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Abstract— Muscle fatigue’s indirect link to higher athletic injury
risks is a key focus of this study. It highlights how fatigue-induced
shifts in muscle resource allocation and movement patterns can
lead to biomechanical imbalances, subsequently heightening injury
susceptibility. Addressing high injury rates in athletics, this study
was conducted in two pivotal phases: the development of a wearable,
textile-integrated surface electromyography (SEMG) garment, and the
identification of the most effective real-time fatigue metric for true
wireless detection for dynamic exercise. While traditional SEMG
methods provide valuable insights in laboratory settings, they fall
short in dynamically and individually monitoring muscle fatigue in
real-world scenarios.

The initial phase focused on creating a smart garment with
integrated textile-based electrodes named the RunWave. The second
phase concentrated on analyzing muscle fatigue during dynamic
running activities, employing an incremental treadmill exercise test.
Fatigue was assessed using cardiorespiratory metrics and Borg’s
Rate of Perceived Exertion (RPE), alongside the evaluation of six
fatigue metrics: Average Rectified Value (ARV), approximate and
sample entropy, instantaneous mean and median frequencies, and
Dimitrov’s Spectral Fatigue Index. Significant differences between
fatigued and non-fatigued states were observed, especially noted in
shifts in entropy, mean and median frequencies, and most prominently
in ARV. These findings underscored the necessity for personalized
fatigue monitoring strategies, given the variation in fatigue onset and
subjective exhaustion experiences among individuals.

The RunWave, with its focus on the ARV metric, emerged as
particularly promising for fatigue detection. ARV’s computational
simplicity and interpretability make it ideal for real-world applica-
tions. Despite initial challenges such as fitment issues, electronic
limitations, and garment robustness, the RunWave garment was
positively received for its comfort and practicality. With targeted
improvements, the RunWave garment, leveraging ARV, shows great
potential for effectively monitoring muscle fatigue in runners, sug-
gesting a substantial step forward in reducing injury risks in athletic
contexts.

1. INTRODUCTION

Fatigue is a complex phenomenon that greatly affects
athletes’ performance and health. It generally refers to any
reduction in performance caused by physical or mental factors,
or a combination of both [1]. Particularly in competitive
sports, such as soccer, muscle injuries, often linked to fatigue,
account for a significant proportion of time lost in training and
competition [2]. This underscores the critical need for effective
fatigue monitoring, not just for enhancing performance but
also for reducing injury risks.

However, the landscape of fatigue monitoring is predomi-
nantly lab-centric, with a vast majority of studies conducted

under controlled laboratory conditions ( 81.7% [3]]). Field stud-
ies typically depend on tools like Inertial Measurement Units
(IMUs) and Heart Rate (HR) sensors, which may fall short in
providing a holistic understanding of fatigue-related changes.
Recent developments in surface electromyography (sEMG)
have shed light on muscle activity and fatigue, offering a
variety of analytical methods. This includes metrics such as the
Average Rectified Value (ARV) [4], time-frequency measures
like instantaneous mean and median frequencies [5]], spectral
fatigue indices like Dimitrov’s FInsm5 [6], and analyses of
complexity using entropy metrics [[7].

Despite the insights offered by these methods, their ap-
plication has largely been confined to lab settings, with
a focus on static or controlled dynamic movements. Their
interaction and the temporal dynamics of fatigue onset and
progression during highly dynamic activities such as running
remain underexplored. Furthermore, there is a growing need
for advanced, field-applicable fatigue monitoring systems that
can unobtrusively track a broad spectrum of physiological and
psychological markers.

The aim of this study is twofold: to develop a practical and
wearable smart garment, named the RunWave, for in-field fa-
tigue monitoring using textile-based surface electromyography,
and to determine the most suitable fatigue metric for use with
this garment. By addressing these objectives, the study seeks
to bridge the gap between laboratory research and real-world
applications, enhancing our understanding and capability to
monitor fatigue effectively in dynamic sports environments.

2. METHODS

In summary, we developed an instrumented smart garment
(the RunWave) designed for wireless surface electromyogra-
phy (SEMG) data collection to investigate running-induced
local muscle fatigue. This section delves into the various
aspects of the study’s methodology, starting with an overview
of the specially designed RunWave garment. It then proceeds
to discuss the experimental design and participant selection
criteria, providing the rationale behind the chosen protocols.
Subsequent sections outline the data pre-processing techniques
employed, setting the stage for later analyses. Metrics for
quantifying muscle fatigue are elaborated upon, as are the
methods for validating both the experimental setup and these
metrics. All methods and data analyses were carried out us-



ing Python programming language v3.11.4 (Python Software
Foundation) [8]].

2.1. RunWave Design

In the realm of dynamic sports like running, where the
study of muscle fatigue is crucial, existing SEMG systems
often fall short in real-world applicability. A primary limitation
is the compromise between what is termed ’true wireless’
functionality and system portability. For the purposes of this
study, ’true wireless’ is defined as a system’s ability to operate
autonomously, free from any physical or wireless attachments
to a host device. An additional limitation lies in the necessity
for professional involvement in system setup and data col-
lection. Current SEMG systems typically require professionals
not only to attach the device but also to ensure its proper
functioning, thereby restricting the feasibility of longitudinal
studies in real-world, dynamic settings.

While existing wireless SEMG systems may boast a
wide range of functionalities, such as EEG and HD-sEMG
capabilities, these come at the expense of device size and
obtrusiveness (TMSI, SAGA 32/64/128). Most of these
systems are designed with wireless capabilities in mind,
rather than being optimized for unobtrusive use or active
sports settings. As a result, they are typically bulky and
impractical for localized muscle fatigue detection in scenarios
that require free movement.

The RunWave is designed to address these limitations
through the following key requirements:

True Wireless Surface Electromyography
o No wires to external systems for both data acquisition
and power.
o Local data storage, with the option for wireless transmis-
sion, to ensure no range limits to the receiver.

Portable and Unobtrusive system
o Low weight and small size to minimize impact on the
movement.
o Design features to minimize interference with desired
movement patterns, ensuring the garment stays securely
in place.

Realistic Measurement Conditions

o In-field: Moving the measurements from a controlled
laboratory setting to in-field measurements.

e User-friendly design: The RunWave is designed for ef-
fortless operation, even by non-professionals. The Run-
Wave is easily aligned using two boney landmarks: the
vertical line on the elastic band has to be aligned with the
tibia and the top band should be just below the tuberosity
of the tibia.

o Skin-Friendly Electrodes: Minimize data loss due to
sensor detachment and improving user comfort.

o Self-Contained Operation: All data is locally stored and
no required external synchronization with a base station.

o Compatibility with Everyday Wear: Designed to be com-
patible with regular-height socks and shin guards, the

RunWave ensures both comfort and data accuracy during
use.

4. Integration and
Prototyping

1. Textile Fabrication

NN
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Fig. 1: Stages of RunWave Design and Development. (1)
Textile Fabrication illustrating the crafting of the device’s
fabric; (2) Electronics detailing the hardware components
used; (3) Programming showcasing the software and coding
aspect; and (4) Integration and Prototyping representing the
culmination of all elements into a functional prototype.

Figure [T] presents the four crucial stages of the RunWave
garment’s evolution, from its inception to its ultimate form.
In the subsequent subsections, we’ll delve deeper into each
stage, elucidating the design choices and hurdles overcome
to tailor the garment for endurance sports efficacy.

2.1.1. Textile Fabrication: The RunWave’s foundation con-
sists of a thick elastic band, flanked by three narrower elastic
bands on the outer sides and in the middlel (Figure |Zb). These
narrower bands feature a silicone coating to keep the garment
in place during exercise. The device is closed using eye-
hook fasteners located at the short ends of the main band
(Figure Qa). The electrodes are fabricated from silver-coated
neoprene and function as dry-contact electrodes [9](Figure
2k and 2[d). Due to the higher skin-electrode resistance and
variability in textile-based electrodes compared to standard
silver electrodes [[10] [11], the contact surface area has been
expanded from lem? to 4.5¢cm? [12]. The inter-electrode
distance (IED) follows the SENIAM guidelines at 20mm
[12]. Electrode-skin pressure is achieved through the natural
thickness of the neoprene material and the radial tension from
the fastened bands [11]]. When the electrodes are connected
to the microcontroller system, shielded conductive yarn is
used, which is secured with specialized sewing techniques
to minimize yarn stretch [10]. This approach is implemented
to reduce variations in resistance, a common issue when
conductive yarn changes length, such as during stretching.
This alteration in resistance due to yarn elongation can lead
to fluctuating electrical properties.

