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Abstract. Frequency opponent modeling is one of the most widely used
opponent modeling techniques in automated negotiation, due to its sim-
plicity and its good performance. In fact, it outperforms even more com-
plex mechanisms like Bayesian models. Nevertheless, the classical fre-
quency model does not come without its own assumptions, some of which
may not always hold in many realistic settings. This paper advances the
state of the art in opponent modeling in automated negotiation by intro-
ducing a novel frequency opponent modeling mechanism, which soothes
some of the assumptions introduced by classical frequency approaches.
The experiments show that our proposed approach outperforms the clas-
sic frequency model in terms of evaluation of the outcome space, estima-
tion of the Pareto frontier, and accuracy of both issue value evaluation
estimation and issue weight estimation.

Keywords: Agreement technologies · Automated negotiation · Oppo-
nent modeling · Multi-agent systems

1 Introduction

In the last few years, we have seen an increasing interest on the study of agree-
ment technologies [27]. This increasing interest goes hand in hand with an incipi-
ent acceptance of autonomy and delegation in technology, with some technologies
such as self-driven cars [19] being the prime example of this trend. As delegation
and autonomous systems become the norm, so will agreement technologies. The
reason is simple: autonomous agents are driven by real users’ preferences, and,
as we all know, conflict is inherent in our world. As a consequence, we need
technologies that allow autonomous agents to solve preferential conflicts and,
hence, make delegation and autonomy as transparent for the user as possible.
Automated negotiation [16,23,29] is considered as one of the core technologies
in agreement technologies, as it provides autonomous entities with protocols and
algorithms to reach agreements in a distributed way.
c© Springer International Publishing AG 2017
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Despite this recent and increasing interest in automated negotiation, research
has been carried out for decades. Researchers have proposed a number of nego-
tiation protocols [3,5] and negotiation strategies that guide autonomous agents
on how to act in a distributed negotiation process [4,17,26,28]. There are two
main families of strategies in automated negotiation process: game theoretic and
heuristic approaches. On the one hand, the former focuses on achieving optimal
negotiation results under the assumption of full rationality, unbounded compu-
tational resources, and, often, full disclosure of preferences. On the other hand,
heuristic approaches assume that agents’ resources are limited and partial or nil
knowledge about the others’ preferences, precluding agents from guaranteeing
optimal results. This present work is categorized as a heuristic approach.

While optimal negotiation outcomes cannot be guaranteed, it is still crucial
for agents to reach outcomes that are as close as possible to the optimal out-
comes. There are several ways that agents can resort to optimizing the resulting
negotiation outcomes, but perhaps opponent modeling is one of the most impor-
tant mechanisms. Opponent modeling [9] allows us to build an approximate
model of the opponents’ preferences, which can be used to propose outcomes
that result in win-win situations for involved parties. Hence, making outcomes
more appealing and maximizing the odds of reaching an agreement.

One of the most popular opponent modeling mechanisms in automated nego-
tiation is the frequency model [25]. The frequency model aims to build a model of
the opponents’ preferences assuming linear additive utility functions and steady
concession towards lower utilities. For that, the frequency model uses the fre-
quency of negotiation issue values as an indicator of both negotiation issue and
value importance. Due to its simplicity and wide acceptance, the frequency model
has been used in a myriad of scenarios [1,2,7,18,25]

Despite its popularity, there is no informed research on the robustness of the
frequency model in a wide variety of scenarios. Most of the work in this field
focuses only on the quality of the agreements and/or percentage of successful
negotiations when the given negotiation strategy uses this model as opponent
modeling. However, there are a number of factors having a significant impact
on the negotiation outcome such as bidding strategy, acceptance strategy, how
the estimated opponent’s preference model is used in the underlying negotiation
strategy, and so on. Therefore, gaining high utility agreements does not indicate
by itself how good the opponent model is. Accordingly, this study analyzes how
well the frequency model predicts opponent’s preferences elaborately by compar-
ing the estimated opponent model with the real preferences. The contributions
of this paper are twofold. Firstly, we pose the problems faced by the frequency
model in realistic scenarios. Secondly, we propose a new opponent modeling
mechanism that deals with some of these problems and outperforms the classic
frequency model mechanism.

