made it possible to (remotely) access larger
quantities of more precise data at a faster speed. These developments sparked the development of a new
simulation paradigm: Dynamic Data Driven Application Systems (DDDAS) which aims to both incorporate
additional data into an executing application (simulation model) and also dynamically steer the measure-
ment process (Darema, 2004). This is supposed to mitigate the negative effects of errors in the model by
continuously "recalibrating" the model.

Dynamic data driven simulation (DDDS) is related to this paradigm and tries incorporates real-time
measurement data into simulation models to improve the accuracy of these models during runtime (Cho et
al., 2020). Data assimilation (DA) is used in this approach to approximate system states based on the real-
time measurements. To give the reader a good understanding of data assimilation, this section aims to give
more insight into the various data assimilation techniques that exist and provides further argumentation
on why particle filtering is the technique that fits to discrete event simulation.
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2.3.1. Data assimilation techniques
As data assimilation aims to increase the accuracy of dynamical models by incorporating real-time meas-
urements of the real system into the dynamical system model. For this process to work, three components
form the foundation (Xie, 2019):

• The System model which describes the evolution of a system over time. This is a function that defines
the state transition based from time k-1 to k, which takes the state vector s of time k-1 as an input. To
this process, system noise (νk−1) is added. This is often defined in a discrete time state space form:

sk = fk (sk−1)+νk−1,k = 1,2, . . . (2.1)

• The measurement model which maps the state (sk ) to the the measurements with a (nonlinear) func-
tion gk and adds measurement noise εk . This is defined as a discrete time equation as well:

mk = gk (sk )+εk ,k = 1,2, . . . , (2.2)

• The data assimilation technique that provides the state estimation based on the system model, meas-
urement model and, both types of errors.

For different types of system models (and measurement models), different types of data assimilation
techniques are more suitable. Generally speaking, two classes of data assimilation techniques are identified.

The first class is referred to as variational methods, which aim to minimize a cost function that measures
the misfit between the system state, a background state (short-range forecast) and an observation (Xie,
2019).

The second class is commonly referred to as sequential methods, which aim to correct estimated states
every time an observation becomes available. This class is divided into two groups: parametric and non-
paramatric techniques, which both will briefly be discussed in the next sections.

Parametric sequential data assimilation techniques (Kalman Filters)
Parametric sequential data assimilation techniques try to minimize the analysis error covariance matrix and
the forecast error covariance matrix. Since these matrices can be accurately calculated, an optimal filter is
found which is the referred to as the Kalman filter, named after its primary developer Rudolf Kalman. Since
this filter uses uses a series of measurements observed over timed (sequential), it produces estimates of
unknown variables that tend to be more accurate than those based on a single measurement alone. Welch
& Bishop (1995) describe this filter as an "efficient computational (recursive) solution of the least squeares
solution."

However,the Kalman filter is based on two foundations that make it unsuitable for discrete event sim-
ulation. At first Kalman filters method is based on an assumption of linearity which definitely does not
hold for discrete event simulation. This assumption is relaxed by extended and ensemble Kalman filters.
However, the second assumption of Kalman filters is that errors in the system model and the measurement
model need to be Gaussian, which is not true for discrete event simulation Xie (2019).

Non-parametric data assimilation techniques (Particle Filters)
The second group of data assimilation techniques do not rely on analytic properties of the model (i.e., mean
and covariance matrix) to estimate a conditional distribution of states based on the system model and the
measurement model. Instead these methods use a (large) set of weighted samples (particles) to approxim-
ate this (posterior) distribution. This is a filtering process based on Bayesian inference, stochastic sampling
and importance resampling Cho et al. (2020) and often referred to as particle filtering or Sequential Monte
Carlo (SMC) methods.

The fact that particle filters (PF’s) do not make any assumptions on both the linearity of the model as well
as the distribution of the errors makes them suitable for data assimilation in discrete event simulation. This
field of application is relatively new and has faced rapid development over the past years. Particle filtering
has already shown its potential in application areas such as wildfire spread simulations (Gu & Hu, 2008,
Long & Hu, 2017, Xue et al., 2012), transport simulations (Hu & Wu, 2019, Xie & Verbraeck, 2019) and process
planning (Cho, 2019, Xie, 2019). For this method to be applicable to discrete event simulation, dynamic data
driven simulation (DDDS) framework is developed, which will be explained in the next section.
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2.3.2. Data assimilation in discrete event simulation framework
A generic DDDAS framework consists of five different components: A real system (1) that is modeled by a
simulation model (2) and is monitored by a data acquisition component (3). The simulation model provides
a state to the measurement model (4) which subsequently translates this state into estimated measurements
to the data assimilation technique (5). Here the measurements and the estimated measurements are com-
pared and subsequently fed back into the simulation model. This framework has graphically been displayed
in figure 2.2a. In true DDDAS applications the data assimilation technique is also supposed to dynamically
steer the measurement process. Since this is not within the scope of research this is left out of the explana-
tion and the figure.

(a) DDDAS framework based on Xie (2019) (b) DES DA based on Hu & Wu (2019) (c) Relation DDDAS and DES DA framework

Figure 2.2: DES DA framework in a DDDAS context

Based on this line of thought, Hu & Wu (2019) proposed a framework for data assimilation in discrete
event simulation. This framework is a composition of four interacting parts: A simulation system , a meas-
urement system, the experiment design and the data assimilation algorithm. The first three components
will be briefly discussed in this section, after which the data assimilation algorithm (particle filtering) will
be described into more detail in the next section. A visualization of this framework and the relation to
DDDAS is visualized in figures 2.2b and 2.2c.

Simulation system
The simulation system encompasses the simulation model as shown in figure 2.2 and defines how the sys-
tem state over time. In principle, a simulating system could just be any DES model, however, several adjust-
ments need to be made to allow for data assimilation according to Hu & Wu (2019). The adjustments are
mainly related to the way discrete event simulation systems deal with states.

To allow for data assimilation, it should be specifically stated which states comprise the system state and
these states should be stored in the system state vector. Apart from this, a challenge for DES DA comes from
the fact that states remain constant between two events. This means that at the time of data assimilation the
set of system states does not accurately represent the actual system state of the real system. The problem
that arises from this discrepancy is referred to as the state retrieval problem (Xie & Verbraeck, 2019). The
solution for the state retrieval problem is an interpolation method which is described into more detail in
section 2.4.1.

Experiment design
The experiment design defines how the data assimilation experiments are set up and how the effectiveness
of the DES DA exercise is evaluated. This encompasses a description the different configurations of the
algorithm and the performance metrics, but more importantly a decision on the configuration of the real
system and the data acquisition components. According to Hu & Wu (2019), it is desirable to perform ex-
periments on physical systems. However, this is not always practical since physical system can take long
periods of time to transform their system state. To mitigate these problems, identical twin experiment is
presented as a best practice.

In an identical twin experiment, a simulation model is used as substitute of a physical system to take the
role of the real system in the framework. This simulation run will first be run and its data will be recorded.
This simulation is considered the "ground truth". This process is graphically presented in figure 2.3. This



2.3. Data assimilation background 13

Figure 2.3: Identical twin concept

allows to easily compare the system states of the assimilated system to the "synthetic observations". This
has two advantages: 1) The "true system" is and has exactly the same structure as the assimilated system,
which means that any deviations between these systems can not by cause by structural differences. 2) This
allows for the testing of the impact of platforms not currently deployed (Hu & Wu, 2019).

Measurement model and data assimilation algorithm
The last two component that together form the data assimilation framework are the measurement model
and the data assimilation algorithm. These two components form the core of this framework and will there-
fore be explained into more detail in the next section.

2.3.3. Data assimilation algorithm
As previously described, the goal of data assimilation is to calculate a posterior probability distribution. This
is done by recursively estimating the state of dynamic system, which consists of two models. The first model
is the system transition model which expresses the transition of system states from time t-1 to time t. The
second model is the measurement model which defines the mapping from a state variable to a measure-
ment variable. These measurements are subsequently compared with the real observations to give weights
to each of the model weights. This is done for a large number of observations (particles). The weighted
distribution of the system states of the particles and its weights give the posterior belief of the system state
(see equation 2.3).

St =
{

s(i )
t , w (i )

t | i = 1, . . . , N
}

(2.3)

This process is repeated every time new data is assimilated into the system, the time span between these
moments is referred to as t. In the remainder of this section, each of the steps will be elaborated on in more
detail, accompanied with schematic representations of each of the processes. This explanation is based on
the bootstrap filter algorithm and the framework as provided in Hu & Wu (2019). Different DA algorithms
exist, but this one is chosen as an example because of its simple approach of calculating weights and suit-
ability with DES models. The process is graphically displayed in figure 2.4.

At the initialization, N (generally N is a large number) particles are generated. Each particle represents
a specific estimate for the system state which is the compound of all system state variables (and therefore
a state vector). Each particle is generated by randomly sampling from the ranges of plausible variables for
each of the system state variables. In figure 2.4, only the observable system states are shown. The hidden
system states are not displayed since these do not affect the data assimilation process itself. In this example
two observable system states are displayed. The set of sampled particles st is referred to as the prior believe
of the system state.

The first step of the data assimilation process is the sampling step, which runs from the last moment
data is assimilated (t-1) to the moment new data is assimilated into the system (t). Here the system trans-
ition model performs the state transitions for each of the particles from time t-1 to time t as is expected
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Figure 2.4: One iteration of data assimilation in DES with bootstrap filter algorithm, based on Hu & Wu (2019)

to happen in the real system. In the case of a DES application, the system transition model refers to the
simulation model. Each particle represents one instance of this simulation model with its own set of para-
meters. At time t, the simulation is stopped and all (relevant) system states are recorded this is state vector
s′t . Subsequently the state variables that is measured by sensors (the state variables that are observable) are
separated and slightly modified in the intermediate step based on the measurement model. Here the meas-
urable system states are adjusted with an estimation of the expected sensor noise. Generally this is done
by adding Gaussian noise to each of the system state variables. For each of the particles the selected set of
"measurements" is stored in the vector m′

t

The real observation data (mt ) that comes in, is subsequently compared to the measurement data for
each of the particles (each entry in m′

t ). Based on he difference between the real observation data and the
measurement data, importance weights are calculated. Hu & Wu (2019) propose to define a measurement
density as a multivariate Gaussian distribution per particle and the real observation data to calculate the
weights. The smaller the difference between the measurement data of a particle and the real observation
data, the higher the weight that is assigned to this particle. After all weights have computed, the weights
are normalized. This is graphically represented by the size of the particles in figure 2.4. As presented in this
figure, the closer a particle is to the observation data, the higher the weighth that is assigned to this particle.

At the last step, importance sampling is used to generate N offspring samples. The number of offspring
particles each previous particle generates is proportional to its relative importance weight. A particle with
a high weight can generate a lot of offspring particles. This can lead to a lot of model instances that are
exactly the same. To combat this problem, different random seeds should be used for stochastic models
and for deterministic models, the system states are perturbed. This is referred to as particle rejuvenation.
This set of new samples st represents the posterior belief of the system state and used as the input for a new
iteration.

2.4. Challenges for DES DA
The key characteristics of discrete event simulation can make data assimilation in discrete event simulation
a challenging subject. Because DES DA this is still an emerging field of research, some of the challenges have
already been addressed and some of these are still part of future research. This section gives an overview of
the most important challenges and already implemented or suggested directions for research.

2.4.1. State retrieval problem
Xie (2019) describes the a challenge for DES DA called the state retrieval problem. The system state of a
DES model is the compound of different atomic model component states. These atomic model component
states are only updated locally if a new event takes place. This means that at the time of data assimilation
the set of system states does not necessarily represent the actual system state accurate and deviations with
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the physical system can exist. A solution to this problem is presented by Xie (2019) by introducing an inter-
polation operation which takes the elapsed time for a state variable into account.

The challenge of implementation of this interpolation operation and the data assimilation itself has
already (partly) been resolved by the proposed algorithm of Hu & Wu (2019). This is also implemented in
the algorithm developed Xie (2019). Both algorithms are tested on case studies and show that this data
assimilation improves the accuracy of modeling and simulation and is robust to errors in the estimation
of errors in the measurement model (Xie & Verbraeck, 2019). More widespread particles can also make the
system more responsive in detecting sudden system changes (Cho et al., 2020).

2.4.2. Variable dimension problem
The state of a discrete event simulation system generally has a variable dimension, which is not a problem
by itself but makes DES DA challenging. This variable dimension originates from two of the key character-
istics of DES, which will be discussed in the next section. Subsequently the eventual adverse effects on DES
DA and the proposed solutions will be discussed. This phenomenon is extensively researched by Xie (2019)
and therefore will be only briefly discussed here.

The variable dimension is caused by two characteristics of DES. The first is the fact that events can take
place at random moments because of the continuous timebase. This makes the number of events that take
place within a fixed time interval a random number. If a variable of interest is a sequence of events in a fixed
time interval, this means the variable can have different lengths and thereby a variable dimension (for more
explanation, see the goldmine case study in Xie (2019)).

The other problematic characteristic is the fact that DES systems are often open systems which make the
number of entities in a system variable, especially because the arrival of entities is modelled by (random)
events. If the system state is the compound of a set of entity state, the variable number of entities makes the
dimension of the system state variable as well (for further elaboration on this topic, see the vehicle traject-
ory reconstruction case study in Xie & Verbraeck (2019)).

Variable dimensions are problem for data assimilation since these two random processes can cause
discrepancies between dimension of the state of the real system and the dimensions of the particles. Xie
(2019) proposed a solution to this problem by fixing the dimensions of systems under study to a sufficiently
large number with empty state points of entities and eventually discarding them. For open systems one
more adjustment is required, sensors at the system boundaries that allow for a reconstruction of the number
of entities in the system.

2.4.3. Data dependency
The dependency of DES DA to data availability has previously be researched: Hu & Wu (2019) and Cho et
al. (2020) already gave insight in the effects of the number of sensors, number of particles (N) and the time
interval on the estimation accuracy of the data assimilation methods. In general the statement that more
data results in better accuracy holds (although this relation is not linear).

However, as DES DA is yet to be applied to supply chains chains and specifically shipment arrival estim-
ation, less is known about the effects limited data availability has on the accuracy and effectiveness of this
method in this situation. Given the fact that data on supply chains is not always available, can be expensive
to acquire and is difficult to process it is an interesting knowledge gap to analyze which types of and what
quantity of data can be considered a prerequisite for effective deployment of data assimilation for shipment
arrival estimation.

2.4.4. Particle filtering in a high-dimensional state space
As described, particle filters aims to approximate a posterior probability distribution of a state variable of
interest by sampling a (high) number of particles and weighing them based on a measurement density (like-
lihood) resulting from the differences between measurements in the real system and the particles. It is ar-
gued that the effectiveness of this method is dependent on the number of dimensions of the state space d.
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Systems with a small or moderate d show to be suitable for particle filtering. However, as the dimension of
the state space grows, particle filtering can become ineffective (Beskos et al., 2017).

The ineffectiveness of particle filtering in a high dimensional state space is the effect is a common en-
emy of multiple machine learning methods, referred to as the curse of dimensionality: A problem caused
by the exponential increase in volume associated with adding extra dimensions (Shultz & Fahlman, 2017).
This exponential increase in volume brings several implications which are challenging for machine learning
models. Two of these implications are of high impact to particle filtering and therefore will be discussed into
more detail.

Effectiveness of distance metrics
As particle filtering uses the distance between the particles and the real observation data to assign import-
ance weights to each of the particles (e.g., a multivariate Gaussian distribution as used by Hu & Wu (2019)),
the effectiveness of distance metrics in a high dimensional space are of high relevance. Aggarwal et al.
(2001) showed that distance metrics can lose their meaning as the number of dimension increases based on
a nearest neighbour comparison. This is generally caused by two types of problems.

The first problem is related to the different units of the different dimensions, the distance metric is
required to unify the different dimensions. However, if each of the axis have a different unit or are measured
on a different scale, a normal distance metric becomes useless. Clustering methods (that rely on distance
metrics) have shown to become increasingly accurate after a normalization of the data (Doherty et al., 2004)
which has become a best practice for a large set of machine learning methods.

The second problem for the effectiveness of distance metrics in a high-dimensional state-space is the
fact that as the number of dimensions on which a distance metric increases, the distance between any two
points becomes more similar. The ratio of an object’s nearest neighbor over is farthest neighbor approaches
to one when increasing the high-dimensional space (Aggarwal et al., 2001). A ratio of one inclines that the
nearest and the farthest neighbour have (almost) the same distance and would therefore be assigned same
weights, which is problematic for the effectiveness of particle filtering as this would make the posterior dis-
tribution exactly the same as the prior distribution.

However, Aggarwal et al. (2001) showed that different distance metrics have different degrees of sens-
itivity to this problem. In this analysis the focus is on Lk distances (e.g., Manhattan (k = 1) or Euclidean
distance (k = 2)). It is shown that in a high dimensional space, the difference between the furthest and the
smallest distance between any two data points ( Dmaxk

d −Dmink
d ) increases at the rate of d 1/k−1/2. This

means that the smaller k, the more effective a distance metric becomes as is shown in figure 2.5.

Figure 2.5: | Dmax - Dmin | depending on d for different metrics (uniform data) derived from Aggarwal et al. (2001)

To this extent Aggarwal et al. (2001) proposed an extension to the Lk distance, named the fractional dis-
tance metric. This provides more meaningful results (higher | Dmax - Dmin | ) and significantly improves the
effectiveness of clustering algorithms. Fractional distance metrics are distance metrics with k < 1, generally
defined by 1/l with ideally l as some integer larger than 1. Therefore, the selection of a distance metric is
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considered one of the potential solution directions for particle filtering in a high dimensional state space. A
critical notion on this statement is that in recent publications (e.g., Mirkes et al. (2020)) the significance of
this effect is disputed.

Differentiating in distance metrics is not the only possible path that to a solution for this problem.
Kantas et al. (2014) showed that particle filtering can be effective even in for a system with a dimension
with an infinite size. As long as the dimension of the information that is used to compute the likelihood
function used for the weighing of the particles is small. In other words, as long as the dimension of the
space on which the distance metric itself is computed is a (small) subset of the total dimension of the state
space of the system, particle filtering is effective. Therefore a direction for particle filtering in systems with a
high dimension could be reducing the dimension of the information used to compute the distance between
the particles and the measurements of the real system.

Effects of sparse data by increasing dimensions
The second implication of a high dimensional state space is the fact that as the number of dimensions
increase, data becomes more sparse. Bengtsson et al. (2008) describe how particle filters with a fixed num-
ber of particles tend to collapse as the dimension of the space of interest increases. This is because as the
volume of the space represented by the dimensions grows, the number of regions of interest grow quad-
ratic, as shown in figure 2.6. For machine learning models that aim to approximate the posterior distribu-
tions based on training data, more dimensions (feature) require more training data to ensure all spaces of
interest are being sampled from (Koutroumbas & Theodoridis, 2009).

Figure 2.6: Quadratic growth of regions of interest by increasing number of dimensions, derived from DeepAI (2020)

Since particle filtering is not based on learning from training data but on approximating a posterior
distribution by assigning importance weights, the number of particles should be increased so that each of
the regions of interest is represented by at least one particle. The exponential growth of regions of interest
would incline the number of particles (size of the ensemble) has to grow super-exponentially to the system
dimension Bengtsson et al. (2008). Since DES DA requires each of the particles to be simulated for dur-
ing the sampling step (see figure 2.4, an increase of dimensions would increase the computational burden
super-exponentially to the system dimension in such a scenario.

This is a problem that can not be solved by a reduction of the number of dimensions that are used as
input to compute the likelihood function as proposed by Kantas et al. (2014). This because the complete
state space needs to be populated and not only the space used for the likelihood function. However, the
fact that a state space of a dynamical system is the set of all possible states of the system (Nykam, 2020) does
mean that the volume of this space is not only driven by the number of dimensions. An overlooked factor is
the range of uncertainty over these dimensions.

This because the state space is seen as a n-dimensional hypercube which volume is dependent on both
the number of dimensions as the length of the line segments of the dimensions. The length of the line seg-
ments is the range of the uncertainty over the dimensions, since a possible state of the system should fall
within the ranges of uncertainty on each of the dimensions. Therefore, a system without any form of uncer-
tainty can still hold a high number of dimensions but still have a fairly limited state space.
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Based on this reasoning, a (complex) solution direction is proposed to reduce the computational burden
of particle filtering in a high dimensional state space is making the number of particles generated at each
resampling step inversely related to the degree of uncertainty in the system. This is referred to as dynamic
particle filtering; a concept that is deployed based on metrics that assess the convergence of algorithms
(Elvira et al., 2017) or the innovation error Closas & Fernández-Prades (2011) to dynamically adjust the
number of particles.



3
Description of use case

As discussed in chapter 1, the goal of this research is to develop and test the applicability of a particle filter
based data assimilation algorithm for discrete event simulations to increase supply chain visibility. To reach
this goal, the research is based on use case in collaboration with an external stakeholder.

In this chapter, more context on the current supply chain operations and planning processes and the
requested decision support will be given. Next to this, the types of generally available data on supply chains
will be discussed.

3.1. Current supply chain operations
As described in the introduction, DES DA is assumed to be particularly helpful in the field of supply chains,
given its ability to deal with nonlinear non-Gaussian behavior (Blanco et al., 2011) which typically charac-
terize supply chains (S. Wang, 2010). The potential it shows for providing real-time decision-support by
estimating (observable) hidden states (Cho et al., 2020) makes this an interesting method to increase supply
chain visibility. For this research the definition of supply chain visibility has been narrowed down to the
accurate estimation of future events.

The use case is developed in close collaboration with an external stakeholder: a fashion retailer with
an international supply chain. The opportunity to develop and test this algorithm on a real supply chain
benefits the future applicability and generalizability of this algorithm. This because the decision-support
request, data availability, and potential experiments are delineated in a more precise and realistic manner.

The request by the external stakeholder is to improve the predictability of the arrivals of shipments at
their terminal to improve the inventory planning of the warehouse. In the following sections, this request
as well as the current supply chain operations will be discussed.

3.1.1. Supply chain structure
For the use case it is decided to focus on one specific subsection of the supply chain. This is the footwear
division, which ships over fifteen million prepacks of shoes per year divided over more than twelve thou-
sand shipments. The goods are produced by different vendors spread around Southeast Asia and Southern
Europe and subsequently shipped via an intermediate port to a terminal where the goods can be temporar-
ily stored before they are called in by the distribution center (DC). The terminal and DC are located in in the
Netherlands where they are used to facilitate the distribution of goods over the European, Middle Eastern
and African markets.

The flow of goods is initialized by a centrally placed order to one of the vendors for a specified volume
of certain products. The vendors are third parties that facilitate the production of the goods. When the
vendors have finished the production of the goods as agreed in the order, the goods are delivered by the
vendors to the nearest consolidator. The consolidators are located at predefined ports and operated by an
external booking party that ensures the goods are being shipped to the Netherlands. The stakeholder has
requested to put an emphasis on the goods being shipped from Asia to Europe since this encompasses the
vast majority of the goods (85% on average annually).

For the Asian part of the supply chain, goods are shipped via air (6%) or water (94%) to the Netherlands.
The goods that are shipped via air are the goods that have faced an extreme delay caused by one of the
vendors. Thus, the decision to ship these goods via air, is a policy decision and therefore it is decided to
leave this out of scope for this forecasting exercise.
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Based on these factors, it is decided to solely focus on the goods that are transported by ship from Asia
to the Netherlands. The visualization of this part of the supply chain is visualized in figure 3.1.

Figure 3.1: Supply chain structure Asia - the Netherlands by ship (flow of shipments: from top to bottom)

3.1.2. Sailing routes
As presented in figure 3.1 the goods that are being shipped from Asia to the Netherlands follow different
sailing routes depending on the country of origin of the vendor. From Asia there are nine different ports of
loading, where the goods are consolidated by the external booking party and subsequently shipped to the
Netherlands. The transport for each of the routes under study is taken care of by one integrated shipping
company / carrier (Maersk).

As figure 3.1 shows, four of the nine different routes are characterized by an intermediate port. These
intermediate ports are central container terminals located in Asia from which larger vessels can depart for
the intercontinental expedition to Europe. At each of the ports (consolidator, intermediate port and final
port) the shipments need to be processed (e.g., being cleared by customs) before they can continue to the
next stage of transport. Each of the sailing routes (both the feeders and the larger Vessels) are operated by a
recurrent schedule of ships departing and arriving at each of the ports. The ships sail fixed routes (except for
black swan events such as the blocking of the Suez canal) and once arrived at the final port (Rotterdam), the
goods are unloaded and processed. After the processing, the goods are transported by train to the terminal.

3.1.3. Container call-in optimization
The moment the goods arrive at the terminal, the goods are in control of the stakeholder. This terminal is
conceptualized as a storage facility for filled containers. These containters are subsequently are called in
(one by one) for transport to the distribution center. The capacity of the terminal itself is no constraint for
the supply chain operations since there is always enough space to take in new inbound containers.

In contrary, the distribution center itself is limited in storage space, as well as limited intake and pick-
/pack capacity (Metyis, 2020). Therefore, the decision to call in containers to the distribution center from
the Terminal is not based on simple First In First Out (FIFO) rules, but is optimized for.

This inventory optimization is currently based on three factors: The current capacity in the warehouse,
the expected outbound orders and planned arrival times of shipments at the terminal. Goods at the ter-
minal are selected based on a certain priority which is the compound of the type, value, season and brand
of these goods. Currently substantial deviations in the actual arrival date versus the planned arrival date
exist (see figure 3.4). This means the inventory planning of the warehouses is far from its optimal state since
there are a high number of early and late arrivals.

An early arrival refers to a shipment that arrives earlier than the planned arrival date. If this is the situ-
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ation, containers can not be part of the intake planning of the warehouse yet since these have not been
taken account by the inventory optimization. These containers have to remain idle at the terminal until the
actual planned arrival date has passed, which is free of charge for a period of two weeks.