2.1.2. Electronic system design: The data acquisition sys-
tem centres around an ESP32 system-on-chip (SoC) microcon-
troller unit (MCU), seen in FigureEb. It features BLE, WiFi,
and a 12-bit Analog-to-Digital Converter (ADC) [13]]. Given
the ADC’s 12-bit resolution, additional hardware filtering and
signal amplification are required, achieved through a custom
four-stage circuit, seen in Figure Bh. Detailed schematics and
associated calculations of this circuit are comprehensively
provided in the Appendix, specifically in Figures [6] and
for reference throughout this discussion.

The initial stage employs an instrumentation amplifier to
negate the need for impedance matching between the input



Fig. 2: Overview of Textile Fabrication. (a) hook-fasteners;
(b) central elastic band connected to three smaller bands with
silicone coating and three sets of bipolar electrode pairs; (c)
bipolar electrode pair; (d) silver coated neoprene material.

Fig. 3: Electronic System Design. (a) Custom four-stage
amplification and filtering PCB; (b) ESP32 SoC Featherboard
by Adafruit; (c) Auxiliary PCB with LEDs, MPU6500, and
button.

electrodes, a critical feature given the varying impedance of
textile electrodes [[14]). Its high input impedance and common-
mode rejection ratio (CMRR of 103) make it well-suited for
capturing bio-physiological signals [15]]. The gain resistor of
the instrumentation amplifier is chosen such that the gain
is relatively low (Ginse = 10.81). This helps ensure that
high power noise does not saturate the input range of the
microcontroller, thereby preserving the actual fluctuations of
the SEMG signal for accurate measurement.

In the second stage, a Sallen-Key second-order active high-
pass filter is implemented, with a cutoff frequency of 18.5
Hz and a gain factor of 2. The decision to use an active
filter, as opposed to a passive variant, was predicated on the
inherent stability of active filters; notably, their output remains
invariant irrespective of load variations. Additionally, active
filters provide the capacity to confer supplementary gain to
the signal, a significant advantage in the context of this study.

Following this, the third stage includes an inverting
amplifier that uses a programmable digital potentiometer

(MCP4561-104E/MS), allowing for gain adjustments between
1.34 and 19.20.

The final stage incorporates a Sallen-Key second-order
active low-pass filter with a cutoff frequency of 530 Hz
and a gain of 7.31. To accommodate these components, a
custom PCB has been designed seen in Figure [Bh. This
board allows the ESP32 MCU to mount directly on top and
includes integrated local micro SD storage. An auxiliary PCB,
shown in Figure [Bk, enhances the system’s capabilities by
incorporating an MPU6500 sensor for inertial measurements,
LED lights for real-time user feedback, and a button for
interactive functionalities.

2.1.3. Programming: The system’s programming in C and
C++ is tailored for high-performance data processing. Analog
sampling operates at 1.400 Hz, archiving data onto a microSD
card in binary format. This approach minimizes storage over-
head, as storing data in ASCII format proved too latency-
prone for the system’s operational requirements. A dedicated
program has been implemented to convert the binary data to
ASCII format to facilitate data retrieval and post-processing.
This program also accounts for endianness—the order byte
sequences are stored in computer memory—to ensure data in-
tegrity and facilitate interpretation across different computing
environments.

An Interrupt Service Routine (ISR) maintains the high-
frequency sampling rate. To further secure data integrity, a
dual circular buffer architecture is implemented, acting as
a safeguard against premature data overwrites. Utilizing the
multi-core capabilities of the microcontroller, measurements
of the analog signal are processed and temporarily stored in
flash memory on core 0. Core 1 is dedicated to continuously
monitoring the state of the full inactive buffer, readying it
to be written to the local storage device. A comprehensive
feedback and file management system has also been designed
to preclude the accidental overwriting of existing data and
monitor the consistency of the sampling frequency over time.

2.1.4. Prototyping and Integration: The data acquisition
system is securely housed within a custom-designed 3D-
printed enclosure, featuring integrated loops for fastening the
system to the lower leg at a location distal to the medial tibial
plateau as shown in Figure ] This strategic positioning min-
imizes system movement during physical activity. Electrical
connectivity between the conductive yarn and the MPU is
ensured through a durable 3-pin JST connector. To bolster
stability, the electronic enclosure employs a double-sided tape
Velcro system. One adhesive side of the Velcro is secured to
the housing, while the counterpart is fixed to the designated
area on the textile garment, reducing potential oscillations.
Complementing this, a high-elastic band featuring a silicone
coating wraps around the leg to further optimize the device’s
securement. The system derives its power from a separately
attached lithium-ion battery.

2.2. Experimental design and protocol

The principal objective of this study is to assess the abil-
ity of various surface electromyography (sEMG) metrics to
identify the onset and progression of local muscle fatigue



Fig. 4: RunWave Garment with Custom FDM Encasing. This
image displays the garment with integrated textile electrodes
and electronics housed in a durable, FDM encasing for secur-
ing to the leg and physical protection.

during running-based activities. While the ultimate aim is to
implement these metrics in wearable technology for in-field
monitoring, this research specifically focuses on evaluating
which metric is most reliable and suitable for detecting fatigue
onset and progression.

2.2.1. Participant selection: In our study, we enlisted a
group of 5 healthy male adults, ranging in age from 24 to
30. All participants were required to be devoid of any injuries
(see Appendix [E] Table [XTI). The term “healthy” specifies
that participants must have no respiratory or cardiovascular
conditions, or any other medical issues, that could interfere
with the execution of the exercise test. Likewise, the term
“injury” refers to any condition—acute or chronic—that could
influence the participant’s natural movement patterns. This
includes acute musculoskeletal issues like sprains affecting
muscles, tendons, or ligaments, as well as any long-lasting lim-
itations due to past injuries. All participants are recreationally
active individuals, although they are not necessarily regular
runners. While they have some experience with running, it is
not a consistent part of their regular physical activity routine.

2.2.2. Experimental protocol: Each participant is equipped
with a portable metabolic device (Cosmed, K5) and six sSEMG
sensors (Trigno Avanti, Delsys). The sensors are positioned
bilaterally on the gastrocnemius lateralis, medialis and the
tibialis anterior muscles. The placement of these sensors
adheres to the SENIAM (Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles) guidelines to ensure
methodological rigour and reliability in the SEMG readings
[12]. The treadmill test begins with a 6-minute walking session
at 4 km/h. This initial phase serves multiple purposes: it allows
the participants to acclimate to the equipment, collect baseline
measurements for later comparison, and offer a gentle warm-
up to the subsequent test phases.

Following this preparatory phase, the treadmill speed is 6
km/h. At this juncture, the speed is incremented every minute
while participants’ rate of perceived exertion (RPE) was

continually assessed. A suite of hand signals facilitates real-
time RPE communication: a closed fist signifies no perceptual
change, a thumbs-up indicates an increase in exertion, and a
horizontal hand oscillating from side to side signals an RPE of
13 or ”’somewhat hard.” The treadmill velocity was fixed when
a participant conveys this “somewhat hard” status. The session
persists at this plateau until the participant reaches an RPE of
17 or 18, denoted as “very hard,” at which juncture they are
empowered to halt the treadmill session autonomously.

The rationale for adopting this protocol, referred to as
the standard induced fatigue protocol (RIF), stems from its
ability to accommodate subjective variation in participants’
fitness levels and perceived exertion. This negates the need
for personalized protocols that would otherwise require pre-
existing performance data or preliminary tests to establish
appropriate settings, as cited in Koen Jongbloed (2022) [3].

2.3. Data Pre-Processing

2.3.1. Surface EMG data: Sensors corresponding to the
same participant, being synchronized, are anticipated to pos-
sess nearly identical, if not entirely identical, counts of sam-
pled data points. If a sensor ceased measuring prematurely, it
would still exhibit the same number of data entries. However,
its timestamps would be represented as NaN values and all
corresponding data values set to zero. Any sensor presenting
a column populated with such NaN timestamps and paired
with zero data values was identified as malfunctioning and
subsequently excluded from further analysis.

Data sets with more than 20% missing data were disre-
garded for further study. Additionally, visual inspection of
amplitude versus time plots was carried out to identify any
instances of sensor detachment, which would be evident from a
saturated signal or completely flat lining. Any data set showing
such behavior was excluded.

The original data, sampled at 1259Hz, were resampled to
800Hz to improve computational efficiency. The resampled
data was filtered with a fourth-order Butterworth bandpass
filter with cut-of frequencies of 15Hz and 400Hz. Fast Fourier
Transform (FFT) analysis was used to identify any extraneous
noise originating from power lines and removed using a notch
filter at S0Hz including higher order harmonics.