The rest of this paper is structured as follows: Sect. 2 provides an overview
of related work and Sect. 3 addresses the potential problems with the frequency
model. The proposed opponent model is explained in Sect. 4. Section 5 provides
a detailed analysis of the frequency model as well as the proposed opponent
model empirically. Finally, Sect. 6 concludes the paper.
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2 Related Work

A variety of opponent modeling mechanisms have been proposed in the auto-
mated negotiation literature. Some opponent modeling mechanisms aim to pro-
vide an educated guess over the opponents’ reservation value or the opponent’s
concession strategy, while other opponent modeling approaches take an edu-
cated guess on the opponents’ preferences with respect to outcomes. This paper
is enclosed in the latter family. As far as learning techniques for opponent’s pref-
erences are concerned, two main approaches namely, probabilistic models (e.g.
Bayesian) and frequency approaches, come to the forefront.

Bayesian approaches [10,11,21,28] usually employ Bayes’ update rule and a
set of hypotheses to model the opponents’ preferences. For instance, Bui et al.
[11] propose a multi-party cooperative negotiation mechanism for the distributed
meeting scheduling domain. Agents follow an iterative process that gradually
partitions the negotiation space into acceptable areas by expressing their prefer-
ences on suggested partitions. In order to speed up the negotiation process, the
agents employ Bayesian classifiers to learn other agents’ preferences according
to the information gathered from the current and past negotiations. Another
example of the use of Bayesian learning in negotiation is presented by Buffett et
al. [10]. In the proposed model, agents negotiate over a set of limited objects that
can either be included or excluded from the final deal. Bayesian classifiers are
employed to classify opponent’s preferences into classes of preference relations
over the objects in the negotiation domain. Bayesian learning was also used by
Hindriks and Tykhonov [21] in order to predict the shape of the opponent’s util-
ity function (i.e., downhill, uphill and triangular), as well as the corresponding
rank of issue values and issue weights. Sanchez-Anguix et al. [28] used Bayesian
classifiers to learn the acceptability of partial offers for each team member in a
negotiation team, and their opponent.

On the other hand, frequency approaches [1,2,7,18,25] usually model oppo-
nents’ preferences by counting the frequency of issue values and the frequency of
changes in negotiation issues of the given bids, without considering an explicit
set of initial hypotheses in mind. The most popular frequency model was intro-
duced by the HardHeaded agent [25], whereby issue weights are updated when
issue values do not change in consecutive pairs of opponent offers, and issue value
weights are estimated by counting the occurrences of values in opponent’s offers.
A more detailed description of this model can be found in Sect. 3. In [18], the
authors propose a frequency model similar to HardHeaded’s frequency model.
The main difference between those approaches is how they estimate the issue
weights. The approach in [18] estimates the issue weights based on the relative
frequency of the most offered values. Afiouni [1] adapted the classic frequency
model to a real-time strategy for a video game (i.e., Civilization IV) where bilat-
eral negotiation is used to exchange resources between parties. The frequency
model showed to be applicable in real time, while also shortening the negotiation
time/interactions between parties. HardHeaded agent, and thus the frequency
opponent modeling, was also employed in [2] to study the efficiency of differ-
ent agents in cloud computing negotiations. Furthermore, Ikarashi and Fujita
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proposed a weighted counting method, which aims to learn opponent’s prefer-
ences by taking what time the bids made by the opponent into account [22]. That
study focuses on learning from past negotiations so that the proposed approach
was applied on the history of their opponent’s bids in the previous negotiation.

There are also other remarkable approaches that are not classified under
those two families. Aydoğan et al. proposed a concept based learning algorithm
to figure out what offers are more likely acceptable for the opponent during the
negotiation [6]. Kernel density function was used to predict issue weights of the
opponent’s preferences by Coehoorn and Jennings [12].

Recently, Baarslag [7–9] showed that, despite their simplicity, frequency mod-
els tend to outperform in practice more complex approaches like Bayesian oppo-
nent models. Part of this success can be attributed to the fact that frequency
approaches tend to make less assumptions about the opponent behavior, and the
fact that frequency models allow for more exploration of the negotiation space
due to its quicker computation with respect to Bayesian approaches. In this
paper, we further study how to improve the efficiency of the classic frequency
model by alleviating the effect of some of its assumptions.

3 The Classical Frequency Model

As mentioned in the previous sections, frequency models have been widely
used as opponent modeling mechanisms in automated negotiation [1,2,7,18,25].
Apart from being reported as one of the most effective families of opponent
modeling techniques, frequency approaches have the advantage of being simple
and offering a good balance of time/exploration [7].

There have been multiple implementations and variations of frequency mod-
els in the automated negotiation literature, but perhaps the most popular imple-
mentation is the frequency model in HardHeaded’s agent [25]. The model was
proposed with the following assumptions in mind: (1) the opponent steadily
restricts the offers proposed to a possibly moving and decreasing utility range;
(2) the opponent prefers to explore the negotiation space rather than repeating
the same offer(s) over and over; (3) Opponents tend to concede less on the most
preferred issues, keeping them unchanged.

