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Abstract 
 

Electric vehicles are a cleaner and more efficient means of transport. However, the sub-energy-

optimal acceleration and deceleration inputs of drivers result in speed trajectories that cause 

superfluous expenditure of the stored electrical energy in battery. Optimising the speed 

trajectories to minimise the consumption of stored energy is a potential strategy for the efficient 

operation of electric vehicles. In this thesis, we propose a numerical solution to the eco-driving 

problem by optimising the speed trajectories via Pontryagin’s Minimum Principle. The solution 

is robust to the vehicle parameters and the driving conditions, and is used to generate energy-

aware driving advice for near-straight line driving manoeuvres. In the end, we test the global 

optimality of the speed trajectories by convexification of the problem.  

Keywords: Speed trajectory optimisation, Eco-driving, Pontryagin’s minimum principle, 

Convex optimisation 
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1 
Introduction 

 

Among several efforts to decarbonise the planet, emission targets for original equipment 

manufacturers have been made stricter time and again worldwide. Transportation makes for 

the second largest sector in terms of the greenhouse gas emissions after the energy production 

[1]. To contain these emissions during the operation of vehicles, the automotive manufacturers 

are electrifying their range, seven of which including Mercedes-Benz, Volvo Cars and Bentley 

Motors Limited have already committed to 100% electric vehicle (EV) sales by 2030 within 

the European Union [2]. To reap the environmental benefits of EVs, their production as well 

as operation should be energy efficient. The energy consumption and emission tests are 

performed to quantify the operational efficiency using the driving cycles which are largely 

influenced by the driver inputs: acceleration and braking. However, the inputs are often 

aggressive and/ or sub-energy-optimal causing a higher expenditure of stored electrical energy 

in the battery than necessary. Hence, the on-road operation of EVs is not energy-optimal.  

1.1 Eco-driving to Minimise Energy Consumption  

Optimising the driver inputs for the desired trip duration and distance to be covered is one of 

the strategies to minimise the energy consumed for each trip. For this optimisation, eco-driving, 

an advanced driver-assistance system to improve the economy of stored energy in the form of 

combustible fuel or charge in the battery of on-road vehicles [3], is researched as well as 

implemented in different forms [4]. In [5], for the combustion and the hybrid EVs (HEVs), the 

fuel economy is defined as the amount of fuel consumed to travel a fixed distance, or, 

alternatively, the distance travelled for a fixed amount of fuel. For the EVs, the fuel economy 

corresponds to the economy of stored electrical energy in the battery, henceforth referred to as 

the energy economy. One of the ways the eco-driving system improves the energy economy is 

by modifying the driver inputs through a less responsive throttle tuning and transmission shift 

points. This decreases the responsiveness of the vehicle powertrain as illustrated in Fig. 1 

thereby preventing aggressive accelerations and decelerations which rapidly deplete the stored 

energy. Note that the eco-driving mode does not limit the total output but only voids the 

unnecessary throttle input during moderate driving.      

Another way the eco-driving system improves the energy economy is through the management 

of the auxiliary loads on the vehicle, the largest of which is air-conditioning [6]. By altering 

the operation of these loads, the eco-driving system enables a more conservative use of the 

available electrical energy from the battery of EVs. For the combustion vehicles, it has already 

been shown that along with the driver’s practice of energy-aware driving style, which includes 

minimising idling, driving with sufficiently inflated tires etc, eco-driving system can 

cumulatively improve the fuel economy up to 45% [4]. Similarly, with the aim to improve 
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energy economy in the EVs, the eco-driving problem is studied and optimised here. 

Beneficially, the improved energy economy also translates into an extended range of the EVs, 

a major anxiety among the EV owners [7], [8]. Hence, studying eco-driving systems to further 

the benefits and make transport more sustainable is relevant.  

Eco-mode available in on-road vehicles achieves several tasks. Of these, modifying driver 

inputs is one of the technological ways of improving the energy economy that does not require 

any structural changes to the system. Driver inputs can be modified by controlling the 

powertrain response, or by directly providing feedback and feedforward advice to the driver 

based on the past and the current driving performances respectively for him/her to adopt an 

energy-aware driving style [1]. The latter translates into the driver following an energy-optimal 

speed trajectory advised by the eco-driving system. The trajectory minimises losses such as 

those due to the aerodynamic drag and the dissipative braking during downhill driving [9]. Van 

Keulen and Salazar [10] computed the optimal speed trajectory for a hybrid electric vehicle to 

generate energy-aware driving advice for a straight line manoeuvre with near-halt beginning 

and ending conditions. This thesis is an extended adaptation of their work to an EV. 

1.2 Research Objective   

First, the present solution methods for eco-driving problems lack sufficient generality to 

optimise the speed trajectories for vehicles for various loading conditions and when they travel 

a wide range of distances. And second, the optimisation of trajectories for EVs driving on 

graded roads has not yet been performed to our best knowledge. These two research gaps, in 

theory, limit the applicability of eco-driving systems for EVs thereby limiting their operational 

efficiency. 

In this thesis, we propose a new solution method to compute the energy-optimal speed 

trajectories that is robust to the loading conditions, the distance the vehicle must cover and the 

road profile it travels on. In the end, we test the global optimality of the speed trajectories by 

convexification of the problem and then solving it to compute the globally optimal speed 

trajectory.   

 

Fig. 1. Commercially available driving modes in performance cars and above 
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We limit the scope of this thesis to testing the robustness and the global optimality of the 

proposed numerical solution in simulation. In practice, it can be extended to training the drivers 

on driving simulators for them inculcate energy-aware driving behaviour. They would achieve 

this by following the advised optimal speed trajectories and then practising the behaviour on 

on-road EVs to minimise energy consumption.  

1.3 Thesis Outline   

The remainder of the thesis is structured as follows: Chapter 2 mathematically states the eco-

driving problem for EVs that we solve by optimising the speed trajectories and describes the 

electric powertrain architecture for which we state the problem. In chapter 3, we reformulate 

the problem into a two-point boundary value problem whose dynamics are governed by a 

coupled system of ODEs subject to boundary conditions. In addition, we propose the solution 

method. We present and interpret the results of the simulations for different vehicle parameters 

and driving conditions in chapter 4. In chapter 5, we perform convexification of the problem 

and solve it to compute the globally optimal speed trajectory for the first result in chapter 4, to 

test the global optimality of the proposed solution. Finally, chapter 6 summarises the work 

done and suggests potential extensions.  
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2 
Electric Powertrain Architecture and 

Problem Definition 
 

To propel forward, a BEV efficiently utilises the stored electrical energy 𝐸s (refer Fig. 2) in its 

battery pack, to power the electric motors on which the vehicle solely runs. Before the power 

𝑃s is transmitted to the motors via the motor controllers, it suffers from electrical resistance 

losses within the battery. Note that the same resistance also limits the regeneration of 𝐸s from 

incoming power from the motors during deceleration. Finally, the motor consumes the power 

𝑃b to provide mechanical power 𝑃m to achieve the desired kinetic energy of the vehicle 𝐸k. 