Late arrivals result are shipments that arrive later than the planned arrival date. These containers are
part of the intake planning of the warehouse, but can not be taken in at their planned date since these
have not yet arrived. This results in a sub-optimal warehouse inventory. Empty slots in the warehouse are
deemed undesirable and therefore bring costs.

If more accurate arrival estimations could be incorporated into this algorithm, these situations could
be prevented from happening or the adverse effects could be reduced. For this the deviations between the
actual and planned arrival dates should be reduced (i.e., the planned arrival date should be a more accurate
representation of the actual arrival date).

The call-in of containers to the distribution center is being planned for with a granularity of weeks. This
means that the planning is created and agreed on on a weekly basis. According to best practices for model-
ing for decision support (Ibrahim, 2018), the input data that is used for planning date should be determined
on a higher level of granularity than the granularity that is planned for. This inclines that the arrival date of
the inbound shipments should be planned for with a granularity of days.

3.2. Current (seasonal) supply planning process
The current (seasonal) supply planning process is divided into five distinctive processes, which encompass
different phases of the supply planning and involve collaboration with different stakeholders. This process
is visualized in figure 3.2. All dates for the supply planning are relative to the moment the goods can be in
stores; this moment is referred to as the Customer Touch Point (CTP). Based on the desired CTP, all previous
steps are planned backwards to create feasible deadlines.

Figure 3.2: Visualization of (seasonal) supply planning process, derived from Metyis (2020)

As shown in figure 3.2 the first two processes take off approximately 42 to 30 months before CTP. The
supply and capacity planning are concerned with the high level planning of types of goods that are being
ordered as well as the selection of the vendors by which these goods should be ordered. These plans are
supposed to be finalized roughly six to seven months before CTP.

A few months before these plans are completely finalized (12 to 9 months before CTP), the production
and inbound planning take off. The result of the production planning is an agreed AC date, this is the date
(that is agreed on with the vendors) by which the ordered goods are supposed to arrive at one of the con-
solidators. These dates are the final pieces of information that are needed to finalize the purchase orders
(PO’s). Once all the PO’s are placed, the markets close (five to six months before CTP); this is the end of the
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production planning phase.
Based on the preliminary AC dates and later on the agreed AC dates, the inbound planning already

starts. This process lasts until the orders are delivered at the terminal (approximately 2 months before CTP).
This process is concerned with forecasting the terminal delivery date and streamlining the inbound delivery
process.

From the moment the markets are closed, the outbound planning process starts as well. This process is
concerned with the planning and allocation of the quantities of goods to customers and improving the level
of detail in the outbound plan of the supply chain. This research will focus on increasing the accuracy of the
inbound planning process.

Inbound planning process
Since the inbound planning process is the supply planning process that aims to forecast the terminal deliv-
ery date, this process is discussed. In general terms, the result of the inbound planning process is a continu-
ously updated set of Supply Chain planned arrival dates of shipments related to PO’s at two different points
in the supply chain: arrivals at the consolidator and arrivals at the terminal.

The arrivals at the consolidator are uncertain and difficult to influence for the stakeholder since the
arrival dates are merely dependent on the performance of the vendors. As previously described, the final
step of formalizing a PO is finding agreement on an AC (at consolidator) date. In the months between the
agreement on this date and the actual AC delivery, the AC date is updated in the inbound planning process
based on external input on the status of the production.

When the planned AC delivery date is updated, this is referred to as the planned AC Date instead of the
Agreed AC Date. For the majority of the cases the planned AC Date is the same date or later than the agreed
AC date since delays do happen and goods are generally not delivered but put on hold if the production
process is faster than agreed on (see also figure 3.3).

After the goods have arrived at the consolidator, the AC date changes from planned to actual. The next
date that is planned for in the supply chain is the terminal (arrival) date. This date is calculated by taking
the average of the duration from AC delivery to terminal delivery for the historical data and adding this to
respectively, the agreed, the planned or actual AC dates. An overview of the composition and the related
level of uncertainty is given in figure 3.3. Even when dates are flagged as actual in the S&OP (Sales and
Operations Planning) systems, a small amount of uncertainty remains: errors in the process of booking in
actual dates do exist.

Figure 3.3: Composition of and uncertainty around AC and Terminal date

3.2.1. Assessment of inbound planning performance
What stands out from the previous disquisition is the fact that the planned terminal date is not updated
after the shipments have departed from the consolidators. This while both the vessel delays as unexpected
events in the operations in the ports can cause substantial delays to the planned terminal date according to
Hasheminia & Jiang (2017). To see how well the current inbound planning process performs, the deviations
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between the planned and actual terminal delivery days are assessed for the different transportation chains
(figure 3.4) ‘

Figure 3.4: Deviation between planned and actual terminal delivery date (days)

Transportation chains are a composition of the country of origin of the vendor (the first two letters of
the supply chain indicator), the the mode of transportation (the middle two letters of the supply chain
indicator), and the location of the consolidator (last two letters of the supply chain indicator).

In this analysis only the shipping routes between Asia and Europe are taken into account as previously
argued for. The analysis confirms the hypothesis that the deviations are (slightly) right-skewed since delays
are more common than earlier arrivals (see also figure 3.3). The fact that the transportation chains respons-
ible for the highest volume (more than 89%) all have a standard deviation of more than 7.5 days confirms
the idea that the current inbound planning procedure can and should be improved.

3.2.2. Decision support request
The stakeholder has put out a request to increase the predictability of the arrival of shipments at the ter-
minal. An increase in the predictability of the arrival of shipments would allow for the deployment of a
call-in optimization algorithm for the distribution center that takes future arrivals into account. This would
prevent containers with a high priority but a later arrival date to be blocked by low priority containers while
as well reducing the risk for empty slots in the distribution center.

To satisfy this decision support request, the main goal of the data assimilation algorithm is to improve
the accuracy of the planned terminal date to allow for the incorportation of future arrivals in the call-in
optimization algorithm. This goal can be split in to three sub-goals.

First, the average deviation between the planned arrival date at terminal and the observed arrival date
at terminal should be reduced. This means the algorithm should have a high average accuracy.

Second, the accuracy of the algorithm should be robust. This means there should not be too many
deviations between shipments regarding accuracy.

Third, the planned terminal date should be accurate before the call-in schedule is calculated. This
means the arrival estimations should be accurate at at least a week before the observed terminal date.

3.3. Data availability
The last section regarding the use case refers to the availability of data for the system under study. To even-
tually apply a data assimilation algorithm, data should be available to be assimilated. Examples of DES DA
applications (i.e., the works of Xie (2019) and Hu & Wu (2019)) generally assimilate real sensor-data.

However, the fact that this supply chain is viewed on a higher level, the most important source of data
is the documentation of events taking place at certain touch points in S&OP systems or other platforms.
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Three different sources of data suitable for assimilation for supply chains are discussed and summarized in
table 3.1. Figure 3.5 gives an overview of the different actual and planned data points. The planned dates
are placed located at the moment of planning (e.g., the planned terminal date is determined at the moment
of departure from the terminal). In chapter A, the other specific data points are discussed in more detail.

Level of granularity Data type
Data source Touch points Content of shipment
S&OP Data (SAP) Low - event based High - All Planned & Actual
Carrier Data (Tradelens) High - event based Low - Container ID Actual
Third Party Data (vessel tracker) High - "continuous" Low- Vessel ID Actual

Table 3.1: Different data sources suitable for assimilation and level of granularity

Figure 3.5: Data points of different data sources

The first data source is defined as the S&OP Data, this is the data that is accessible via the Sales and
Operations Planning (S&OP) software (e.g., SAP software). This data is defined by a low level of granularity
with respect to the number of touch points (locations where events are recorded) with event based data.
This means that the arrival and departure days of shipments of a relatively low amount of locations are re-
corded. However, the level of granularity of the content of the shipments is classified as high. All details
on the shipments (from quantity, value to product details) are stored. Both the planned (expected) and the
actual dates of these touch points are stored in the system. To summarize, the S&OP data contains little data
points but a high level of information per data point.

The second source of data is defined as carrier data. As shown in figure 3.5, the last known pieces of
information from the S&OP data originate from the departure of the shipments from the consolidator and
the next known touch point is at the terminal arrival. This is because between these points, the goods are
handled by the carrier. Because of the increased technical means such as RFID and blockchain, carriers
have found means to increase the visibility in these parts as well.

Based on container ID’s, a higher number of touch points are made available via platforms such as
Tradelens (Jugović et al., 2019) by carriers. To use this information, the shipments should be carried out by
a provider that is attached to such a platform and the digital infrastructure to access this data should be put
in place.

Summarizing, this source of data could be used to increase the level of granularity of the number of
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touch points per shipment. On the other hand, the level of granularity on the content of the shipment is
considered low since it only stores actual dates and the ID of the container.

When reflecting on figure 3.5, the S&OP data and the carrier data make tracking and tracing the move-
ment of the shipments throughout the system possible at a relatively high level of detail. The only remaining
"black boxes" are the movements of the shipments between the departure and arrival of vessels.

This data is not provided by the aforementioned data sources. For this, several third party data sources
(e.g., vessel tracker or marinetraffic) that track global vessel movements based on the global AIS data are
used. This data has a high level of granularity since the positions of vessels are recorded in a "continuous"
way. These states are not updated based on events but on based on the update interval of the respective
API. The level of the granularity regarding the content is low since only the ID of the vessel is stored in these
databases.



4
Data Assimilation Algorithm

To test how the accuracy of shipment arrival estimations can be increased by DES DA several steps are taken.
A data assimilation system is designed based on the DDDAS framework as presented in figure 4.1.

The crucial adjustments that have been made to the state-of-the-art frameworks to make data assim-
ilation suitable for supply chains made to the data assimilation algorithm. This algorithm maps the input
(supply chain data and a DES supply chain model) to the output (shipment arrival estimations). The form
and volume of the input data as well as the type of output data needed to satisfy the decision support re-
quest require specific adjustments to the algorithms that are in place.

The remaining components, the simulation model, the real system, the measurement model, and the
data acquisition component, are implemented based on the descriptions provided by Xie (2019) and Hu &
Wu (2019). These components are discussed in appendix A, because these components did not face any
major changes.

(a) DDDAS framework based on Xie (2019) (b) DES DA based on Hu & Wu (2019) (c) Relation DDDAS and DES DA framework

Figure 4.1: DES DA framework in a DDDAS context

The remainder chapter aims to give the reader a good understanding of the adjustments made to the
algorithm. To do so, the the challenges and that arise from the input and output are discussed first. The
solutions to these challenges are presented next. Subsequently all functions that compose the algorithm are
presented in pseudo code and explained. This will benefit future implementation of the algorithm to dif-
ferent systems as this is a tutorial for the construction of data assimilation algorithms for high-dimensional
open systems that require the estimation of future events.

4.1. Challenges from input data
At the end of the sampling step in each iteration of the particle filtering algorithm, weights are assigned to
each of the particles. These weights are the inverse of a distance metric computed by comparing the dis-
tance between (a subset of) the system state of the simulation instances to the measurements available on
the real system. The goal of the distance metrics is to separate the good and the bad model instances. Model
instances with a low distance to the real system have a higher probability of generating more offsprings in
the next iteration of the particle filtering exercise than model instances with a high distance to the real sys-
tem.

A good distance metric should be useful to determine which model instances (particles) have a close
resemblance to the real system and which do not have this resemblance. As discussed in section 2.4.4,
distance metrics become less effective in a high-dimensional state space.
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The number of dimensions of the state space that is used to compute the distance between the particles
and the real system is a result of three drivers of dimensionality which are discussed in the next section.

4.1.1. Drivers of dimensionality
The sensor data that is available on the supply chain is generated by events that occur when shipments (en-
tities) pass certain sensors or when the location of vessels with shipments are updated. This means that the
number of data points that are used for a comparison between the particles and the real system after one
iteration a function of three factors:

• The number of shipments - More shipments (ceteris paribus) equal more entities that pass sensors
in a certain interval and thereby cause more events that generate data points. Summarizing, more
shipments cause more data points.

• The number of sensors - More sensors (ceteris paribus) equal more events in a certain interval since a
shipment will face more sensors within the same timespan and therefore more sensors generate more
data points.

• The length of an interval - Longer time intervals (ceteris paribus) equal more events since more ship-
ments will pass the sensors because more time is available for these events to happen. Therefore
longer time intervals will generate more data points

The data acquisition system for the supply chain under study embodies the unique characteristic that
each data point is linked to a specific shipment (see section A.1). This makes a pairwise comparison of
each data point possible, since all events in the real system can be matched to events that take place in
the simulation system. This makes it possible to compute a distance between the measurement in the real
system and the observation and an observation in a particle.

This process is represented in a simplified way by table 4.1. If one would then compute the relative
distance of these particles, this could be done by computing the Manhattan distance over the rows. Each
row (which stands for an event) would here be a new dimension for the distance computation.

real system particle 1 particle 2 ... particle n

event
meas -

urement
obser-
vation

dist-
ance

obser-
vation

dist-
ance

obser-
vation

dist-
ance

sens_1_shipm_1 1 2 1 2 1 2 1
sens_2_shipm_1 4 3 1 4 0 3 1
sens_4_shipm_3 6 4 2 6 0 4 2
sens_1_shipm_2 3 5 2 2 1 5 2
. . . . . . . . . . . . . . . . . . . . . . . .
sens_n_shipm_n 2 6 4 6 4 6 4

Table 4.1: Example of distances computation per time interval

The fact that that: 1) more than a thousand different purchase orders are placed each each year, 2) the
number of sensors (touch points) is high and, 3) data can only be assimilated once a day, make the number
of events that generate data points per interval high. Thus, the number of dimensions over which a distance
is computed is high.

A high dimensionality is a the effectiveness and accuracy of the data assimilation algorithm as distance
metrics generally become less efficient in higher dimensions (Aggarwal et al., 2001). A decreased efficiency
of the distance metric means the quality computation of the weights is compromised as well. Three different
distance metrics are proposed that can mitigate this problem.

Weighted distances
Before any of the distance metrics are proposed, one more concept needs to be discussed: the notion of
weighted distances. In other data assimilation studies such as the Goldmine model of Xie (2019) or the road
traffic of Hu & Wu (2019) the entities are assumed to be equal. However for supply chains, not all entities in
a model have an equal level of importance. There are entities that represent shipments with high volume of
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goods, this makes these shipments more important to be estimated correct. Other shipments with a small
volume are less important. Therefore the weighted distance (d w) is computed by multiplying the computed
distance for an entity by the relative volume of that entity:

d wn,i , j = Vi∑M s
i=1 Vi

×dn,i , j (4.1)

Ms is the set of all observations in a time interval and Vi is the volume of a shipment.

4.1.2. Proposed distance metrics
Three potential distance metrics are proposed to compute meaningful weights in a high-dimensional state
space. Given the time and the scope of this research only one of these metrics is implemented: the fractional
distance metric. All other distance metrics are suggested for testing in future research in situations with even
a larger number of dimensions.

Fractional distances
The distance metric that is tested and therefore will be introduced first is referred to as fractional distances.
The foundation for this metric comes from the standard L-norm metrics. This is an intuitive set of metrics
which do not change the number of dimensions. The best known metric of this group is referred to as the
(standard) L1 distance dl 1n , also known as Manhattan distance. This is a simple sum of the distances for
each of the observations in an interval which is used as a frame of reference:

dl 1n =
M s∑
i=1

M s∑
j=1

d wn,i , j (4.2)

Fractional distance (d f rn), are based on the same concept and even belong to the same group of L-norm
metrics. Fractional distance metrics were first described by Aggarwal et al. (2001) (see also section 2.4.4) who
showed that Lk norms become more effective distance metrics for smaller k’s. This should result in better
weights assigned to the particles and in the end for better accuracy results. However, it should be noted that
the significance of this increase in accuracy is disputed (Mirkes et al., 2020). The fractional distance for any
L is computed as followed:

d f rn = 1
L

√√√√M s∑
i=1

M s∑
j=1

d w
1
L
n,i , j (4.3)

Importance weighted metrics
A second solution to this problem is referred to as Importance Weighted Metrics. This group of metrics tries
to reduce the effect of a high number of dimensions by creating difference in importance of the different
sensors. This metric is referred to as the importance distance (din). For the previously discussed distance
metrics each of the distances are assigned the same weight. However, since the goal of the data assimilation
exercise is to forecast shipment arrivals, one could argue that measurements close to the terminal (point of
arrival) are more important than measurements far away.

Therefore it is proposed to assign importance weights to the different sensors. The closer a sensor is loc-
ated to the terminal, the higher the weight that should be assigned to that particle resulting from an entity
passing this sensor. Based on this disquisition, and the example presented in figure 4.2a, the distance that
come from observations shipment sn that passed sensor s∗n during the time interval ∆t should get assigned
a higher weight than the distance resulting from shipment s2 that passed sensor s∗1 because entities that
pass sensor s∗n tend to arrive sooner at the terminal than shipments that pass sensor s∗1 .

To achieve this goal, weight distributions should be assigned to each of the sensors, for this three differ-
ent distributions are proposed. The distributions are graphically represented in figure 4.2b All of the weights
are distributed based on the average time it takes for a shipment to reach the sensor:
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(a) Different sensor locations (b) Different weight distributions

Figure 4.2: Visualization of importance weights based on location of sensor

• Linear weight distribution - The weights assigned to the sensors are linearly related to the time it takes
for a shipment to reach the sensor, represented by the dotted line in figure 4.2b. This will make de-
viations at the beginning of the supply chain less relevant compared to deviations at the end of the
supply chain

• Exponential weight distribution - The weights assigned to the sensors are exponentially related to the
time it takes for a shipment to reach the sensor, represented by the dashed line in figure 4.2b. This will
make deviations at the beginning if the supply chain all most irrelevant compared to deviations at the
end of the supply chain. This is expected to give more accurate results with a relatively low degree of
timeliness (i.e., significantly higher accuracy at t−3 than t−30.

• Peaking weight distribution - The weights assigned to the sensors are specifically trimmed to steer for
accuracy at a certain moment (e.g., on average 2 weeks before arrival), represented by the solid line in
figure 4.2b. This is a preferred method when a certain degree of timeliness is preferred regarding the
accuracy.

This concept results in the equation for the second metric that could be applied. The importance dis-
tance metric (din), where the L1 distance is multiplied with the weight sw j associated to the sensor i at
which the distance is measured:

din =
M s∑
i=1

M s∑
j=1

d wn,i , j × sw j (4.4)

Edit distance metrics
The third distance metric computes the distance between two sequences of events. The event-based sensors
are triggered during time interval ∆t by events of shipments passing these sensors. These events are stored
in an event-sequence of sensor-shipment two-tuples (t ,e) with e defined as the combination of a sensor
and shipment: (s∗i , si ). Differences between two sequences is quantified by a so-called edit distance (den) is
implemented by Xie (2019) in the goldmine model.

This distance defines the amount of work that has to be done to convert one sequence to another. Each
transformation that is needed to convert one sequence to another has a certain cost dependent on the type
of transformation. Three different transformation types are identified based on Xie (2019):

• insert - Inserts an event of type e at time t into the sequence. This cost is dependent of the occurrence
(occ) of e in a as reference sequence. In the situation of a supply chain each shipment will pass each
sensor and therefore the occurrences constant and therefore it is decided to make the volume of the
shipment V

c(insert(t ,e)) = w(e) ∝ V(e) (4.5)

• delete - This cost is defined to be the same as the cost of an insert operation:

c(delete(t ,e)) = w(e) = c(insert(t ,e)) (4.6)

• move - The operation that moves an existent event (t, e) from time t to time t’. The cost of this operation
is dependent on the distance in time between t and t’.

c
(
move

(
t ,e, t ′

))= v · ∣∣t − t ′
∣∣ (4.7)
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This aforementioned distance is multiplied with a constant v which should satisfy the following condi-
tion: v

∣∣t − t ′
∣∣< 2 ·w(e),∀t , t ′,e because otherwise first deleting and later on inserting the same event

would be less expensive.

For each of the particles, a particle sequence exists for a specific time interval ∆t which is edited into the
observed sequence of the real system during time interval∆t . The operations needed for this transformation
are stored in the operations sequence O = {o1,o2, . . . ,on} The cost and thereby the edit distance is the sum of
the cost of the operations stored in O:

den = c(O) =
n∑

i=1
c (oi ) (4.8)

4.1.3. Chosen distance metric
The time and scope of this research do not allow to test all three different distance metrics. Therefore one of
the three metrics is chosen for future research. The fractional distance metric is selected for this because of
two reasons. First, this distance metric has a solid foundation in literature as Aggarwal et al. (2001) proofed
that fractional distance metrics do become more effective in a high-dimensional state-space. Second, be-
cause this metric can be applied to all different types of systems without any manual adjustments. The
weights in the importance weighted metrics need to tuned for each new set sensors and the edit distance
metric only works with event-based observations.

4.2. Challenges resulting from the intended output of the algorithm
The output of a particle filtering algorithm not one single number but an estimation of the probability dens-
ity function of a variable over a certain dimension. For this study, the goal of the created algorithm is to make
estimations on the (future) arrival times of inbound shipments. Making estimations of future states differs
from estimating actual / current states. How this differs and what the implications for the data assimilation
algorithm are is discussed below.

4.2.1. Future state estimation
The fact that the goal of this study is to estimate future arrival times of shipments, has implications for data
assimilation algorithm. Especially for the data assimilation algorithm. Generally two fields of application
for data assimilation are identified:

• Actual State Estimation Applications - Data assimilation is applied to estimate actual (current) states.
Example of this field of application is the real-time estimation of traffic states on road segments as
performed by Hu & Wu (2019).

• Future State Estimation Applications - Data assimilation is applied to estimate future states. An ex-
ample of this field of application is the is the estimation of arrival times of trucks in a goldmine (Xie,
2019).

For particle filtering, Future State Estimation Applications are more difficult, since future sate estim-
ations impose another requirement on the sampling step (see figure 2.4). Normally, the sampling step is
used to transform the system states of each of the particles over time from t0 to t1. For DES DA this im-
plies the running of each of the models that represent the particles to time t . After this the states of the
particles are transformed by the measurement model and compared to the measurement data. Based on
this comparison weights are assigned which are used for the resampling.

Implication on the data assimilation algorithm
For future state estimation, two sets of states should be saved for each assimilation interval (∆t ). This is
visualized in figure 4.3. First, the simulation should be ran from t0 to t1 and all relevant system states for
each of the particles should be saved (which is used to compute the weights of the particles later on). Sub-
sequently each of the particles should be ran for a period of time to estimate the shipment arrival times t∗j
for each of the shipments in the system. These shipment arrival times should be saved with the timestamp
t1 to construct the previously described probability density functions. This has the following implications
for the data assimilation algorithm:
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• The algorithm should be able to simulate the particles not only for the selected assimilation interval,
but also simulate until all shipments that are in the system at t0 have arrived at the terminal to store
the expected arrival times.

• The algorithm should be able to store the expected arrival times with a timestamp and a shipment ID
to allow for calculation of accuracy metrics at a later stage.

Figure 4.3: Visualization of saving of estimated shipment arrival times of one shipment for one time interval

4.2.2. Arrival estimation clusters
Estimating arrival times has previously been applied by Xie (2019) for a goldmine model. In the goldmine
model, this process is extra complex, since arrival times could not be coupled to a specific entity and there-
fore the data needed one extra processing step: the different estimated arrival times (corresponding to the
different particles) are clustered into groups by a k-means clustering algorithm.

The specifics of the supply chain data (see table 3.1) prevent this processing step since each of the data
points resulting from each of the sensors can be tied to a specific shipment and thereby the clusters of ship-
ment arrival estimations can be easily separated.

However, this makes the arrival estimation process not fully straightforward. Each of the particles will
make a forecast on the arrival times of each of the shipments. These forecasts are recorded together with
the weights assigned to these particles. The weights and the forecasts of the shipment arrival times together
form the a cluster of shipment arrival forecasts which are represented by a weighted histogram. An example
of the weighted histogram is visualized on the left hand side in figure 4.4.

Figure 4.4: Visualization of weighted histogram of shipment arrival forecasts

The basis for this histogram is formed by two sets of data: a set with ground truth arrivals A character-
ized as tuples: A = {(t1,e1), (t2,e2), . . . , (tn ,en)} with t being an instant in time and e the ID of a shipment. The
second data set is the output of the data assimilation algorithm C . This is a set of m clusters with tuples of
arrival times belonging to a cluster and corresponding weights that belong to each of the particles. These
data points are clustered clustered per shipment:

{
Cc |Cc =

{
(t c

1 , w1), (t c
2 , w2), . . . , (t c

nc
, wc )

}}m
c=1

.

To go from a cluster of estimations to single estimated arrival date, a probability density function is
fitted to this cluster by using a Gaussian kernel. Based on the fitted Gaussian kernel, an estimated arrival t∗c j
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is extracted. This is the point in time where the probability density function peaks. The fitting of a Gaussian
kernel and the estimation of an arrival day is visualized on the right hand side in figure 4.4.

Implication on the data assimilation algorithm
The shapes of the two previously described data sets A and C are the only implication on the data assimila-
tion algorithm:

• After assimilation it should be possible to retrieve the clusters with expected arrival times based on
the observed arrival times of shipments.

• For each of the arrival time forecasts by each of the particles, the weight corresponding to that particle
should be stored.

4.3. Software implementation
The data assimilation algorithm that will be presented in the following sections is implemented in Python.
The annotated code for the algorithm can be found in Data Assimilation Algorithm.py. For future research
other high-level programming languages could be used as well as long as one prerequisite is met: It should
be possible to execute the simulation models that represent the particles in parallel. This decreases the
execution time of the data assimilation algorithm dramatically. For this the connection to the simulation
environment is crucial, this is discussed below.