Lastly, one-sample outliers in the semg data sets were identi-
fied using the Isolation Forest Outlier detection algorithm (e.g.
due to biological interference or electrode movement) . This
was done using a contamination factor of 0.0003 and 400 esti-
mators. Detected outliers were subsequently imputed using K-
Nearest Neighbors (KNN) imputation (from scikit-learn v1.3.2
module ensable.IsolationForest and impute. KNNImputer).

2.3.2. Cardiorespiratory data: Cardiorespiratory data was
assessed on both data quality and reliability for which three
physiological features were used for consistency for all partic-
ipants: the Respiratory Frequency (Rf), Oxygen Consumption
(VO2), and Respiratory Exchange Ratio (RER). These features
were visually inspected for temporal consistency, validity of
temporal development, and alignment with existing litera-
ture. Any data that diverged significantly from established
norms—opotentially indicating system malfunction or improper



mask fitting leading to air leakage—resulted in the exclusion
of that particular participant from further analysis.

Additionally, data points exhibiting peaks that exceeded
200% of the amplitude relative to 5 surrounding breath values
were treated as outliers and subsequently removed. Zero values
were also eliminated from the data set. The presence of
high peaks or zero values could arise due to transient issues
in the breath-by-breath metabolic system, such as temporary
mask displacement, coughing, or irregular breathing patterns,
potentially skewing the data.

2.4. Calculation of Metrics

2.4.1. Average Rectified Value: The Average Rectified
Value (ARV) is a commonly used estimate in surface elec-
tromyography (SEMG) signals analysis [4]]. It is an amplitude-
based parameter that quantifies the absolute value of the
myoelectrical signal, effectively describing the average muscle
excitation [[16] over a window of time. The ARV is a simple
yet effective metric for capturing the overall level of muscle
excitation. Because it involves taking the absolute value of
the signal, ARV is sensitive to both positive and negative
deviations from the baseline, making it an excellent descriptor
of signal magnitude regardless of polarity [17]. Its relative
robustness also makes it compatible with lower-cost or less
precise recording systems, a feature particularly advantageous
when considering the potential use of textile-based sEMG
electrodes.

Past studies have shown that SEMG amplitude tends to
increase during submaximal dynamic exercise and decrease
over time during exercises performed at maximal levels of
voluntary contraction [18|]. These amplitude changes suggest
that changes in ARV may serve as a valuable indicator
for tracking muscle fatigue, aligning well with this study’s
objectives.

Mathematically, the ARV of an sEMG signal z(t) over a
window of N samples is defined as:

N
ARV = = 3" [a () M)

i=1
In the analysis of the semg data, the ARV was calculated
using a sliding window average with a window size of 1200
samples and a step size of 400 samples. This approach was
selected to effectively smooth out short-lived fluctuations,
thereby enhancing the robustness of the analysis particularly
for observing long-term or transient changes. It’s important
to note that while the sliding window technique mitigates
edge effects to a degree, it does not entirely eliminate these
distortions, although it offers advantages over a basic window
average in this regard.

2.4.2. Instantaneous Mean and Median Frequency: As fa-
tigue sets in, the SEMG signal undergoes a notable frequency
shift. Specifically, higher frequency bands, associated with
fast-twitch muscle fibers’ recruitment and firing rates, tend to
decrease [19]. Conversely, lower frequency bands, indicative
of the engagement of slow-twitch muscle fibers, often increase.
This shift towards lower frequencies and the accompanying
decrease in median frequency values are attributable to the

reduced number and synchronization of active motor units
[20]. These physiological adaptations indicate the body’s strat-
egy to maintain muscle performance by increasingly relying
on fatigue-resistant slow-twitch fibers [21]. Such shifts in
frequency parameters are, therefore, compelling indicators
of the onset and progression of muscle fatigue [22]. The
frequency shift in time is encapsulated by the instantaneous
mean (IMNF) and median frequencies (IMDF), which differ
from their traditional counterparts in their ability to provide
time-resolved metrics. While the regular mean and median
frequencies offer a single value that summarizes the entire
signal or larger temporal windows, the instantaneous versions
are calculated at multiple time points, offering a dynamic
profile that tracks frequency changes over time. This makes
the instantaneous metrics more sensitive to transient and local
shifts, providing a more nuanced view of muscle fatigue onset
and progression.

t—b
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Due to the non-stationary nature of sEMG signals during
dynamic contractions in running, traditional Fourier Transform
methods are less effective [18]]. To better capture temporal
shifts in muscle fatigue, this study utilizes Continuous Wavelet
Transformation (CWT) [23]], as described in Equation @ to
calculate the IMNF and IMDF, described in Equations [3| and

Considering the dynamic and non-stationary characteristics
of sEMG signals during running, traditional Fourier Trans-
form methods often fall short in effectiveness [18]]. To more
accurately capture the temporal variations associated with
muscle fatigue, this study employs the Continuous Wavelet
Transformation (CWT), a technique better suited for such
analysis [23]]. The CWT is mathematically detailed in Equation
[2l Additionally, to compute the Instantaneous Mean Frequency
(IMNF) and Instantaneous Median Frequency (IMDF), we
refer to Equations [3] and ] which provide the necessary
formulas for these calculations.

The IMNF and IMDF are not singular values but sequences
of mean or median frequencies determined for each time
instance [5]. CWT yields a high-dimensional, time-varying
profile of these frequencies, effectively capturing the dynamic
nature of muscle contractions during the exercise protocol.
These sequences offer a granular, ’frame-by-frame’ view of
muscle activation changes over time.

2.4.3. Dimitrov’s Spectral Fatigue Index (FInsm5): While
traditional frequency domain analyses, like the Fourier Trans-
form, generally assume signal stationarity, specific approaches
are more robust to the non-stationary nature of signals. Herein
lies the strength of Dimitrov’s Spectral Fatigue Index (FInsm5)
[6]. “FInsm5” essentially refers to a Fatigue Index derived
using the fifth normalized spectral moment (nsm5). Despite its

3)

“4)



operation in the frequency domain, the methodological rigour
and specificity of Flnsm5 make it a robust metric for such
non-stationary signals.

FInsm5 serves as a robust fatigue index that captures the
shift in power distribution across the frequency spectrum,
effectively weighting different frequency components. As fa-
tigue sets in, the index decreases, reflecting the body’s adap-
tive recruitment of more fatigue-resistant, slow-twitch muscle
fibers. This makes FInsm5 a reliable metric for assessing
muscle fatigue, particularly in dynamic activities like running
where non-stationary signal characteristics are prevalent.

121 PSD(f) df
f 5 PSD(f)df

FInsm5 is calculated using the power spectral density (PSD)
of the sSEMG signal within a specific frequency range f; to fo,
as described in Equation[5] The formula comprises two integral
terms: the numerator focuses on lower frequencies by dividing
the PSD by the frequency, while the denominator accentuates
higher frequencies by multiplying the PSD with the frequency
raised to the fifth power. The choice of exponents -1 and 5
is deliberate, providing a balanced representation of muscle
frequencies useful for fatigue analysis.

Due to the reliance of this method on frequency analysis,
it does not provide instantaneous results. Consequently, to
calculate the index value with greater reliability, the study
adopts a strategy of analyzing time windows of 10 seconds,
with an step size of 1 second for each subsequent window.
Such an extended time frame is essential because shorter
segments may not accurately represent the frequency content.
The use of 10-second windows is a strategic balance, offering
a comprehensive view of the muscle’s dynamic response while
maintaining temporal resolution for practical analysis.

2.4.4. Approximate and Sample Entropy: Entropy measures
the complexity and unpredictability of a system. When a signal
becomes more predictable, which corresponds to a lower
entropy value, it often indicates a loss of system complexity
or adaptability [7]]. This reduced entropy may signify an im-
paired ability of the system to dynamically adjust to changing
conditions, possibly highlighting an onset or progression of
fatigue [24] [25], system degradation, or loss of functionality.

Both Sample Entropy (SampEn) and Approximate Entropy
(ApEn) are employed in this study to quantify the complexity
or unpredictability of time-series data.

Sample Entropy is calculated by evaluating the degree of
similarity between different subsequences of a given length
within the data set, defined in Equation [6] In this evaluation,
’self-matches’—which are instances where a sequence is com-
pared with itself—are not included. This involves counting
how often sequences that are similar within a certain tolerance
occur, thereby offering a more nuanced view of data com-
plexity. By excluding self-matches, Sample Entropy becomes
a robust metric that is less dependent on the length of the data
series. As a result, it is generally less sensitive to noise and
offers more reliable results for shorter data sequences.