During forward propulsion, the vehicle suffers from 3 losses primarily: 

1. Rolling resistance of the tires 

2. Aerodynamic drag, and 

3. Gravitational pull (push) in case of positively (negatively) graded roads. 

We represent the algebraic sum of the 3 losses as 𝑃l. While braking, when the required brake 

power exceeds the maximum braking the motors can provide while regenerating, the driver 

applies mechanical brakes. This mechanical brake power is 𝑃d and is null during forward 

propulsion. Lastly, the cumulative power available to cause the desired change in the kinetic 

energy of the vehicle is 𝑃r.  

The aim of eco-driving system is to minimise the expenditure of 𝐸s for any given trip. 

Mathematically, the eco-driving optimal control problem becomes 

 

 

 

 

Fig. 2. Powertrain Architecture of a BEV 
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min
𝑃m,𝑃d

 ∫ 𝑃s d𝑡
𝑇

0

 

(1) 

s. t. 𝐸k̇(𝑡) = 𝑃m(𝑡) − 𝑃d(𝑡) − 𝑃l(𝑡) 

�̇�(𝑡) = √
2

𝑚
∙ 𝐸k(𝑡) 

and 𝐸k(𝑡 = 0) = 𝐸k,o 
𝐸k(𝑡 = 𝑇) = 𝐸k,f 
𝑠(𝑡 = 0) = 0 
𝑠(𝑡 = 𝑇) = 𝑠f, 

 

where 𝑠f is the distance the vehicle of mass 𝑚 covers in time 𝑇. The initial and the final kinetic 

energy of the vehicle are 𝐸k,o and 𝐸k,f respectively. Hence, we apply the boundary conditions 

on the initial and the final states of the distance covered and the kinetic energy. The vehicle 

suffers from the power loss 𝑃l due to the rolling resistance, the aerodynamic drag and the 

gravity. The driver controls the power flow to/ from the electric motor 𝑃m as well as the 

mechanical brake power 𝑃d through the accelerator and the brake pedals respectively. The 

electric motor power flow 𝑃m causes the battery state of energy  

𝐸s to vary as per �̇�s = −𝑃s(𝑃m), where  

 

𝑃s =
𝑈o
2 ∙ 𝑅

∙ (𝑈o −√𝑈o2 − 4 ∙ 𝑅 ∙
1

𝜂msgn
(𝑃m)

∙ 𝑃m), (2) 

 

for a null voltage increase factor, discharged battery voltage 𝑈o, internal resistance of the 

battery 𝑅 and the electric motor efficiency 𝜂m [10].  

Table 1. Summary of Parameters of the Powertrain Architecture of a BEV 

 

Name Description 

𝐸s Stored electrical energy  

𝑃b Rate of consumption of electrical energy after electrical resistance losses 

during acceleration or regeneration before electrical resistance losses 

during deceleration 

𝑃s Rate of consumption of electrical energy before electrical resistance 

losses during acceleration or regeneration after electrical resistance 

losses during deceleration 

𝑃m Power delivered by (𝑃m > 0)/ to (𝑃m < 0) electric motor  

𝑃r Power delivered to provide the required increase in kinetic energy (𝑃r > 

0) or recovered from its decrease (𝑃r < 0)  

𝐸k Kinetic energy of the BEV  

𝑃d Mechanical brake power consumed during deceleration  

𝑃l Power loss due to rolling resistance, aerodynamic drag and gravity 
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In this thesis, we solve the problem (1) describes for manoeuvres that generate the same results 

as those of straight line driving, i.e. the cornering radii on the road are significantly large to 

render the lateral dynamics of the vehicle negligible.  

To prove the robustness of the proposed solution method against different vehicle parameters 

and driving conditions, the above problem is first solved for the specifications of an EV, and 

then for the increasing: 

1. Loading conditions of the vehicle  

2. Distances to be covered, and 

3. Road grade.  

In addition to constant road grades, the proposed solution method also solves the problem for 

variable road grade to capture the interesting ways in which the eco-driving system exploits 

gravitationally assisted propulsion.  

The following chapter formally derives the coupled system of ODEs and proposes the solution 

method to generate the optimal speed trajectories by solving the system.  
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3 
Problem Reformulation and Solution 

Method 
 

To generate the optimal speed trajectories by solving the problem in (1), two commonly used 

optimal control methods in literature make to the list of choices. These are Dynamic 

Programming (DP) and Pontryagin’s Minimum Principle (PMP).  P is a numerical method to 

generate globally optimal solutions of optimisation problems. Advantageously, it provides 

optimal results for non-smooth and non-linear cost functions and constraints [11]. This method 

has been used to solve various problems in eco-driving. For example, Hellström et al. [12] 

employed this method to optimise velocity profile and gear shift strategy, and chose Euler 

forward method of discretisation to minimise quantisation errors. Kamalanathsharma and 

Rakha [13] again achieved optimal velocity profile but then proposed multi-stage DP to show 

its computational efficiency.  

However, DP suffers from two main drawbacks: the quantisation errors and the increasingly 

required processing power as the number of variables increases. To mitigate these limitations, 

certain simplifications to the model have been performed by some researchers. For example, 

to ease the curse of dimensionality, discrete DP with forward recursion was implemented 

without having time as a state variable to generate quasi-global-optimum results [14]. 

Nevertheless, such modifications cannot always be made. On the other hand, PMP provides 

analytical conditions that allows to rewrite an optimal control problem into a two-point 

Hamiltonian boundary value problem (BVP). It does not suffer from discretisation errors before 

solution and is efficient at handling larger systems. Hence, for the problem (1) describes, it is 

convenient and computationally efficient to employ PMP. It, however, does not guarantee 

global optimality for non-convex problems, or in absence of a unique solution, its optimality 

must be verified. In chapter 5, this is achieved by convexification of the problem.  

Van Keulen and Salazar [10] leverage PMP to derive the optimal energy management policy 

for an HEV jointly for a fixed distance and time. A similar approach is used here to translate 

(1) optimal control problem into a system of ODEs with initial conditions by applying PMP. 

The solution of the system is void of any rapidly varying nearby solutions. Hence, the system 

is non-stiff thereby making the ode45 algorithm of Matlab appropriate for the solution.  