4.3.1. Software implementation of the simulation environment
The simulation model is implemented in a discrete event simulation environment. For this research, Salabim
is selected as the software package to create the simulation environment. Salabim is an open source object-
oriented discrete event simulation software package implemented in python. Salabim allows queue hand-
ling, resources and statistical sampling (Ham, 2020). Some real time animation and monitoring options are
built in as well, but are not comparable to commercial simulation software packages.

Over the course of this research Salabim has showed some clear benefits compared to other (commer-
cial) simulation packages and one significant downside. These factors are briefly discussed in the following
paragraphs; a more elaborate reflection on these factors, solutions for the identified downside and recom-
mendations for the selection of a software package in future research can be found in appendix B.

Using Salabim for this research surfaced large three benefits of this software packages. First, Salabim
is an open source simulation package which can tremendously reduced the costs of research, especially
for commercial applications. Second, the fact that Salabim is a python-based package eases the process of
connecting the simulation models to the data-assimilation algorithm as the same data structures are used.
Third, the simulation models that represent the different particles can be executed in parallel by making use
of Multiprocesing. This significantly decreases the time of executing the particles.

Apart from the aforementioned benefits of using Salabim, there is one important downside on using
Salabim. This relates to the saving of model states and creating the offspring particles after the resampling
step. After the simulations are stopped after the sampling step, instances of the simulation model including
their states need to be saved. At the end of the resampling step, the system states of the new (offspring)
simulation models at the beginning of the new interval need to be exactly the same as the system states of
the original states of the particles at the end of the previous assimilation interval.

To reduce the duration of the data assimilation exercise, the simulation models are executed by multi-
processing. To access (states of) the simulation models in the main process these models should be saved by
the Pickle package. In the ideal world the model instance and the model states are saved together (presented
on the left hand side of figure 4.5). Since Salabim makes use of Generators, this is impossible.

Therefore a different solution is found: At the end of the data assimilation interval all states of the sim-
ulation models are saved and at the beginning of a new simulation interval the simulation model is recon-
structed (see the right hand side of figure 4.5). This is a complex procedure, especially because the internal
logic of the simulation model needs to be adjusted. Because these adjustments make the data assimilation
algorithm and the simulation model unnecessary complex it is recommended to use a different simulation
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software package for future research. More information on the implementation of the adjustments needed
and the key factors that a future simulation software package should embody are given in appendix B.

Figure 4.5: Resampling with MultiProcessing and Salabim

4.4. Data assimilation algorithm
The data assimilation algorithm is the centerpiece of the algorithm that maps the input data (measure-
ments) to output data (arrival date estimations) by assimilating the input data into the simulation system.
For this a particle filtering approach as described in section 2.3.3 is adjusted and implemented. For con-
sistency and to allow the reader for a better understanding of the algorithm, the discussed algorithm is
visualized in figure 4.6.

Figure 4.6: Standard data assimilation algorithm (bootstrap filter)

This standard algorithm is transformed based on the implications imposed by the in- and output data.
For this newly generated algorithm the existing particle filtering algorithm of Cho (2019) is used as a basis.
The constructed particle filtering algorithm consists of six different steps (see algorithm 1) which each are
a compound of one or more functions for which the annotated code can be found in Data Assimilation
Algorithm.py Each of the steps and the corresponding functions are discussed in the sections below, some
of the more trivial functions will be briefly discussed while the functions that are special for DES DA in
supply chains or will be discussed in more detail.
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Algorithm 1: Data assimilation algorithm

Input: Prior belief of system, sensor data
Output: Posterior belief of future system states

// Preparation steps
Step 1. - Preparation of the variables
Step 2. - Simulating and measuring the real system
// Data assimilation algorithm steps
while t < 90 do

if t = 0 then
Step 3.1 - Sampling - Initialization

if t != 0 then
Step 3.1 - Sampling - Advance

Step 4. - Intermediate step
Step 5. - Weight updating normalization
Step 6. - Resampling

4.4.1. Step 1 - Preparation of the variables
In the first step of the algorithm, the variables for the experiments are prepared. In four different functions,
the data availability for the different experiments is characterized, the parameters of the ground truth model
are set, and the parameters for all the particles are sampled between acceptable ranges. An overview of the
order of the different functions is given in pseudocode in algorithm 2.

At first, the two functions createDataExperiments() and initializeTotalDistanceDict() are used
to formalize the different levels of data availability. Depending on the level of data availability, sensors are
turned on and off (see also figure 3.3). This is governed by createDataExperiments().

initializeTotalDistanceDict() subsequently generates storage room to store the the computed
distances for each of the particles. This is used for the normalization of the weights in the function .

Subsequently the parameters and their corresponding ranges for the various models are set, starting
with he parameters for the ground truth model by function setGroundTruthParameters() (see section
A.3 for more insight on the identical twin setup).

As described in section 2.3.3, the goal of the particle filtering exercise is to transform a prior belief of a
system into a posterior belief by assimilating measurements. The prior belief is a set of N (generally a large
number) particles for which the states / parameters are randomly sampled over the ranges that are deemed
to be plausible for this specific system. For this, Latin hypercube sampling (LHS) is used. LHS is often used
for constructing computer experiments, especially for Monte Carlo simulation because of it uses orthogonal
sampling to ensure that a set of random numbers is representative of variability over the various dimen-
sions. (Stein, 1987). For this the set of plausible parameter ranges are defined by setParticleParamRanges()
and the sampling is performed by sampleLHS().
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Algorithm 2: Step 1 - Preparation of the variables

Input: Experiment, parameters
Output: Selected set of sensors, parameters of real system; the prior belief of the real system

// Define the functions
Function createDataExperiments():

if experiment == experimentID then
measurementDimensions = corresponding list of sensors

return measurementDimensions

Function initializeTotalDistanceDict():
for sensor in measurementDimensions do

Create an empty array for storing of the distances

return totalDistanceDict

Function setGroundTruthParameters():
for parameter in parameters do

Set parameter value
Set parameter unit
args = parameters

return args

Function setParticleParamRanges():
for parameter in parameters do

Set parameter max and min
Store max and min in arrays
minAllowedParams, maxAllowedParams = minArray, maxArray
spreadOfAllowedParams = maxAllowedParams - minAllowedParams

return minAllowedParams, maxAllowedParams, spreadOfAllowedParams

Function sampleLHS():
for particle in N_particles do

for parameter in parameters do
sampledParams = LHS sample between minAllowedParams and maxAllowedParams

return sampledParams

// Call the functions:
createDataExperiments()
initializeTotalDistanceDict()
setGroundTruthParameters()
setParticleParamRanges()
sampleLHS()

4.4.2. Step 2 - Running of the real system
After the variables are initialized, the simulation model that represents the real system is executed. The
entire real system is simulated before the assimilation algorithm takes place. The states of the model are
subsequently saved to the hard drive. The saving of these states to the hard drive has one benefit: this
guarantees that each experiment is based on the same ground truth model and eventual adverse effects of
randomness are mitigated. For this, four functions are composed. These functions are described presented
in pseudocode in algorithm 3.
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Algorithm 3: Step 2 - Simulating and measuring the real system

Input: Simulation model, parameters of real system, t, intv, maxSimulationTime
Output: sensorData of real system, ground truth arrivals

// Define the functions
Function initializeReal():

toRun = t + intv
Create real model with reconstruct = False and groundTruth = True
Real model parameters = args
Run Real model to time = toRun
Interpolate locations of transporters in Real model

Function measureReal():
for sensor in realSensorData do

for entity in entities do
Collect moment in time and entity weight
Add white Gaussian noise to moment and weight // to mimic sensor imperfections

of physic systems

for transporter in realLocationSensorData do
Collect latitude, longitude, weight and route of transporters
Add white Gaussian noise to latitude, longitude and weight

Store all sensorData to hard drive

Function advanceReal():
toRun = t + intv
Run model instance to time = toRun
Interpolate locations of real model instance

Function openRealSensorData():
Open pickle with the realsensorData corresponding to the current time t

// Call the functions (only if there is no Real data):
if runReal == True then

initializeReal()
t = t + intv
measureReal()
Clear real sensorData // At each iteration only the sensorData of the current

time interval is taken into account.
while t < maxSimulationTime do

t = t + intv
advanceReal()
measureReal()
Clear real sensorData

openRealSensorData()
Store real Terminal arrival dates as .csv // This will allow for the computation of

accuracy metrics
t = initialt

At first the real model instance is generated by the initializeReal() function, this generates an in-
stance of the Salabim simulation model and sets the model parameters to the parameters of the real system
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as defined in the setGroundTruthParameters() function.
Subsequently the simulation model is executed until the end of the next data assimilation interval.

Thereafter the locations of the transporters are interpolated, which is necessary because state changes only
happen at events in discrete event simulations (see section 2.2) which means the locations of transporters
are only updated at departure and arrival of transporters.

After the interpolation of the locations, the data that is recorded by the various sensors in the Real sys-
tem are recorded and perturbed by adding white Gaussian noise to mimic the inaccuracies actual sensors
have in physic systems. This is done for both the event-based sensors as well as the location sensors. The
perturbed sensor data is stored to the hard drive so this can be opened at any time for an experiment since
this is the data that is used to compute the distance metrics between the real system and the particles. After
the recording and storage of the sensor data, the dictionaries with sensor data in the simulation model are
cleared.

After the initialization the real model is advanced with the function advanceReal(), in time steps with
the size of the defined assimilation intervals. At each interval the the sensor data is recorded with the func-
tion measureReal() and subsequently the sensor data is cleared again.

At the end of the simulation, as the maxSimulationTime is exceeded, the sensor data is opened with the
function openRealSensorData(). The sensor data is used to collect all the arrival times at terminal and
store these to a .csv file to compute the accuracy metrics after the data assimilation process.

4.4.3. Step 3. - Sampling
In step 3, the actual data assimilation algorithm starts with the sampling step. In this step, each of the
particles is simulated for the duration of the data assimilation interval.

The implementation of the sampling step has two slightly different forms: 1) A sampling - initializa-
tion step where the simulation models are generated and run for the first data assimilation interval. 2) A
sampling - advance step where the simulation models are reconstructed based on the previous time step
and are run for all assimilation intervals except for the first interval. At initialization, new models are gener-
ated, for advancing the particles, the models are reconstructed.

In the sampling step the system states of each of the particles are transformed over time by the sys-
tem transition model. For DES DA this means running the simulation model that for each of the particles.
Because the number of particles N is generally a (very) large number, this imposes a long simulation time.

This is one of the motivations for Salabim, since the execution of simulation models is generally fast
in Python and this can be executed on multiple cores by means of MultiProcessing. To facilitate this, two
worker functions (worker_initialize_particles.py and worker_advance_particles.py) are realized which are
executed in MultiProcessing. In these worker functions the sampling step and intermediate are deployed
which each will be discussed separately. This section focuses sampling step.

As one can see in algorithm 4, two versions of the particle are generated at the sampling step. One that is
simulated for the duration of the data assimilation interval (pn) and one for the previously defined duration
of the forecast (p f or ecast ). The two particles are generated because all model states of the particle need to
be saved at t1 to allow for the reconstruction of this particle at the next iteration.

To save the model states the model dictionaries need to be adjusted and therefore the model that is sim-
ulated for ∆t can not be continued for the duration of maxFor ecast . To combat this problem, a second
instance of the particle (referred to as particle Forecast) is generated to perform the forecast. This process is
visualized in figure 4.7

After the classic (see figure 2.4) sampling step is performed by executing the simulation for pn from t0

to t1 all model states are saved (for future reconstruction). Apart from this the location sensor data is saved;
the location sensor data is the location data of all transporters at t1.

Subsequently p f or ecast is generated and simulated for the duration of maxFor ecast until t f . After this
period, all terminal arrivals (or any other type of forecasted variable) are stored. Similar to the event-based
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Algorithm 4: Step 3 - Sampling (worker_initialize_particles.py or worker_advance_particles.py)

// The first part of the worker function - sampling
Input: pf, t, intv, Model, particleParameterDict, maxForecast
Output: particle states, arrival estimations

// Executed by multiprocessing
Function workerPartOne():

// Running of particle for the duration of the assimilation interval
Unwrap args (pf, t, intv, Model, particleParameterDict, maxForecast, etc.)
if t == 0 + intv then

Create Particle pn with reconstruct = False and groundTruth = False // initialization

if t != 0 + intv then
Reconstruct Particle pn with reconstruct = True and groundTruth = False // advance

pn_parameters = sampledParameters[particle] // update parameters of model
Run pn till t
Interpolate locations of transporters in pn

Save last state of particle as pickle // to allow for reconstruction of the model at a
later stage

// Running of a forecast particle
if t == 0 + intv then

Create a Particle (p f or ecast ) model with reconstruct = False and groundTruth = True
// initialization

if t != 0 + intv then
Reconstruct Particle (p f or ecast ) with reconstruct = True and groundTruth = False // advance

p f or ecast _parameters = sampledParameters[particle] // update parameters of model
Run p f or ecast till t + maxForecast
Store the estimated arrival times at terminal and the event-based sensor data as a pickle

// This will allow to open this data in the main process

sensor data that is collected over the duration of maxFor ecast .

Figure 4.7: Particle and Particle forecast

Arrival sensors
The entities in the simulation model are generated based on the observations of the arrival sensors. The
concept of an arrival sensor is introduced by Xie (2019) (Road Trajectory model). Arrival sensors are event-
based sensors placed at the system boundaries of open systems and observe the arrival of entities. In supply
chains this can be shipments or transporters.

The benefit of these arrival sensors is that these mitigate the adverse effects of the variable dimension
problem by helping to accurately estimate the number of entities in open systems Xie2019ASimulations.
Next to this, these sensors help to accurately estimate the arrival schedules of the different transporters. An
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accurate estimation reduces a large share of the uncertainty in supply chain simulation systems.

In the sampling step, the data points from the arrival sensors is passed to the simulation model in the
realSensorData argument. Depending on the type of data point (agreed, planned or actual) error terms are
added to this data in the model.readSensorArrivalData function of the simulation model. Subsequently this
data is used to model the arrival of both shipments and transporters in the particles.

4.4.4. Step 4. - Intermediate step
In the fourth step, the relevant system states are transformed into measurements similar to the measure-
ments that are done by the "sensors" in the real system. In this so-called intermediate step, white Gaussian
noise is added in a similar fashion as in the measurement of the real system (measureReal()). Just as the
sampling step, this is part of the worker function since this has to be performed for each of the particles
and therefore is executed by multiprocessing to reduce computing time. For efficiency reasons the distance
between the real system and the particles are calculated in the intermediate step.

Algorithm 5: Step 4 - Intermediate step

// The second part of the worker function: the intermediate step
Input: pn , p f or ecast , realSensorData
Output: distance between particles and real system

// Executed by multiprocessing
Function workerPartTwo():

for observationReal in realsensordata do
ValueReal, weightReal = observationReal
if observationReal == event-based then

Find matching data point (value_RF) based on sensorID entityID in p f or ecast

if No corresponding observation in particle then
Value_RF = Missing

Add white gaussian noise to value_RF
Calculate absolute distance in time between value_RF & valueReal
Store distance and weightReal in distance dictionary

if observationReal == location-based then
Find matching data point (lat1, lat2) based on sensorID entityID in p f or ecast

if No corresponding observation in particle then
Value_RF = Missing

Add white gaussian noise to lat1 &lat2
Calculate distance with haversine formula
Store distance and weightReal in distance dictionary

for entities in pn and not in RealSensorData do
Store as early arrival, distance = max distance // Early arrivals should be punished

Store distance dictionary as pickle // To make it accessible in the main process

After both the simulations of pn and p f or ecast are executed, the sensor data resulting from both models
is used to compute the distance between each of the data points and the particles. For the event-based
sensor data this is the absolute distance in time. For the location-based sensor data this is the absolute
distance in location, calculated from the latitude and longtitude by the haversine formula, which takes the
curvature of the globe into account (Chopde & Nichat, 2013). Before any distances are calculated, first white
gaussian noise is added to the latitude and longitude to mimic the noise sensors in real systems have.
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4.4.5. Step 5 - Weight updating and normalization
After the individual distances for each of the measurements are computed, these have to be transformed
into one uniform distance which is used to compute weights for the particles. This takes place in the fifth
step of the data assimilation algorithm. This step has faced the most adjustments compered to the state-
of-the-art algorithms previously used. The adjustments are a solution to the curse of dimensionality as
discussed in section 2.4.4. Because of these adjustments and the importance of these adjustments, the four
different functions that form the basis for this step are discussed into more detail.

Reconstruction of the distances
For each of the particles a set of the distances of each measurement during the data assimilation interval is
computed and saved as to the hard drive in the worker function. The goal of the reconstruction step is to
generate a uniform set of normalized weights. To this extend, first these different sets should be combined
in one overview with all distances of all particles. This is executed by the function , described in algorithm 6.

Algorithm 6: Step 5.1 Reconstructing the distances from the worker

Input: particles
Output: Set of particle distances, set of total distances

Function reconstructTotalDicts():
for Particle in N_Particles do

Open pickle with set of distances
Store set of distances in set of particle distances
for distance in set of distances do

if sensor of distance in measurementDimensions then
Add distance to set of all distances

In this function, two sets of distances are generated. One with the distances sorted per particle and one
with all distances measured per sensor. The first set is used for the calculation of the individual particle
distances, and the second set is used for the normalization of the measured distances. To perform the
normalization, the normalization metrics are computed first.

Normalization of the distances
As thoroughly discussed, some of the experiments embody a high number of sensors which measure event-
and location-based data over trajectories with different lengths. Because of the expected implications of
the curse of dimensionality, fitting a multivariate Gaussian distribution over the various dimensions to de-
termine the particle weights would result in an unreliable outcome. This because the data becomes sparse
when the number of dimensions is increased which means the true probability density functions can not
be estimated.

Therefore, it is decided to pursue the calculation of the weights by computing a distance metric. How-
ever, this cannot be done straightforward. Some of the sensors are therefore expected to have a higher
degree of absolute variability and will therefore potentially dominate the distance metrics.

Therefore it is decided to normalize the distances calculated by each of the sensors, a best-practice often
applied in other fields of machine learning such as clustering (Ekenel & Stiefelhagen, 2006).

For the normalization it is decided to use standard normalization, which makes all data points mean-
centered and scaled based on the standard deviation. This is done by calculating the standard score (Z ) of
each distance (x) based on the mean (µ) and the standard deviation (σ) of its corresponding sensor. Since
this will eventually be used to compute a total distance the absolute value is taken for the standard scores:

Z =
∣∣∣∣ X −µ

σ

∣∣∣∣ (4.9)
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In this process, the data is centered (the mean is subtracted) and scaled (divided by the standard deviation).
This process and its implications to the distribution of the data is visualized in figure 4.8.

Figure 4.8: Visualization of computation of (non-absolute) standard scores based on Watt et al. (2020)

Unfortunately, unlike in classical machine learning applications where a large training set is available
on beforehand, the analytical properties of each of the sensors (mean and standard deviations) can only be
retrieved in an iterative fashion. To do this the simple moving average (SMA) is deployed, which takes the
unweighted average of all distances per sensor to derive the mean and the standard deviation. This is taken
care of in the algorithm by the normalizationMetrics function (see algorithm 7).

Algorithm 7: Step 5.2 SMA of normalization metrics

Input: Set of total distances
Output: Set of mean, max, stdev per distance sensor
Function normalizationMetrics():

for Distance sensor in set of total distances do
Remove all "missing" values
Compute mean, stdev and max of set of distances

return Set with mean, stdev max per distance sensor

After the computation of the normalization metrics, these are used for the actual normalization of the
various dimensions of measurements, which will be discussed in the next section.

Computation of weights
Based on the collected measurements on both the real system as the particles and the normalization met-
rics, the weights of the different particles are calculated. As previously discussed, this is based on a fractional
distance metric of which the weights are the inverse. To compute the weights two functions are used, which
are presented in algorithm 8.

At first, for each of the particles the particle total distance to the observations from the real system
are computed. To do so, all standard scores are computed for each of the distances in that dimension are
multiplied with the entity weight (see section 4.1). Subsequently these distances per observation are raised
to the L’th power (depending on the number that is picked for L to compute the fractional metrics).

Thereafter the total particle distances are computed by summing over the different observations and
sensors. The fractional distance is subsequently computed by taking the 1/L’th rooth of the total particle
distance. Particle weights are considered to be the inverse of the particle distance, since particles with a low
distance (high resemblance to the real system) should get assigned a high weight. Therefore the weights are
computed by dividing one with the fractional distance (as long as the fractional distance is not 0).

To compute the final weights the weights are normalized by dividing them with the total sum of weights
to make sure the sum of the total weights adds up to one. This is one with the normalizeWeights() func-
tion. This pseudocode for this process is given in algorithm 8
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Algorithm 8: Step 5.3 Calculation of fractional weights

Input: Set of distances per particle, normalizationmetrics
Output: Normalized weights per particle
Function computeFractionalWeights():

for particle in particles do
for dimension in distances belonging to particle do

Replace all missing observations with the max observed distance of that dimension
Compute standard score (Z) for each of the distances in that dimension
Compute distance by multiplying Z-score with entity weight (volume)
Raise each distance to the L’th power and sum over the observations

Sum over the sensors and take the 1/L’th to calculate the fractional distance
if particle Distance > 0 then

Particle weight = 1 / fractional Distance

if particle Distance == 0 then
Particle weight = 0

return Array of non-normalized particle weights

Function normalizeWeights():
if sum of weights != 0 then

Normalized weights = weights / sum of weights

if sum of weights == 0 then
Normalized weights = 1 / number of particles

return Normalized weights

4.4.6. Step 6 - Resampling
The sixth and last step in the data assimilation algorithm is the resampling step. In this step, N offspring
samples are generated. The probability of a particle becoming the base of one or more offspring particles
is proportional to its previously calculated weight. To preserve variation in the particles, particle rejuven-
ation is applied by making small perturbations into the system states. The process of this is described in
algorithm 9.

Algorithm 9: Step 6. Resampling

Input: Particles, particle weights
Output: New, resampled particles
Function resampleParams():

Create a discrete random distribution based on the particle weights
Draw N new particles form the distribution
Perform particle rejuvenation by making small perturbations to the particles
while parameters not in range allowed parameters do

Perform particle rejuvenation by making small perturbations to the particles

return resampled particles

In the resampleParams() the new particles are drawn from a discrete probability distribution, where
the distribution is formed by the particle weights. After the new particles are drawn, small perturbations are
made to each of the particles.

An important aspect of this particle rejuvenation is that the perturbations do not result in parameters
that are outside of the feasible parameter ranges (e.g., a mode of a distribution smaller than the minimum
of the distributions). Therefore the particle rejuvenation is performed as long as the parameters are within
the acceptable ranges.
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4.4.7. Hyperparameters
For the particle filtering exercise, two parameters are expected to significantly influence the quality of the
assimilation algorithm. This is the number of particles N and the length of data assimilation interval ∆t .
Given the fact that the goal of this research is not to determine the effect and optimal configuration of
these parameters, it is decided to select a value for these hyperparameters and keep them constant over all
different experiments. The selected values for these hyperparameters is discussed below.

Number of particles N
As discussed in section 2.4.4 a high dimensional state space requires a high number of particles to approx-
imate the posterior distribution over all these dimensions. It is decided to leave the dynamic particle filtering
out of scope and use a high number of particles instead. Given the computational resources available it is
decided to work with 1000 particles.

Length of time interval∆t
The length of a time interval influences the number of dimensions of the distances between the state and
measurement vectors (see section 4.1.1) and therefore a smaller time interval could yield more accurate
results at a higher computational burden. However, as the S&OP database only contains data points with a
granularity of days, the smallest data assimilation interval that can be picked is one day. Therefore ∆t is set
to one day for all of the experiments.



5
Experimental Setup

This chapter is intended to give the reader insight in how and why the experiments will be performed. As
previously explained, the goal of this research is to identify the effects of limited data availability on the
accuracy of data assimilation with discrete event simulation.

To serve this goal several experiments are designed, to do so the concept of limited data availability on
supply chains is formalized. Based on this, four experiments with different degrees of data availability are
designed.

Thereafter, two sets of accuracy metrics will be discussed are used to determine the quality of the data
assimilation exercise. Next an experiment to test the effects of randomness on the outcomes of the experi-
ment is presented. Based on this an overview of the different experiments and the intended output of these
experiments will be given.

5.1. Experiment input: Data availability
As described in section 2.4.3, more observations generally result in a higher level of accuracy (Cho, 2019).
However, as extensively argued in section 4.1, more observations do also result in a higher number of dimen-
sions on which distance metrics should be computed which is expected to result in a lower level of accuracy.

Therefore it is decided to test how different scenarios of data / sensor availability affect the accuracy
of the data assimilation exercise. To do this, four different experiments with different levels of semantic
completeness are designed:

• Experiment E. 100% - In this experiment all data points are available. This encompasses all S&OP dates
(planned and actual), the carrier data points as well as the vessel locations provided by third parties.

• Experiment E. 91% - In this experiment the vessel locations provided by third parties are not avail-
able, therefore, these will be omitted from the distance computation. If this experiment would lead
to meaningful, accurate results, this would provide valuable insights for the stakeholder. Because this
data needs to be acquired and therefore bears costs.

• Experiment E. 29% - In this experiment, only a fraction of the carrier data points are available: only
the arrival and departure of transport (train and vessels) will be sensed. If this would yield accurate
arrival estimations, this would facilitate future implementations of this technique on other (parts) of
the supply chains, since less connections to the carrier data need to be made.

• Experiment E. 25% - This is the experiment with the lowest level of data availability. In this experiment,
only the available S&OP data is assimilated. This group of data points are selected as last remaining
data source since these points are crucial for the accuracy metrics (based on the actual terminal ar-
rival) and the entry of entities (AC date). Besides this, this is the easiest to acquire data source for the
stakeholder, since this comes from its own data management systems.

