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Abstract

Frequent route changes in modern SDN-based net-
works are known to severely degrade the perfor-
mance of TCP Cubic. This degradation is caused
by two factors: sudden RTT changes, and packet
reordering which Cubic misinterprets as conges-
tion. This research investigates how a modern alter-
native, BBRv3, performs under these same condi-
tions. Using ns-3 simulations with rerouting inter-
vals of 3, 5, and 10 seconds, we show that BBRv3 is
significantly more resilient. While Cubic through-
put is reduced by nearly 50% at 3-second intervals,
BBRvV3 performance degrades by less than 10%,
as its probing mechanism does not use packet re-
ordering as a congestion signal. We also examined
a second scenario where a flow leaves a saturated
link. We concluded Cubic flows take much longer
to fill the newly freed up bandwidth, as much as 8
seconds for a 25% increase in available bandwidth.
BBR performs much better as its able to recognize
that the link is not saturated during its next prob-
ing phase and mediately fill it. Therefore, we con-
clude that BBRv3 is better suited for the dynamic
network conditions found in SDN environments.

1 Introduction

In recent years, the biggest cloud service providers (Google,
Amazon, and Microsoft) have moved away from traditional
networking and are using SDN-based networks [6], [8], [7].
This architectural shift is driven by significant gains in net-
work efficiency. It replaces the distributed logic of older sys-
tems with a central controller that can globally determine the
optimal network path for all traffic and directly manage the
sending rates of individual services to prevent congestion.
For instance, this SDN-based SWAN system, which lever-
ages these capabilities, demonstrated the ability to carry 60%
more traffic than a traditional MPLS TE deployment [7].

A direct consequence of this active, centralized manage-
ment is that flows in SDN-managed networks commonly
change routes at very short intervals, often 10 seconds or
less [10]. Although network operators might make routing
changes to efficiently use their resources, this will not al-
ways align with application requirements, such as those for
latency-sensitive tasks. Research also shows that frequent
routing changes can have negative effects on TCP flows and
reduce throughput to as low as 35% compared to no changes
when using the default congestion control algorithm in most
networks, TCP Cubic [4]. This impact on Cubic arises pri-
marily from two factors associated with route changes. First,
switching to a path with a longer RTT directly decreases the
achievable throughput (W/RTT) until the congestion window
adapts. Second, switching to a shorter path can cause packet
reordering, which loss-based algorithms like Cubic may in-
terpret as congestion, leading to unnecessary window reduc-
tions.

Besides Cubic there are a few other CCAs deployed in real
networks. One of them is BBR, first developed by Google

in 2016. Unlike Cubic which uses packet loss as the sole in-
dicator of congestion BBR uses multiple probing methods to
model the bottleneck bandwidth and RTT of the route. This
allows it to pace the flow such that it fully saturates the band-
width while keeping the queue occupancy at a minimum [2].
Ware et al shows that in 2024 they found the majority of CDN
websites to be using TCP BBR [12]. Mishra et al claims that
more than 10% of the internet uses BBR [9].

We show that because BBR does not use weak signals to
detect congestion, the throughput is going to be only slightly
affected by routing changes even as frequent as every 3 sec-
onds. The only cause of reduced throughput is when moving
from lower delay to higher delay that the flow will have to
increase its congestion window to match the new RTT.

A second scenario that highlights BBR’s faster adaptation
occurs when a competing flow leaves a saturated bottleneck.
BBR performs much better in this situation, as its probing
mechanism is able to recognize that the link is no longer
saturated during its next probing phase and immediately fill
the available bandwidth. In contrast, Cubic flows take much
longer to fill the newly freed-up bandwidth, as they are lim-
ited to a slow, incremental growth of their congestion win-
dow.

2 Background and Context

2.1 SDN

Software-Defined Networking (SDN) is an approach to net-
work management that enables dynamic, programmatically
efficient network configuration to improve performance and
monitoring. By decoupling the control plane from the data
plane the network devices receive all their instructions on
how packets are forwarded from a centralized source called
SDN Controller. This allows links to be utilized more effi-
ciently and support more traffic without requiring hardware
improvements.

2.2 Congestion Control Algorithms

The two Congestion Control Algorithms that we looked at are
Cubic and BBR.

CUBIC is a TCP congestion control algorithm designed to
work best in networks characterized by a large bandwidth-
delay product (BDP). Its central mechanism adjusts the con-
gestion window (W (¢)) using a cubic function based primar-
ily on the elapsed time (¢) since the last congestion event
(packet loss). This relationship is defined by the formula:
W(t) = C(t — K) + Wpax. In this equation, Wiy rep-
resents the window size recorded just before the loss oc-
curred, C is a protocol constant, and K is a parameter derived
from Wi,.x. A key property arising from this time-based ap-
proach is that CUBIC’s window growth rate is independent
of the network’s Round Trip Time (RTT). The cubic func-
tion also dictates distinct window growth phases: the window
increases rapidly when significantly below W, but slows
its growth considerably as it nears Wi, ,x, promoting stability
around the point of previously detected network saturation
[5].