3.1 Application of PMP to Generate Two Point BVP 

Here, we derive the system of ODEs described for (1). Application of PMP (see Appendix) 

transforms the global optimization problem (1) into an instantaneous Hamiltonian optimization 

problem [15]. Thus, to optimise the problem, we minimise the instantaneous Hamiltonian 𝐻 

defined as 
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𝐻 = 𝑃s + [
−𝜆k
−𝜆s

]
𝑇

∙ [�̇�k
�̇�
]  

= 𝜆k ∙ (𝑃d + 𝑃l − 𝑃m) − 𝜆s ∙ 𝑣 + 𝑃s. 
 

(3) 

 

We derive the time derivatives of the two state variables 𝐸k and 𝑠 from the powertrain 

architecture in Fig. 2. Subsequently, computing the state dynamics from Fig. 1 and the co-state 

dynamics using (3), the resultant system of ODEs is 

 

[
 
 
 
�̇�k
�̇�
�̇�k
�̇�s]
 
 
 

=

[
 
 
 
 
 
𝑃m − 𝑃d − 𝑃l

𝑣
∂𝐻

∂𝐸k
∂𝐻

∂𝑠 ]
 
 
 
 
 

 

𝑊𝑖𝑡ℎ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 
𝐸k(𝑡 = 0) = 𝐸k,o 

𝐸k(𝑡 = 𝑇) = 𝐸k,f 
𝑠(𝑡 = 0) = 0 

𝑠(𝑡 = 𝑇) = 𝑠f. 

(4) 

 

The co-state variables, 𝜆k and 𝜆s quantify the cost of moving the corresponding state variables 

from their optimal positions. For positive co-state variables, the higher the magnitude of the 

co-state variables, the more favourable for the objective function it becomes to increase the 

magnitude of the corresponding state variable. For the sake of simplicity, the instantaneous 

velocity 𝑣 is used interchangeably with the quantity √
2

𝑚
∙ 𝐸k. The remaining required vehicle 

parameters are summarised in Table 2.  

To derive the optimal power delivered by/ to the electric motor, we equate the derivative of the 

Hamiltonian with respect to the motor power to 0 followed by constraining the motor power 

with its peak positive and negative power, i.e. 
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∂𝐻

∂𝑃m
= 0 ⇒

∂𝑃s
∂𝑃m

− 𝜆k = 0

⇒ 𝜆k =
𝑈o

𝜂msgn
(𝑃m) ∙ √𝑈o2 − 4 ∙ 𝑅 ∙

1
𝜂msgn

(𝑃m)
∙ 𝑃m

. (5) 

 

Rearranging the terms, 

 

𝑃m =

{
 
 
 

 
 
 

𝑈o
2

4 ∙ 𝑅 ∙ 𝜂m
∙ (1 −

𝜂m
2

𝜆k
2) 𝜆k < 𝜂m

0 𝜂m ≤ 𝜆k ≤
1

𝜂m
𝑈o

2 ∙ 𝜂m
4 ∙ 𝑅

∙ (1 −
1

𝜂m2 ∙ 𝜆k
2)

1

𝜂m
< 𝜆k.

 (6) 

 

To limit (6) with the peak motor power such that 𝑃m ∈ [𝑃m, �̅�m], the motor power 

 

𝑃m =

{
 
 
 

 
 
 max [𝑃m,

𝑈o
2

4 ∙ 𝑅 ∙ 𝜂m
∙ (1 −

𝜂m
2

𝜆k
2)] 𝜆k < 𝜂m

0 𝜂m ≤ 𝜆k ≤
1

𝜂m

min [�̅�m,
𝑈o

2 ∙ 𝜂m
4 ∙ 𝑅

∙ (1 −
1

𝜂m2 ∙ 𝜆k
2)]

1

𝜂m
< 𝜆k.

 (7) 

Table 2. Summary of the Vehicle Parameters 

 

Name Description 

𝜂m Electric motor efficiency 

�̅�m Peak power of the electric motor 

𝑃m Negative peak power of the electric motor 

𝑈o Discharged battery voltage 

𝑅 Internal resistance of the battery 

𝑚 Curb weight of the vehicle 

𝑐r Rolling resistance coefficient 

𝑐d Aerodynamic drag coefficient 

𝐴 Frontal area of the vehicle 

𝜌 Density of the ambient air 

𝑔 Gravitational constant 

�̅�d Maximum brake power 
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To derive the optimal mechanical brake power 𝑃d, we minimise the Hamiltonian with respect 

to 𝑃d. The Hamiltonian is affine in it and the non-triviality condition, i.e. no solutions lie outside 

the general solution, eliminates a singular solution in [0, 𝑃d]. Therefore, the optimal 

mechanical brake power is 

 

𝑃d = {
0 𝜆k ≥ 0

𝑃d 𝜆k < 0.
 (8) 

 

Apart from the driver inputs 𝑃m and 𝑃d, the external power loss 𝑃l directly influences the rate 

of change of 𝐸k.  This power loss is the algebraic sum of the rolling resistance, the aerodynamic 

drag and the gravitational push/ pull, and equals 

 

𝑃l = 𝑐r ∙ 𝑚 ∙ 𝑔 ∙ 𝑣 ∙ cos 𝜃 +
1

2
∙ 𝜌 ∙ 𝐴 ∙ 𝑐d ∙ 𝑣

3 +𝑚 ∙ 𝑔 ∙ 𝑣 ∙ sin 𝜃, (9) 

 

for the road grade 𝜃 = 𝜃(𝑠) . We now derive the dynamics of the co-state variables. From (3), 

the Hamiltonian depends on the state variable 𝑠 through the road grade. For a maximum road 

grade of 𝑥 %, let the equivalent angle in radians be 𝜃amp. Then  

 

𝜃amp = tan−1 (
𝑥

100
). (10) 

 

In order that one sine period spans the driving distance, the frequency of the wave becomes 

 

𝜔 =
2 ∙ 𝜋

𝑠f
. (11) 

 

This leads to the instantaneous road grade 𝜃 in radians as a function of distance travelled 𝑠 to 

be 

 

𝜃 = 𝜃amp ∙ sin(𝜔 ∙ 𝑠). (12) 

 

We substitute (14) in (10) to derive the distance co-state dynamics �̇�s by taking the space 

derivative of Hamiltonian in (3) as 
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�̇�s =
∂𝐻

∂𝑠

= 𝜆k ∙
∂𝑃l
∂𝑠

= 𝜆k ∙ (−𝑐r ∙ 𝑚 ∙ 𝑔 ∙ 𝑣 ∙ sin 𝜃(𝑠) ∙
∂𝜃(𝑠)

∂𝑠
+ 𝑚 ∙ 𝑔 ∙ 𝑣 ∙ cos 𝜃(𝑠) ∙

∂𝜃(𝑠)

∂𝑠
)

= 𝜆k ∙ 𝑚 ∙ 𝑔 ∙ 𝑣 ∙ 𝜃amp ∙ 𝜔 ∙ cos(𝜔 ∙ 𝑠) ∙ (cos 𝜃(𝑠)−𝑐r ∙ sin 𝜃(𝑠)). 