5.1.1. Formalization of data availability
The level of data availability relates to the concept of completeness; this is the degree to which a given data
collection includes data describing the corresponding set of real-world objects and phenomena (Huang, 2013).
More observations on the operations of the real system indicate a higher level of completeness in this re-
search. To further specify this, two types of completeness are identified.

The first type, semantic completeness, does not fit for this research since this is the degree to which data
is of sufficient breadth, depth and scope for the purpose of data use. And as determining the degree to which
the data is of sufficient breadth, depth and scope for the purpose of data use is the goal of this research,
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this cannot be determined on beforehand. The second type, Semantic completeness, refers to the degree to
which existing values are included in a data collection relevant to the purpose for which the data is stored
(Huang, 2013). Semantic incompleteness is indicated by missing values or missing records. For the afore-
mentioned experiments, sensors are turned on or off, which results in missing records. Therefore semantic
completeness is used as definition to formalize the data availability.

No general equation exists to quantify the degree of semantic completeness, therefore method to cal-
culate the percentage of semantic completeness in this research is proposed. As literature (i.e., Xie (2019))
shows that a higher number of observations generally yields more accurate results, the number of observa-
tions for the basis for this equation.

Compi = 100%× #observation i

max#observations
(5.1)

For each experiment (i ) the rate of semantic completeness (Compi ) is calculated by dividing the number
of observations by the sensors available in the real system for that experiment (#observation i ) by the total
number of possible observations of all possible sensors in the real system (max#observations). As shown in
equation 5.1, the final number is multiplied by 100%.

The different rates of semantic completeness are presented in figure 5.1. The rate of semantic complete-
ness forms the basis for the names of the experiments as well.

Figure 5.1: Experiments with different rates of semantic completeness

5.2. Experiment output: Accuracy metrics
To determine the effect a reduced level of semantic completeness has on the accuracy of the data assimila-
tion algorithm, the way of determining the accuracy of this algorithm needs to be formalized. As described
in section 4.2, the entire distribution of shipment arrivals can eventually be reduced to one estimated day:
the point in time where the fitted Gaussian kernel peaks. However, to assess the accuracy of the data assim-
ilation algorithm, it would be foolish to disregard all other information that is embodied by the distribution.

Therefore two characteristics are identified to separate a good estimation by a bad estimation. First, a
good estimation is at the right moment in time, i.e., the estimated arrival time is close to the actually ob-
served arrival time. The second characteristic of an accurate prediction is a high proportion of particles that
estimated the actual observed arrival time indicated by the height of the probability density function at the
observed time of arrival.
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5.2.1. Sets of accuracy metrics
To capture these characteristics, two accuracy metrics that previously have been used by Xie (2019) are ad-
opted. To explain the usefulness of these two metrics, three different combinations of observed arrival times
and arrival estimations are displayed in figure 5.2.

(a) The perfect estimation
(b) Inaccurate estimation with a wide distri-
bution

(c) Inaccurate estimation with a narrow dis-
tribution

Figure 5.2: Visualization of different arrival estimations

Figure 5.2a shows the perfect estimation where t j and t∗c j
are at the exact same instant. If t j and t∗c j

are
not at the exact same instant, the accuracy of the estimation can vary over two dimensions: Relative differ-
ence in probability density at t j versus t∗c j

(displayed with a). And absolute difference in time between t j

and t∗c j
(displayed with b). The smaller these differences, the better the estimation.

(a) t j and t∗c j (b)
∣∣∣t j − t∗c j

∣∣∣ (c) Pc j

(
t j ,ε

)
and

(
t∗c j

,ε
)

Figure 5.3: Visualization of arrival estimation accuracy metrics based on Xie (2019)

5.2.2. Aspects of accuracy metrics
To unify the two key characteristics of the accuracy of an individual cluster of shipment arrival estimations
to a set of clusters resulting from an experiment, two aspects are considered:

• The average accuracy of a set of clusters of shipment arrival estimations should be high.
• The spread in accuracy of a set of clusters of shipment arrival estimations should be low. If this spread

is low, the accuracy of the different shipments arrival estimations have a high degree of similarity is a
sign of robustness.

To embody these aspects in the final outcomes of the experiments, two groups of metrics are designed:
First, the weighted mean based metrics that capture the average accuracy of a set of clusters of shipment
arrival estimations resulting from an experiment. Second, the robustness of the algorithm which is indic-
ated by the standard deviation based metrics that capture the spread in accuracy between a set of clusters of
shipment arrival estimations.

Weighted mean based metrics
To embody the average accuracy of a set of clusters of shipment arrival estimations, two measures are adop-
ted from the works of Xie (2019). The parameters that form the composition of these metrics are visualized
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in figure 5.3. However, the metrics from Xie (2019) are slightly adjusted. As each shipment can contain a dif-
ferent volume of goods, each shipment has a different relative importance. Therefore the volume of goods
per shipment (V j ) is used to make this a weighted average based on the versus the total volume V . This
eventually leads to the first two accuracy metrics:

• The weighted mean absolute distance between the observed arrival (t j ) to the peak of the arrival es-
timation probability density function (t∗c j

). Visualized in figure 5.3b

weighted mean absolute distance = 1

nm × V̄

inm∑
j=i1

∣∣∣t j − t∗c j

∣∣∣×V j (5.2)

• The weighted mean percentage of the probability density function at t j versus the peak of the probab-
ility density function at t∗c j

. Visualized in figure 5.3c

weighted mean percentage = 100%× 1

nm × V̄

inm∑
j=i1

Pc j

(
t j ,ε

)
Pc j

(
t∗c j

,ε
) ×V j (5.3)

Standard deviation based metrics
To capture the spread of the accuracy of a set of clusters of shipment arrival estimations, two new meas-
ures are developed based the weighted absolute distance and the weighted percentage. For both metrics,
the standard deviation of the weighted observations is calculated. The weights of the observations are
considered since it is desirable to have a high degree of similarity between the shipments with the largest
volume. This results in the two additional accuracy metrics:

• The weighted standard deviation of the absolute distances between the observed arrival (t j ) to the peak
of the arrival estimation probability density function (t∗c j

). This is computed by the following equation
(National Institute of Standards and Technology, 1996):

weighted standard deviation of the absolute distances =
√√√√∑nm

i=1 V j
(
absD j −W M_absD

)2∑nm

i=1 Vi
(5.4)

• The weighted standard deviation of the mean percentages of the probability density functions at t j

versus the peak of the probability density functions at t∗c j
computed by the following equation:

weighted standard deviation of the mean percentages =
√√√√∑nm

i=1 V j
(
p j −W M_p

)2∑nm

i=1 Vi
(5.5)

5.2.3. Timeliness of estimations
The third component that needs to be taken into account when considering the accuracy of shipment ar-
rival estimations, is the timeliness of data. A correct estimation two days in advance is worth less than an
estimation a couple of weeks in advance when considering decision-support since it takes time to adjust
the operations of an organization. The four previously described metrics are calculated for four different
degrees of timeliness to give insight in this dynamic: Based on the clusters of arrival estimations 30, 14, 7
and 3 days before the observed arrival date.

The four indicated clusters are selected after the data assimilation exercise, the procedure for this is
presented below. Over the course of the simulation, after each time interval, for each of the shipments, a
cluster of shipment arrival estimations will be composed which will form a probability density function.
Each of these probability density functions will be stored from the moment the arrival at the consolidator is
observed (tc ) until the moment of observed arrival at the terminal (t j ). This makes the number of clusters
of shipment arrival estimations (nc) for one shipment: the duration of a shipment in the system divided by
the length of a assimilation time interval (∆t ):

nc = t j − tc

∆t
(5.6)
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The total data set with clusters subsequently exists of m sets of clusters, each consisting of nc different

estimations of arrival times:
{{

Cc |Cc =
{

t c
1 , t c

2 , . . . , t c
nc

}}nc
∆t

}m

c=1
.

To determine the final accuracy metrics for a specific shipment, four different clusters with arrival es-
timations are. Each cluster represent a different degree of timeliness These clusters will be selected based
on the number of days before the observed arrival t j :

• C j ,t−30 : The cluster of estimated arrivals 30 days (t−30) before the actual shipment arrival
• C j ,t−14 : The cluster of estimated arrivals 14 days (t−14) before the actual shipment arrival
• C j ,t−7 : The cluster of estimated arrivals 7 days (t−14) before the actual shipment arrival
• C j ,t−3 : The cluster of estimated arrivals 3 days (t−3) before the actual shipment arrival

In the remainder of this document these different clusters will be referred to as different degrees of timeli-
ness. A high degree of timeliness indicates a long period between the day of arrival estimation and the ob-
served arrival date. A low degree of timeliness indicates a short period between the day of arrival estimation
and the observed arrival day. This is visualized in in figure 5.4

Figure 5.4: Different degrees of timeliness

5.3. Overview of experiments
To perform the experiments a historical three-month period (90 days) will be selected (jan - march 2019).
For this period, the data assimilation algorithm will be tested for the different degrees of semantic com-
pleteness. Three groups of experiments are identified:

5.3.1. Experiments testing for semantic completeness
At first, four different experiments will be set up to analyze the effect of different degrees of semantic com-
pleteness. This will result in four different experiments in which each the data assimilation is ran for a 90
day period starting from the first of January 2019 for different levels of data availability (see figure 5.1).

Over the course of these 90 days, forecasts will be made on the arrival of shipments resulting in the
previously discussed data set with clusters of shipment arrival estimations. Based on this data set, the four
accuracy metrics will be calculated for four different degrees of timeliness. The annotated code for the data
assimilation algorithm used and the execution of the experiments can be found in Experiment.py. The code
used to calculate the accuracy metrics can be found in notebook 09 Assessment of accuracy.ipynb.

5.3.2. Base case without assimilation
Apart from the different experiments with different degrees of data availability, one more experiment is
designed. This is referred to as the No Assimilation experiment (E. NA). This experiment is used to determine
the predictive capabilities of the simulation model without any form of data assimilation will.

In this experiment, 1000 (same as the number of particles N) simulation models are simulated for 90
days under different combinations of parameters. These parameters have been sampled by a Latin Hyper-
cube sampling over the parameter ranges (i.e., the prior belief on the system). This is comparable to the
outcomes of an exploratory modeling exercise. The execution of this experiment can be found in notebook
08 Forecasts without assimilation.ipynb.

For each of these simulation models, the arrival times of shipments at the consolidator are recorded
and clustered as well. Subsequently, fitting a Gaussian kernel to the weighted distributions of the arrival
estimations, an estimated arrival day is determined for each shipments.

Based on the estimated and the observed arrival dates the aforementioned accuracy metrics are as-
sessed. These will form a reference point for the increase of accuracy from a prior belief to a posterior belief
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by data assimilation, to determine if performing the data assimilation exercise had a beneficial result. The
code for this analysis can be found in notebook 09 Assessment of accuracy.ipynb.

Random seed tests
Since the resampling steps in the data assimilation algorithm involve stochastic sampling, the effect of ran-
dom seeds should be tested to say something about the validity of the results. To do so the first experiment
(experiment E. 100%) will be executed with four different random seeds. Subsequently the previously de-
scribed accuracy metrics will be calculated for each of these random seeds. The outcomes will subsequently
be compared by a paired t-test to see if stochasticity significantly influences the outcomes of the data as-
similation exercise. The annotated code for the data assimilation algorithm used and the execution of the
experiments with different random seeds can be found in Experiment2_random_seeds.py

5.4. Presentation of results
To summarize, four experiments with different degrees of data availability will be performed, supplemen-
ted by an additional base case experiment without data assimilation. The results of these experiments will
be presented together, both in tabular form as by a graphical representation. The tabular forms will be dis-
cussed in the following section. Thereafter, the form outcomes of the random seed tests will be discussed.

Taking into consideration the existence of
• Two different sets of accuracy metrics (weighted absolute distance and weighted percentage)
• Each having two different aspects (weighted mean and weighted standard deviation)
• Computed for four different degrees of timeliness ( t−3, t−7, t−14 and t−30 )
• Tested for five different experiments of data availability (no assimilation, experiment E. 100%, experi-

ment E. 91%, experiment E. 29% and experiment E. 25%)
Eventually results in 80 different results that are used to compare the different experiments. These results
will be presented by six tables. First, one table is used to give insight the effect of assimilation and sub-
sequently the different experiments with data assimilation are compared in four tables; each for one set of
accuracy metrics.

To assess the effect of data assimilation, the experiment without data assimilation is compared to the
four experiments with data assimilation. This comparison is based on the estimations with the highest
degrees of timeliness (t−30). All four accuracy metrics are presented in the columns and the five different
experiments are presented as rows. An empty example of this table is presented in table 5.1.

Absolute Distance Percentage

Weighted
mean

Weighted
standard
deviation

Weighted
mean

Weighted
standard
deviation

Experiment NA
Experiment 100%
Experiment 91%
Experiment 29%
Experiment 25%

Table 5.1: Example table for the presentation of the effect of data assimilation on the absolute distance and percentage

Because the comparison of the different experiments with different levels of data availability is per-
formed for each of the levels of data availability, four tables will be used to present these results of these
experiments. These tables are grouped based on the set of accuracy metrics they represent: one set of two
tables for the weighted percentage and one set for the weighted absolute distance. The tables will have the
form as presented in table 5.2.
In these table, the different degrees of timeliness are presented as columns and the different experiments as
rows.

The second set of experiments refers to the output of the random seed tests. Here for one experiment (E.
100%), four experiments with different random seeds will be computed. The accuracy metrics of random
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Weighted mean
absolute distance

Weighted standard deviation
absolute distance

t−30 t−14 t−7 t−3 t−30 t−14 t−7 t−3

Experiment E. 100% Experiment E. 100%
Experiment E. 91% Experiment E. 91%
Experiment E. 29% Experiment E. 29%
Experiment E. 25% Experiment E. 25%

Table 5.2: Example table for the presentation of a set of accuracy metrics for the different experiments

seed 2, 3 and 4 will be compared to the accuracy metrics of random seed 1 (which have been used for the
previous outcomes). The comparison will based on an independent t-test, because it can not be assumed
that each shipment will have the same accuracy, the overall accuracy is relevant in this experiment.

For each of the experiments the computed p-value for the set of computed absolute distances (pabsD )
and the p-value for the set of computed percentages (pp ) will be presented. This will be computed for each
degree of timeliness (presented in the column). An example table is presented by table 5.3

t−30 t−14 t−7 t−3

pabsD pp pabsD pp pabsD pp pabsD pp

Seed 1 vs 2
Seed 1 vs 3
Seed 1 vs 4

Table 5.3: Example table for the presentation of the results of the random seed tests

Apart from these tabular representations, the results of the experiments will be presented visually as
well. The weighted accuracy per shipment will be part of these visualizations to support further analysis of
the results presented in the tables.



6
Results

The results of the different experiments are presented and analyzed in this chapter. The effect of data assim-
ilation is presented first, thereafter the effect of limited data availability on accuracy of the shipment arrival
estimations is discussed. At last the results of the random seed test are presented.

Each of the sections starts with a presentation of the aggregated results which are subsequently analyzed
based on the accuracy of the arrival estimations of separate shipments. The code for the analysis analysis
in this chapter can be found in notebook 09 Assessment of accuracy.ipynb and notebook 11 Random seed
analysis.ipynb.

6.1. Overview of experiments
The different experiments with different levels of data availability are discussed first to give the reader a good
understanding of how the results relate to the different levels of data availability. Four experiments with
data assimilation are designed to test the effect of different levels of data availability. These experiments are
presented in figure 6.1 and labeled based on the level of semantic completeness (percentage of available
observations).

Experiment E. 100% is used as reference point with all data sources used for observations. Experiment E.
24% is the experiment lowest level of data availability with only 24 percent of the data points available. Apart
from these four experiments a fifth experiment is performed without data assimilation, this experiment is
referred to as E. NA (No Assimilation).

Figure 6.1: Experiments with different levels of semantic completeness

The four metrics to assess accuracy of the shipment arrival estimations over a set of shipments are dis-
cussed in this section as well. The formalization of, and the argumentation for these metrics is extensively
discussed in section 5.4. This section serves as a brief summary to increase the interpretability of the results.
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An accurate estimation of the arrival of a shipment is indicated by two metrics. First, the estimated ar-
rival date should have a low absolute distance (in days) to the observed arrival date. Second, a high share of
the particles should have estimated the observed future event right, which is indicated by a high percentage.

Over a set of arrival estimation, the accuracy over the different shipments should follow two patterns.
First, the average accuracy over the different shipments should be high. Second, there should be little vari-
ation between the accuracy of the different shipments (i.e., the algorithm should be robust), which is indic-
ated by a low standard deviation.

Because the shipments represent different volumes, each shipment is assigned a weight proportional
to the volume of the shipment. The data assimilation algorithm is intended to prioritize shipments with a
higher weight. Therefore, the weight of the shipments is part of the accuracy metrics as well. For each set
of shipments, the weighted average and the weighted standard deviation are calculated for both accuracy
metrics ofindividual shipments. This results in four accuracy metrics that are presented in table 6.1.

Weighted Mean Weighted Standard Deviation
Absolute Distance Weighted mean absolute dis-

tance (low)
Weighted standard deviation of
the absolute distances (low)

Percentage Weighted mean percentage
(high)

Weighted standard deviation of
the percentages (low)

Table 6.1: Accuracy metrics for shipment arrival estimations by DES DA. Desired value between brackets.

For the estimation of a future event it is also highly relevant when this estimation is done. Therefore,
the four accuracy metrics are collected for four different degrees of timeliness. The closer to the observed
event an estimation is performed the lower the degree of timeliness of this estimation. The four degrees of
timeliness used in this research are represented in figure 6.2.

Figure 6.2: Different degrees of timeliness

6.2. Effect of data assimilation
To identify the effect of data assimilation, the experiment without data assimilation (E. NA) is compared to
the four different experiments with data assimilation. This comparison is based on the weighted mean and
the weighted standard deviation of the absolute distance and the percentage. For each of the experiments
with data assimilation, the arrival estimations with a high degree of timeliness (t−30) are used. The results
of the experiments are presented in table 6.2.

Absolute Distance Percentage

Weighted
mean

Weighted
standard
deviation

Weighted
mean

Weighted
standard
deviation

Experiment NA 8.5 9.6 60.2% 38.9%
Experiment 100% 4.7 4.0 70.7% 23.8%
Experiment 91% 4.7 3.4 61.6% 23.0%
Experiment 29% 4.7 5.2 67.7% 18.8%
Experiment 25% 4.4 2.5 66.3% 21.1%

Table 6.2: Effect of data assimilation on the absolute distance and percentage

To confirm that that data assimilation increases the accuracy of arrival estimations, three aspects of
increasing accuracy should be visible in the data: First the weighted mean absolute distance should be re-
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duced, second the weighted mean percentage should be increased, and third the weighted standard devi-
ation of both the absolute distance and the percentage should be reduced. All trends are clearly visible in
table 6.2 and will be analyzed below.

6.2.1. Analysis of the effect of data assimilation
To understand the aggregated results presented in table 6.2, the accuracy scores per shipment are visualized
in figure 6.3 and 6.4. Analyzing these figures helps to understand the effect of data assimilation.

The accuracy scores for the different shipments are shown in dark blue; the weight of the shipment is
indicated by the size of the scatters. The aggregated accuracy metrics per experiment are shown as well.
The weighted mean is shown by the yellow crosses and the weighted standard deviation is represented by
the interquartile ranges visualized by box plots.

In the following sections both figures will be analyzed to understand the three different aspects of in-
creasing accuracy presented in table 6.2.

Weighted absolute distance
The reduction of both the weighted mean and the weighted standard deviation of the absolute distances per
shipment is clearly visible in figure 6.3. The weighted means of the absolute distances are lower for each of
the experiments with data assimilation than the experiment without data assimilation.

The reduction of the weighted standard deviation is also clearly visible when comparing the box plots.
Figure 6.3 shows that the interquartile ranges of the weighted absolute distances are (much) smaller for the
experiments with data assimilation than the interquartile ranges of the experiments without data assimila-
tion.

Figure 6.3: Effect of data assimilation on the weighted absolute distance

A detailed inspection of the absolute distance per shipment in figure 6.3 shows that the reduction of both
the weighted mean and the weighted standard deviation of the absolute distances should be contributed to
three effects.

First, the absolute number of outliers is reduced by data assimilation. Each of the experiments with data
assimilation (e.g., E. 100%) have less shipments with an absolute distance of more than 20 days.

Second, the weighted number of outliers is reduced by data assimilation. For each of the experiments
with data assimilation, the shipments with the highest weight have a relatively low absolute distance. While
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for the experiment without data assimilation, the outliers are the shipments with a high weight. This shows
that the data assimilation algorithm is able to prioritize the shipments with a high weight (volume).

Third, the spread in absolute distances of the different shipment arrival estimations is reduced. Figure
6.3 clearly shows that the absolute distances of the shipments are closer together for the experiments with
data assimilation than the experiment without data assimilation.

Weighted percentage
The similar desired effects of data assimilation on the weighted percentage are shown in figure 6.4. Data
assimilation increases the weighted mean of the percentages. This indicates that on average, there was a
higher confidence in the observed arrival day (i.e., more simulation models predicted the right arrival day).

The smaller interquartile ranges for the experiments with data assimilation indicate that the weighted
standard deviation of the percentages of the different shipment is reduced.

Figure 6.4: Effect of data assimilation on the weighted percentage

Analysis of figure 6.4 shows similar effects on the percentage per shipment as for figure 6.3. Data assim-
ilation reduces the absolute number of outliers as well as the weighted absolute number of outliers. Figure
6.4 clearly shows a decrease of (large) shipments for which the observed arrival date was completely unex-
pected (i.e., a percentage smaller than 10 percent).

At last the percentages of the different shipments are closer together for the experiments with data as-
similation. The smaller interquartile ranges show that the spread in percentages is decreased.

6.2.2. Summary of the effect of data assimilation
Based on the previous sections it is concluded that data assimilation makes shipment arrival estimation
more accurate as all the results four accuracy metrics changed in the desired direction. This is the result
of three effects that separate the experiments with data assimilation from the experiment without data as-
similation: First, data assimilation reduces the absolute number of outliers. Second, data assimilation is
able to prioritize shipments with a high weight, and third, data assimilation reduces the spread between the
different shipments.

Important to note is that for this analysis only the estimations with the largest degree of timeliness (t−30)
are considered. Therefore the effect of different degrees of timeliness will be discussed in the remainder of
this chapter.
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6.3. Effect of limited data availability on the accuracy of data assimilation
Now the positive effect of data assimilation is identified, the remainder of this chapter will focus on a com-
parison of the four different experiments with data assimilation. Each experiment is performed for a differ-
ent level of data availability (semantic completeness) and accuracy metrics are collected for four different
degrees of timeliness. The effect of limited data availability on the weighted absolute distance will be dis-
cussed first, after which the effect on the weighted percentage will be analyzed.

6.3.1. Weighted absolute distance
The results of the different experiments regarding the weighted absolute distance are shown in table 6.3.
Four different trends are visible in this table:

First, the relation more observations equals more accurate results does not hold. The experiment with
only 29 percent of the observations clearly outperforms the experiment with 91 percent of the observations.
This implies that some data points are more important than others.

Second, no clear relation between data availability and robustness is identified. The weighted standard
deviation differs per experiment and degree of timeliness.

Third, a lower degree of timeliness (e.g., t−3) does not always result in more accurate arrival estimations.
The experiments with 91 and 25 percent of the observations available show an opposite trend: A lower
degree of timeliness yields a higher weighted mean absolute distance.

Fourth, a reducing degree of timeliness does decrease the weighted standard deviation of the absolute
distances for almost every experiment. Thus, the closer to the actual arrival date an arrival estimation is
produced, the more robust this estimation is.

Weighted mean
absolute distance

Weighted standard deviation
absolute distance

t−30 t−14 t−7 t−3 t−30 t−14 t−7 t−3

Experiment E. 100% 1.6 1.6 1.0 1.0 Experiment E. 100% 4.0 2.3 1.2 1.4
Experiment E. 91% 1.7 1.7 2.4 2.3 Experiment E. 91% 3.4 1.6 2.5 2.3
Experiment E. 29% 2.0 2.0 1.1 0.9 Experiment E. 29% 5.2 2.9 1.3 0.6
Experiment E. 25% 4.3 4.3 5.9 10.3 Experiment E. 25% 2.5 0.9 1.3 1.1

Table 6.3: Effect of limited data availability on weighted absolute distance

To understand the four identified trends, the data behind the aggregated accuracy metrics is further
analyzed. For each degree of timeliness, the weighted absolute distances per shipment are compared based
on the visualization presented in figure 6.5. The shipments are shown as dark blue scatters; the size of
the scatter represents the weight (volume) of the shipment and the absolute distance is represented by its
position on the y-axis. The weighted mean of the shipments is presented by a yellow cross.

Because it is difficult to interpret the weighted standard deviations of the different shipments solely
based on the scatters of the shipments, this is represented by the interquartile ranges of the (weighted) box
plots. A larger interquartile range implies a higher weighted standard deviation.

Analysis of trend 1: The effect of data availability on the weighted mean absolute distance
The first trend observed in table 6.3 is clearly visible in figure 6.5: More data does not necessarily result in a
lower weighted absolute distance (i.e., more accurate results). This is concluded based on the fact that ex-
periment E. 29% clearly outperforms experiment E. 91% (with respect to the weighted mean of the absolute
distances) wile using only one third of the observations.

This is an unexpected trend compared to literature, therefore more understanding on the relation between
data availability and the quality of data assimilation is needed. This understanding is provided by an ana-
lysis of the clusters of arrival estimations provided by the particles. A clusters of arrival estimations is
presented by weighted histograms of the arrival estimations per particle, to which a Gaussian kernel is fitted
(for more information see chapter 5).