FInsm5 = )

SampEn(m,r, N) = —In (g) (6)

In Equation [6] A is the number of (m + 1) long matching
vectors within tolerance r, and B is the number of m-long
matching vectors within tolerance 7.

Approximate Entropy is computationally more efficient
partly because it includes self-matches, simplifying the calcu-
lation process by reducing the number of exclusions, defined
in Equation However, this feature can make the measure
less reliable for noisy or short data sets, as the inclusion of
self-matches can artificially lower the entropy value

ApEn(m, 7, N) = ¢™(r) — " (r) (7

The ApEn and SampEn are calculated using an embedding
dimension of m = 2 [26], as described in Equations E] and
The threshold or similarity criterion (r) for comparing
sequences is derived from the standard deviation (SD) of the
time series, specifically set as » = 0.2 * SD [27]. For each
entropy calculation, a window of 1200 samples is used, and
computations are performed at a step size of 200 samples to
slide the window across the data series.

To concentrate on the changes in neuromuscular control that
occur during periods of steady-state running and to minimize
the impact of the participant’s adaptations to velocity shifts,
the study’s analysis strategy is carefully designed. Given that
the experimental protocol involves incremental increases in
running velocity, it’s essential to select segments of data that
most accurately reflect a ’constant’ running state. Therefore,
for each stage of the experiment, which typically lasts a minute
and involves a specific running velocity, only the middle 30
seconds of data are examined. This approach ensures that the
analysis focuses on periods where the participant’s running
velocity is presumed to be stable, providing a more accurate
assessment of neuromuscular control during these phases.

2.5. Fatigue Indicators for Fatigue Validation

The validation of fatigue in this study relied on objective
cardiorespiratory measures and subjective ratings.

2.5.1. Subjective Fatigue Assessment: Participants’ per-
ceived exertion levels were gauged using Borg’s Rating of
Perceived Exertion (RPE) scale [28]], a widely recognized tool
for assessing an individual’s perception of exercise intensity.
This scale, ranging typically from 6 to 20, correlates subjective
feelings of exertion with actual physical activity levels. De-
tailed overview of Borg’s RPE scale can be found in Appendix
Table The experimental endpoint in this study was
purposefully set to coincide with an RPE score exceeding 17,
which falls into the category of ’very hard’ on the Borg scale.
This level of exertion reflects a high intensity of effort, where
participants perceive their physical activity as challenging and
demanding.

2.5.2. Objective Fatigue Assessment:

a) Anaerobic Threshold (Ventilatory Threshold 2 - VT2:
Determined via the Cosmed K5 system, VT2 was identified
when participants reached a RER of 1.0, signaling the onset of
anaerobic metabolism—a physiological hallmark of fatigue.



b) Respiratory Exchange Ratio (RER): A RER surpass-
ing 1.10 indicates a significant lactate accumulation and ele-
vated CO4 production, reflective of anaerobic metabolism [29].
Achieving or exceeding this RER value provides an objective
confirmation of metabolic fatigue.

c) Age-Predicted Maximal Heart Rate: Heart rate mea-
surements are often used to assess exercise intensity, aerobic
and anaerobic thresholds, and to determine training zones.
Participants were evaluated based on whether they reached
90% of their age-predicted maximal heart rate, which is
calculated as H Ry,q, = 220 — Age(years) [30] [31]. While
such heart-rate derived metrics are prevalent in research, their
validity is subject to debate; age-based predictions do not
account for individual fitness levels, physiological differences,
or body composition and are influenced by variables like sleep
[32] and caffeine consumption [|33[]. Consequently, unless heart
rate is monitored within highly controlled settings, its use as
a precise measure of workload is limited.

2.6. Statistics

2.6.1. Correlating with Established Fatigue Indicators:
To explore the associations between fatigue metrics and es-
tablished fatigue indicators such as heart rate, Respiratory
Exchange Ratio (RER), and Borg’s Ratings of Perceived Exer-
tion (RPE) scale, the Kendall rank correlation coefficient was
calculated ( scipy.stats.kendalltau, version 1.11.3).
Prior to conducting the Kendall rank correlation test, adjust-
ments were made to ensure that each paired dataset was
synchronized in time and equal in length, addressing the non-
normal distribution of the residuals that were observed in the
preliminary data analysis. The specific adjustments to the data
for each metric to meet these requirements are as follows:

o Cosmed: breath-by-breath basis results in a variable sam-
pling frequency, linear interpolation was used to achieve a
consistent temporal distribution of samples. The data was
then resampled to a uniform rate of either 1Hz or 2Hz,
matching the frequency of the corresponding metric for
analysis.

¢ RPE: recorded on a per-minute basis, remained at its
original scale. Paired metrics for analysis were averaged
into minute-wise bins to align with each RPE value.

o« ARV: the data was already sampled at a consistent
frequency of 2Hz suitable for further analysis without
the need for additional resampling.

o IMDF and IMNF: the metrics were originally processed
at 800Hz. The data was binned and averaged to create a
2Hz signal, harmonizing them with the lowest frequency
component, namely the Cosmed data.

o FInsm5: the dataset was processed to a consistent sam-
pling frequency of 1Hz. No further operations were
needed for alignment.

« Entropy: the dataset was processed to a sampling fre-
quency of 4Hz, and were averaged down to 2Hz. The
data was then temporally aligned with the 2Hz Cosmed
dataset, ensuring that each entropy measurement cluster
corresponded with the appropriate Cosmed data points.
These aligned data were then aggregated into a single
dataset for each muscle.

Participant

System Muscle pl p2 p3 pd4d ps
Cosmed K5 N/A m
Polar HR band | N/A
Delsys Avanti GLp, d d

GMjy, d d

TAy d

GLg - -

GMg - -

TAgR - - m m m
RunWave TAR m m - - -

TABLE I: Overview of Sensor Status Across Participants pl
through p5, detailing the presence (indicated by a blank cell),
absence (-), detachment (d), or malfunction (m) for each sensor
from the Cosmed, Polar HR, Delsys, and RunWave systems
during the study.

2.6.2. Assessing SEMG Metric Variability in Response to
Fatigue: In the examination of transitions between unfatigued
and fatigued states within the collected fatigue metrics, the
Wilcoxon signed-rank test was employed for its suitability
in handling non-normal data distributions and within-subject
comparisons. This non-parametric test effectively adjusts for
inter-individual variability by concentrating on the median of
paired differences, thereby isolating the effects of fatigue. The
magnitude of the effect observed in the Wilcoxon signed-
rank test was quantified using the rank-biserial correlation to
provide a clearer understanding of the effect size.

For ARV data, the analysis required a distinct approach due
to its expected non-linear behavior during exercise, typically
rising initially before falling as fatigue develops. Generalized
Additive Models (GAMs) were employed to capture this non-
linear trend. Additionally, the coefficient of determination (R?)
was determined to evaluate the model’s fit.

To reinforce the validity of the GAMS, bootstrapping meth-
ods were used to provide reliable confidence intervals for
these non-linear estimations. This approach adeptly outlined
the bidirectional patterns of ARV, identifying the peak before
a subsequent decline indicative of fatigue.

Furthermore, to identify any statistically significant trends
in the fatigue metrics, with the exception of the ARV, the
Mann-Kendall trend test was applied specifically to data from
the last two minutes of the protocol.

3. RESULTS

3.1. Participant Data Selection and Sensor Efficacy

Out of five initial participants, only three provided viable
data (p2, p3, pS) due to sensor detachment and malfunctions
(Table [[). The analysis was thus confined to these individuals.
Furthermore, the right Tibialis Anterior data was discarded for
three participants due to consistent sensor issues.

The study focused on left leg recordings from the gastroc-
nemius lateralis, gastrocnemius medialis, and tibialis anterior
muscles for the possible intra-limb muscular interactions.



3.2. Application and Durability of the RunWave

The custom-designed RunWave garment was trialed with
participants 1 and 2 to gather sSEMG data and evaluate its
functional durability.

3.2.1. Participant 1 Experience: The initial application of
the RunWave with Participant 1 revealed a significant weak-
ness in the data acquisition board’s resilience to the rigors of
running. The intense ground contact motion caused a dislodge-
ment of components on the circuit board, leading to system
failure. Compounding this issue, the Delsys system sensors
also detached from the participant’s leg during this session.
Despite this, the RunWave garment earned favorable feedback
for its comfort; it was likened to standard compression wear,
contrasting with the Delsys sensors that were reported to pull
painfully at the skin before their detachment.

3.2.2. Post-Experiment Inspection and Participant 2 Trial:
Subsequent inspection and repair involving the resoldering of
detached components allowed for the second trial. Participant
2 was able to use the RunWave garment until a cable fatigue
issue caused the wires from the lithium-ion battery to sever
from the ESP32 microcontroller connector.