(13) 

 

Finally, the kinetic energy co-state dynamics equal 

 

�̇�k =
∂𝐻

∂𝐸k

= 𝜆k ∙
∂𝑃l
∂𝑣

∙
∂𝑣

∂𝐸k
− 𝜆s ∙

∂𝑣

∂𝐸k

= 𝜆k ∙ (
𝑐r ∙ 𝑔 ∙ cos 𝜃 +𝑔 ∙ sin 𝜃

𝑣
+
3 ∙ 𝜌 ∙ 𝐴 ∙ 𝑐d∙𝑣

2 ∙ 𝑚
) −

𝜆s
𝑚 ∙ 𝑣

. 

(14) 

 

Dib et al. [16] employ the same tool for a BEV and show the equivalency between finding the 

optimal speed trajectory and problem of solving a system of two algebraic equations. 

Incorporation of gear shifting strategy to switch the state dynamics in BVP formed by PMP as 

done in [17] is not performed here. 

3.2 Solution Method 

We cannot integrate the system of ODEs in (4) subject to (7)–(9), (13) and (14) as an initial 

value problem because the boundary conditions of the distance and the velocity are defined at 

final time also while we cannot derive the initial values of the co-states analytically. However, 

the system is closed because 4 conditions are provided for 4 coupled differential equations.  

By iterating the initial values of the co-states for fixed initial values of the states, we find the 

initial values of the co-states that lead to the final state values coinciding with their terminal 

conditions. For a fixed initial small guess of 𝜆k, the final velocity varies inversely with 

increasing initial small guess of 𝜆s. And for each set of 𝜆k(𝑡 = 0) and 𝜆s(𝑡 = 0) satisfying the 

final kinetic energy condition, the distance the vehicle covers increases monotonically with 

increasing 𝜆k(𝑡 = 0). Hence, both 𝜆k and 𝜆s are iterated with the positive variable co-state 

increments Δ𝜆k and Δ𝜆s respectively as per the decision tree in Fig. 3 until we arrive at the 

unique solution that satisfies both the initial and the final state boundary conditions. Each time 

the final kinetic energy decreases below, or/ and the distance covered increases above the 

respective terminal conditions, the initial value of the corresponding co-state is restored to its 

previous value and the corresponding increment decreases by the order of 10. The loop 

terminates when either all the boundary conditions are met or when the increments decrease 

below the default precision of Matlab. We follow this methodology to optimise the speed 

trajectories and present the results in chapter 4.  
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Fig. 3. Decision tree for optimisation of the speed trajectories for the eco-driving system 
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4 
Optimisation Results 

 

In this chapter, we solve the system of ODEs described by (4) subject to (7)–(11) for an EV 

driving a near-straight distance of 𝑠 = 6km in travel time 𝑇 = 200s on a flat road followed by 

solutions for varying loading conditions of the vehicle, distances to be covered and road grades. 

This driving manoeuvre is representative of one of the simplest manoeuvres into which longer 

and more complex speed trajectories can be divided. Thus, we optimise the speed trajectory for 

one of its sections. We can extend this approach to the remaining sections of the speed 

trajectory when there exist speed waypoints. Sequentially concatenating the section-wise 

optimal speed trajectories to form the entire speed trajectory produces the same speed trajectory 

as by optimising the entire speed trajectory with waypoints at once, given the Bellman’s 

Principle of Optimality [18]. 

We use the vehicle specifications in Table 3 to simulate the near-straight line driving 

manoeuvre. For the remainder of the thesis, we assume the vehicle to be fully charged in the 

beginning with the initial battery state of energy 𝐸s,o = 306MJ for all cases.   

The following two assumptions are made to iterate the initial values of the co-states more 

informatively: 

1. Minimum velocity of the vehicle is 1 ± 0.5 m/s to maintain �̇�k real, i.e. the vehicle is 

never at complete standstill to prevent 𝜆k from exploding (see (11)). The margin of 

±0.5 m/s is introduced to avoid requiring a precision greater than the 16 digits 

precision (double precision) which Matlab uses by default. 

 

Table 3. Vehicle Parameter Values 

   

Name Value Units 

𝜂m 0.9 – 

�̅�m 310 kW 

𝑃m -310 kW 

𝑈o 346 V 

𝑅 0.32 Ω 

𝑚 2108 kg 

𝑐r 0.01 – 

𝑐d 0.24 – 

𝐴 2.34 m2 

𝜌 1.2 kg/m3 

𝑔 9.81 m/s2 

�̅�d 20 kW 



18 
 

2. The vehicle always accelerates at 𝑡 = 0 s. This allows to guess the initial value of 𝜆k =
1

𝜂m
+ 𝛿 where 𝛿 is the smallest positive value for which the state space dynamics is real 

for the entire trip duration 𝑡 ∈ [0, 𝑇]. From observation, the least value of 𝛿 corresponds 

to the least final distance 𝑠f the vehicle must cover for the eco-driving system to result 

in sufficient electrical energy savings. 

The original case for which we solve the problem now is when a regularly loaded EV covers 

6km distance within 200s on flat road. Fig. 4 shows the optimal speed trajectory and the 

variation of the battery state of energy for this case, and Fig. 5 shows the driver inputs that 

achieve the optimal speed trajectory.  

 

Fig. 4. Energy-optimal speed and battery state of energy trajectories of a regularly loaded 

BEV on a flat road 

 

Fig. 5. Variation of driver inputs for a regularly loaded BEV on a flat road 
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The velocity trajectory shows that to minimise the net consumption of electrical energy, it is 

optimal for the vehicle to accelerate for more than half of the trip duration. It starts with steep 

acceleration to attain the near-cruising velocity followed by a significantly gradual 

acceleration. Note that the vehicle continues to draw power during the cruising phase because 

it continuously suffers from the power loss 𝑃l. As the vehicle begins to decelerate, the rate of 

change of battery state of energy first stagnates, as depicted by the region between the two 

dashed lines to represent the costing phase, and then increases due to regeneration. Following 

the coasting phase, the power loss 𝑃l acts in the favour of the desired rate of change of 𝐸k. 

Consequently, the deceleration phase is significantly shorter and steeper than the acceleration 

phase wherein the resistances oppose the desired motion of vehicle unlike during the 

deceleration phase. Steeper deceleration phase rapidly regenerates a portion of the spent 

electrical energy but the short duration over which this occurs limits the quantity of the 

regenerated energy per se.  