These weighted histograms and fitted Gaussian kernels are visualized for four example shipments (one
per experiment). These examples are representative for the sets of shipment arrival estimations in each
experiment. Extra weighted histograms are presented in appendix C.
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Figure 6.5: Spread of weighted absolute distance per degree of timeliness

First the weighted histograms and fitted Gaussian kernels of experiment E. 100% are compared to exper-
iment E. 91%. The only difference between these experiments in terms of data availability is the omission
of the third party data points (see figure 6.1).

Figure 6.6: Weighted histograms of arrival estimations of particles of shipment PO_58, experiment E. 100%

The comparison of the weighted histograms and the fitted Gaussian kernels presented in figure 6.6 and
6.7 show two factors:

First, the data assimilation algorithm is able to reduce the spread in the arrival estimations of the differ-
ent particles for both experiments. As one can clearly see in figure 6.6 and 6.7, as the degree of timeliness is
reduced, the estimations of the particles become increasingly which makes the fitted kernels more narrow.

Second, a difference between the two experiments is visible for estimations with a lower degree of timeli-
ness. Here both peaks become narrow, but the peaks in experiment E. 91% have a consistent higher abso-
lute distance between the estimated arrival day and the observed arrival day than the peaks of experiment
E. 100%.

This indicates that the data points lost between the two experiments play an important role in increas-
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Figure 6.7: Weighted histograms of arrival estimations of particles of shipment PO_58, experiment E. 91%

ing the accuracy of the estimations in the final steps of the supply chain. This is also visible in figure 6.5:
shipments have a higher absolute distance in experiment E. 91% compared to experiment E.100%

Second, the weighted histograms of experiment E. 29% (figure 6.8) are compared to those of the two
aforementioned experiments. The shipment arrival estimations of the different particles in this experiment
show similar behavior to those of E. 100%. As the degree of timeliness is reduced, the kernels presented in
figure 6.8 narrow down with a high level of precision and the absolute distance between the estimated and
observed arrival dates is reduced. This is in line with the results presented in figure 6.5

The fact that the absolute distance is consistently lower for shipment arrival estimations in experiment
E. 29% than E. 91% indicates that the observations omitted between these two experiments are not crucial
for the accuracy of the shipment arrival estimations. The opposite is true, these data points have a detori-
ating effect on the accuracy and should be identified as noise.

Figure 6.8: Weighted histograms of arrival estimations of particles of shipment PO_45, experiment E. 29%

At last, the weighted histograms with the arrival estimations of a single shipment for experiment E. 25%
are compared to the other three experiments. Figure 6.9 shows an incredible contrast to the other three
experiments.

The data available in this experiment is clearly insufficient to narrow down the fitted Gaussian kernels.
The pattern of a wide range of consistently wrong arrival estimations of the particles returns in all of the in-
dividual shipment arrival estimations. This pattern, in combination with the clearly higher weighted mean
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absolute distance for E. 25% (see figure 6.5) is a clear indication that the four percent of the observations
that are omitted between E. 29% and E. 25% are crucial for the accuracy of shipment arrival estimations.

Figure 6.9: Weighted histograms of arrival estimations of particles of shipment PO_45, experiment E. 25%

To summarize, the level of data availability is reduced in three steps and the weighted mean of the abso-
lute distance does not increase proportionally. This is a sign that not all data points are of equal importance.
Three groups of data points are identified:

First, the data points that are omitted between experiment E. 100% and E. 91% help making the assim-
ilation algorithm more accurate for results with a lower degree of timeliness. These are the third party data
points (vessel locations).

Second, the data points that are omitted between experiment E. 91% and experiment E. 29% are clas-
sified as noise. Omitting them increases the accuracy of the assimilation algorithm as experiment E. 29%
yields a lower weighted mean absolute distance than experiment E. 91%. These data points are the touch
points of the individual shipments in the carrier data.

Third, the four percent of the data points that are available to the algorithm in experiment E. 29% but
omitted in experiment E. 25% are crucial for the data assimilation algorithm. These are the touch points of
the transporters (aggregated shipments) in the carrier data.

Analysis of trend 2: The effect of data availability on the weighted standard deviation of the
absolute distances
Analysis of table 6.3 shows no clear relation between the level of data availability and the weighted stand-
ard deviation of the absolute distance (i.e., the robustness of the estimations). Further inspection of the
weighted absolute distance of individual shipments in figure 6.5 confirms this trend. All experiments have
varying interquartile ranges based on which no clear relation is identified.

A comparison of the weighted histograms presented in figure 6.6 to 6.9 shows two effects that influence
the weighted standard deviations of the absolute distances:

The first effect is based on three of the experiments (experiments E. 100%, E. 91% and E. 29%). For these
experiments, up to 34 percent of the arrival estimations are the result of a phenomenon identified as the
two-peak estimation.

An example of this phenomenon is presented in figure 6.10, where the estimation at t−14 clearly shows
two peaks, of which one accurately estimates the observed arrival day and one misses the observed arrival
date. Because the second (wrong) peak in figure 6.10 was higher, the wrong estimated arrival day is chosen.
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Figure 6.10: Weighted histograms of arrival estimations of particles of shipment PO_61, experiment E. 100%

This results in a high absolute distance, despite a high number of "right" particles. Analysis of all
weighted histograms shows that about 50 percent of the two-peak estimations result in a right estimations
and for the other 50 percent the estimated arrival date is based on the wrong peak. This makes the weighted
standard deviation over all the estimations relatively high, while a large portion of the particles produced
an accurate prediction.

The second effect relates to the arrival estimations in experiment E. 25%. Table 6.3 shows a very low
standard deviation for this experiment. This could be a sign of robustness. Analysis of the weighted his-
tograms confirms this robustness, however this should not be seen as a desirable result. The algorithm is
simply very robust in producing inaccurate estimations.

Analysis of trend 3: The effect of the degree of timeliness on the weighted mean absolute dis-
tance
Table 6.3 shows that reducing the degree of timeliness does not always result in more accurate results. This
unexpected trend is visualized in figure 6.11 where it is clearly visible that for experiment E. 91% and E. 25%
a lower degree of timeliness does not result in more accurate results.

Figure 6.11 gives more insight in the contribution of the different shipments to these trends. First it is
visible that omitting information on the location of the vessels in the system (from E. 100% to E. 91%) makes
the algorithm incapable of becoming more accurate for a lower degree of timeliness. This confirms the
previously made claim that the data on the location of the vessels is important for increasing the accuracy
for a low degree of timeliness if a high number of data sources (dimension) is used.

Second, is clear that solely relying on S&OP data points (experiment E. 25%) results in even more in-
accurate shipment arrival estimations. Based on this data it is impossible for the particles to correct their
estimation and the accuracy of the results detoriates as time proceeds. This is clearly visible in the weighted
histograms presented in figure 6.9. For each lowered degree of timeliness the weighted histogram shifts
right and the arrival estimation becomes increasingly inaccurate.

Analysis of trend 4: The effect of the degree of timeliness on the weighted standard deviation of
the absolute distances
A decreasing degree of timeliness generally results in a lower standard deviation of the weighted absolute
distance. In other words, the arrival estimations closer to the observed arrival date are more robust. This is
visible in figure 6.11 by the decreasing interquartile ranges of the box plots for each of the experiments.

Analysis of the weighted histograms and fitted Gaussian kernels as presented in figure 6.6 to 6.10 helps
understanding this behavior. As the degree of timeliness is reduced, the particles are guided by the res-
ampling process of the data assimilation algorithm. The result of this is more agreement in the estimated
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Figure 6.11: Spread of weighted absolute distance per experiment

arrival date. The peaks of the fitted Gaussian kernels become more narrow, which results in lower variability
of the arrival estimations itself. This translates into a lower variability (i.e., weighted standard deviation) of
the absolute distance between the estimated and observed arrival dates.

However, as previously discussed the decrease in weighted standard deviation for E. 25% should not be
considered desirable as this is just an indicator of consistent inaccurate results.

6.3.2. Weighted percentage
The effects of different levels of data availability on the weighted percentage are discussed in the subsequent
sections. Table 6.4 shows the weighted mean and the weighted standard deviation over the different exper-
iments. Three out of the four trends that have been identified for the weighted absolute distance are visible
for the weighted percentage as well.

Weighted mean
percentage

Weighted standard
deviation percentage

t−30 t−14 t−7 t−3 t−30 t−14 t−7 t−3

E. 100% 70.7% 77.9% 79.9% 82.2% E. 100% 23.8% 25.2% 22.1% 18.3%
E. 91% 61.6% 62.1% 50.5% 45.2% E. 91% 23.0% 27.2% 25.3% 28.1%
E. 29% 67.7% 82.6% 88.7% 89.1% E. 29% 18.8% 22.0% 13.9% 9.4%
E. 25% 66.3% 62.0% 25.5% 2.2% E. 25% 21.1% 11.6% 13.4% 2.4%

Table 6.4: Effect of limited data availability on the weighted percentage

The first clearly visible trend is the fact that the relation more observations equals more accurate results
also does not hold for the weighted percentage. Second, a clear relation between the data availability and
the weighted standard deviation of the percentages can also not be identified. Third, when studying the ef-
fect of the timeliness of the estimations similar trends are visible regarding the weighted mean percentage.
Experiment E. 100% and E. 29% follow an expected trend: a lower degree of timeliness results in more ac-
curate results. The opposite trend is visible for experiment E. 91% and E. 25%. A lower degree of timeliness
results in a lower weighted mean percentage for these experiments.
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Next to these similarities, one interesting difference versus the weighted absolute distances is visible in
table 6.4. Where a lower degree of timeliness results in a lower weighted standard deviation of the weighted
absolute distance (i.e., more robust results), this trend does not exist for the weighted percentage. The
weighted standard deviation even increases for some of the experiments (e.g., E.91%.)

These four trends will be reflected on in the following sections. As the trends are mainly in line with the
trends identified for the weighted absolute distance, the reflection will brief and focused on the differences
compared to the trends of the weighted absolute distance.

To support this reflection, the results presented in table 6.4 are presented in visual form in figure 6.12.
Here the percentage of the different shipments is be visualized in a similar way as in the previous parts of
this chapter. The weighted percentage per shipment is presented by dark blue scatters, where the size of the
scatter represents the weight of the shipment. The weighted mean percentage is presented with a yellow
cross and the standard deviation is represented by the size of the interquartile ranges of the box plots.

Figure 6.12: Spread of weighted percentage per degree of timeliness

Analysis of trend 1: The effect of data availability on the weighted mean percentage
The lack of the relation more observations equals more accurate results becomes even more visible in figure
6.12. For every degree of timeliness, experiment E. 91% and E. 25% have a lower weighted average percent-
age than experiment E. 100% and E. 29%.
Analysis of the weighted histograms and fitted Gaussian kernels as presented in figure 6.6 to 6.10 gives the
same insights as presented for the weighted absolute distance and are therefore not separately discussed.

Analysis of trend 2: The effect of data availability on the weighted standard deviation of the
percentages
Both table 6.4 and figure 6.12 show no clear relation between the availability of data and the weighted stand-
ard deviation of the percentages for each of the shipments. For each of the experiments, (except experiment
E. 25%) a relatively high degree of variation is observed.

Analysis of the estimations of the different particles (see figure 6.6 to 6.10) provide reasoning for the high
variation between the percentages of the shipments. As the particles find agreement due to the importance
resampling of the data assimilation algorithm, the fitted Gaussian kernels become more narrow. This results
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in situations where an estimated arrival day that is very close to the observed arrival date is still missed by
all of the particles. The result of this is a very low very low percentage.

An example of this is presented in figure 6.6 for the estimation at t−3. This estimation has an absolute
distance of just 1.8 days and a percentage of 36.9%. A large contrast to the estimation at t−30, where a
doubled absolute distance (3.7 days) results in a higher percentage (76.8%).

In other words, a small deviation in the observed arrival date can result in a very high deviation of the
percentage of an estimation due to the narrow peaks.

For experiment E. 25% the situation regarding the weighted standard deviation is the same for the per-
centage as the absolute distance. The algorithm becomes very consistent in inaccurate estimations with
a weighted mean percentage of 2.2% and a weighted standard deviation of 2.4% for the lowest degree of
timeliness (t−3).

Analysis of trend 3: The effect of the degree of timeliness on the weighted mean percentage
The third trend for the weighted percentage is in line with the weighted absolute distance as well. Reducing
the degree of timeliness does not always result in more accurate results. For experiment E. 91% and E. 25%
the opposite trend is visible: a lower degree of timeliness results in a lower weighted mean percentage. This
trend is even more visible in figure 6.13.

Figure 6.13: Spread of weighted absolute percentage per experiment

Analysis of the weighted histograms and fitted Gaussian kernels as presented in figure 6.6 to 6.10 help
understanding these unexpected results. For experiment E. 91% this is explained by the increasing uni-
formity in estimated arrival date of the particles. As figure 6.5 shows, the mean absolute distance does not
decrease together with the degree of timeliness for experiment E. 91% while the mean percentage does de-
crease. A constant absolute distance combined with more narrow peaks of the fitted Gaussian kernel does
always imply a lower percentage.

The explanation of the results from experiment E. 25% is even more straightforward. Figure 6.9 shows
that the fitted Gaussian kernels do not become more narrow, but the fitted kernel continuously shifts right.
This results in a reducing weighted percentage for each of the shipments.
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Analysis of trend 4: The effect of the degree of timeliness on the weighted standard deviation of
the percentages
Figure 6.13 and table 6.4 embody one unexpected result. As the degree of timeliness is reduced, the weighted
standard deviation of the percentages is not decreased. It even increases for many of the experiments. This
is an unexpected but explainable result.

As discussed in the Analysis of trend 3, a decreasing degree of timeliness results in more uniform es-
timations by the particles. This results in more narrow fitted Gaussian kernels. Therefore, small variations
between the observed and estimated arrival date result in large variations in the percentage for that ship-
ment. This effect becomes larger as the degree of timeliness is reduced, resulting in an increase of the
weighted standard deviation.

This explanation is supported by an analysis of the weighted histograms and fitted Gaussian kernels for
experiment E. 25%. An example of this is given in figure 6.9, which shows that for this experiment the peaks
do not become more narrow over time. For this experiment the standard deviation should not increase as
much as the other experimetns. Figure 6.13 and table 6.4 confirm this.

6.4. Seed analysis
To confirm the previously presented results, a random seed analysis is performed. Three runs with different
random seeds have been executed for experiment E. 100%. For each extra experiment the accuracy metrics
(weighted absolute distance and weighted percentage) per cluster of shipment arrival estimations are com-
pared. The outcomes of this analysis are visually presented in figure 6.14

Figure 6.14: Results of experiment E.100% with different random seeds

Analysis of results of seed analysis
Figure 6.14 shows that the differences for the weighted mean based metrics are small. However, for different
random seeds small differences are visible regarding the weighted standard deviations on both accuracy
metrics. This implies that randomness can affect the robustness of the data assimilation algorithm. How-
ever, the differences do not appear to be significant.

To confirm this hypothesis, the different experiments have been compared by means of an independent
t-test. The p-values are presented in table; pabsD refers to the p-values for the weighted absolute distances
and pp refers to the p-values for the weighted percentages. A glance at table 6.5 shows that for t−14 the dis-
tribution for the weighted absolute distances can differ significantly. The same accounts for the distributions
of the weighted percentages between random seed one and two. Since the spread in percentages is merely
high for all random seeds, this is no problem for future implementation of the data assimilation algorithm.
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t−30 t−14 t−7 t−3

pabsD pp pabsD pp pabsD pp pabsD pp

Seed 1 vs 2 0.018 1.000 0.000 1.000 1.000 0.000 1.000 0.000
Seed 1 vs 3 0.385 0.989 0.001 0.996 0.963 0.458 1.000 0.485
Seed 1 vs 4 0.664 0.998 0.002 0.853 0.986 0.290 1.000 0.290

Table 6.5: P-values for random seed test

6.5. Summary of results
The results show a clear positive effect of data assimilation on the accuracy of shipment arrival estima-
tions on all accuracy metrics. Next to this, the results show that the effect of limited data availability on the
weighted mean of the accuracy metrics is not proportional to the number of observations. Especially for
arrival estimations with a low degree of timeliness. This implies some data points are more important than
others.

Three groups of data points are identified. First, the third party data points that contain the location data
of the vessels. These help increasing the accuracy for situations with a low degree of timeliness. Second, the
carrier data points regarding the event-based observations of individual shipments. These are considered
noise as they have a negative effect on the accuracy of the data assimilation exercise. The third group of data
points are the crucial data points; the carrier data points with the events of transporter departing and ar-
riving at locations. If these data points are omitted, the accuracy of the data assimilation exercise detoriates.

In contrast to the weighted mean, limited data availability does not show to have a clear impact on the
robustness of the data assimilation algorithm. This shows to be a function of the degree of timeliness; gener-
ally the closer an estimation is to the observed arrival day, the more robust the accuracy of that estimation is.

The last interesting finding relates to the effect of the degree of timeliness on the weighted mean of
the accuracy metrics. The data assimilation algorithm yields less accurate results for a reducing degree of
timeliness for experiment E. 91% and E. 25%.



7
Discussion of results

In the following chapter, the results of the research will be discussed. First the effects of data assimilation
visible in the results will be discussed and compared to existing literature. Subsequently the generalizability
of the results to other (types of) supply chains will be discussed based on a comparison of the case study
to other supply chain systems. At last the limitations of the research will be discussed which will help both
placing the results in a wider perspective for future improvements as well as giving directions for future
work.

7.1. Discussion of results
The results that have been presented in the previous chapter will be discussed and compared to other theor-
ies and results found in literature. This discussion will help uncovering the findings that are a contribution
to the current state-of-the-art of data assimilation in discrete event simulation literature. Next to this, com-
paring the results to other streams of literature will provide a basis for generalizing the results of the case
study to different types of systems and data assimilation exercises.

7.1.1. Effect of assimilation
The first aspect that is discussed is the effect of data assimilation. The results presented in table 6.2 and
figure 6.3 and 6.4 show the positive effect on the accuracy of data assimilation. Data assimilation shows to
positively affect both the weighted mean and the weighted standard deviation of both accuracy metrics.

The confirmation of the positive effect of data assimilation shows that DES DA is a solution to one of the
pitfalls of traditional modeling and similation; the lack of predictive power (Darema, 2005). The insight that,
even in situations with limited data availability, data assimilation has a positive effect on the accuracy is a
contribution to DES DA literature. The research of Xie (2019) already showed the improvement of accuracy
of data assimilation regarding arrival estimations, however the dependency on data availability was only
moderately tested.

7.1.2. Effect of data availability on the accuracy of the data assimilation algorithm
The fact that more observation data does not necessarily result in more accurate results is unexpected and
interesting. Hu & Wu (2019) studied the effect of reducing the number of sensors that are used to collect
the observation data. They state that "generally speaking, more sensors provide more observation data and
thus lead to more accurate data assimilation results" (p. 21). However in their research all sensors collect the
same data and are evenly spaced and therefore no observation is more important than others. For supply
chains, the opposite is true, some observations are more important than others as different types of obser-
vations are collected.

The finding that not all sensor data is of equal importance is interesting and new to DES DA literature
but can be explained by machine learning literate. In machine learning, the importance of different features
is a widely studied topic, especially in the field of clustering. Literature on this topic helps to understand
why the arrival estimations of the experiment with 91 percent of the observations available are less accurate
than the results of the experiment with 29 percent of the observations available.

Feature selection is the process of selecting a subset of relevant features to use as input for a model
(Koutroumbas & Theodoridis, 2009). It is reasoned that features that are irrelevant or redundant can be
omitted without losing the crucial information (Watt et al., 2020). Often feature selection is applied to avoid
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the adverse effects of the curse of dimensionality (Bengtsson et al., 2008).

The notion of irrelevant or redundant information and the curse of dimensionality explains why the
experiment with 29 percent of the observations available yields more accurate estimations than the experi-
ment with 91 percent of the observations. The data points omitted between these experiments are irrelevant
and should be classified as noise. The increase of the accuracy by omitting these data points is explained by
the mitigation of the effects of the curse of dimensionality.

The link to the research stream of feature selection supports the identification of three different groups
of data points. First, the third party vessel location data points are beneficial for the accuracy in a high-
dimensional data set and help mitigating the curse of the dimensionality. Second the carrier data points
are classified as noise since omitting these data points yields better results due to the reduced effects of the
curse of dimensionality. The third group of data points are the carrier data points related to the departure
and arrival of transporters (vessels and trains). This group of data points is crucial since the accuracy of the
arrival estimations implodes after omitting them.

To transfer these findings to other systems with different sensors and behavior, it is necessary to know
a priori which sensors in a system are part of the crucial sensors and which sensors should be identified
as noise. In machine learning, this is referred to as feature selection, which is the process of finding the
optimal set of features. This is generally done by removing the features with a high correlation to other
features (since this is a sign of redundancy) and evaluating different subsets of the remaining set based on
different accuracy metrics. (Koutroumbas & Theodoridis, 2009).

As DES DA is generally applied in situations where historical data is not available, traditional methods
of feature selections such as filtering and wrapping Sánchez-Maroño & Alonso-etanzos (2007) do not work.
Another criterion for the identification of the crucial sensors is proposed instead.

The crucial sensors in this research are the the carrier data points related to the departure and arrival of
transporters (vessels and trains). These sensors serve as arrival sensors for the entities at the system bound-
aries. Arrival sensors are no new concept by itself as this concept first is applied by Xie (2019), who used
them to accurately estimate the number of entities in an open system to combat the variable dimension
problem. Next to this, this research has shown that for supply chains these arrival sensors are crucial in
reducing the uncertainty of the arrival estimations as well.

The results of this research show that using arrival sensors reduces the largest share of uncertainty in
the simulation model. This reduction of uncertainty is caused by more than just accurately estimating the
number of entities in an open system. The arrival sensors sensors allow an accurate estimation of the arrival
schedules of the transporters and thereby reduce the variation the arrival estimations of the particles.

A visualization of this effect is given in figure 7.1. Figure 7.1a clearly shows that there is still a high level
of uncertainty (indicated by the wide peak) in the arrival estimations if no arrival sensors are used. While
figure 7.1b shows that the uncertainty can dramatically be reduced by using these arrival sensors.

(a) Weighted histogram of shipment arrival estimations without
arrival sensors

(b) Weighted histogram of shipment arrival estimations with ar-
rival sensors

Figure 7.1: Effect of using arrival sensors on the variation of the shipment arrival estimations
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To summarize, because sensors have different levels of importance in supply chains, more observations
do not necessarily yield more accurate estimations. Based on a reflection on the different types of data, a
method to determine the crucial sensors for DES DA with open systems a priori is identified: The crucial
sensors are the ones that can serve as arrival sensors at the system boundaries of an open system.

7.1.3. Effect of the degree of timeliness on the accuracy of the data assimilation algorithm
The results show that for two out of the four experiments (E. 100% and E. 29%) the accuracy of the shipment
arrival estimation increases as the date of estimation becomes closer to the observed arrival dates. This is
in line with literature on forecasting by modeling and simulation. An example of this is given by Rosenhead
(1989), who describes this effect as the uncertainty trumpet: The further the time horizon of a forecast ex-
pands, the bigger the range of possible futures gets due to inherent uncertainties in a system that cannot
be captured by simulation models. In other words, estimations of arrivals closer in time should be more
accurate.

This notion of the timeliness of an estimation affecting the accuracy of an estimation is new in DES DA
literature. However, in other data assimilation exercises this is a well known phenomenon. An example of
this effect in Monte Carlo simulations that is well-known to the public is the (long-term) weather forecast.
Here an initial condition produces an increasingly wide range of different potential futures due to the un-
certainties in the models, which results in a plume shaped temperature prediction (Zhao et al., 2018). This
plume shape indicates that estimations with a low degree of timeliness embody less uncertainty and are
therefore generally more accurate.

Figure 7.2: Example of a plume shape weather prediction derrived from KNMI.nl

Thus, the literature on forecasting by modeling and simulation provides an explanation for two out
of the four experiments. However, the two other experiments show the opposite trend by becoming less
accurate as the degree of timeliness is reduced.

The results of experiment E. 91% stay about the same as the degree of timeliness is reduced. This could
be an effect of the curse of dimensionality. The high volume of irrelevant or redundant observations make it
difficult to compute meaningful distance metrics and thereby assign high weights to the particles that can
estimate the arrival of the shipments correct.

To understand why the accuracy of the arrival estimations for experiment E. 25% even decreases as the
degree of timeliness is reduced, the concept of underfitting is discussed. Underfitting occurs when a model
uses input variables that are not significant enough to determine a meaningful relationship between the
input and output variables (Koutroumbas & Theodoridis, 2009).
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In experiment E. 25% there is a very large period in time between the last observation on a shipment
(departure from the consolidator) and the actual arrival of a shipment (see figure 7.3). In this period of time
on average 30 iterations of the data assimilation algorithm are executed in which the weights of the particles
are updated every time. This decreases the relevance of the weights with respect to the shipments later on in
the supply chain and thereby reduces the accuracy of the arrival estimations with a low degree of timeliness.
This effect is visible in figure 6.9 by the right-shifting weighted histogram and fitting Gaussian kernel.

Figure 7.3: Experiments with different levels of semantic completeness

Next to the right shifting weighted histograms, underfitting is also clearly visible in the data assimilation
dashboard for experiment E. 25% presented in appendix C. Where the particles in the other experiments
converge, the convergence of the particles is limited of E. 25%. This means the observations are not sig-
nificant enough to meaningfully steer the particles in the state space. A snapshot the data assimilation
dashboards for experiment E. 29% and E. 25% is presented in figure 7.4 to show the effect of underfitting.

(a) Example without underfitting (experiment E. 29%) (b) Example of underfitting (experiment E. 25%)

Figure 7.4: Snapshot of data assimilation dashboards experiment E. 29% and E. 25%. States of variables presented in grey, variables
of real system in green.