Briefly, this model works as follows. To estimate the weight of an issue value
(e.g. Dell, HP, MAC for “laptop brand”), the frequency model computes how
often each issue value appears in the opponent’s bids. The weight of the issue
value is then normalized by the most repeated issue value. For instance, con-
sider that Dell, HP and MAC appear 20 times, 10 times and 15 times respec-
tively. In that case, the model estimates the issue value weights as V(Dell) = 20

20 ,
V(HP) = 10

20 and V(MAC) = 15
20 . The frequency model analyzes how often the

value of an issue changes. At the beginning, the assumption is that each issue
has the same importance. For example, if we have four issues, the weight of each
issue is set as 0.25. For each successive pair of offers made by the opponent, if
the value of an issue did not change, then the model increases the weight of that
issue.
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While these assumptions may sound appropriate for some scenarios, the truth
is that many state of the art agents do not fully comply with those assumptions.
Firstly, agents may prefer to follow a more flexible concession and bidding strat-
egy that allows them to stochastically explore a wide portion of the negotiation
space. Despite the fact that the general trend for the opponent is conceding,
consecutive offers may not reflect this general trend due to the stochastic and
flexible nature of agents. As a consequence, opponents may make a range of nego-
tiation steps (e.g., concession, trade-off, unfortunate move, etc.), misleading the
learning mechanism in the classic frequency model.

Secondly, another common behavior of the state-of-the-art agents is repeating
the same set of offers for a long period of time. This is true for those agents that
try to avoid exploitation by not leaking significant and full information about
their utility functions. This goes against the classic frequency’s assumptions and
the original model is not ready for dealing with these cases. In fact, we experi-
mentally found that, when the same bid is repeated for a significant number of
rounds, the update and normalization rules in the classic frequency implemen-
tation presents a convergence problem: all the issue weights converge towards
1
n , where n is the number of issues in the negotiation. Being hard headed and
repeating the same offer does not mean that all of the issues are equally valued.
Hence, other mechanisms are necessary to tackle these situations.

Last, but not least important, it is true that in the first negotiation rounds
most agents do not tend to vary the value for those issues that are the most
important. The reason for this is because most agents start by demanding the
best offers for themselves, and these offers entail very little changes in the most
important issues. However, as the negotiation proceeds, opponents may concede.
At some point, it is possible to reach one’s own aspirations by varying the values
for the most important issues and maximizing less important issues. In fact, this
behavior can be observed in many state of the art agents who trade-off issues to
achieve one’s own aspirations. Therefore, the assumption that opponents tend
to concede less on the most preferred issues may hold for hardheaded agents or
agents that do not steadily concede, but it may result fruitless in other scenarios.

4 Distribution-Based Frequency Model

Our proposed frequency model relies on the comparison of frequency distribu-
tions across negotiation windows. Hence, we have taken the liberty of naming it
distribution-based frequency model. Next, we describe the details of our opponent
modeling mechanism.

4.1 Negotiation Setting

For the sake of simplicity we assume that two agents negotiate following the
alternating offers protocol. Nevertheless, the model can also be extrapolated to
other protocols, including multilateral scenarios. The agents negotiate in a time-
bounded scenario where T delimits the end of the negotiation. If the deadline is
reached without any agreement, the agents get their reservation utility.
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The negotiation scenario consists of AT = {1, 2, . . . , n} negotiation issues
whose domain values are represented by D = {D1, . . . , Dn}. An offer is rep-
resented by o, while O∗ represents the set of all the offers in the negotiation
domain. The agents’ preferences are represented by means of linear additive
utility functions in the form of U(o) =

∑
i∈AT wi × Vi(oi), where wi represents

the importance of the negotiation issue i, oi represents the value for issue i in
offer o, and Vi(.) is the valuation function for issue i, which returns the desirabil-
ity of the issue value. Without losing generality, it is assumed that

∑
i∈AT wi = 1

and the domain of Vi(.) is (0,1) for any i.
There are two main components that an opponent model should estimate in

a linear additive function scenario: a vector of weights Ŵ = (ŵ1, . . . , ŵn) repre-
senting the estimation of the importance given by the opponent to the different
negotiation issues, and an estimation for every possible valuation function V̂i(.).
Thus, our model defines update mechanisms for both.