3.2.3. Assessment of RunWave Integrity: Further evalua-
tion post-repair revealed that the initial dislodgement had
caused irreparable internal damage to the circuit. This rendered
the RunWave garment non-functional for subsequent experi-
ments. These experiences highlighted the necessity for robust,
movement-resistant design in wearable SEMG data acquisition
systems, especially in high-motion contexts like running.

3.3. Validation fatigue inducement

In the study, volitional exhaustion served as the pivotal
criterion for protocol termination, with each participant self-
selecting their endpoint. Upon reaching this subjective limit,
an RPE of 17 or greater was automatically assigned, indicative
of a perceived level of exertion of ’very hard’. This self-
determined cessation confirms the attainment of significant
fatigue across all subjects. While all participants met most es-
tablished markers for fatigue, the RER exceeding 1.10 was the
sole exception, not achieved by every individual. Detailed data
for all verification metrics can be found in the accompanying
Table [T} Graphical representation of the ventilatory thresholds,
heart rate and respiratory exchange ratio per participant can
be found in Appendix [C]

Participant RPE>17 VT2 RER > 110 90% HR,,0s
P2 Yes Yes No Yes
p3 Yes Yes No Yes
pS Yes Yes Yes Yes

TABLE II: Overview of Fatigue Markers for Participants 2,
3, and 5. Indicates the presence (’Yes’) or absence ("No’) of
fatigue markers RPE > 17, VT2, RER > 1.10, and > 90%
HR,,,, max for each participant

3.4. Correlating with Established Fatigue Indicators

Within this subsection, the results of the Kendall rank corre-
lation tests are presented, focusing on the associations between

SEMG-derived metrics and established fatigue indicators. The
detailed correlation outcomes for one representative participant
are displayed in Table while the comprehensive results for
additional participants are included in Appendix [A] Table [VII|
for participant 3 and Table [[X] for participant 5.

3.4.1. Average Rectified Value: Across all participants, the
ARV generally exhibits a positive correlation with HR, RER,
and RPE. The correlation ranges from 0.36 < 7 < 0.66 for
participant 3, 0.43 < 7 < 0.73 for participant 5. Participant 2,
described in Table shows an anomaly having one muscle
(GM}) showing a statistically significant negative correlation
with HR (7 = —0.22,p < 0.01), RER (7 = —0.26,p < 0.01)
and RPE (7 = —0.4,p < 0.01 ).

3.4.2. Instantaneous Mean and Median Frequency: The
relationship between the IMDF, IMNF and the fatigue ver-
ification metrics does not follow an uniform pattern among
participants, indicating a complex and individualized response
during fatigue assessment. Notably, participant 2 exhibited a
significant negative correlation in the gastrocnemius medialis
(GM7,) muscle with both IMNF (7 = —0.57,p < 0.01) and
IMDF (7 = —0.6,p < 0.01), and a similar negative trend was
observed with IMDF in the tibialis anterior (T"Ar) muscle
(r = —0.51,p < 0.01). In contrast, participant 5 presented a
substantial positive correlation for IMDF in the GM}, muscle
(tr = 0.51,p < 0.01), which could reflect an increase in
frequency content.

3.4.3. Dimitrov’s Spectral Fatigue index (FInsm5): The
correlations for Finsm5 are mixed and generally weak across
participants ranging from slightly negative to slightly positive.
Participant 5’s results were inconclusive, showing near-zero
correlations across all validation metrics, suggesting that for
this participant, the index does not significantly change with
the state of fatigue as measured by HR, RER, and RPE.

3.4.4. Approximate and Sample Entropy: Both entropy met-
rics often show negative correlations with HR, RER, and RPE
across participants, although this trend is not as strong and
consistent as with ARV. Participant 2 demonstrated a negative
correlation between ApEn and HR (7 = —0.33,p < 0.01),
and RER (7 = —0.27,p < 0.01).

3.5. Assessing SEMG Metric Variability in Response to Fa-
tigue

Within this subsection, we detail the outcomes of the
Wilcoxon signed-rank tests, Generalized Additive Models
(GAMs) with bootstrapping, and the Mann-Kendall trend test,
highlighting the variability of SEMG metrics in response to
fatigue. The analyses are organized by metric to discern
significant intra-individual differences between fatigued and
unfatigued states.

3.5.1. Wilcoxon signed-rank test: The results of the
Wilcoxon signed-rank test and rank biserial correlation are
summarized in Table The p-values suggest that there are
no statistically significant differences in the metrics between
the fatigued and unfatigued state of the experiment, with each
metric exceeding the conventional threshold for significance.

When considering the rank-biserial correlation values for
effect size, a more nuanced picture emerges. The effect size



HR RER RPE SampEn  ApEn IMNF IMDF FInsm5
Metric Muscle T P T P T P Participant Muscle  r-value r-value r-value r-value r-value
GM;y, -0.22 <0.01 -0.26 <0.01 -0.4 0.05 GM, L0227k 027k ~1-103 0.012:% 0.01
TAp 034 <001 026 <001 032 0.2 TA; 004 013 0070% 00665 040
IMNF GLL 007 <00l -006 <00l -0.00  0.67 3 aL, 00 0o 0T 00505 0%
GMp  -013 <001 -0.13 <001 -057 <0.01 o 005 001 00 0040% 073
TAp -0.21 <0.01 -0.19 <0.01 -0.49 0.02 L e : e e . e
IMDF OL, 001 053001 06 0T 04 TAL 0.36%%  0.29%* 0.003 0.005%  0.69%*
GMp 009 <001 -009 <00l -06 <001 P> GLL 005 004 —1.107% 0002 020
TAL -0.1 <0.01 -0.09 <0.01 -0.51 0.01 GMp, f().16**‘< -0.18%%* ,0.00% ().0()7*>“ -0.11
FInsm5  GLp, 03 <00l -03 <00l -064 <0.01 TAL -0.11* 006 -0.039%*  -0.047** -0.27
GM;y, -046 <0.01 04 <0.01 -0.7 <0.01
TAL 039 <001 028 <001 0.4 0.05 TABLE V: Results of the Mann-Kendall Trend Test for par-
SampEn GL,, 033 <001 -026 <001 -036 012  ticipant p2, p3, and p5. For each muscle, the table details the
?XILL :g%g 28‘8} '%22 28‘8} :8'22 8‘82 r—value for five metrics. Significance indicated as follows:
ApEn GLL 033 <001 027 <00l -039 0.09 no stars () denote no significant trend, a single star (*) indicates
?%L -8-%2 <8.8i -8-%2 <8~8i -822 8~82 a significance level of p<0.05, and two start (**) denotes
L -0. <0. -0. <0. -0. .

TABLE III: Results of Kendall Rank Correlation Test: Cor-
relation coefficients (7-value) and p-values between sEMG-
based fatigue detection metrics (ARV, IMNF, IMDF, FInsm5,
SampEn, ApEn) and fatigue verification metrics (HR, RER,
RPE) for participant 2.

Metric Wh-statistic  p-value Effect Size (r,})
IMNF 13.0 0.30 -0.42
IMDF 21.0 091 -0.07
FInsm5 10.0 0.16 -0.56
ApEn 11.0 0.20 -0.51
SampEn 12.0 0.25 -0.47

TABLE IV: Summary of Wilcoxon Signed-Rank Test Results
and Effect Size for Five Metrics. This table presents the out-
comes of the Wilcoxon Signed-Rank test, comparing fatigued
and unfatigued conditions for each metric. The test statistic
(W), p-values, and effect sizes (calculated using rank-biserial
correlation) are shown for IMNF, IMDEF, Flnsm5, ApEn, and
SampEn metrics

for IMNF (-0.42), ApEn (-0.51), and SampEn (-0.47) are mod-
erate, indicating a notable, albeit not statistically significant,
effect. The negative sign of the correlations suggests that the
metrics tend to be lower in the fatigued condition, although
the lack of statistical significance in the wilcoxon test indicates
that this trend is not consistent across all participants or not
strong enough to be deemed significant. It is noteworthy that
the smallest effect size observed, of the IMDF, corresponds
with the highest p-value, a pattern that aligns with typical
expectations in statistical analysis.

3.5.2. Average Rectified Value: Generalized Additive Mod-
els: In-depth analysis of the ARV metric via Generalized
Additive Models (GAMs) yielded high coefficients of deter-
mination, indicating excellent model fits for participant 2’s
GLy (R* = 0.97), which displayed a pronounced increase
to a maximum point, followed by a decline, a secondary
peak, and a final drop before protocol termination. The G M,
(R? = 0.76) showed an initial rapid increase, a subsequent
drop, and fluctuating behavior towards the end of the protocol.
The TA; (R? = 0.94) demonstrated a steady increase to a

significance of p<0.01.