The time period between the two vertical dashed lines denotes the duration following the 

cruising phase when the rolling resistance and aerodynamic drag, the gravitational load being 

zero for flat roads, alone decelerate the vehicle. Here, the electric motor neither consumes nor 

provides power. It is only after this phase that the kinetic energy co-state 𝜆k reduces below the 

electric motor efficiency thereby driving the motor to work as a generator as per (11). Fig. 6 

shows the co-evolution of 𝜆k with 𝜆s with respect to time. The higher the value of 𝜆k, the more 

beneficial it becomes from the energy point of view to increase the velocity of the vehicle and 

vice-versa. The evolution of 𝜆s is however constant as the Hamiltonian is independent of the 

distance state 𝑠 for flat roads.  

We interpreted the energy-optimal state and co-state trajectories to correlate their evolutions 

with the expected physical motion of the EV. This improves understanding of the speed 

trajectories that the eco-driving system generates to promote energy-aware driving behaviour.  

 

Fig. 6. Optimal co-state trajectories of a regularly loaded BEV on a flat road 
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Next, these trajectories vary subject to vehicle parameters and driving conditions. Because the 

proposed solution method is independent of the vehicle mass, the distance to be covered and 

the road grade, we now use it to optimise the speed trajectories for the case when the vehicle: 

1. Is heavily loaded 

2. Drives longer distances 

3. Must traverse graded roads 

4.1 Loaded Vehicle 

The vehicle specifications provided by the vehicle only state the curb weight which excludes 

the weight of passengers and cargo. The latter weight varies from one trip to another and so 

does the energy-optimal speed trajectory. Here, the combined added weight of up to 

 

Fig. 7. Energy-optimal state trajectories for increasing vehicle mass on a flat road 

 

Fig. 8. Variation of battery state of energy for increasing vehicle mass on a flat road 
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approximately 1500kg is considered to analyse and interpret the variations in optimal speed 

trajectories. 

A direct consequence of the increasing vehicle mass is its increased inertia which demands 

greater input and output power from the electric motor. To maintain a smoother ride, the vehicle 

now spends longer to accelerate and decelerate (Fig. 7) instead of maintaining the same 

duration of cruising phase which would require more aggressive acceleration and deceleration. 

Consequently, to reach the destination timely, the vehicle maintains a higher peak velocity that 

compensates for the otherwise decrease in distance covered due to shorter cruising phase. 

A loaded vehicle suffers from a greater rolling resistance, the gravitational load and the inertia. 

The gravitational load is absent here because the road is not yet graded. Increased rolling 

resistance causes the motor to consume stored energy at a greater rate. This is seen from Fig. 

8. Both longer and more aggressive deceleration mean that a higher amount of energy is 

regenerated. However, the net consumption remains higher for a loaded vehicle. In conclusion, 

it is optimal from the energy point of view for a loaded vehicle to accelerate and decelerate 

slower to achieve a higher peak velocity for a shorter duration to traverse the desired distance 

timely, beginning and ending with near halt condition.  

4.2 Longer Distances 

For the vehicle to travel farther with available time being constant, we observe that the cruising 

phase shortens. Shortened cruising phase increases the peak velocity and maintains a higher 

velocity throughout the trip to complete it timely. Here, the ride comfort is compromised due 

to increasingly aggressive accelerations and decelerations evident from the velocity 

trajectories. Although the eco-driving system generates optimal speed trajectories, it does not 

account for their feasibility. For instance, driving over 150 km/h on busy urban roads may not 

be reachable. Clearly, additional constraints on the maximum velocity and, peak acceleration 

and deceleration are desirable. For the sake of simplicity, we neglect these constraints here.  

 

Fig. 9. Energy-optimal state trajectories of a regularly loaded BEV covering longer distances 

on a flat road 
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The energy aware driving approach here becomes: accelerate and decelerate harder to achieve 

a higher peak velocity for a shorter duration to traverse longer distances timely and minimise 

net the consumption of energy. The following section shows the influence on speed trajectories 

by one of the topographical features of roads: road grade.  

4.3 Driving on Graded Roads 

Observed road grades in the environment are often less than 10%. However, they can 

significantly increase the consumption of stored energy and hence, must not be neglected [19]. 

While a positive road gradient leads to increased tendency of driver to accelerate thereby 

consuming greater energy [19]–[21], a negative road grade allows for a more conservative 

expenditure of stored electrical energy due to gravitationally assisted propulsion. Clearly, the 

road grade influences the power loss term 𝑃l illustrated in Fig. 2. By optimising the velocity 

trajectories for various power loss, eco-driving system again reduces energy consumption on 

graded roads specifically where the drivers unknowingly cause their vehicles to consume more 

energy than necessary. This section studies the impact of both constant and variable road grades 

on optimal speed trajectories.  

4.3.1 Constant Road Grade 

Here, the driving manoeuvre described in the problem definition is simulated on positively 

graded roads up to 9%. 

The first observation is that driving uphill negatively impacts the initial acceleration due to 

increased gravitational load. Here, eco-driving suggests a slightly harder acceleration to reach 

the cruising velocity earlier than in the case of flat roads. Consequently, longer cruising phase 

minimises the maximum velocity the vehicle must attain to reach the destination timely. Both 

longer cruising phase and minimum peak velocity increasingly shorten the duration of 

deceleration phase, as observed from the velocity trajectories in Fig. 11, at the end of which 

the vehicle is to come to a near halt. This also implies that the quantity of regenerated energy 

 

Fig. 10. Variation of battery state of energy of a regularly loaded BEV covering longer 

distances on a flat road 
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is reduced even though the rate of regeneration is higher due to more aggressive deceleration. 

It can be calculated from the plot in Fig. 12 that for the same distance to be covered, time 

available being constant, more aggressive deceleration for shorter time period results in lesser 

net amount of energy generated compared to that on flat roads where the deceleration rate is 

lower but duration is more.  

According to eco-driving system, in order to minimise the net amount of energy consumed 

during the entire trip, it is desirable to quickly begin cruising at a lower velocity by accelerating 

more aggressively followed by braking harder to come to the near halt. This is counterintuitive 

as such acceleration and deceleration behaviours are mistakenly understood to oppose the 

smoother driving behaviours that eco-driving aims to maintain on flat roads. However, it must 

be noted that the acceleration and deceleration behaviours that eco-driving advise here are yet 

smoother than the ones observed in driving the same path without the eco-driving system.   

 

Fig. 11. Energy-optimal speed and distance trajectories for increasing road grades 

 

Fig. 12. Variation of battery state of energy for increasing road grades 
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4.3.2 Variable Road Grade 

Due to  arth’s diverse topography, the inclination of roads varies from one region to another. 