Summarizing, the effect the degree of timeliness has on the accuracy of the data assimilation algorithm
is dependent on the data availability. If there is a large share of significant data points (features) in the
observations that are used for the computation of the weights of the particles (E. 100% and E. 29%), a de-
creasing degree of timeliness yields more accurate results. If too many data points are classified as noise (E.
91%), this effect disappears. And if there are not enough significant data points, underfitting occurs and a
decreasing degree of timeliness even results in less accurate estimations.
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7.1.4. Comparison of data assimilation to other techniques
The high level of accuracy achieved in this research shows that DES DA is highly promising as a technique
to increase supply chain visibility by estimating future events. One alternative class of techniques for the
automatic estimation of future events based on data is available: machine learning models. In this section
DES DA is compared to (supervised) machine learning to understand the potential for actual implementa-
tion of DES DA.

Supervised machine learning models are a method of data analysis that automates analytical model
building (Koutroumbas & Theodoridis, 2009). Machine learning models are generally constructed (com-
monly referred to as trained) by learning from a labeled data set (Watt et al., 2020). For the example of
estimating shipment arrivals this historical data set is composed by observations of events or locations in
the supply chain, with the observed arrival days as labels. Automatically building analytical models is dif-
ferent than DES DA which make DES DA desirable in some situations which are discussed first. Thereafter,
the main benefit of supervised machine compared to DES DA is discussed.

Machine learning models need a historical data set for training before any (accurate) results can be pro-
duced (Watt et al., 2020). DES DA only needs real-time data and some prior knowledge on the system to
provide accurate shipment arrival estimations. This difference makes DES DA the preferred technique in
situations where historical data is not available; for example after the establishment of a new supply chain
route or after new data is acquired.

The second main benefit of DES DA compared to machine learning models is the form of the output of
DES DA. The output of the data assimilation algorithm takes the form of a probability density function, while
machine learning models generally output a single value or a set of classes with assigned probabilities. Even
complex neural networks need several adjustments to generate complete probability densities (van Gerven
& Bohte, 2017). To understand he benefit of probability density functions as output, the concept of the
two-peak estimation is discussed again.

Figure 7.5: Example of a two-peak estimation

The results showed many situations where two estimated arrival days are (almost) equally probable, res-
ulting in two peaks in the probability density function of estimated arrival days. An example of this is given
in 7.5 and is referred to as a two-peak estimation. In these situations machine learning models generally
communicate one of these two peaks or even worse, the average day between these two peaks. DES DA
allows to actually communicate the existence of these two peaks. Based on this planners could to design
robust interventions that can deal with arrivals on both estimated peaks. This is a large advantage of DES
DA compared to machine learning models.

Despite the aforementioned advantages of DES DA, there is one scenario where machine learning mod-
els are preferred over data assimilation. This is the scenario where a large, well-maintained historical labeled
data set is available. Machine learning models would be preferred in these situations these models are gen-
erally easier to implement as they are automatically trained. DES DA requires the building of a validated
simulation model that accurately represents the real system which is a time consuming process.
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7.2. Discussion of the generalizability of the results
The research questions are focused the application of data assimilation in discrete event simulation on
supply chains in general, while this research is based on one specific use case. Therefore, the generalizability
of the results to other supply chains is discussed.

The generalizability of the supply chain of the use-case to other supply chains will be discussed first.
Thereafter the used data sources will be discussed to see how these relate to other supply chains.

7.2.1. Generalizability of the supply chain under study
The results for the use-case can be generalized to supply chains in general if the supply chain of the use-
case embodies characteristics that are typical for supply chains for which similar decision support requests
can be expected. These requests are typical for supply chains with a low level of visibility and a high level of
uncertainty (Ivanov et al., 2019).

Therefore, the level of visibility and uncertainty of the supply chain in this research is assessed to ensure
that the results from the use-case can be generalized to other supply chains and are not too optimistic. For
the supply chain under study three drivers are identified that underpin the low level of supply chain visibil-
ity and the high level of uncertainty.

The fact that this supply chain is a multi-tier supply chain is the first driver of low visibility and uncer-
tainty. This means that there are multiple supplier to buyer relationships within one supply chain (Jia et al.,
2019). In the supply chain under study there are three distinctive tiers present. The vendors buy raw ma-
terials from their suppliers and subsequently sell the produced goods to the stakeholder, which thereafter
sells its products to its (wholesale) customers. This dependency on other parties reduces the supply chain
visibility for the stakeholder and increases the uncertainty in the shipment arrival times.

The second driver is the fact that the transport in the supply chain is carried out by an external party; a
carrier. This means that the stakeholder can not make any policy decisions to steer the arrival dates after
the shipments have left the consolidator. This increases the uncertainty for the stakeholder and reduces the
supply chain visibility.

Third, the uncertainty and variation in shipment arrival dates is high because multiple sequential modes
of transports are used to transport the shipments from the consolidator to the terminal. First the shipments
are transported with a feeder to an intermediate port, subsequently with a vessel to the final port and at last
with a train to the terminal. Each of these modes of transports has its own (uncertain) schedule. Research
on planning optimization (Sohoni et al., 2011) shows that the connectivity of sequential schedules can have
a high impact on the variation of the arrival times and thereby drives the nonlinearity and uncertainty of a
system. The presence of nonlinearity is clearly visible by the binomial distribution shown in figure 7.5.

To summarize, because the supply chain under study embodies three important factors that are com-
mon for supply chains with a low degree of visibility, the results of this research can be generalized to other
supply chains with a similar decision support request. If any of these factors are not present in that supply
chain, the results are expected to have an even higher degree of accuracy.

7.2.2. Generalizability of data sources
A second concern for the generalizability or the results lays in the type of data sources (sensors) that are used
for this analysis. These data sources should not be unique for the supply chain under study but commonly
used in other (commercial) supply chain as well. As described in chapter 3, this was one of the criteria for
selecting the data sources in the first place. Therefore this should impose no problems for the generalizab-
ility of the results; this is discussed in below.

The first data source used in this research is the S&OP data. This is the internal supply chain and op-
erations data with the agreed, planned and actual delivery dates of the shipments at the consolidator and
the terminal. A market analysis by McKinsey & Company (2016) has shown that the majority of the publicly
listed companies with an international supply chain manage this data in tools such as SAP.

The second data source used is the carrier data. For this supply chain this data is available via TradeLens,
a Maersk platform on which event-based observations on the transport of shipments are available. Since
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2019 five out of the six largest global ocean carriers joined the TradeLens platform (TradeLens, 2019) cap-
turing over 61 percent of the world liner fleet (Statista, 2021). This indicates that carrier data is accessible in
many (international) supply chains.

The last data source used is for this research is the third party location data of the vessels. This data en-
compasses the lattitude and longitude of vessels retrieved from AIS satellite data. This data can be acquired
via a wide variety of platforms such as vesselfinder.com, vesseltracker.com and marinetraffic.com. Therefore
this data is accessible for many if not all international supply chains that use vessels to transport their goods.

To summarize, the data sources used in this research are expected to impose no problems for the gen-
eralizability of the findings of this research to other (commercial) supply chains. Each of the data sources is
either considered a best practice or widely available for international supply chains.

7.3. Discussion of the limitations of the research
Given the time and scope of this research, not every aspect of the algorithm is tested or optimized for. These
limitations of the research can affect the findings of the research. Therefore these limitations of this research
and their implications are discussed. First, three limitations of the research that can have a negative impact
on the accuracy of the algorithm are discussed. Second, two limitations regarding the generalizability of the
results are discussed.

7.3.1. Limitations affecting the accuracy of the algorithm
The first set of limitations that is discussed are the those that could have an impact on the reported perform-
ance (accuracy) of the data assimilation. These limitations relate to the optimization of the performance of
the data assimilation algorithm. Because this research focuses on testing the effects of limited data availab-
ility on the accuracy of DES DA, the optimization of the algorithm is left out of scope.

Hyperparameters of the algorithm
Given the time and scope of the research is decided to test one version of the data assimilation algorithm
for different levels of data availability and keeping the hyperparameters of the algorithm constant over the
experiments. For particle filtering algorithms (which are used for DES DA) two hyperparameters have sig-
nificant impact on the performance of the algorithms. Tuning the hyperparameters can result in more ac-
curate results. Both parameters are discussed to investigate the potential effects of tuning these parameters.

The first hyperparameter is the number of particles (N). For DES DA each particle is an instance of a
simulation model. Therefore, increasing the number of particles increases the computational burden. This
generally results in a longer duration of the execution of the experiments. On the other hand, previous res-
ults on DES DA indicated that more particles generally yield more accurate results (Cho, 2019, Xie, 2019).
Therefore a balance between the computational burden and the accuracy of the outcomes of the experi-
ments should be found.

The second hyperparameter that is kept constant over the various experiments is the length of the data
assimilation interval (∆t ). Cho et al. (2020) showed that smaller data assimilation intervals generally yield
more accurate results.

The different data sources used in this research are only updated once every day, which means that
new data becomes available with an interval of one day. The data assimilation interval can not be smaller
than the interval by which data becomes available. Thus, the the smallest assimilation interval possible
is used. Therefore the length of the data assimilation interval used in this research is expected to have no
limiting effect on the presented results, although it could be an interesting direction of further research to
investigate the effect of increasing the data assimilation interval to the accuracy of the algorithm to confirm
this hypothesis.

Distance metrics
In the research three different distance metrics are proposed to combat the curse of dimensionality. Given
the time and scope of this research only one of these metrics is used for the different experiments. This is the
fractional distance as this metric has the best foundation in literature (i.e., Aggarwal et al. (2001)). Analysis
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of the results has shown that this distance metric performs well for this system although although it could
not be guaranteed that the other distance metrics can result in a higher level of accuracy. Therefore further
research would be needed to assess the effect of different distance metrics.

Identical twin
The last limitation of this research is the fact that the data assimilation algorithm is developed and tested
based on an identical twin concept due to the lack of availability of historical carrier and third party data.
Working with an identical twin generally results in more accurate results than assimilating data from a phys-
ical system since the model structure used for the particles is always 100% valid (Xie, 2019).

Therefore working with the historical data of an actual physical system would give more realistic results
in absolute sense. However, as the goal of this research was to compare the relative performance of the
algorithm under different levels of data availability, these results can still be deemed valid.

Estimated effect on results
It is expected that a further tuning of the hyperparameters can increase the accuracy of each of the experi-
ments. Especially increasing the number of particles (N) is expected to drive this positive effect. However,
this will also increase the computational burden. This could make the results of the different experiments
more uniform, but as it is expected that this will positively impact the accuracy of all experiments this should
have no implications for the findings of this report.

On the other hand the implementation of this algorithm with an actual real system instead of an identical
twin as surrogate is expected to decrease the absolute accuracy of the arrival estimations. However, the rel-
ative importance of the different data sources is expected to remain the same.

7.3.2. Limitations for the generalizability of the results
In general the findings of this research can be generalized to other supply chains because the supply chain
structure and the data sources used for this research are common to other supply chains for which these
types of decision requests can be expected. However, as the scope of this research was limited, there are
situations in which the results can not be generalized. These situations are situations for which the the
algorithm has not been tested or developed for these types.

Structural uncertainty
For the system under study it was assumed that no structural uncertainty existed. This makes the current
algorithm inapplicable to supply chains with structural uncertainty Structural uncertainty is present when
we are uncertain about the model output because we are uncertain about the functional form of the model
(Kwakkel et al., 2015). For supply chains structural uncertainty is present when it is uncertain which route or
mode of transport shipments take to go from a to b. This is uncertain since shipments could be transported
by different carriers or carriers could decide take different routes.

Incorporating structural uncertainty would make the data assimilation more complex because of two
factors. First, structural uncertainty generally results in nonlinearity and binomial distributions in the es-
timations of future events. It can be challenging to capture these nonlinear dynamics by data assimilation.
However, because the current data assimilation is already able to capture these nonlinearities, shown by the
estimation of binomial distributions as presented in figure 7.5, the effects of this factor are expected to be
limited.

The second factor is the the variable dimension problem (Xie, 2019) which is expected to impose the
biggest challenge and needs future research. As shipments in the real system can take different routes,
shipments in the real system could pass completely different sensors than shipments particles (simulation
models). This results in a variable dimension between the observations of the real system and the meas-
urements from the particles which makes computing a distance for each of the particles a very complex
challenge.

Black swan events
The data assimilation algorithm is developed to support decision making in supply chains for normal oper-
ations. In other words, it is not tested how the algorithm would react to so-called black swan events such as
the blocking of the Suez Canal.
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This makes the conclusions that will be drawn on the effect of data availability on the accuracy of DES
DA valid for supply chains in normal operations. However, the predictive capabilities of the proposed al-
gorithm in these black swan events can not be guaranteed and could be an interesting field of future re-
search.

7.4. Implication of research
This research is a basis for the future development of DES DA algorithms for supply chains. The main im-
plication of this research is the notion that, for supply chains, more observations do not necessarily result in
more accurate results. An unexpected trend since this is different than previous observations of Xie (2019)
and Hu & Wu (2019) who noted that more observations generally result in more accurate results. Machine
learning literature on feature selection supports these results. Thus, for future DES DA research it is crucial
take into account that some observations are more important than others. The crucial data sources are the
data sources that can serve as arrival sensors at the system boundaries.

The second academic contribution to the state-of-the-art DES DA research is the development of a DES
DA algorithm that can provide accurate estimations of future events based on high volumes of both event-
based and location-based data, which is typical for supply chains. The provided code and extensive de-
scription of the different functions that form the algorithm are intended to increase the reproducibility of
this research and facilitate future research to further develop this algorithm.

The third contribution to the current state-of-the-art DES DA algorithms is the fact that the presented
algorithm uses weighted observations: the volume of a shipment determines the importance of an observa-
tion and shipments with high volumes should be prioritized by the algorithm. In other research all entities
and observations are considered equal. The results clearly show that the algorithm is able to prioritize the
large shipments, which benefits the applicability of this algorithm.

Apart from these academic implications, the practical implications of this research are significant as
well. After presenting the results to different teams of the stakeholder, the stakeholder decided to further
prioritize on retrieving the crucial data points to potentially start implementing DES DA.

A second practical implication of this research, is the insight that is given in the effectiveness of Salabim
as a simulation software package to create the simulation environment. As thoroughly discussed in chapter
4, the characteristics of Salabim made the reconstruction of the particles in the resampling step an unne-
cessary difficult process. Therefore it is recommended to use a different simulation software package for
future research. The requirements for a future package are described in appendix B.

7.5. Future work
As stated, this research should be used as a basis for the future development of data assimilation in dis-
crete event simulation algorithms. Based on the identified limitations of this research two fields for future
research are identified. First, it is suggested to focus on the development of data assimilation algorithm.
Second, it the implementation of data assimilation algorithms needs more research. For each of these fields
several potential topics will be discussed.

7.5.1. Algorithm development
One of the limitations of this research is the fact that this research is based on the identical twin concept.
This means that the simulation models used to represent the real system in the particles are always com-
pletely valid as these are the exact same model. using an identical twin is desirable for research to assess
the quality of algorithms because this guarantees that none of the results are caused by an unsatisfactory
validation and verification of the simulation models.

However, as these algorithms are developed for application to real systems, more research should be
focused on the performance of DES DA algorims based data coming from an actual real system. To perform
this research it is suggested to collaborate with a stakeholder that has access to the historical data from
all data sources identified in this research. This data should be already available and can not be collected
real-time supply chain planning cycles generally take multiple months which makes running multiple ex-
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periments a timely exercise.

The second topic of for future work regarding the development of DES DA algorithms is the incorpor-
ation of structural uncertainty. As discussed structural uncertainty can make DES DA very challenging be-
cause of the variable dimension problem that surfaces if entities take different routes in each of the particles.
To mitigate the adverse effect of the variable dimension problem adjustments to the computation of the
weights should be made for which more research is needed.

To incorporate structural uncertainty, the current simulation model can simply be extend by adding to
different routes and modes of transport (e.g., transport via air). To do this research it is suggested to col-
laborate with the current stakeholder as a part of the current supply chain has already been modeled and
different routes and modes of transport are present.

At last it a set of follow up experiments is suggested to test how the performance of the presented al-
gorithm could further be optimized. As previously discussed the main improvement is expected in tuning
the different hyperparameters, testing different distance metrics and testing more combinations of input
data.

For these follow up experiments it is recommended to take the data assimilation algorithm that has been
developed during this research and extend this with the two distance metrics that are suggested but have
not been tested in this research. A full factorial design with varying distance metrics, number of particles
and different levels of data availability should be the basis for a sensitivity test comparable to the research
of Cho (2019). Performing this sensitivity test will provide a good overview of the ideal configuration of the
DES DA algorithm for this type of supply chains.

7.5.2. Algorithm implementation
Apart from the suggestions for future work on the development of DES DA algorithms it is suggested to do
future research on the implementation of DES DA to supply chains. This field of research has a rather prac-
tical character. Three topics that need to be addressed before the proposed data assimilation algorithm can
be implemented on the real supply chain are discussed.

At first more research should be done on how the different types of data can be made available to the
algorithm in case of implementation on an actual supply chain. In this research, all data points that are
assimilated into the simulation models are the result of a simulation model itself and are generated by the
data assimilation algorithm.

To implement this algorithm based on the real-time observations of an actual supply chains, a data lake
should be constructed in which the observations (from different data sources) can be stored in such a way
that the data assimilation algorithm can collect these observations and assimilate them into the simulation
model.

Another point of concern when implementing the proposed algorithm is the detection of particles drift-
ing off. There could be situations where none of the particles represent the behavior of the real system. For
the supply chain operations and planning team it is crucial that these situations are detected before the
shipments arrive.

This could be done by imposing a threshold condition on the distance metrics that are calculated for
each of the particles. If all particles exceed this threshold, none of the particles represents the behavior of
the real system and a rollback and resampling operation needs to be performed to allow the particles to
match the real system again. More research on how to establish such a threshold is needed.

At last it is suggested to explore if more advanced methods could be used to unify the clusters of ship-
ment arrival estimations into one final shipment arrival estimation. Currently this is done at by taking the
peak of the fitted Gaussian kernel, however analysis of the different clusters shows there are many situ-
ations where the clusters result in two peaks (see appendix C). An example of a two-peak estimation is given
in figure C.7.

This research should not only focus at the detection of patterns such as the two-peak estimations but
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also on the communication of these results to the planners. Notifying the supply chain planners of two
(almost) equally probable estimated arrival dates allows these planners to design robust inventory plan-
ning strategies that can cope with both estimated arrival dates. However, current S&OP planning tools do
not allow for multiple planned dates. Therefore, the communication of estimated arrival dates should be
improved as well.



8
Conclusion

In this chapter, the final research question as proposed in chapter 1 will be answered: What is the effect of
limited data availability on the accuracy of data assimilation in discrete event simulation for supply chains?
To support the answer on this final question, first the four sub-questions will be answered. Based on these
insights, the main research question will be answered.

8.1. Answers to sub-questions
To answer the main research question, four sub-questions are identified that together help answering the
main research question. In the following sections, each of these sub-questions are discussed and answered.
The answers are intended to be applicable to data assimilation in discrete event simulation algorithms for
supply chains in general.

1. How should the current state-of-the-art data assimilation in discrete event simulation algorithms be
adjusted for application to supply chains?

Applying data assimilation in discrete event simulation is different for supply chains than many other field
of applications because of the challenges that rise with the volume and shape of the input data as well as
the required output data.

The challenge imposed by the input data comes from the fact that data available on supply chains is
generally event-based. Supply chains generally embody a high number of shipments and high number of
touch points for which events are recorded. This results in a high number of observations and thus a high
level of dimensionality of the data that is used to compute the weights of the different particles. Due to the
curse of dimensionality, fitting a multivariate Gaussian distribution to determine the weights as applied by
Cho (2019) does not work.

Therefore the data assimilation algorithm is adjusted and a single distance metric for each particle com-
puted. Three different metrics are proposed that show potential to combat the adverse effects of the curse
of dimensionality. The fractional distance as proposed by (Aggarwal et al., 2001) is implemented and results
in accurate arrival estimations.

The second challenge for the application of DES DA to supply is caused by the required output data
comes. In supply chains, the hidden state that should be estimated is generally a future state (i.e., a forecast
of future events). Therefore, the data assimilation algorithm is adjusted: After the states of a particle are re-
corded at the end of an assimilation interval, each particle is simulated for an extra period of time to make
this future state estimation.

2. What accuracy metrics should be used to determine the accuracy of data assimilation in discrete event
simulation algorithms for the estimation of future events?

An estimation of a future event by data assimilation in discrete event simulation is considered accurate
if two requirements are satisfied: First, the absolute distance between the estimation of a future event and
the observed future event should be low. Because a low absolute distance indicates the right prediction is
made and the information based on which policies are implemented is right. Second, a high share of the
particles should have estimated the observed future event right, which is indicated by the percentage. The
percentage is an important indicator because the output of a DES DA algorithm is a probability density
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function and not a simple number.

To aspects of accuracy are proposed to assess the accuracy over a set of estimations of future events.
First, the average accuracy over the set of estimations should be high. Second, there should be little vari-
ation between the accuracy of the different future estimations (i.e., the algorithm should be robust). Little
variation is is indicated by a low standard deviation.

If different types of future events are estimated, each event should get assigned a weight. The data as-
similation algorithm is intended to prioritize accurate estimations of events with a higher weight. Therefore,
the weight of the events is part of the accuracy metrics as well.

This results in four recommended accuracy metrics that should be used to determine the accuracy of
DES DA algorithms for the estimation of future events. These accuracy metrics are presented in table 8.1

Weighted Mean Weighted Standard Deviation
Absolute Distance Weighted mean absolute dis-

tance (low)
Weighted standard deviation of
the absolute distances (low)

Percentage Weighted mean percentage
(high)

Weighted standard deviation of
the percentages (low)

Table 8.1: Accuracy metrics for the estimation of future events by DES DA. Desired value between brackets.

For the estimation of a future event it is also highly relevant when this estimation is done. Therefore,
the degree of timeliness of an estimation is introduced in this Thesis. The closer to the observed event an
estimation is performed the lower the degree of timeliness of this estimation. It is recommended to collect
the accuracy metrics for different degrees of timeliness in future research.

3. What is the relation between the number of observations and the accuracy of data assimilation in dis-
crete event simulations on supply chains?

The results show that the relation identified in previous DES DA research, more observations results
in more accurate results, does not hold for the average accuracy of shipment arrival estimations in supply
chains. The experiment with 29 percent of the observations (E. 29%) produces more accurate results than
the experiment with 91 percent of the observations available (E. 91%). This shows that using of less ob-
servations can actually help to combat the curse of dimensionality and thereby produces in more accurate
results.

However, the results also clearly show that less is more is also not true as the experiment with 91 percent
of the observations available (E. 91% ) yields less accurate results than the experiment with 100 percent of
the observations available.

Therefore, there is no clear relation between the number of observations and the average accuracy of
data assimilation. Some observations clearly have more impact than others. Next to this, the results have
shown that no clear relation between the level of data availability and the robustness (weighted standard
deviation) of the arrival estimations exists.

4. What sources of data are crucial for the the accuracy of data assimilation with discrete event simulation
on supply chains?

Three groups of data points are identified based on the results and the discussion on the results. First,
the third party vessel location data points are beneficial for the accuracy in a high-dimensional data set.
Second the carrier data points can be seen as noise since omitting these data points yields better results
due to the reduced effects of the curse of dimensionality. The third group of data points are the carrier data
points related to the departure and arrival of transporters (vessels and trains). This group of data points is
crucial since the accuracy of the arrival estimations implodes after omitting them.
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In machine learning literature the crucial sources of data are the data sources that help explain the
highest level of variability (i.e., uncertainty) in a system. For this research the same pattern is identified. the
crucial data sources are the the carrier data points related to the departure and arrival of transporters (ves-
sels and trains). The effect of these data sources on the accuracy of the data assimilation is high because
these data sources also serve as arrival sensors for entities in the system (see also Xie (2019)). Using the
arrival sensors allows for the reduction the largest share of uncertainty in the simulation model by an ac-
curately estimating of the arrival schedules of the transporters and thereby reduce the variation the arrival
estimations of the particles.

To summarize, the crucial data points are the data sources that serve as arrival sensors. The arrival
sensors help reducing the uncertainty in the supply chain by accurately estimating the number of entities
and the arrival schedules of these entities in an open system.

8.2. Answer to research question
Research Question: What is the effect of limited data availability on the accuracy of data assimilation in
discrete event simulation on supply chains?

This research shows that limited data availability on supply chains does not necessarily has to result in
less accurate estimations by DES DA. A lower number of observations can result in just as accurate or even
more accurate results. However, this can only be the case if the omitted data is not part of the set of crucial
data sources. The crucial data sources are the data sources that serve as arrival sensors which help to reduce
most of the uncertainty in simulations of open systems.

If the omitted data points are part of these crucial data sources the accuracy of the data assimilation
algorithm detoriates. This results in inaccurate estimations, especially for estimations with a low degree of
timeliness.