BBR, developed by Google in 2016, uses a different
method to detect congestion in the network. Unlike Cubic,



which uses packet loss as its primary signal for congestion,
BBR uses minimum RTT and bandwidth bottleneck estima-
tions to model the characteristics of the network path [2].
However, in the first version, BBR would sometimes over-
estimate the available bandwidth and would never respond to
congestion. This made it greatly unfair to Cubic. The unfair-
ness is addressed in the latest versions (BBRv2 and BBRv3)
but it’s still not completely resolved. The new versions also
support ECN. This allows end-to-end notification of network
congestion without dropping packets [3].

2.3 Related Work

There has been extensive work on the matter of frequent rout-
ing changes using Cubic. Past research showed that on routes
with shorter RTTs (45/55 ms and 90/105 ms) if rerouting hap-
pens at 4 seconds or higher the negative effect on throughput
is present but not greatly significant, less than 10%. How-
ever when the frequency is less than 4 seconds the through-
put is significantly affected. As the rerouting period moves
towards 0.1 s the throughput exponentially decreases until it
reaches 35% of the no rerouting value [4]. While the behavior
of Cubic under these conditions is well-understood, the per-
formance of BBR in such dynamic environments remains an
open question, motivating the work presented in this paper.

2.4 Predictions

Our expectations when placing TCP BBR through conditions
similar to those in [4] are that BBR will be significantly less
affected by packet reordering. BBR does not use packet loss
as its primary congestion signal and will not react as aggres-
sively when packet reordering is confused with packet loss.
We still predict that changing to a shorter path will affect the
model created by BBR and impact its performance.

3 Experimental setup

In this chapter, we introduce and describe the tools and setup
used for the experiments. The code can be found here [11].

3.1 Tools

To simulate TCP behavior, we use the NS-3 network simu-
lation software. The CUBIC congestion control algorithm is
natively supported in NS-3. While the official NS-3 release
includes only BBRv1, we use an implementation of BBRv3
developed by Agnieszka Brachman, which is based on the
Linux kernel version [1]. The testbed was developed collab-
oratively within the research project team.

3.2 Topology and experiment design

Two network topologies were designed for the following ex-
periments.

Effect of frequent routing changes on BBR throughput
Our goal with this experiment is that by switching between
the two parallel links during a transmission, we simulate rout-
ing changes and observe their effects on TCP flows using ei-
ther BBR or Cubic as the congestion control algorithm, across
varying RTTs.
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Figure 1: Topology of experiment 1

The first topology includes four sender nodes connected to
a router via four 100 Mbps links, each with respective delays
of 20, 40, 60, and 80 ms. This router connects to a second
router through two parallel links with effectively unlimited
bandwidth (10 Gbps) and delays of 10 ms and 20 ms. The
second router then connects to four corresponding sink nodes
via links with unlimited bandwidth and zero delay. During
the total duration of the simulation the bottleneck remains the
same constituted by the 100 Mbps link that connects senders
to the first router. This design ensures that the only variable
between the two available paths is the RTT.

Effect of rerouting a flow through a saturated link
The goal of this experiment is to observe how periodically in-
troducing a new flow into an already saturated link affects the
throughput of both the rerouted flow and the existing flows,
depending on the congestion control algorithm in use.
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Figure 2: Topology of experiment 2

This experiment involves nine senders: four static TCP Cu-
bic senders, four static BBR senders, and one dynamic sender
that will use either BBR or Cubic and be periodically rerouted
during the simulation. All senders are connected to the first
router through 10 Gbps links.

Each group of static senders (Cubic and BBR) is connected
to the first router through links with delays of 20 ms, 40 ms,
60 ms and 80 ms. The dynamic sender is connected through
a link with a delay of 50 ms.

The first router is connected to the second router through
two parallel links, each with 100 Mbps bandwidth and 10 ms



delay. The BBR flows are routed through the first link, and the
Cubic flows through the other. The dynamic flow is initially
on the first link. During the simulation, this flow is period-
ically switched between the two links to simulate rerouting
events.

3.3 Maetrics

Performance metrics are congestion window size (captured
upon change) and average throughput sampled every 100 ms.
These metrics are used to evaluate the performance and be-
havior of the protocol in the proposed scenarios.