Participant Muscle RZ?-value RZ?-CI Figure Location

p2 GLp, 0.97 0.96 - 0.97  Appendix [D|Figure |11a
GMj, 0.76 0.73 - 0.79  Appendix IBIFigure 11b
TAL 094  092-095 Appendix [D|Figure [l1c|

p3 GLy, 0.95 0.94 - 0.06  Appendix |D|Figure |12a]
GMp, 0.87 0.84 - 0.89  Appendix [D|Figure [12b
TAL 0.98 0.97 - 0.98  Appendix ﬁFigure 12|

p5 GLp, 0.97 0.96 - 0.97  Appendix |D|Figure |13a/
GMy, 0.79 0.77-0.81  Appendix [D|Figure [13b|
TAp 0.99 0.98 - 0.99  Appendix SFigure 13¢

TABLE VI: Results of the ARV GAM models for participant
2, 3, and 5. For each muscle, the table details the coefficient of
determination (R?), the confidence interval, and the location
where the Figures are located.

peak in the fourth stage, with intermittent dips followed by a
decline.

Participant 3’s ( R? = 0.95) exhibited a sharp initial
increase, a slight dip, and then a less steep rise to a high point
before a consistent decline. The GM, (R? = 0.87) showed
a gradual increase with small dips, peaking significantly in
the final incremental stage before declining. The T Ay (
R? = 0.98) increased rapidly, dipped, rose again, and then
oscillated before a final decline.

For participant 5, the GL;, (R?> = 0.97) revealed a rapid
initial increase that leveled off and peaked at stage 5, followed
by a slow decrease and fluctuations before termination. The
G M7, (R? = 0.79) demonstrated fluctuating behavior through-
out, with a notable peak at stage 7. The T A, ( R? = 0.99),
described in Figure [5} showed a clear increase, a secondary
peak in stage 8, and a decline towards the end.

4. DISCUSSION

This study aimed to explore the intricate dynamics of
muscle fatigue in the context of incremental treadmill running
tests, employing metrics such as entropy, Average Rectified
Value (ARV), heart rate (HR), metabolic equivalents (METS),
mean and median frequencies, and the Spectral Fatigue Index
(FInsm5) for a comprehensive analysis.
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Fig. 5: General Additive Model: Average Rectified Value
(ARV) Analysis for Participant 5’s Tibialis Anterior Muscle
Across Experiment Stages

4.1. RunWave Garment

4.1.1. Fitment Considerations: A critical aspect in the
design of the RunWave involves ensuring the precise fitment
to optimize electrode-skin contact and accurate placement over
the targeted muscle groups. The garment’s sizing is crucial to
minimize any movement of the electrodes and maintain their
proper alignment above the muscles.

Unlike traditional gelled electrodes, textile electrodes used
in the RunWave are larger, offering a degree of flexibility
in placement. However, this also introduces challenges in
creating an universal fit. The anatomical diversity among
individuals, especially concerning the length from the ankle
to the knee joint and the circumference of the triceps surae,
necessitates the production of multiple garment sizes.

In the initial design phase, I developed three distinct sizes:
small, medium, and large. These sizes were determined based
on the circumference measurements at two key points: the
largest circumference of the triceps surae and just below the
gastrocnemius muscle heads. This approach was intended to
accommodate the variance in muscle size and shape for a
better fit.

However, it became evident that a more adaptable material
is required. The ideal fabric would possess high elasticity to
conform to a broader range of lower leg sizes while main-
taining sufficient tension to secure the garment in place. Such
an improvement in the material would enhance the garment’s
versatility, making it more accommodating to different body
types without compromising the efficacy of the electrode
placement.

4.1.2. Electronic Limitations: One of the primary chal-
lenges encountered in the development of the RunWave gar-
ment’s electronics was the limited capability of the ESP32’s
12-bit Analog-to-Digital Converter (ADC). This limitation
necessitated the implementation of hardware filtering and

amplification to enhance signal quality. The initial objective
was to simultaneously capture the activity of three muscles: the
gastrocnemius medialis, gastrocnemius lateralis, and tibialis
anterior. However, due to the constraints in size, which was
a necessary consideration for mounting the device on the leg,
the design was limited to a single-channel setup.

A higher-resolution ADC could have potentially addressed
this issue. Nevertheless, the challenge extended to the avail-
ability and suitability of components. The high-resolution
ADCs readily available in the market are typically designed
for applications requiring high precision but at lower frequen-
cies. These components usually offer a maximum sampling
frequency of 400-800Hz for 16 to 24-bit ADCs, which was
not adequate for our requirements.

Post-design reflections revealed that it might have been
feasible to directly integrate an ESP32 System on Chip (SoC)
on a custom Printed Circuit Board (PCB), along with a
surface-mounted device (SMD) based higher-resolution ADC.
Such an ADC could meet the required sampling frequencies.
However, integrating these components exceeded the scope of
this research project due to their complexity and the need for
extensive redesign.

Another electronic consideration was the power manage-
ment system. The intention was to utilize the onboard power
management feature of the ESP32 system, powered by a
lithium-ion battery. However, the system’s maximum voltage
output of 3.2/3.3 volts imposed further constraints on the
selection of appropriate operational amplifiers (op-amps) for
the circuit.

4.2. Inducement of Fatigue and Experimental Design

The study faced significant challenges in validating fatigue
due to the diverse backgrounds and varying familiarity of par-
ticipants with treadmill running and sensor-equipped exercise.
This diversity was reflected in the substantial cardiorespiratory
differences observed among participants, as evidenced by the
varied points at which they reached their ventilatory thresholds
(VT1 and VT2). The figures can be found in Appendix [C]
Figure [§] 9] and [10]

For example, while Participant 2 reached VT1 during the
walking phase and VT2 just before the experiment’s ter-
mination, Participant 3 attained these thresholds at different
stages of the incremental exercise. Such variations highlight
the necessity of a more refined participant selection process.
A targeted approach should be considered, focusing on factors
such as active monthly/weekly running distances and average
times per kilometer for a Skm run. This would ensure a group
with closer similarities in terms of current running status and
performance, thereby reducing variability in the results.

Moreover, the unfamiliarity of some participants with tread-
mill running and the experimental setup was a notable factor
contributing to the variability in the study. Participants who
were competitive runners, like Participants 3 and 5, tended to
push beyond their second ventilatory threshold, indicating a
disparity in response between active and less active runners.

To mitigate these challenges, introducing a two-session
approach could be beneficial. The first session would aim to



familiarize participants with the treadmill running environment
and the sensor equipment. This session could also be used to
determine the optimal velocity for the constant velocity stage
of the experiment, ensuring that the protocol is better tailored
to each individual. This approach would not only acclimatize
participants to the experimental conditions but also allow for
a more accurate assessment of their performance and fatigue
levels.

4.3. Local Fatigue Metrics versus Systemic Fatigue Indicators

Across all participants, the correlations of HR and RER
with the fatigue metrics were notably high in terms of signif-
icance, with 16 to 17 out of 18 muscles showing significant
correlations. However, it’s important to note that while these
correlations were numerous, they were relatively low in mag-
nitude.

In contrast, the RPE scale, despite showing a decrease in
the number of significant correlations (7 to 10 out of 18),
demonstrated higher magnitudes in correlation coefficients.
This difference suggests that while HR and RER are effective
systemic markers of cardiorespiratory fatigue, capturing the
body’s metabolic state, RPE provides a more nuanced view.
RPE, being a subjective metric, likely encompasses not only
systemic fatigue but also the sensations of localized muscle
fatigue and other discomforts.

The ARV emerged as the metric with the highest correlation
across participants. This finding underscores the importance of
measuring multiple muscles simultaneously, as local muscle
fatigue often precedes systemic fatigue indicated by car-
diorespiratory markers. The onset of localized muscle fatigue
typically occurs earlier during exercise, potentially leading to
altered movement patterns as the body redistributes effort to
less fatigued muscles.

In fatigue research, the addition of movement data to
analyze strategies and alterations is of paramount importance.
This approach is crucial because the markers of systemic
fatigue, such as heart rate (HR) and respiratory exchange ratio
(RER), do not necessarily coincide with the onset or presence
of localized muscle fatigue. A muscle can exhibit signs of
fatigue while systemic indicators suggest a normal state, and
conversely, systemic fatigue may be present without localized
muscle fatigue.