However, if limited data availability is the result of omitting data sources that are not part of the crucial
data sources, the accuracy of the data assimilation algorithm can increase. Less data points help combatting
the curse of dimensionality and result in more accurate estimations.
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Jugović, A., Bukša, J., Dragoslavić, A., & Sopta, D. (2019). The possibilities of applying blockchain technology
in shipping. Pomorstvo, 33(2), 274–279. doi: 10.31217/p.33.2.19

Kádár, B., Pfeiffer, A., & Monostori, L. (2004). Discrete event simulation for supporting production plan-
ning and scheduling decisions in digital factories. Proceedings of the 37th CIRP international seminar on
manufacturing systems, 444–448. doi: 10.3390/1035854

Kantas, N., Beskos, A., & Jasra, A. (2014). Sequential Monte Carlo Methods for High-Dimensional Inverse
Problems: A Case Study for the Navier–Stokes Equations. SIAM/ASA Journal on Uncertainty Quantifica-
tion, 2(1), 464–489. doi: 10.1137/130930364

Koutroumbas, K., & Theodoridis, S. (2009). Pattern Recognition (e-book ed.). Cambridge, Massachusetts:
Academic Press. doi: https://doi.org/10.1016/B978-1-59749-272-0.X0001-2

Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling,
scenario discovery, and (multi-objective) robust decision making (Vol. 96). doi: 10.1016/j.envsoft.2017.06
.054

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2015). Developing dynamic adaptive policy pathways: a
computer-assisted approach for developing adaptive strategies for a deeply uncertain world. Climatic
Change, 132(3), 373–386. doi: 10.1007/s10584-014-1210-4

Laprie, J.-C. (2008). From dependability to resilience. 38th Annual IEEE/IFIP International Conference On
Dependable Systems and Networks, Fast abstracts. doi: 10.495/340022

Long, Y., & Hu, X. (2017). Spatial partition-based particle filtering for data assimilation inwildfire spread
simulation. ACM Transactions on Spatial Algorithms and Systems, 3(2). doi: 10.1145/3099471

Martindale, W., Duong, L., Hollands, T., & Swainson, M. (2020). Testing the data platforms required for the
21st century food system using an industry ecosystem approach. Science of the Total Environment, 724,
137871. doi: 10.1016/j.scitotenv.2020.137871

McKinsey & Company. (2016). Big data and the supply chain: The big-supply-chain analytics landscape (Part
1). Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/
big-data-and-the-supply-chain-the-big-supply-chain-analytics-landscape-part-1

Metyis. (2020). SCENARIO PLANNING TOOL - SPT (Tech. Rep. No. September). Amsterdam: Metyis.

Mirkes, E. M., Allohibi, J., & Gorban, A. (2020). Fractional norms and quasinorms do not help to overcome
the curse of dimensionality. Entropy, 22(10), 1–31. doi: 10.3390/e22101105

http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-159437
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-159437
https://www.mckinsey.com/business-functions/operations/our-insights/big-data-and-the-supply-chain-the-big-supply-chain-analytics-landscape-part-1
https://www.mckinsey.com/business-functions/operations/our-insights/big-data-and-the-supply-chain-the-big-supply-chain-analytics-landscape-part-1


Bibliography 82

Nance, R. E. (1981). The Time and State Relationships in Simulation Modeling. Communications of the
ACM , 24(4), 173–179. doi: 10.1145/358598.358601

National Institute of Standards and Technology. (1996). Weighted Standard Deviation. Dataplot Refer-
ence Manual, 11, 1. Retrieved from http://itl.nist.gov/div898/software/dataplot/refman2/
ch2/weightsd.pdf

Novikov, A. (2019, 5). Creating sea routes from the sea of AIS data. Retrieved from https://
towardsdatascience.com/creating-sea-routes-from-the-sea-of-ais-data-30bc68d8530e

Nykam, D. (2020). State Space Definition. Retrieved from https://mathinsight.org/definition/state
_space

Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The Evolution of Resilience in Supply Chain Management:
A Retrospective on Ensuring Supply Chain Resilience. Journal of Business Logistics, 40(1), 56–65. doi:
10.1111/jbl.12202

Ponis, S., & Koronis, E. (2012). Supply Chain Resilience: Definition Of Concept And Its Formative Elements.
The Journal of Applied Business Research, 28(5), 921–930. doi: 10.9774/gleaf.9781783533527{\_}4

Reichle, R. H. (2008). Data assimilation methods in the Earth sciences. Advances in Water Resources, 31(11),
1411–1418. doi: 10.1016/j.advwatres.2008.01.001

Rosenhead, J. (1989). Rational analysis for a problematic world: Problem structuring methods for complexity,
uncertainty and conflict. Chichester, UK: Wiley. doi: https://doi.org/10.1057/jors.1989.150

Sánchez-Maroño, N., & Alonso-etanzos, A. (2007). Filter Methods for Feature Selection - A Comparative
Study. In International conference on intelligent data engineering and automated learning. (pp. 178–187).
Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-77226-2

Sankararaman, S., & Mahadevan, S. (2013). Distribution type uncertainty due to sparse and imprecise data.
Mechanical Systems and Signal Processing, 37(1-2), 182–198. doi: 10.1016/j.ymssp.2012.07.008

Shultz, T. R., & Fahlman, S. E. (2017). Encyclopedia of Machine Learning and Data Mining. doi: 10.1007/
978-1-4899-7687-1

Silva, N., Ferreira, L. M. D., Silva, C., Magalhães, V., & Neto, P. (2017). Improving Supply Chain Visibility With
Artificial Neural Networks. Procedia Manufacturing, 11(June), 2083–2090. doi: 10.1016/j.promfg.2017.07
.329

Sohoni, M., Lee, Y.-c., Klabjan, D., Sohoni, M., Lee, Y.-c., & Klabjan, D. (2011). Linked references are available
on JSTOR for this article : Robust Airline Scheduling Under Block-Time Uncertainty. Transport Science,
45(4), 451–464. doi: 10.1287/trsc.1100.0361

Statista. (2021). Leading ship operator’s share of the world liner fleet as of June 21, 201. Retrieved
from https://www.statista.com/statistics/198206/share-of-leading-container-ship
-operators-on-the-world-liner-fleet/

Stein, M. (1987). Large sample properties of simulations using latin hypercube sampling. Technometrics,
29(2), 143–151. doi: 10.1080/00401706.1987.10488205

Tako, A. A., & Robinson, S. (2012). The application of discrete event simulation and system dynamics in the
logistics and supply chain context. Decision Support Systems, 52(4), 802–815. doi: 10.1016/j.dss.2011.11
.015

TradeLens. (2019). TradeLens adds major ocen carriers Hapag-Lloyd and Ocean Network Express. Retrieved
from https://www.tradelens.com/press-releases/hapag-lloyd-and-ocean-network-express

http://itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
http://itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf
https://towardsdatascience.com/creating-sea-routes-from-the-sea-of-ais-data-30bc68d8530e
https://towardsdatascience.com/creating-sea-routes-from-the-sea-of-ais-data-30bc68d8530e
https://mathinsight.org/definition/state_space
https://mathinsight.org/definition/state_space
https://www.statista.com/statistics/198206/share-of-leading-container-ship-operators-on-the-world-liner-fleet/
https://www.statista.com/statistics/198206/share-of-leading-container-ship-operators-on-the-world-liner-fleet/
https://www.tradelens.com/press-releases/hapag-lloyd-and-ocean-network-express


Bibliography 83

van Gerven, M., & Bohte, S. (2017, 12). Editorial: Artificial Neural Networks as Models of Neural In-
formation Processing. Frontiers in Computational Neuroscience, 11(7553), 436–444. doi: 10.3389/
fncom.2017.00114

Wang, J., Chang, Q., Xiao, G., Wang, N., & Li, S. (2011). Data driven production modeling and simulation
of complex automobile general assembly plant. Computers in Industry, 62(7), 765–775. doi: 10.1016/
j.compind.2011.05.004

Wang, S. (2010). Modeling supply chain dynamics with calibrated simulation using data fusion (Doctoral
dissertation, Arizona State University). doi: 10.1.1.477.2280

Watt, J., Borhani, R., & Katsaggelos, A. (2020). Machine learning refined: foundations, al-
gorithms, (2nd Editio ed.). Cambridge, Massachusetts: Cambridge Univerity Press. Re-
trieved from https://www.cambridge.org/highereducation/books/machine-learning-refined/
0A64B2370C2F7CE3ACF535835E9D7955#overview

Wei, H. L., & Wang, E. T. (2010). The strategic value of supply chain visibility: Increasing the ability to
reconfigure. European Journal of Information Systems, 19(2), 238–249. doi: 10.1057/ejis.2010.10

Welch, G., & Bishop, G. (1995). An introduction to the Kalman Filter. doi: 10.1109/LAWP.2018.2818058

Xie, X. (2019). Data Assimilation in Discrete Event Simulation (Doctoral dissertation, Delft University of
Technology). doi: https://doi.org/10.4233/uuid

Xie, X., & Verbraeck, A. (2019). A particle filter-based data assimilation framework for discrete event simu-
lations. Simulation, 95(11), 1027–1053. doi: 10.1177/0037549718798466

Xue, H., Gu, F., & Hu, X. (2012). Data assimilation using sequential Monte Carlo methods in wildfire
spread simulation. ACM Transactions on Modeling and Computer Simulation, 22(4). doi: 10.1145/
2379810.2379816

Zeigler, B. P., Praehofer, B., & Kim, T. (2000). Introduction to Systems Modeling Concepts. In Theory of
modeling and simulation (2nd ed., pp. 3–25). New York: Academic Press. doi: 10.1016/b978-0-12-813370
-5.00009-2

Zhao, J., Duan, Y., & Liu, X. (2018). Uncertainty analysis of weather forecast data for cooling load forecasting
based on the monte carlo method. Energies, 11(7), 18. doi: 10.3390/en11071900

https://www.cambridge.org/highereducation/books/machine-learning-refined/0A64B2370C2F7CE3ACF535835E9D7955#overview
https://www.cambridge.org/highereducation/books/machine-learning-refined/0A64B2370C2F7CE3ACF535835E9D7955#overview


Appendices

84



A
Data acquisition system, simulation model,

measurement model and real system

The four remaining components of the DES DA framework are discussed in this appendix. These compon-
ents are tailored to the use-case, however a large share of the aspects of the data sources, processes in the
simulation model and implementation of the measurement model could be used to other (parts of) supply
chains.

In the following sections, first the data acquisition system will be discussed. Here the key characteristics
of the data sources ("sensors") in the real system will be discussed. Subsequently the simulation model
and the measurement system will be discussed together. At last the simulation model that will be used as a
surrogate for the real system will be elaborated on.

A.1. Data acquisition system
The data acquisition system refers to sensors that measure (partial) system states that are assimilated by the
data assimilation algorithm into the particles. In other DA examples this data comes from actual sensors
(e.g., Hu & Wu (2019)). For supply chains, the data available on the arrival of shipments generally does not
directly come from sensors but from data warehouses such as SAP or Tradelens (see section 3.3 for more
information). All data points on the supply chain under study are presented in figure fig: touch points data
sources app

Figure A.1: Overview of data points of different data sources

The observations in the data warehouses can be treated as if they came from actual sensors which ob-
serve events or the locations of entities. These observation and contain errors which are the result of meas-
urement errors in actual sensors, mistakes in planning certain dates or simply human mistakes on entering
the dates. Therefore assumptions are made on the size and shape of the distribution of these errors.

Three different types of measurements are identified that each have its own type of error distribution
and the shape of the distributions is similar to the distribution of the uncertainty as presented in 3.4. Agreed
and planned tend to have a higher degree of uncertainty and are positively skewed because of the tendency
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of planned dates to take place more often at a later date than an earlier date. An overview of the error
assumptions has been given in table A.1.

All sensors are have measurement intervals of one day and the sensors that measure the moments on
which events take place have a granularity of days. Since it has been decided to adopt an identical twin
approach, the sensors data is be extracted from the simulation model that represents the real system.

Type of data point Assumed size of error Assumed shape of distribution
Agreed data points Large Positive Skew
Planned data points Medium Positive Skew
Actual data points Low Symmetrical

Table A.1: Overview of different error assumptions per type of data point

The the fact that the sensor data comes from data warehouses brings a unique opportunity. Instead of
just measuring events that take place, each event or location that is measured is coupled to a shipment.
Either via the orderID, the containerID or the vesselID (see also table 3.1). This makes the computation of
as well distance as accuracy metrics more accurate as already has been discussed in section 4.2.

A.2. Simulation model and measurement model
The next two components addressed in this section are the simulation model and the measurement model.
This simulation model should simulate the flow of goods trough in the real system in a sufficient accur-
ate manner to make estimations on the arrival times of shipments. As previously argued (see section 2.2),
discrete event simulation is the modelling tool of choice.

The measurement model are the adjustments made to the model to extract the measurements that are
part of the data acquisition system from each of particles. Extracting these measurements by the measure-
ment model allows to compute the distance of the particles to the real system.

Both components will be described in the following sections. The simulation model will be further
delineate by a description of the system boundaries, the model variables and the model structure. The
measurement model is implemented in the model structure and is discussed together with the structure.
The annotated code for the simulation model and the measurement model is presented in SC_Model.

A.2.1. System boundaries of the simulation model
To create a valid simulation model, the system boundaries should be clearly delineated. For this a two-step
approach is adopted: First one of the vendor countries as presented in figure A.2 is selected for further ana-
lysis and subsequently the conceptual system boundaries are defined. It is decided to limit the scope of this
research to one of the inbound supply chain branches to deliver the proof of concept, which can be scaled
up in future work.

Figure A.2: Supply chain structure Asia - the Netherlands by ship (flow of goods: from top to bottom)
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As figure A.2 shows, four different vendor countries exist. Two of them (Indonesia and India) have just
one port of loading (consolidator) , and the two others (China and Vietnam) have multiple consolidators.
The most suitable branch for this proof of concept is considered to be the most complex branch with the
highest need for accuracy. Therefore the different branches are assessed based on four criteria:

• The number of consolidators - The more consolidators there are present, the more complex the sup-
ply chain structure becomes, since shipments will come in from two different sources with different
locations.

• The number of intermediate ports - The more intermediate ports, the more complex the supply chain
structure becomes. This because goods will need to be cross-docked here which adds complexity and
decision-rules into the supply chain.

• The number of shipments - The more shipments, the higher the number of relevant dimensions for
computing the distance metrics in the data assimilation algorithm (see section 4.1.1 for more insight
on this topic). This could be problematic for the particle filtering exercise, which makes this a desirable
feature for the proof of concept selection.

• The standard deviation between planned and actual terminal delivery date - The higher the standard
deviation between the planned and actual terminal delivery date is, the higher the need for decision-
support / data assimilation.

Vietnam is selected as vendor country for the proof of concept because this country has multiple con-
solidators, the goods pass an intermediate port, a large share of the shipments is produced in Vietnam and
the deviation between he planned and actual terminal dates is the highest.

The scope of the model is limited from the arrival of the goods at the consolidator, to the delivery of the
goods at the terminal. This based on two reasons: First, there is no data nor visibility on the (production)
processes at the vendors which make data assimilation impossible. Second, after arrival of the goods at the
terminal, the flow of goods is controlled by the stakeholder. This makes forecasting further behavior unne-
cessary.

At last, the conceptual system boundaries are defined. The focus of this simulation model is on fore-
casting the flow of shipments trough the supply chain from the consolidator to the terminal. The goal is
hereby to forecast in a granularity of days and therefore it is acceptable to simplify some of the processes
that take place at both the ports as well as during transportation (e.g., omitting the concepts of acceleration
and deceleration for the vessels).
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A.2.2. Model variables
For the simulation model a set of 24 variables is used. These are the parameters of probability distributions
used to sample the interarrival times and speed of the transporters as well as the processing- and loading
times of the shipments at the various ports. The 24 variables are divided in four groups which each will be
discussed briefly.

The first group of variables are the modes of the triangular distributions of interarrivaltimes of trans-
porters (feeders, vessels, trains) at the various points of departure (Ho Chi Minh (HC), Hai Phong (HP), Tan-
jung Pelepas (TP), Rotterdam (RT)). An overview of the parameters is given in table A.2. Data analysis has
shown that these arrivals are irregular and should be represented by a triangular distribution (see notebook
02 Creating Shipping Schedules.ipynb).

Variable
Real
Value

Uncertainty
Range

Unit

feederHCMode
feederHPMode
vesselTPMode
TrainRTMode

4
4
7
1

1 - 7
1 - 7
1 - 7

0.5 - 2

Days

Table A.2: Modes of interarrival times

The second group of the variables is the The mode of the triangular distribution from which the time of
loading and unloading of shipments at a port of departure and arrival (Ho Chi Minh, Hai Phong, Tanjung
Pelepas, Rotterdam, Venlo (VN)) is sampled. The uncertainty range for the loading times in Venlo is smaller
because a train is unloaded instead of an container vessel which generally takes a longer period of time.

Variable
Real
Value

Uncertainty
Range

Unit

feederLoadingTimeHCMode
feederLoadingTimeHPMode
shipLoadingTimeTPMode
trainLoadingTimeRTMode

0.2
0.2
0.2
0.1

0 - 0.5
0 - 0.5
0 - 0.5
0 - 0.2

Days

Table A.3: Mode of triangular distribution of loading times

The third group of the variables is the mode of the triangular distribution of the speed of the transport-
ers(feeders, vessels, trains) between two destinations (Ho Chi Minh, Hai Phong, Tanjung Pelepas, Rotter-
dam, Venlo). This speed is sampled on a daily basis. The mode of this triangular distribution is the only
uncertain variable as the minimum and the maximum speed of transporters are known. An overview of
these variables is given in table A.5.

Variable
Real
Value

Uncertainty
Range

Unit

speedFeederHC_TPMode
speedFeederHP_TPMode
speedVesselTP_RTMode
speedTrainRT_VNMode

27.75
27.75
35.15
35

18.5 - 46.25
18.5 - 46.25
18.5 - 46.25

25 - 40

km / hr

Table A.4: Mode of triangular distribution of speed of transporters
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The fourth group of variables relates to the processing times at the consolidators, ports and eventual the
terminal. These processing times are modelled by means of a skewed normal distribution which is formed
by three parameters. The mode, the skewness, and the size of the distribution, which is comparable to the
standard deviation of a normal distribution. These parameters are considered uncertain and described in
table

Variable
Real
Value

Uncertainty
Range

Unit

processingMode_HC
processingMode_HP
processingMode_TP
processingMode_RT

1
1
1
1

0.5 - 4
0.5 - 4
0.5 - 4
0.5 - 4

Days

processingSkewness_HC
processingSkewness_HP
processingSkewness_TP
processingSkewness_RT

12
2
2
2

1.5 - 2.5
1.5 - 2.5
1.5 - 2.5
1.5 - 2.5

Days

processingSize_HC
processingSize_HP
processingSize_TP
processingSize_RT

1
1
1
1

1.5 - 1.5
1.5 - 1.5
1.5 - 1.5
1.5 - 1.5

Days

Table A.5: Parameters for skewed normal distributions for the processing times

A.2.3. Model structure
Based on the description of the supply chain operations as provided in chapter 3 and the system boundar-
ies, a model structure is generated. This model structure is implemented in Salabim. In the model, entities
are generated for each shipment as well as for the various modes of transport. For the processes of these
entities, servers (hold statements in Salabim) are used for the different terminal processes and the transport
between the various ports or terminals. If all entities have been processed, but no mode of transport is avail-
able, the entities are placed into a Queue, which are emptied once the transporting entities have arrived.

The arrival of the entities is based on schedules, shipments on the planned AC (At Consolidator) dates.
The arrival of the transport modes is based on the available sailing / train schedules. The processing dur-
ation and the transport speed (which is the key determinant for transport speed) are sampled from distri-
butions that have been constructed based on the available data (see section A.2.2). The sampling of these
processing times will benefit the variability in the data assimilation in a later stage.

A.2.4. Model components and processes
In the following section, the previously described model structures and the corresponding processes are
described in more detail. The annotated code for the simulation model can be found in SC_model.py.

Important to note is that these descriptions relate to the simulation models used as system transition
model (i.e., the simulation models for the particles). All adjustments for the model used as surrogate for the
real system are discussed in section A.3.

Consolidator processes
The first model structure and group of processes that are addressed are the processes at the two consol-
idators. These consolidators are placed at the system boundaries and shipments enter the systems at the
moment of delivery by one of the vendors. The different model processes and the corresponding measure-
ment data is visualized in figure A.3.

Arrival of shipments
The first process at the consolidators is the arrival of the shipments in Hai Phong and Ho Chi Minh. This
is formalized in the model by means of two componentGenerators (Source_HP and Source_HC). Shipment



A.2. Simulation model and measurement model 90

(a) Consolidator Hai Phong (b) Consolidator Ho Chi Minh

Figure A.3: Consolidator processes

entities are generated based on the agreed, planned, and (actual) AC Dates. These data points are displayed
by the orange dots in figure A.3. At the moment of generation, each of the shipments gets assigned its
(planned) characteristics (e.g., ID, route and volume) and is subsequently declared ready for processing.

To increase the reusability of this model for different supply chains, a universal class has been generated
(model.shipmentGenerator). The two instances of the class are defined at initialization and its location-
specific behavior is adjusted by variables such as the departure schedule and the routes that should be
assigned to the shipments.

The detection of the actual arrival of shipments is based on the concept of arrival detectors (see the
vehicle trajectory model of Xie (2019) for more insight on this topic). At the beginning of each data assim-
ilation interval, information is available on the actual and future (agreed and planned) shipment arrivals.
These datasets are generated in notebook 03 Creating AC Arrival Sensor Data.ipynb. Depending on the type
of data point (Agreed, Planned or Actual) error terms are added to this data in the model.readSensorArrival-
Data function. More information on the size and shape of these error terms can be found in table A.1.

Processing at consolidator and Queue
After the shipments have been generated, their behavior is governed depending on their route and status.
This is governed by the function shipment.process. This starts with the processing at the consolidator (Server
_Consolidator in figure A.3), formalized in the function shipment.processingAtConsolidator.

Here each of the shipment is held for a period of time, sampled from a skewed normal distribution, for
which the Mode, Skewness and the Size are determined by the data assimilation algorithm. An important
note here is that the sampled time cannot be below 0 (as negative processing times do not exist). If a negat-
ive value is drawn, the value is sampled again.

After processing, the shipments are ready for departure. For this two FIFO (First In First Out) queue’s
are generated, as the shipments enter the queue and wait for the arrival of a feeder for transport to the next
port.

Measurement model consolidator
At the arrival of the shipments at the system boundary the first event-based data point will be generated. To
retrieve this data points, a sensor function (model.sensor) has been written which is based on four compon-
ents. This sensor function mimics the behavior of the S&OP and carrier data warehouses. For each sensor
the ID of the entity triggering the sensor (e.g., shipment), the time and the volume corresponding to the
entity are recorded and stored by the the ID (location) of the sensor. Table A.6 provides an overview of the
sensor ID’s corresponding to this part of the model.

EntityType SensorID
AC Date HP Shipment 1HP01_shipment_gated_in
AC Date HC Shipment 1HC01_shipment_gated_in

Table A.6: SensorID’s at consolidator
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Transport to intermediate port
The second part of the component is the transportation of the shipments from the consolidators to the in-
termediate port in Malaysia (Tanjung Pelepas). This process is visualized in figure A.4. For the transport of
shipments throughout the model a second class of entities is generated: Transporters. These transporters
are generated and can take entities from a queue and transport them via predefined routes to a subsequent
destination.

Figure A.4: Transport from consolidator to intermediate port

Arrival of feeders
The transport between the consolidators and the intermediate port is taken care of by so-called feeders.
These are freight vessels with a lower capacity and a lower speed than the transcontinental vessels. To in-
crease reproducability of this model, all transporters (feeders, vessels, trains) are defined by one class and
their individual behavior is governed by parameters such as type, route and speed. The generation of the
transporter entities is governed by location specific instances (Source_HP and Source_HC) of the Trans-
porter Generator class.

The analysis of historical Maersk data (see notebook 02 Creating Shipping Schedules.ipynb) has shown
that the arrival of feeders is a random process, where planned dates are (almost) never met. Therefore it has
been decided to model this as a process with random interarrivaltimes drawn from a triangular distribution
of which the mode is determined by the data assimilation algorithm (see section A.2.2). Only actual (feeder
arrival) dates are (when available in the selected scenario) assimilated into the simulation model.

Loading and unloading of the shipments
If a feeder arrives at the consolidator, the shipment entities are loaded on the feeder. For this a loading time
dependent on the port of departure is sampled from a triangular distribution for which the mode is estim-
ated by the data assimilation algorithm (see section A.2.2). The loading time is assumed to be irrelevant of
the number of shipments of the stakeholder that are loaded since these are considered to be only a (relat-
ively) small proportion of the total number of containers that are loaded on board. Based on the agreements
the stakeholder has with the carrier, it can be assumed that all containers that are ready for shipment are
loaded on board. The unloading of the vessels works similar to the loading.

Moving of feeders
After the loading the feeders will start sailing to the next destination. DES models are the compound of
different atomic model states and these atomic model states are only updated locally if a new event takes
place (see section 2.4.1). This would generally imply that the location of a transporter would only needed to
be updated at departure and arrival.

However, this is considered to be undesirable since the Global Positioning System (GPS) information of
vessels can be made available by third parties (see section3.3). This could be crucial data for the accuracy
of the data assimilation study and therefore this needs to be available in the simulation models as well. An
extensive data analysis has been performed on a dataset of historical AIS data between port provided by
Novikov (2019). This analysis can be found in notebook 05 Creating coordinates for transporters.ipynb.
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Based on a sparse dataset with coordinates of routes between numbered ports, first the right ports have
been identified after which the routes between these ports are interpolated to a dense set of latitude and
longitude combinations. Subsequently the distance between the nearest neighbour combinations of sets
are computed to create a dataset with the all latitudes and longitudes assigned to the cumulative distance
on the route. In this dataset the entire transport route is divided in different sections as can be seen in figure
A.5a.

(a) Coordinates of different transport routes (b) Visualization of movement of vessels over route

Figure A.5: Transporter routes and coordinates

The actual movement of the formalized by sampling a distance sailed per day from a triangular distri-
bution, for which the mode is estimated by the data assimilation algorithm. After each day the cumulative
distance of the feeder is calculated and the nearest match with the previously discussed dataset is looked
up to retrieve the latitude and longitude of the feeders. The effects of this method is a step-wise move-
ment, which has been visualized in figure A.5. Each shade of green represents a vessel, where the size of the
scatters represents the volume of shipments on that respective vessel.

Measurement model transport to intermediate port
As can be seen in figure A.4, nine different sources of data are located in this part of the supply chain. Of
these sources, the moment of arrival of the feeder, the moment of loading of the shipment, the depar-
ture date of the vessel and the arrival of the feeder are event-based sensors. This data is collected with
the model.sensor function as well. An overview of the corresponding SensorID’s is given in table A.7.