Hence, for sufficiently large distances, incorporating continuously varying road grades into the 

problem description yields greater energy savings than those yielded by eco-driving systems 

neglecting the local road grade. To capture the effect of varying road grades over large 

distances, the distance of 6 km modelled so far now comprises of varying road grade as per a 

sine wave.  

For the road grade amplitude of 𝜃amp = 1%, the road grade and altitude vary as in Fig. 13. The 

solution of the system of ODEs in (4) now subject to (7)–(9), (13) and (14) following the same 

decision tree in Fig. 3 yields the optimal speed trajectory. 

Again, the vehicle first accelerates to achieve the cruising phase quickly. As the road begins to 

decline, the vehicle propulsion is gravitationally assisted, consumption of the stored energy 

stagnates as indicated in the region between the two dashed lines, the vehicle leverages its 

momentum to coast and begins to regenerate a portion of its spent battery energy. As the road 

grade becomes less and less negative, the motion of the vehicle is less assisted by gravity. Due 

to then increased dependence on motor power at this stage, the vehicle reuses its regenerated 

electrical energy momentarily to accelerate just enough to arrive at the destination timely. 

Finally, while decelerating in the end, the vehicle aims to maximise the energy it regenerates.   

Mathematically, the evolution of co-states  explains the cycle of increase in both the vehicle 

speed and the battery consumption followed by their decrease. Correlating the evolution of 𝜆s 

in Fig. 15 with the dynamics of 𝜆k described by (11), it is observed that first 𝜆s increases to 

limit the acceleration by decreasing 𝜆k, which in turn limits the propulsive power the motor 

provides as per (7), so that the vehicle begins to cruise quickly. When the vehicle must 

accelerate again after coasting, 𝜆s decreases significantly to momentarily increase the 

propulsive power 𝑃m by increasing 𝜆k. This cycle is repeated for each set of crest followed by 

a trough on the road.  

 

Fig. 13. Road profile used for the optimisation 
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Similarly, we analyse the case wherein the road goes first downhill and then uphill (refer Fig. 

16). For such a road profile, the optimal speed trajectory and the corresponding consumption 

of stored battery energy is as in Fig. 17. 

Here as well, the eco-driving system aims to maximise dependence on gravitationally assisted 

propulsion to minimise consumption of electrical energy stored in the battery. Interestingly, 

the vehicle passes two phases instead of one wherein the rate of change of battery state of 

energy stagnates. At 𝑡 = 0 itself when the vehicle requires maximum propulsive power to 

accelerate, the acceleration due to gravity decreases the dependence of the vehicle on the motor 

to provide propulsive power. Consequently, the consumption of stored energy decreases sooner 

than for the road profile in Fig. 13. However, its regeneration towards the end is limited as the 

increasing road altitude offers greater resistance thereby increasing the dependence on the 

motors to provide power and hence consume energy.  

 

Fig. 14. Energy-optimal speed and battery state of energy trajectories for variable road grade 

 

Fig. 15. Optimal co-state trajectories for variable road grade 
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In conclusion from the driver’s perspective, it is energy optimal to elongate the coasting phase 

whenever feasible to minimise the net consumption of battery energy by exploiting the added 

propulsive force by gravity when driving on roads with varying inclination.  

The results obtained so far for different vehicle parameters and driving conditions are by 

application of PMP which is a locally optimal control method. Since the problem formulation 

is non-convex, it is essential to verify the global optimality of the results. To achieve this in the 

following chapter, the eco-driving problem in (4) subject to (7)–(11) is now recast in space 

domain and solved.  

 

 

 

 

Fig. 16. Road profile used for simulation 

 

Fig. 17. Energy-optimal speed and battery state of energy trajectories for variable road grade 
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5 
Convex Optimisation 

 

In this chapter, we perform convexification of the original eco-driving problem (1) to compute 

globally optimal speed trajectories. Note that the two eco-driving problems we then have 

remain equivalent and can thus be used to optimise the speed trajectories for the same driving 

manoeuvre. The speed trajectories we obtain by solving the convex problem guarantee their 

global optimality and enable us to test the global optimality of the results generated by PMP 

following the solution method in Fig. 3.   

The constraints and the state dynamics of the eco-driving problem we derive here are in terms 

of forces instead of powers, and formulated in space instead of time domain as in (1). The two 

modifications allow us to have only affine equality constraints and quadratic inequality 

constraints, making a second order conic programming problem solver applicable to solve the 

problem.  

5.1 Problem Derivation and Constraints 

The approach here is a simplification of that adopted by Borsboom et al. in [22] wherein the 

objective is to minimise the lap time of electric race cars subject to maximum available battery 

energy. Here, the objective is to minimise the expenditure of stored battery energy subject to 

maximum time. Mathematically, for a fixed increment of distance Δ𝑠 and variable increment 

of time Δ𝑡, the eco-driving problem equivalent to that in (1) becomes: 

 

min
𝐹m,𝑖,𝐹d,𝑖

 ∑ 𝐹s,𝑖 ∙ Δ𝑠

𝑠f/Δ𝑠

𝑖=1

 

(15) 

s. t. 𝐸k(𝑠 + 1) = 𝐸k(𝑠) + (𝐹m(𝑠) − 𝐹d(𝑠) − 𝐹l(𝑠)) ∙ Δ𝑠 

𝐸s(𝑠 + 1) = 𝐸s(𝑠) − 𝐹s(𝑠) ∙ Δ𝑠 
𝑡(𝑠 + 1) = 𝑡(𝑠) + Δ𝑡(𝑠) 

and 𝐸k(𝑠 = 0) = 𝐸k,o 

𝐸k(𝑠 = 𝑠f) = 𝐸k,f 
𝑡(𝑠 = 0) = 0 

𝑡(𝑠 = 𝑠𝑓) = 𝑇 

𝐸s(𝑠 = 0) = 𝐸s,o. 
 

where 𝐹l and 𝐹s are force counterparts of 𝑃l and 𝑃s respectively. 𝐹d and 𝐹m are the two 

optimisation variables denoting the brake force and the propulsive force respectively.  
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To close the problem in (15), the variables 𝐸k, 𝐸s, 𝐹s, 𝑡, Δ𝑡, 𝐹m, 𝐹d and 𝐹l must be constrained. 

First, the constraints for the battery are derived. From the static circuit model [23], the powers 

before and after the internal losses of the battery are related as [22] 

 

𝑃b = 𝑃s − 𝑃s
2 ∙

𝑅

𝑈o2
. (16) 

 

Using the general relation 𝐹 =
𝑃

𝑣
= 𝑃 ∙

Δ𝑡

Δ𝑠
, (16) in terms of forces is  

 

𝐹b ∙
1

𝑣
= 𝐹s ∙

1

𝑣
− 𝐹s

2 ∙
𝑅

𝑈o2
. (17) 

 

This equality constraint is, however, not affine and thus renders (15) non-convex. To maintain 

the convexity of the problem, (17) is relaxed as quadratic inequality as  

 

𝐹b ∙
1

𝑣
≤ 𝐹s ∙

1

𝑣
− 𝐹s

2 ∙
𝑅

𝑈o2
⟺ (𝐹s − 𝐹b) ∙

1

𝑣
≥ 𝐹s

2 ∙
𝑅

𝑈o2

⟺ (𝐹s − 𝐹b) ∙
Δ𝑡

Δ𝑠
≥ 𝐹s

2 ∙
𝑅

𝑈o2
. 