4 Results and evaluation

4.1 TCP performance under frequent routing
changes

The first setup was run using six different parameter varia-
tions. For each of the 2 CCAs we run 3 simulations where
the rerouting happens every 3, 5 and 10 seconds.
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Figure 3: Throughput when rerouting 4 BBR flows every 10s
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Figure 4: Congestion window when rerouting 4 BBR flows
every 10s
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Figure 5: Throughput when rerouting 4 BBR flows every S5s
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Figure 6: Congestion window when rerouting 4 BBR flows
every 5s
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Figure 7: Throughput when rerouting 4 BBR flows every 3s
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Figure 8: Congestion window when rerouting 4 BBR flows
every 3s



100

80

m —— Flow 1 30/40 RTT
—— Flow 2 50/60 RTT
—— Flow 3 70/80 RTT
0 —— Flow 1 90/100 RTT

Throughput (Mbps)

10 20 3 40 50 60 70 80
Time (s)

Figure 9: Throughput when rerouting 4 CUBIC flows every
10s
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Figure 10: Congestion window when rerouting 4 CUBIC
flows every 10s
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Figure 11: Throughput when rerouting 4 CUBIC flows every
Ss
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Figure 12: Congestion window when rerouting 4 CUBIC
flows every Ss
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Figure 13: Throughput when rerouting 4 CUBIC flows every
3s
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Figure 14: Congestion window when rerouting 4 CUBIC
flows every 3s

From the throughput of the BBR flows when rerouting
takes place at 10, 5, and 3 seconds intervals in figures 3,
5, and 7, we observe that rerouting at 10-second intervals
has almost no impact on the average throughput of the BBR
flows. However, in setups with more frequent rerouting, the
low-delay flow (30/40 RTT) is noticeably affected. This is
to be expected, because on shorter routes, that 10 ms vari-
ation causes a disproportionately larger mismatch between
the current congestion window and the new optimal value.
Its average throughput drops to 94 Mbps and 91 Mbps at
5-second and 3-second intervals, respectively, compared to
98 Mbps with less frequent rerouting. In contrast, flows with
higher RTTs remain largely unaffected, maintaining average
throughput of around 95-96 Mbps regardless of the rerouting
frequency. Looking at the Congestion Window figures for the
same flows in figures 4, 8, 6 we can get a more in-depth pic-
ture why the throughput is lower. We can see that BBR will
lower the congestion window in response to rerouting from
high to low RTT but its able to almost immediately recover.
Sometimes BBR is not able to recover fast enough, and this
results in a small negative effect on throughput such as figure
4 at the 60-second mark. This occurs because the rerouting
frequency is very close to BBRv3 probing frequency. Here
we can see that the CWND is not able to recover and keeps
decreasing. This results in a greater than usual performance
degradation for the flow.

From the throughput of cubic flows that get rerouted ev-
ery 10, 5 and 3 seconds, in figures 9, 11, 13, we observe
that rerouting at 10-second intervals has almost no impact on
the average throughput of the CUBIC flows either. However,



when rerouting occurs more frequently, the impact becomes
significant across all flows. At a 5-second interval, through-
put drops below 90 Mbps for the three higher RTT flows, with
two of them falling below 80 Mbps. At a 3-second interval,
the second highest RTT flow remains just below 85 Mbps,
while the other three experience a sharp decline, reaching
values around 60 Mbps, representing a drop of nearly 50%.
From the figures of the congestion window 10, 11, 14 we can
observe that rerouting from a higher RTT to a lower RTT is
almost universally interpreted as congestion and as a conse-
quence the size of the CWND is reduced. This is a direct
result of packet reordering; packets sent on the new, faster
route arrive ahead of older packets still in transit, causing a
burst of duplicate acknowledgments that Cubic incorrectly at-
tributes to network congestion. This does not cause a signifi-
cant impact at 10-second intervals, as a switch from a higher
to a lower RTT path only occurs once every 20 s. This is be-
cause Cubic has time to restore the CWND to a degree high
enough to saturate the link. When the rerouting happens more
frequently the CWND cannot recover and keeps decreasing.
This is especially impactful on the higher RTTs flows. This
confirms our prediction: while CUBIC is highly sensitive to
frequent rerouting, BBR is affected to a much lesser extent,
showing performance degradation of less than 10%.

4.2 Effect of rerouting a flow through a saturated
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Figure 15: Throughput when rerouting a BBR flow through a
saturated link
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Figure 16: Congestion window when rerouting a BBR flow

through a saturated link
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Figure 17: Cumulated throughput inside the 2 links when
rerouting a BBR flow through a saturated link
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Figure 18: Throughput when rerouting a Cubic flow through
a saturated link
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Figure 19: Congestion window when rerouting a Cubic flow
through a saturated link
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In this experiment there are 9 flows split between two identi-
cal bottleneck links. One of the flows gets rerouted at specific
intervals between the 2 links. On each of the links the flows
which do not get rerouted will share the same congestion con-
trol algorithm either Cubic or BBR. Two experiments were
run one with the dynamic flow using Cubic and one using
BBR.