EntityType SensorID
Feeder Arrival HP Transporter 2HP04_transporter_out_arrived
Feeder Arrival HC Transporter 1HC04_transporter_out_arrived
Loaded On Vessel HP Shipment 2HP05_shipment_loaded
Loaded On Vessel HC Shipment 1HC05_shipment_loaded
Departure Date HP Transporter 2HP06_transporter_out_departed
Departure Date HC Transporter 1HC06_transporter_out_departed
Arrival Date TP Transporter 3TP02_transporter_in_arrived

Table A.7: SensorID’s transport to intermediate port

Location-based sensor data
One set of measurements has not been discussed yet; the location-based sensor data. These are the loc-
ations of the vessels. Because of the previously discussed state retrieval problem (see section 2.4.1) the
locations of transporters is not always updated at the end of a data assimilation interval.
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To this extent, a location interpolation function (model.interpolateLocation) has been designed that in-
terpolates the location of all active transporters based on the previous location, time sailed and speed. Sub-
sequently the locations of all active vessels are assigned to the transporter ID and stored in a global dataset
with the location data of all vessels.

Intermediate port processes
After the arrival of the feeder at the intermediate port the goods can be unloaded and processed at the
intermediate port. These processes are similar to the loading and processing of the goods at the terminal;
the mode of the processing time is estimated by the data assimilation process as well. After the processing
the shipments are ready for departure and enter a FIFO queue. These processes have been visualized in
figure A.6.

Figure A.6: Intermediate port processes

Measurement model intermediate port processes
As displayed in figure A.6, only one source of sensor data is located at the intermediate port. This is the
sensor triggered at the unloading of the shipments at the intermediate port. This is implemented in the
same way as the retrieval of all other event-based sensor data. The characteristics of this sensor are sum-
marized in table A.7

EntityType SensorID
Discharged Date TP Transporter 3TP3_shipment_unloaded

Table A.8: SensorID’s intermediate port

Transport to final port processes
At the intermediate port, intercontinental fright vessels depart to bring the shipments to the final port (Rot-
terdam). This transport is set up based on the same characteristics (functions) as the transport from the
consolidators to the intermediate port. The vessels arrive based on a triangular distribution with a mean
that is estimated by the data assimilation algorithm. The processes are visualized in figure A.7.

Figure A.7: Transport to final port processes

Different route segments
The moving of the vessels is formalized the same way as described for the feeders, with three main differ-
ences. First, the vessels follow a different route (see figure A.5b). Second, the vessels have a different (higher)
speed than the feeders which is sampled by the data assimilation algorithm. The third difference is the most
crucial difference, this relates to the different route segments.

The route from Tanjung Pelepas (Malaysia) to Rotterdam has been cut into three different segments.
The first segment is from Tanjung Pelepas to the Suez (SZ) Canal, the second is the Suez Canal itself and the
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third is the Suez Canal to Rotterdam. It has been decided to separate these segments since the speed of the
vessels is not the same for these segments; therefore the average speed of the vessels will be lowered for the
Suez Canal.

Measurement model transport to final port processes
As one can see in figure A.7 four different potential sources of data to be assimilated can be identified. First,
the moments of arrival of the vessels at the intermediate port, the loading of the shipments on the vessel
and the departure of the vessel are recorded by event-based sensors. Subsequently the location of the vessel
is recorded and at arrival at the final port (Rotterdam), an event-based sensor is triggered again. This is all
implemented exactly the same as for the feeders; an overview of the event-based sensor ID’s is given in table
A.9.

EntityType SensorID
Vessel Arrival TP Transporter 3TP04_transporter_out_arrived
Loaded on vessel TP Shipment 3TP05_shipment_loaded
Departure Date TP Transporter 3TP06_transporter_out_departed
Arrival RT Transporter 4RT02_transporter_in_arrived

Table A.9: SensorID’s transport to final port

Processes in country of destination
After the vessel has arrived in the final port, the goods are in the country of destination. Here the goods are
offloaded of the vessel, processed and subsequently transported by train to the terminal. The processing of
the shipments and the entering of the queue at the final port is modelled by the same building blocks as the
processing of the shipments at the other ports. Therefore this is not further elaborated on.

The same accounts for the transport of the shipments to the terminal by train; the only significant dif-
ference here is that the location of the trains is not recorded since this is not available in the real system.
The order of the processes is visualized in figure A.8.

Figure A.8: Processes in country of destination

Arrival at terminal
After the arrival of the train at the terminal, the shipments are unloaded and deactivated. At this moment
the time of delivery is recorded separately (apart from the normal sensor data) which eventually is used to
make estimations on the arrival times.

Measurement model country of destination
In the country of destination, five different event-based sensors can be triggered. As previously discussed,
no location data on the trains is available in the real system and therefore this is not modelled in the simu-
lation model as well. An overview of the event-based sensor ID’s is given in table A.10.
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EntityType SensorID
Discharged date RT Transporter 4RT03_shipment_unloaded
Rail arrival time RT Transporter 4RT_04_transporter_out_arrived
Loaded on rail RT Shipment 4RT_05_shipment_loaded
Rail departure time RT Transporter 4RT_06_transporter_out_departed
Rail arrival Time Transporter 5VN02_transporter_in_arrived
Terminal Date VN Transporter 5VN03_shipment_unloaded

Table A.10: SensorID’s country of destiantion

A.3. Real system
As previously described, a simulation model will be used as a surrogate for the real system in a identical twin
setup. This because the supply chain planning cycle encompasses multiple months and therefore it is in-
feasible to test and develop the proposed framework with an actual physical system. However, the identical
twin model will be based on real-world data.

This real system is an instance of the previously described simulation model, with the global state vari-
able groundTruth as True instead of False (which is used for the particles). Because of this difference, the
behavior of this simulation model is different than that from the particles. This difference is found in three
major aspects: 1) The arrival of shipments is based on a schedule, 2) The schedule of transporters is based
on a schedule, and 3) The model parameters are fixed. Each of these aspects will be discussed in the follow-
ing sections.

A.3.1. Arrival of shipments in the real system
Instead of basing the he arrival of shipments on sensor data with different levels of errors, the arrival of
shipments in the model used for the real system is based on historical data. Based on the S&OP data of
the stakeholder, a schedule has been generated containing the arrival days, locations, ID’s and volumes
of shipments. This schedule is split based on the location of the consolidators and subsequently used to
generate the shipment entities at the right moment in time. The processing times at the consolidator are
sampled and added to this schedule as well. The process for creating this schedule can be found in notebook
04 Creating the ground truth shipment arrival and AC processing times.ipynb.

A.3.2. Arrival of transporters in the real system
For the arrival of transporters (feeders, vessels and trains) a similar approach is adopted; for each of the
different transporter generators a schedule is used as input. However, no historical data on transporter
arrival within the same time frame of the historical S&OP data was available. To generate this missing data,
historical Maersk data is to create a new artificial schedule.

As the goal of this research is to provide a proof of concept, this is considered to be no threat to the
validity of the results. More insight on the process of creating these schedules can be found in notebook 02
Creating Shipping Schedules.ipynb.

A.3.3. Real model parameters
The model parameters that steer the behavior of the system are estimated by the data assimilation al-
gorithm. These parameters are fixed in the model that is used as surrogate for the real system. These para-
meters are set after iteratively testing and running the model until the variability in the shipment delivery
days at terminal was comparable with the variability as shown in figure 3.4.



B
Reflection on Salabim as simulation

environment

The discrete event simulation model that is used for this research has been implemented in Salabim. Salabim
is a good discrete event simulation environment for traditional what-if simulations or even exploratory
modelling. However, using this environment for a DES DA exercise in combination with MultiProcessing
turned out to be challenging since Salabim makes use of generators. The different benefits and the major
downside of using Salabim for DES DA will be discussed in this chapter, combined with the solution to the
identified challenge.

B.1. Benefits of Salabim for DES DA
Using Salabim as simulation software to create the simulation environment for the particles and the real
system had several benefits to other simulation environments. Each of the benefits will be discussed in the
this section. These benefits can be a reason to use Salabim in future research or should be present in an-
other simulation software package.

First, a large benefit of Salabim is the fact that this software is open source software. Many other com-
mercial simulation software packages such as Simio require a license to be purchased. These licenses can be
very expensive, especially for commercial application. Apart from this the fact that Salabim is open source
means that the code is freely available and can be if adjusted if desired.

The second benefit of Salabim is the fact that this is a Python-based package. This makes connecting
the simulation models to the data assimilation algorithm a relatively straightforward process since the data
structures (e.g., lists, dictionaries) match. Simulation packages such as Simio generally write data to .csv
files first which complicates connecting the simulation environment to the data assimilation algorithm.

The third significant benefit of Salabim is the compatibility with MultiProcessing for a faster execution
of the data assimilation algorithm. DES DA generally requires a high number of particles to approximate a
posterior probability density function. Because each particle is represented by an instance of a simulation
model, the time it takes to execute a simulation model is very important. This time can be tremendously
increased by running multiple simulation models in parallel. The MultiProcessing package in Python is used
to do so and because Salabim is a Python-based package the different simulation models can be executed
in parallel.

B.2. Downside of using Salabim for DES DA
Using Salabim over the course of this research surfaced a large downside this simulation software package
as well: saving simulation models (particles) that have been executed to reconstruct the offspring particles
again after the resampling step is very difficult.

As the particles are executed by multiProcessing to reduce the duration of the data assimilation exercise,
the instances of the models including their states need to be pickled to make them accessible in the main
frame. Because Salabim makes use of Generators, it is impossible to save the actual instances of the model
since these cannot be Pickled.

Therefore a solution is found: At the end of the data assimilation interval all states of the simulation
models are saved and at the beginning of a new simulation interval the simulation model is reconstructed.

This way of working only allows to save the model states, all model components and processes cannot
be saved (because of the presence of generators). Therefore all model components need to be reconstructed
at the start of a new assimilation interval and the original states need to be reinstated. For the fixed model
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components (e.g., shipmentGenerators) this is no problem. However, for the entities (e.g., shipments) this
is more challenging. It needs to be assured that every reconstructed entity starts at the exact same process
and state as it left. This makes the internal logic of the model more complex.

To summarize, generating offspring particles is a very complex procedure since the instances of the
simulation models cannot be saved together with the model states if MultiProcessing is used. Since Multi-
Processing is crucial for performing these experiments within an acceptable period of time another solution
is found. However, as the internal logic of the simulation model is adjusted, the complexity of the simula-
tion model is significantly increased. Therefore it is recommended not to use Salabim for future research.
If no alternative is found, the adjustments to the simulation model are discussed below so Salabim still can
be used in future research.

B.2.1. Adjustments to the simulation model
To facilitate this, three significant adjustments have been made to the simulation model: 1) Extra processes
have been added to save the states of each of the model components and the global model states. 2) Extra
processes have been added to allow for the reconstruction of the simulation model. 3) The internal logic
of the model processes have been altered to make sure regenerated entities follow the right logic. These
adjustments are presented below.

Saving of model states
At the end of an assimilation interval, all model states need to be saved. The model state can be divided in
three groups which are consecutively saved. First a set of all transporters and its states is generated. For all
transporters, a state vector of all states that belong to that transporter is coupled to its ID. These ID - state
vector tuples are stored together. Subsequently the same procedure is applied to all shipments in the sys-
tem. At last all global model states (e.g., sensor data and locations of transporters) are stored together. These
three sets of states are stored as a pickle. This has been formalized in the model.saveLastState function, for
which the pseudo code has been presented in algorithm 10.

Algorithm 10: Saving of model states

Input: Simulation model
Output: Sets of state vectors of simulation model

Function saveLastState():
// Retrieve transporter state vectors
for transporter in transporters do

for State in transporter.__dict__ do
if State contains no Generators then

Add state to state vector

Couple state vector to transporterID and add to set of transporter states

// Retrieve shipment state vectors
for shipment in shipments do

for State in shipment.__dict__ do
if State contains no Generators then

Add state to state vector

Couple state vector to shipmentID and add to set of shipment states

// Retrieve global states
for State in global states do

if State contains no Generators then
Couple state to state ID and add to set of global
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Reconstruction of the simulation model
At the beginning of a new assimilation interval, the resampled models that represent the offspring particles
are reconstructed. This starts with an empty simulation model for which no components (e.g., generators)
have been created. Subsequently the simulation time is advanced to the time of the start of the data assim-
ilation interval. At that moment the function model.setModelStates is called to recreate all the saved model
entities and their states as well as the global model states. The pseudocode for this function is presented in
algorithm 11

As this function is called, two additional generators are created. This are different generators than the
generators that create the entities during the simulation. These generators allow to create new entities and
replace their states with the original saved state vectors. After all original entities have been generated, the
additional generators are deactivated. Thereafter, all saved global states are copied from the saved global
state vector.

The result of these steps is a simulation model with all previous states and entities. To finish this step,
all fixed model components are generated as they were by the function model.generateComponents. This
finalizes the process of reconstructing the simulation model.

Algorithm 11: Reconstructing the model

Input: Sets of state vectors of simulation model
Output: Simulation model

Function setModelStates():
Create a transporter reconstruction source (model.transporterGenerator2)
// In the transporter reconstruction source:
for transporter in saved set of transporter states do

Generate new transporter and replace states with saved sate vector

Create a shipment reconstruction source (model.shipmentGenerator2)
// In the shipment reconstruction source:
for shipment in saved set of transporter states do

Generate new shipment and replace states with saved sate vector

for saved state in saved global state vector do
Replace model state with saved state

Adjustment of internal logic of model processes
As the entities are regenerated, the entities should pick up exactly the same processes as they were executing
at the moment they were saved. For example, shipments that were being processed at the consolidator
should continue this process for the remaining duration. For this a set of extra state variables is assigned to
each of the regenerated entities. In each of the processes additional logic is added to make sure the entities
do not start over with their processes but continue their processes. More insight of the verification and
validation of this can be found in the notebook 07 Verification of reconstruction of the model .ipynb

B.3. Recommendations for picking a simulation package for future DES DA
Based on the experiences of this research it is recommended to use a different simulation package for future
DES DA research. The process of saving model states, reconstructing the simulation models and adjusting
the internal logic of the models makes connecting the simulation environment to the data assimilation
algorithm an unnecessarily difficult process.

To select a discrete event simulation software package for future research it is recommended to prioritize
on the following four factors in descending order of importance:

1. It should be possible to execute multiple instances of the simulation model in parallel.
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2. It should be possible to save instances of the simulation model together with their states at any mo-
ment, closing them and opening and starting them again in multiprocessing.

3. The simulation software package should be based on the same data structures as the high-level pro-
gramming language in which the data assimilation algorithm has been written.

4. The simulation software package should be open source.



C
Additional results of experiments

In the results section, examples of the most occurring types of clusters of shipment arrival estimations
have been analyzed. All visualizations of the set of arrival estimations can be found in the folder 3_Out-
put1_Figures3_Arrival_Estimation_Histograms. To give the reader extra understanding of the different ty-
pologies of clusters of shipment arrival estimations per experiment, the different typologies that are visible
in each experiments are discussed. The data assimilation dashboards with the traces of the particles, the
particle weights and the duration of the sampling step are presented as well.

C.1. Experiment E. 100%
Experiment E. 100% is the experiment with all data points available. The results presented in chapter 6 show
that the data assimilation algorithm can achieve a high level of accuracy given these data points. Next to
this, the results get more accurate as the degree of timeliness is reduced.

C.1.1. Shipment arrival estimation clusters
Three different types of weighted histograms are visible in the results of experiment E. 100%: The major
of the shipment arrival estimations clusters are characterized by an increasing confidence (narrower peak)
and accuracy (lower absolute distance) for just one peak. The second and third type are examples of the
two-peak estimation discussed in chapter 6 and 7. The first shows an increasing accuracy and the other
shows a decreasing accuracy. An overview of the occurrence of each type is given in table C.1. On the next
page, each type of shipment arrival estimation clusters is discussed based on one example.

Count Share
One-Peak 230 72.1%
Two-Peak high accuracy 62 19.4%
Two-Peak low accuracy 27 8.5%

Table C.1: Types of arrival estimation clusters experiment E. 100%

100
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One peak, high confidence and accuracy
The majority of the weighted histograms of clusters of shipment arrival estimations look similar to the ex-
ample presented in figure C.1. As the degree of timeliness is reduced, the particles become more uniform
in their shipment arrival estimations and the peak of the weighted histogram becomes more narrow. This is
a sign of increasing confidence. In the shipment arrival estimations for this type only one accurate peak is
visible, where the top of the peak matches the observed arrival date closely.

Figure C.1: Weighted histograms of arrival predictions of particles of shipment PO_141, experiment E. 100%

Two peaks, high confidence and accuracy
The second type of weighted histograms show an increase in the confidence in the estimated arrival dates
as the peaks become increasingly narrow as the degree of timeliness is reduced. However two peaks are
observed which is an indicator of two arrival dates becoming (almost) equally probable. An example of this
is presented in figure C.2. The highest peak determines the estimated arrival date, in this set the highest
peak matches the observed arrival date and therefore the accuracy is still increased over time.

Figure C.2: Weighted histograms of arrival predictions of particles of shipment PO_144, experiment E. 100%
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Two peaks, high confidence and low accuracy
The results of experiment E. 100% have shown to be highly accurate, however there are some shipments
with a relatively high absolute distance. These are the result of a two-peak estimation where the highest
peak does not match the observed arrival date. What is interesting to see is that none of the observed arrival
dates were completely missed by the particles as the secondary (smaller) peak matches the observed arrival
date. An example of this is presented in figure C.7.

Figure C.3: Weighted histograms of arrival predictions of shipment PO_31, experiment E. 100%
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C.1.2. Data assimilation dashboard experiment E. 100%
The data assimilation dashboard for experiment E. 100% is presented in figure C.4. Here the traces over
the uncertain state variables are presented in grey. The actual values for these variables are presented in
green. The data in experiment E. 100% shows to be able to steer the particles in the right direction. This is
confirmed by the traces of the particle weights, in each data assimilation interval, sufficient measurement
come in to provide a high variation in the weights.

Figure C.4: Data assimilation dashboard E. 100%
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C.2. Experiment E. 91%
91 percent of all available data is present in experiment E. 91%, only the third party vessel location data
points are omitted. The results presented in chapter 6 show that experiment E. 91% yields less accurate
results compared to E. 100% especially for estimations with a low degree of timeliness.

C.2.1. Shipment arrival estimation clusters
Analysis of weighted histograms for experiment E. 91% provides more insight on why the the results show a
larger weighted average absolute distance in experiment E. 91% compared to E. 100%. The types of weighted
histograms are the same for both experiments, there are confident one-peak estimations, and two types of
two-peak estimations. One type where the highest peak matches the observed arrival date (accurate estim-
ations) and one where the highest peak does not match the observed arrival date (inaccurate estimations).

However, the difference compared to E. 100% is found in two factors. First, the one-peak estimations are
less accurate than those of E. 100% and the share of inaccurate two-peak estimations is higher for experi-
ment E. 91% than E. 100%. This is presented in table C.2. Examples of each of the types of shipment arrival
estimation clusters are presented below.

Count Share
One-Peak 211 66.1%
Two-Peak high accuracy 48 15.0%
Two-Peak low accuracy 60 18.8%

Table C.2: Types of arrival estimation clusters experiment E. 91%

One peak, high confidence and medium accuracy
The majority of the clusters of shipment arrival estimations look similar to the weighted histograms of es-
timations for shipment PO_22 presented in figure C.5. As the degree of timeliness is reduced the peak of the
estimations become increasingly narrow indicating an increase of confidence in the estimated arrival day.
However, compared to E. 100% the top of the peak generally has a higher absolute distance to the observed
arrival date.

Figure C.5: Weighted histograms of arrival predictions of particles of shipment PO_22, experiment E. 91%
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Two peaks, high confidence and high accuracy
An example of the second type of clusters is presented in figure C.6. Here the confidence in the arrival
estimations is increased (visible by the narrow peaks), however two peaks of estimated arrival dates are
visible. This type of estimations differentiates itself from the other two-peak estimations because the top of
the highest peak matches the observed arrival date, resulting in a high accuracy. The share of this type of
arrival estimations is low for experiment E. 91%.

Figure C.6: Weighted histograms of arrival predictions of particles of shipment PO_352, experiment E. 91%

Two peaks, high confidence and low accuracy
The third set of clusters can also be identified by two peaks with an increasing level of confidence. However,
here the highest peak does not match the observed arrival date resulting in a high absolute distance (i.e., a
low accuracy). The share of this type compared to the two-peak estimations with a high accuracy is high for
experiment E. 91%.

Figure C.7: Weighted histograms of arrival predictions of particles of shipment PO_40, experiment E. 91%
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C.2.2. Data assimilation dashboard experiment E. 91%
The data assimilation dashboard for experiment E. 91% is presented in figure C.8. The traces over the un-
certain state variables are presented in grey. The actual values for these variables are presented in green.

It is clearly visible that the data points lost between experiment E. 100% and E.91% were important for
maintaining sufficient spread between the particles. As is visible in the spread of the particle weights, there
are multiple moments in time (i.e., t=28 or t = 68) where the majority weights are assigned to a few particles
resulting in the drifting off of the particles. This reduces the variability in the set of potential futures that
can be explained by the particles. Which is an explanation for the reducing accuracy of arrival estimations
with a low degree of timeliness.

Figure C.8: Data assimilation dashboard E. 91%
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C.3. Experiment E. 29%
In experiment E.29% less than one third of the available data points are used. Interesting enough the results
show to very accurate, comparable to the results of experiment E. 100% where all available observations are
used. As the degree of timeliness is reduced, the results of experiment E. 29% become more accurate as well.

C.3.1. Shipment arrival estimation clusters
Analysis of the weighted histograms for experiment E. 25% shows very similar types of shipment arrival
estimation clusters as experiment E. 100%. A very large share of the clusters show to have an increasing
level of confidence over time by one peak and a small subset of the cluster shows two peak of estimated
arrival dates. Similar to experiment E. 100%, the largest share of the two-peak estimations are accurate. An
overview is given in table an example of each type is discussed below.

Count Share
One-Peak 241 75.5 %
Two-Peak high accuracy 60 18.8 %
Two-Peak low accuracy 18 5.6 %

Table C.3: Types of arrival estimation clusters experiment E. 29%

One peak, high confidence and accuracy
The vast majority of the shipment arrival estimation clusters for experiment E. 29% result in one peak on the
weighted histograms. The top of the peaks match the observed arrival dates, resulting in accurate estimated
arrival days. What is interesting to see, that compared to the previously discussed experiments, the peaks
become increasingly narrow however with a lower speed. Especially for the estimations for t−7 the particles
still represent a large set of potential futures. An example of this type of arrival estimations is given in figure
C.9.

Figure C.9: Weighted histograms of arrival predictions of particles of shipment PO_54, experiment E. 29%
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C.3.2. Two peaks, high confidence and accuracy
The share of the two-peak estimations is surprisingly low in experiment E. 29%. Only a small share of the
arrival estimations are the result of a weighted histograms with two peaks and if so, the accurate peak is
generally much higher than the inaccurate peak. An example of this type is given in figure C.10.

Figure C.10: Weighted histograms of arrival predictions of particles of shipment PO_164, experiment E.29%

C.3.3. Two peaks, high confidence, low accuracy
The last type of estimations is the group of two-peak estimations with a low accuracy. This type embodies
the smallest share of the arrival estimations, an example of this is given in figure C.11. The low accuracy is
the result of two peaks, where the largest peak does not correspond to the observed arrival date.

Figure C.11: Weighted histograms of arrival predictions of particles of shipment PO_36, experiment E.29%
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C.3.4. Data assimilation dashboard experiment E. 29%
To finalize the overview of the results of experiment E. 29%, the data assimilation dashboard is presented
in figure C.12. Here the traces over the uncertain state variables are presented in grey. The actual values for
these variables are presented in green.

It is interesting to see that the particles are clearly steered by the data assimilation algorithm in this
experiment. However, not for all parameters the particles are steered into the right direction. Given the
accurate results, this could be an indication that the algorithm prioritizes the most important parameters
that explain the highest variation.

Figure C.12: Data assimilation dashboard E. 29%
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C.4. Experiment E. 25%
The last experiment is the experiment with only 25 percent of all available observations (S&OP data points)
used. The results presented in chapter 6 show that these data points are clearly insufficient to produce
accurate shipment arrival estimations. The results have a lower level of accuracy than all other experiments.

C.4.1. Shipment arrival estimation clusters
Analysis of the weighted histograms for experiment E. 25% shows completely different clusters of shipment
arrival estimations than all the other experiments. For this experiment only on type of clusters is present,
an estimation with one peak with no increase in confidence and a low accuracy. An example of this type is
presented below.

C.4.2. One peak, low confidence, low accuracy
The weighted histograms belonging to PO_41 presented in figure C.13 is exemplaric for experiment E. 25%.
For each of the shipments the accuracy is reduced together with the degree of timeliness. The algorithm
become very consistent in producing inaccurate estimations. It is also clearly visible that the 25 percent of
the data available in this experiment is insufficient for the data assimilation process since the peaks to not
become more narrow over time,

Figure C.13: Weighted histograms of arrival predictions of particles of shipment PO_41, experiment E. 25%
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C.4.3. Data assimilation dashboard experiment E. 25%
At last the the data assimilation dashboard for experiment E. 25%is presented in figure C.12. The traces over
the uncertain state variables are presented in grey. The actual values for these variables are presented in
green.

The observation that the 25 percent of the data available in this experiment is insufficient to steer the
particles becomes even more obvious in this dashboard. No significant weights are assigned to the particles
in the vast majority of the data assimilation interval which is visible by the low standard deviation of the
weights. Apart from this the particles to not converge in the state space, which is visible by the large spread
of the particles.

Figure C.14: Data assimilation dashboard E. 25%
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