This disconnect underscores the limitations of relying solely
on systemic fatigue markers to understand the full spectrum of
fatigue. In light of this, our study emphasizes the need for a
holistic analysis that not only considers systemic indicators
but also closely examines muscle synergy and movement
patterns. By doing so, we can gain deeper insights into how
fatigue affects the body both systemically and at a localized
level, revealing potential movement adaptations that occur as
a response to muscle fatigue.

Such an integrated approach is instrumental in accurately
identifying and understanding the complexities of fatigue,
especially in dynamic activities like running. It enables a
more nuanced assessment of fatigue, capturing the intricate
interplay between systemic physiological responses and the
specific demands placed on individual muscle groups.

4.4. Assessing Muscle Fatigue

In our study, the assessment of muscle fatigue through
advanced metrics revealed several key insights. A notable
finding was the lack of significant differentiation between
fatigued and unfatigued conditions, likely attributable to the
use of a non-parametric test. Non-parametric tests, which do
not assume a specific data distribution, are often used in
small sample sizes like ours. Despite the moderate effect size
observed, the insignificant results were expected given the
small cohort of only three participants, thus limiting the ability
to draw consistent conclusions.

The computational demands of calculating the IMNF and
IMDF were substantial. We anticipated differences of 1-3 Hz
between fatigued and unfatigued states, but these were not
detectable in our post-exercise analysis. Consequently, the use
of IMNF or IMDF for real-time or near real-time analysis on
a low-power microsystem appears impractical. However, their
utility might improve when applied to per gait cycle analysis.

When comparing IMNF, IMDF with the FInsm5, Flnsm5
demonstrated a better capacity for distinguishing between
fatigued and unfatigued states. It showed the lowest, albeit
not insignificant, p-value and the highest effect size in the
Wilcoxon signed-rank test (Table [[V), along with significant
trends in the Mann-Kendall trend test (Table @ However, it’s
important to note that the results were not consistent across
participants.

Among all metrics evaluated, the ARV stood out for its
simplicity and ease of calculation. It demonstrated a clear
temporal response to exercise intensity, typically increasing
during submaximal exercise and showing either a decrement
or a clear sign of resource reallocation or adaptation when the
intensity could no longer be maintained. ARV correlated rela-
tively highly with HR, RER, and RPE. Notably, the expected
behavior of ARV diverges from these cardiorespiratory and
subjective markers once fatigue sets in, as both HR and RPE
tend to increase and level off, whereas ARV either plateaus
earlier (if the muscle maintains the level of excitation) or
drops. This discrepancy results in a reduction in the expected
correlation between ARV and HR/RPE.

The ARV stands out as the ideal fatigue metric for the
RunWave garment, particularly due to its use of textile-
based electrodes. These electrodes, more practical for dynamic
sports, lack the precision of traditional silver gelled electrodes,
making ARV’s simplicity and computational efficiency key ad-
vantages. ARV effectively signals muscle fatigue and resource
reallocation, maintaining reliability despite the textile elec-
trodes’ lower signal fidelity. Its integration into the RunWave
garment harnesses these strengths, offering athletes accurate,
real-time fatigue feedback in an user-friendly format, essential
for endurance sports.

5. CONCLUSION

The RunWave smart garment, designed for detecting fatigue
during running outside of laboratory settings, has shown
promising yet mixed results. The garment’s potential for
practical application in real-world scenarios has been assessed
based on several key factors.



The difficulty in designing an one-size-fits-all device was
apparent. The garment faced challenges in fitment, as it needed
to cater to diverse body types and sizes, which is crucial for
proper electrode placement and effective data collection.

The device was limited to monitoring a single muscle due
to electronic constraints and size limitations, which narrowed
its scope of fatigue detection. Furthermore, the garment’s
malfunction during intense running highlighted the need for a
more robust design to withstand the rigors of outdoor sports.

Despite these challenges, the feedback from participants was
overwhelmingly positive. They found the RunWave garment
more comfortable and less intrusive compared to traditional
sensors like Delsys. It was experienced as a regular compres-
sion garment, enhancing its suitability for everyday athletic
use.

With targeted improvements to address these issues, the
RunWave garment holds the potential to effectively meet its
goal of fatigue detection during outdoor running. This includes
refining the fitment, enhancing the durability of the electronics,
and possibly expanding its capability to monitor multiple
muscles.

The ARV emerged as the most suitable metric for this
application. Its simplicity, computational efficiency, and clear
correlation with muscle fatigue, even with textile-based elec-
trodes, make it an ideal choice for real-time analysis in the
RunWave garment.

The study suggests that monitoring a single muscle may
not suffice for comprehensive fatigue detection, as movement
alterations and varying exercise intensities can redistribute
muscle effort. Therefore, it’s advantageous to monitor dom-
inant muscle groups that are actively engaged in the running
activity. With textile electrodes, it is feasible to cover larger
areas, such as both gastrocnemius muscles simultaneously,
providing a easier view of muscle activity. The diversity
among individuals further supports the need for a multi-muscle
monitoring approach to accurately identify the *weakest link’
in terms of fatigue.

In conclusion, the RunWave smart garment, with its innova-
tive approach and user-friendly design, demonstrates potential
as a tool for outdoor fatigue detection in running. By ad-
dressing its current limitations and harnessing the strengths
of ARV as a fatigue metric, the garment can be refined to
effectively monitor and analyze muscle excitation, paving the
way for more personalized and dynamic fatigue assessment in
endurance sports.
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APPENDIX A
RESULTS: STATISTICAL ANALYSIS TABLES

HR RER RPE
Metric Muscle T P T P T P
ARV GLp, 0.7 <0.01 0.57 <0.01 0.77 <0.01
GM, -0.22 <0.01 -0.26 <0.01 -0.4 0.05
TAL 0.34 <0.01 0.26 <0.01 0.32 0.12
IMNF GLy1, -0.07 <0.01 -0.06 <0.01 -0.09 0.67
GMy, -0.13 <0.01 -0.13 <0.01 -0.57 <0.01
TAL -0.21 <0.01 -0.19 <0.01 -0.49 0.02
IMDF GLy, 0.01 0.53 0.01 0.6 0.17 0.4
GMy, -0.09 <0.01 -0.09 <0.01 -0.6 <0.01
TAL -0.1 <0.01 -0.09 <0.01 -0.51 0.01
FInsm5 GLy, -0.3 <0.01 -0.3 <0.01 -0.64 <0.01
GMp, -0.46 <0.01 -0.4 <0.01 -0.7 <0.01
TArL 0.39 <0.01 0.28 <0.01 0.4 0.05
SampEn GL;, -0.33 <0.01 -0.26 <0.01 -0.36 0.12
GMp, -0.28 <0.01 -0.25 <0.01 -0.39 0.09
TAL -0.39 <0.01 -0.3 <0.01 -0.46 0.05
ApEn GLy, -0.33 <0.01 -0.27 <0.01 -0.39 0.09
GM, -0.29 <0.01 -0.26 <0.01 -0.39 0.09
TAL -0.36 <0.01 -0.28 <0.01 -0.43 0.06

TABLE VII: Correlation coefficients (7) and p-values indicating the strength and significance of the relationships between
various SEMG-based fatigue detection metrics (ARV, IMNF, IMDF, FInsm5, SampEn, ApEn) and fatigue verification metrics
(HR, RER, RPE) for participant 2.

HR RER RPE
Metric Muscle T P T P T p
ARV GLr 0.56 <0.01 0.53 <0.01 0.63 <0.01
GMp, 0.36 <0.01 0.51 <0.01 0.35 0.03
TAL 0.59 <0.01 0.59 <0.01 0.66 <0.01
IMNF GL,, -0.05 <0.01 -0.05 <0.01 -0.3 0.07
GMp, 0.05 <0.01 0.06 <0.01 0.3 0.07
TAL 0.01 0.39 -0.01 0.54 0.07 0.69
IMDF GL;, 0.03 0.02 0.03 0.02 0.08 0.64
GMp, 0.07 <0.01 0.07 <0.01 0.31 0.06
TArL 0.03 0.07 0.0 0.8 0.13 0.43
FInsm5 GLy, -0.4 <0.01 -0.14 <0.01 -0.52 <0.01
GM, 0.53 <0.01 0.4 <0.01 0.63 <0.01
TAL 0.08 <0.01 -0.08 <0.01 0.18 0.29
SampEn GL;, -0.32 <0.01 -0.27 <0.01 -0.42 0.05
GM, -0.15 <0.01 -0.12 <0.01 -0.39 0.07
TAL 0.37 <0.01 0.35 <0.01 0.34 0.12
ApEn GLy, -0.6 <0.01 -0.45 <0.01 -0.66 <0.01
GM;p, -0.12 <0.01 -0.1 <0.01 -0.26 0.24
TAL 0.05 0.05 0.08 <0.01 -0.12 0.58