The figures 15, 16, 17 show the per flow throughput, con-
gestion window evolution and per link and dynamic flow
throughput for the first simulation. Figure 15 shows us that
the higher RTT BBR flows are unfair to the others. The 90
ms and 70 ms ones maintain for the whole duration around
30 Mbps each which means that they constitute more than
60% of the total flow on their link despite the fact that they
share with 2 or 3 other flows. From figure 17 we can see that
BBR reacts very well to the dynamic flow leaving the link.
Due to BBR’s reliance on its probing mechanism, the link al-
most immediately becomes saturated as BBR recognizes the
newly available bandwidth.

The Cubic flows manage to have an evenly split bandwidth
even when the Sth flow enters the route. In figure 17 we see
that Cubic is slow to saturate the new capacity after a flow
leaves. This happens because Cubic slowly increases its con-
gestion window based on time until it encounters congestion,
as it cannot directly "detect" if more bandwidth has become
available.

The dynamic flow maintains an almost constant through-
put. Slightly lower than 20 Mbps in the BBR link and slightly
higher in the Cubic link.

The figures 18, 19, 20 show the per flow throughput, con-
gestion window evolution and per link and dynamic flow
throughput for the second simulation. The trend of higher
RTT BBR flows taking the most bandwidth does not hold
here. The flows achieve a mostly even split with the low-
est RTT flow having a bigger throughput. The trend of BBR
being fast to react to bandwidth changes does however hold
up. In figure 20 we can see that the throughput recovers al-
most as fast as in the last simulation, the difference being the
presence of a cubic flow on the link.

The Cubic flows remain even when all 5 of them are
present. When the dynamic one leaves we can see that the
lower RTT benefit the most from the newly available band-
width to the great detriment of the 90 ms Cubic flow.

The dynamic flow behaves as expected. It’s treated fairly
by both BBR and Cubic flows. Switching the route causes
congestion and the flow has to lower its congestion window
as a consequence which then grows until the next switch. It
maintains a constant 20 Mbps throughout the whole duration
of the experiment.

5 Responsible Research

No confidential or sensitive information was handled during
this research. There are no ethical implications of this study.

6 Usage of Large Language Models

We have not used any LLM created content when writing this
thesis. During this project we used it exclusively for imple-
mentation help and proofreading for grammatical errors.

7 Limitations and Future Work

The tests in this study were run in the NS-3 simulator. A
real-world testbed would improve confidence in these results
because it includes network hardware and operating system
behaviors not captured by the simulation. The BBRv3 im-
plementation, while following the Linux Kernel code, is not
an official release and may differ from the mainline version.
Therefore, it is necessary to redo these experiments on a phys-
ical setup. This would confirm that the observed behavior is
correct and not caused by inaccuracies in the simulation or
the implementation.

This paper focused only on long-lived TCP flows. This
is a limitation because the majority of internet traffic con-
sists of short, latency-sensitive flows. For these flows, met-
rics like completion time are more important than the steady-
state throughput measured in our tests. Future work should
therefore extend this analysis to short flows and evaluate
how modern CCAs maintain low latency under frequent route
changes.

8 Conclusion

This research examined the impact of frequent routing
changes on TCP flows using either BBR or Cubic conges-
tion control. It looked at 2 situations, one where flows are
rerouted between 2 non-bottleneck links with different de-
lays. We showed that when moving from a higher RTT route
to a lower RTT route with frequencies of 5 s or lower Cubic
throughput is greatly reduced, as low as 50%. This is caused
by packet reorder which is interpreted as congestion. Unlike
Cubic packet reorder has no effect on BBR. As a result BBR
flows are affected by less than 10% even when rerouting hap-
pens as fast as every 3 seconds. The cause is how BBR tracks
available bandwidth using probing and doesn’t react to weak
signals for congestion.

The second scenario examined is how flows react when one
is introduced or taken out of a saturated bottleneck. We con-
cluded Cubic flows take much longer to fill up the newly freed
up bandwidth, as much as 8 seconds for a 25% increase in
available bandwidth. BBR performs much better as its able
to recognize that the link is not saturated during its next prob-
ing phase and immediately fill it.

In conclusion BBR adapts better to network changes and is
more suited for SDN-based networks. It upholds its promise
of performing better in unstable network conditions
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