(18) 

 

The inequality in (18) states that the internal losses of the battery are lesser than or equal to the 

absolute difference between the input and output battery (see Fig. 2).  The optimisation 

algorithm maximises the power that the vehicle can withdraw from the battery to accelerate 

quickly to the cruising speed. This maximises the internal resistance loss of the battery and in 

turn holds (18) to an equality. Now, this is a constraint of the form 𝑥1 ∙ 𝑥2 ≥ 𝑥3
2 with 𝑥1, 𝑥2 and 

𝑥3 as constraint variables. Here, 𝑥1 = (𝐹s − 𝐹b), 𝑥2 =
Δ𝑡

Δ𝑠
 and 𝑥3 =

√𝑅

𝑈0
∙ 𝐹s. We formulate (18) 

as a second order conic constraint as in [24] 

 

(𝐹s − 𝐹b) ∙
1

𝐹o
+
Δ𝑡

Δ𝑠
∙ 𝑣o ≥ ‖

‖
2 ∙
√𝑅

𝑈0
∙ 𝐹s ∙ √

𝑣o
𝐹o

(𝐹s − 𝐹b) ∙
1

𝐹o
−
Δ𝑡

Δ𝑠
∙ 𝑣o

‖

‖

2

′ (19) 

 

where 𝐹o = 1N and 𝑣𝑜 = 1m/s are the normalisation coefficients. The battery power after the 

internal resistance losses is related to the power output of the motor as  

 



29 
 

𝑃b =
𝑃m

𝜂m
sgn(𝑃m)

. (20) 

 

Again, in terms of forces and splitting the constraint for the two cases related to sgn(𝑃m) 

 

𝐹b = {

𝐹m
𝜂m

𝐹m ≥ 0

𝜂m ∙ 𝐹m 𝐹m < 0

. (21) 

 

To maintain convexity, this discontinuous constraint is relaxed as 

 

𝐹b ≥
𝐹m
𝜂m

′ 

𝐹b ≥ 𝜂m ∙ 𝐹m. 
(22) 

 

Since increasing 𝐹b arbitrarily violates the objective of minimising the net consumption of the 

battery power, 𝐹b minimises to the ratio of 𝐹m to 𝜂m during acceleration and to their product 

during deceleration. Second, after the battery constraints, the input constraints are formulated 

for the motor power and the brake power. The instantaneous force counterpart of motor power 

𝐹m is bounded by maximum and minimum motor power as 

 

𝑃m ∙ Δ𝑡(𝑠) ≤ 𝐹m(𝑠) ∙ Δ𝑠 ≤ �̅�m ∙ Δ𝑡(𝑠), (23) 

 

and the brake force is limited by maximum brake power as 

 

0 ≤ 𝐹d(𝑠) ∙ Δ𝑠 ≤ �̅�d ∙ Δ𝑡(𝑠). (24) 

 

The expression 
Δ𝑠

Δ𝑡(𝑠)
 is simply the discrete space approximation of instantaneous velocity 𝑣(𝑠). 

Thirdly, this expression is used to formulate the physical constraints. Each of the time 

increments Δ𝑡 is related with the corresponding velocity as  

 

𝑣(𝑠) ∙
Δ𝑡(𝑠)

Δ𝑠
= 1, (25) 

 

which is relaxed for convexity as 𝑣(𝑠) ∙
Δ𝑡(𝑠)

Δs
≥ 1 and, similar to (19), represented as the second 

order conic constraint  
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Δ𝑡(𝑠)

Δ𝑠
∙ 𝑣o + 𝑣(𝑠) ∙

1

𝑣o
≥ ‖

2
Δ𝑡(𝑠)

Δ𝑠
∙ 𝑣o − 𝑣(𝑠) ∙

1

𝑣o

‖

2

. (26) 

 

To minimise the quantisation error, the maximum time increment is bound. Moreover, 

increasing 𝑣 arbitrarily consumes more stored electrical energy than optimal. Hence, the 

expression on the LHS of (26) is minimised such that the constraint will hold with an equality. 

The next physical constraint is for the persistent rolling resistance and aerodynamic drag the 

vehicle is subject to, and which is analogous to (9) and equals to 

 

𝐹l =
𝜌 ∙ 𝐴 ∙ 𝑐𝑑
𝑚

∙ 𝐸k +𝑚 ∙ 𝑔 ∙ (sin 𝜃 + 𝑐r ∙ cos 𝜃). (27) 

 

Lastly, the state constraints are introduced to meet the time boundary condition and constrain 

kinetic energy. In order that the vehicle covers the distance 𝑠 in time 𝑇, 

 

∑(Δ𝑡)𝑖 = 𝑇.

𝑠f/Δ𝑠

𝑖=1

 (28) 

 

Finally, to bound the kinetic energy with instantaneous velocity, 

 

𝐸k =
1

2
∙ 𝑚 ∙ 𝑣2. (29) 

 

with the convex relaxation 

 

𝐸k ≥
1

2
∙ 𝑚 ∙ 𝑣2. (30) 

 

Similar to (26), maintaining a higher average kinetic energy of the vehicle over the whole trip 

duration consumes more stored electrical energy than optimal. Hence, with the objective to 

minimise its consumption, (30) will also hold with an equality.   

5.2 Solution and Comparison with PMP Results 

Here, we parse the optimisation problem (15) subject to the constraints (19), (22)–(24), (26)–

(28) and (30) using YALMIP [25] for convenient expression of the problem into its standard 
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form. Gurobi is an appropriate second order conic programming solver freely available for 

academia [26] on which Yalmip can externally rely. Hence, we choose this solver.  

Before solving, we take the following two steps to prevent numerical instabilities: 

1. Scale the problem the ratio of the largest to the smallest numerical coefficient close to 

unity, and 

2. Provide the variables without any direct physical bounds such as instantaneous velocity 

and resistive force with large bounds 

Fig. 18 shows the energy-optimal speed trajectories we obtain on solving the equivalent 

problems (1) and (15) via PMP and convex optimisation respectively using the same numerical 

integration scheme of Euler forward method for both the optimal control methods for accurate 

comparison. To minimise the quantisation error in (15), we finely discretise the one-

dimensional grid in 8001 points using Δ𝑠 = 0.75m. The grid size required 1452.87s to solve. 