TABLE VIII: Correlation coefficients (7) and p-values indicating the strength and significance of the relationships between
various sSEMG-based fatigue detection metrics (ARV, IMNF, IMDF, FInsm5, SampEn, ApEn) and fatigue verification metrics
(HR, RER, RPE) for participant 3.
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HR RER RPE

Metric Muscle T p T p T p
ARV GLy, 0.54 <0.01 0.47 <0.01 0.55 <0.01
GMt 0.52 <0.01 0.43 <0.01 0.73 <0.01
TAL 0.61 <0.01 0.59 <0.01 0.65 <0.01
IMNF GL;, -0.04 <0.01 -0.03 0.03 -0.46 0.01
GMg 0.05 <0.01 0.04 <0.01 0.41 0.02
TAL 0.02 0.14 0.02 0.18 -0.14 0.43
IMDF GLy 0.05 <0.01 0.05 <0.01 0.0 1.0
GMg 0.05 <0.01 0.06 <0.01 0.51 <0.01
TAL 0.03 0.07 0.02 0.24 -0.08 0.64
FInsm5 GLL -0.34 <0.01 -0.3 <0.01 -0.56 <0.01
GMp, 0.04 0.04 0.06 0.01 -0.01 0.94
TAL 0.28 <0.01 0.4 <0.01 0.31 0.09
SampEn GLL -0.22 <0.01 -0.09 <0.01 -0.31 0.13
GMg, 0.26 <0.01 0.23 <0.01 0.31 0.13
TAL 0.43 <0.01 0.44 <0.01 0.48 0.02
ApEn GLy -0.66 <0.01 -0.49 <0.01 -0.85 <0.01
GMg, -0.05 0.05 -0.04 0.13 -0.06 0.78
TAL 0.27 <0.01 0.27 <0.01 0.62 <0.01

TABLE IX: Correlation coefficients (7) and p-values indicating the strength and significance of the relationships between
various sSEMG-based fatigue detection metrics (ARV, IMNF, IMDF, FInsm5, SampEn, ApEn) and fatigue verification metrics
(HR, RER, RPE) for participant 5.

SampEn ApEn IMNF IMDF FInsm$S
Participant Muscle | r-value p-value | r-value p-value r-value p-value | r-value p-value | r-value p-value
p2 GLj, -0.46 <0.01 -0.42 <0.01 0.01 <0.01 0.016 <0.01 -0.60 <0.01
GMj, -0.27 <0.01 -0.27 <001 | —1-1073 0.79 0.012 <0.01 0.01 1.0
TAj 0.04 0.16 0.13 <0.01 0.070 <0.01 0.066 <0.01 -0.40 0.02
p3 GLj, -0.09 0.16 0.04 0.56 0.027 <0.01 0.032 <0.01 -0.26 0.15
GMy, 0.09 0.14 0.01 0.88 -0.042 <0.01 -0.040 <0.01 -0.73 <0.01
TAL 0.36 <0.01 0.29 <0.01 0.003 0.18 0.005 0.04 0.69 <0.01
p5 GLy, -0.05 0.35 0.04 0.51 0 0.85 -0.002 0.28 -0.20 0.26
GMj, -0.16 0.004 -0.18 <0.01 -0.003 0.16 0.007 <0.01 -0.11 0.54
TAL -0.11 0.048 -0.06 0.27 -0.039 <0.01 -0.047 <0.01 -0.27 0.13

TABLE X: Mann-Kendall trend test results showing correlation coefficients (r-values) and associated p-values for Sample
Entropy (SampEn), Approximate Entropy (ApEn), Instantaneous Mean Frequency (IMNF), Instantaneous Median Frequency
(IMDF), and the Spectral Fatigue Index (FInsm5) across three participants (p2, p3, pS) for different muscles (Gastrocnemius
Lateralis - G L, Gastrocnemius Medialis - GMp, Tibialis Anterior - T'Ay). Significance levels are indicated with p-values,
where values less than 0.01 are considered highly significant.
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ELECTRONICS
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Fig. 6: Circuit containing four stage amplification and filtering system for surface electromyography data acquisition.
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APPENDIX C
VISUALIZATIONS: CARDIORESPIRATORY DATA

[ participant p2 ] - HR and RER
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Fig. 8: Cardiorespiratory data participant 2. Visualization of GAM fit with CI by bootstrapping of heart rate (HR) and Respiratory
Exchange Ratio (RER) versus time. Horizontal colorcoding indicates the walking stage, increment stages, and the steady velocity
stage. The start and end of each increment stage is marked with a gray striped vertical line. Horizontal striped blue line indicates
RER = 1.0 and determines the point of the ventilatory threshold 2 (VT2). The horizontal striped red line indicates the age-based
maximum heart rate.



Fig. 9: Cardiorespiratory data participant 3. Visualization of GAM fit with CI by bootstrapping of heart rate (HR) and Respiratory
Exchange Ratio (RER) versus time. Horizontal colorcoding indicates the walking stage, increment stages, and the steady velocity
stage. The start and end of each increment stage is marked with a gray striped vertical line. Horizontal striped blue line indicates
RER = 1.0 and determines the point of the ventilatory threshold 2 (VT2). The horizontal striped red line indicates the age-based

200 -

maximum heart rate.

HR

Fig. 10: Cardiorespiratory data participant 5. Visualization of GAM fit with CI by bootstrapping of heart rate (HR) and
Respiratory Exchange Ratio (RER) versus time. Horizontal colorcoding indicates the walking stage, increment stages, and the
steady velocity stage. The start and end of each increment stage is marked with a gray striped vertical line. Horizontal striped
blue line indicates RER = 1.0 and determines the point of the ventilatory threshold 2 (VT2). The horizontal striped red line
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APPENDIX D
VISUALIZATIONS: FATIGUE METRICS

[ participant p2 ] - GLL Average Rectified Value
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Fig. 11: ARV metrics for participant 2 across different muscles.
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Fig. 13: ARV metrics for participant 5 across different muscles.
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participant 2: Approximate Entropy

o p2_GL_L ApEn
o p2_GM_L_ApEn
o p2_TA_L_ApEn

Approximate Entropy
o . L =
oo o N ESY

o
o
.

o©
~
.

0.0 b . . . . . . . 1
100 200 300 400 500 600 700 800 900

Time (s)

Fig. 14: Approximate Entropy (ApEn) values for the gastrocnemius (G Ly, and GMp), and tibialis anterior (I"Az) muscles for
participant 2. Blue markers indicate the cluster mean value for each muscle group
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Fig. 15: Sample Entropy (SampEn) values for the gastrocnemius (G Ly and GMp), and tibialis anterior (I"Ay) muscles for
participant 2. Blue markers indicate the cluster mean value for each muscle group
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participant 3: Approximate Entropy
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Fig. 16: Approximate Entropy (ApEn) values for the gastrocnemius (GLy, and GMp), and tibialis anterior (I"A1) muscles for
participant 3. Blue markers indicate the cluster mean value for each muscle group
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Fig. 17: Sample Entropy (SampEn) values for the gastrocnemius (GL; and GM7}), and tibialis anterior (T"’Ay) muscles for
participant 3. Blue markers indicate the cluster mean value for each muscle group
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participant 5: Approximate Entropy
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Fig. 18: Approximate Entropy (ApEn) values for the gastrocnemius (GLy, and GMp), and tibialis anterior (I"A1) muscles for
participant 5. Blue markers indicate the cluster mean value for each muscle group
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Fig. 19: Sample Entropy (SampEn) values for the gastrocnemius (GLy and GM7}), and tibialis anterior (T"’Ay) muscles for
participant 5. Blue markers indicate the cluster mean value for each muscle group
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Fig. 20: Dimitrov’s Spectral Fatigue Index (FInsm5) for participant 2, 3 and 5. Dots represents binned means with MAD as

error bars.



APPENDIX E

SUPPLEMENTARY DATA

Borg’s Scale of Perceived Exertion (RPE)

Rating

Interpretation

very, very light
very light

fairly light

somewhat hard

hard

very hard

very, very hard
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TABLE XI: Borg’s Rating of Perceived Exertion (RPE) Scale. Comprehensive overview of Borg’s RPE scale, detailing each
rating number alongside its corresponding interpretation. It serves as a guide for understanding the subjective levels of exertion

experienced by participants, ranging from minimal effort to maximal exertion.

Participant Gender Height Weight Age
pl m 188 86 25
p2 m 180 97 27
p3 m 188 84 28
p4 m 180 64 25
p5 m 190 86 27

TABLE XII: participant information. Gender male (m), height in [cm], weight in [kg], age in [years]
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