This time is 131.96 times larger than 11.01s which PMP required with a grid size of 113 points. 

The resultant normalised root mean squared error (NRMSE) for the speed trajectory is 1.26%. 

And on comparing the battery state of energy at final time that we obtain from both PMP and 

convex optimisation, we calculated the percentage error of 0.06%. We explain these errors as 

follows: Solving (1) by PMP, the state, input and physical constraints hold with equalities, i.e. 

no constraint tolerances exist up to the default precision of Matlab. In convex optimisation of 

(15), we manually define the constraint tolerances up to which the linear and the quadratic 

constraints are allowed to violate. We observed reduced error on application of the variable 

precision toolbox to convex optimisation. However, we did not employ it to generate the final 

speed trajectory due to the requirement of higher computation power.  

Hence, given the stated NRMSE and percentage errors for the speed trajectory that we obtained 

via application of PMP and convex optimisation, we conclude global optimality for the results 

generated by PMP. This makes PMP suitable for computing the globally optimal speed 

trajectories for near-straight line driving manoeuvres. For these manoeuvres, we expect these 

 

Fig. 18. Energy-optimal speed trajectories generated by PMP and convex optimisation for a 

regularly loaded vehicle driving on flat roads 
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speed trajectories, in theory, to consume the least amount of stored energy in the battery thereby 

achieving our goal of maximising the energy economy of EVs.  
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6 
Conclusion and Future Work 

 

To increase the energy savings in the transport sector via more frequent application of eco-

driving system, we proposed a solution method to optimise speed trajectories for an originally 

non-convex eco-driving problem. The solution method is independent of the vehicle loading 

conditions, the distance to be travelled and the road grade. This generality allows for more 

frequent application of eco-driving system leading to greater energy savings.  

We studied the energy-optimal state and co-state trajectories to generate energy-aware driving 

advice for the near-straight line driving manoeuvre. For increasing vehicle mass, smoother 

accelerations and decelerations leading to higher peak velocities was energy-optimal, for the 

increasing distances to be covered, it was optimal to maintain higher velocities throughout the 

trip duration, while for the increasing positive constant road grades, it was optimal to accelerate 

and decelerate faster to maintain lower cruising speeds. For all the cases, the cruising phase 

depleted the battery the most and it was beneficial to minimise the cruising velocities to 

minimise the total consumption of the stored electrical energy in the battery. This is in line with 

the conclusion of [10]. The strategy to minimise the expenditure of the battery energy in the 

case of variable road grades was to maximise the duration of the coasting phase in which the 

vehicle draws no power from the battery and regenerates while travelling downhill.  

In the end, we tested the global optimality of the speed trajectories generated by PMP by 

convexification of the original eco-driving problem followed by convex optimisation. Within 

the calculated NRMSE for the speed trajectory and the percentage error for the final battery 

state of energy, the globally optimal results generated by convex optimisation matched with 

those generated by PMP proving its global optimality. Hence, for near-straight line driving 

manoeuvres, PMP is a computationally efficient control method to optimise speed trajectories 

for eco-driving. This is one of the ways to maximise the energy economy of on-road EVs 

through more a judicious utilisation of electrical energy generated by natural resources.  

For future work: the optimisation of speed trajectory to implement eco-driving system in the 

vehicles here assumes it will yield energy savings by modifying the driver behaviour when 

implemented in the vehicles. However, the energy savings are rather limited due to the failure 

of the driver to exactly trace the energy-optimal speed trajectory. Hence, further robustification 

of the eco-driving problem to the real-time difference between the advised speed and the driver 

response by incorporating driver into the loop, i.e. generating real-time advice as a feedback to 

the driver’s response, is a possible extension.  
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Appendix 

 

Pontryagin's Minium Principle with Constraints 

Consider the optimal control problem 

 

min
𝑢

 ∫𝑔(𝑥, 𝑢, 𝑡) + Ψ𝑋(𝑡)(𝑥) + Ψ𝑈(𝑡)(𝑢)d𝑡 + ℎ(𝑥(𝑇))

𝑇

0

+Ψ𝑋𝑓(𝑥(𝑇)) 

(31) 
s. t. �̇�(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) ∀𝑡 ∈ [0, 𝑇]  

𝑥(0) = 𝑥0 

and 𝑥(𝑡) ∈ 𝑋(𝑡) 
𝑢(𝑡) ∈ 𝑈(𝑡) 
𝑥(𝑇) ∈ 𝑋𝑓, 

 

with state variables as 𝑥, and their initial values x0 at time instant 𝑡 = 0. The state dynamics, 

governed by 𝑓 with respect to time, is a function of the state variables 𝑥, the control inputs 𝑢 

and the time 𝑡. 𝑋, 𝑈 and 𝑋𝑓 are the sets within which the states, the control inputs and the 

terminal states are contained respectively. The objective function consists of two parts: First, 

the integral of the algebraic sum of stage cost 𝑔 and, the indicator functions defined for the 

state and the input constraints, i.e. Ψ𝑋(𝑡) and Ψ𝑈(𝑡) respectively. Two, the algebraic sum of end 

cost ℎ and indicator function for terminal state. The indicator function is defined as 

 

Ψ𝑍(𝑧) = {
0 𝑧 ∈ 𝑍
∞ else.

 (32) 

 

To minimise the integral over a time horizon 𝑇, define the Hamiltonian  

 

𝐻(𝑥, 𝑢, 𝜆) = 𝑔(𝑥, 𝑢, 𝑡) + Ψ𝑋(𝑡)(𝑥) + Ψ𝑈(𝑡)(𝑢) + 𝜆
𝑇 ∙ 𝑓(𝑥, 𝑢, 𝑡), (33) 

 

with the co-state variables 𝜆 and their dynamics as 

 

�̇�(𝑡) ∈ −
∂𝐻

∂𝑥
|
∗
 and 

𝜆(𝑇) ∈ −
∂ℎ

∂𝑥(𝑇)
|
∗

+ 𝑁𝑋𝑓(𝑥
∗(𝑇)), 

(34) 
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where 𝑁𝑋𝑓(𝑥
∗(𝑇)) is a normal cone, which, here, is the sub-differential of the indicator 

function Ψ𝑋𝑓(𝑥
∗(𝑇)). The asterisk denotes the optimal solution. Then the necessary conditions 

for optimality are given by 

 

𝑢∗(𝑡) = argmin
𝑢
𝐻(𝑥∗(𝑡), 𝑢, 𝜆(𝑡)), (35) 

 

Or 

 

∂𝐻

∂𝑢
|
∗
= 0, (36) 

 

if H is convex [27]. 
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