4.2 Value Function Estimation

Firstly, we describe how the the valuation functions V̂i(.) are estimated. It should
be highlighted that we employ a similar strategy to the one outlined in [25].
The rationale behind our estimation is that, in opponents’ offers, the most pre-
ferred issue values should appear more frequently than less preferred issue values.
Hence, a frequency count of the issue values should provide an educated guess
on the real valuation functions Vi(.). We define the estimation of the valuation
functions as:

V̂i(j) =
(1 +

∑
o∈O1→t

δi(j, o))γ

maxk∈AT (1 +
∑

o∈O1→t
δi(k, o))γ

(1)

where δi(j, o) is 1 if the value j is used for issue i in offer o and 0 otherwise.
Please note that the frequency count is smoothed by using a Laplace approach.
The rationale behind the smoothing is avoiding crisp distributions and giving
importance to issue values that do not appear in O, as they may not appear due
to the limited nature of O. On the other hand, both denominator and numerator
are passed by an exponential filter with 0 < γ ≤ 1 exponential filter. The idea
is that of slowing the growth of unbalanced value distributions when opponents
send the same offer over and over for a significant part of the negotiation. When
γ = 1 the value estimation is equivalent to the value estimation proposed in the
classic frequency model plus a Laplace smooth.

4.3 Issue Weight Estimation

The main differences between our opponent modeling technique and that
described in [25] resides in the estimation of the issue weights Ŵ . In order
to provide a more robust estimation of the issue weights, our strategy analyzes
consecutive and disjoint windows of the negotiation history instead of individ-
ual offers. As mentioned, many of the most popular negotiating agents do not
steadily concede but often fluctuate in the demanded utility, even though as a
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general trend they may concede. By analyzing pairs of offers, the agent may be
misled by such stochastic fluctuations and it may end up updating the model
incorrectly. However, when analyzing disjoints windows of the negotiation his-
tory the effect of such stochastic fluctuations should be alleviated, and general
trends better observed.

We divide the current negotiation history into consecutive and disjoint win-
dows of k offers received from the opponent, as it can be observed in Fig. 1. The
rationale behind our strategy is comparing the offers in the last window with the
offers in the previous window1. If the distribution of offers is different between
both windows, then it suggests that the opponent has moved its negotiation
strategy (e.g., concession, trade-off, etc.). By comparing distributions of offers,
one alleviates the problem of stochastic variations between pairs of offers in the
strategy of opponents, and it also helps to observe general trends and changes
in the opponent strategy.

Fig. 1. The negotiation history divided into disjoint windows of offers, each containing
k offers sent by the opponent

The classic frequency approach considers that negotiation issues that remain
the same between pairs of offers are normally those that are the most relevant.
Despite the fact that this may be true in the initial rounds of the negotiation, as
the negotiation proceeds opponents may decide to concede on the most preferred
issues and achieve its aspirations with less important issues. A classic frequency
approach can be misled by this type of behavior, which is not so uncommon in
many state of the art agents. As a countermeasure to this behavior, we introduce
an issue weight update rule whose effect decays over time. The update rule can
be observed in Eq. 2. This update rule will be used to update weights whose
value distribution did not change over consecutive windows.

Δ(t) = α × (1 − tβ) (2)

The issue weight estimation is triggered whenever a new window of k disjoint
opponent offers is completed. The outline of the mechanism can be observed in
Algorithm 1. As mentioned, the algorithm takes the two latest consecutive and
disjoint windows of k offers (O, O′), the current negotiation time t, and the
current estimation of the issue weights W ′. Before explaining the algorithm in
1 Please note that windows are not overlapping and not sliding.
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Data: t: The current time in the negotiation, O′: The previous partition of k
offers, O: The current partition of k offers, O1→t: All the offers received
so far, W ′ = {w′

1, . . . , w
′
n}: The current weights for the opponent model

Result: W = {w1, . . . , wn}: The new weights for the opponent model
1 e ← ∅;
2 concession← False;
3 foreach i ∈ N do
4 wi ← w′

i

end
5 foreach i ∈ AT do
6 F ′

i ← (Fri(1, O′), . . . , F ri(n, O′));
7 Fi ← (Fri(1, O), . . . , F ri(n, O));
8 pval ← X 2-test(Fi = F ′

i );
9 if pval > 0.05 then

10 e ← e ∪ {i};

else

11 Vi ← (V̂i(1), . . . , V̂i(n));
12 E[Ui(O′)] ← Vi × F ′

i ;
13 E[Ui(O)] ← Vi × Fi ;
14 if E[Ui(O)] < E[Ui(O′)] then
15 concession ← True;

end

end

end
16 if |e| �= n and concession= True then
17 foreach i ∈ e do
18 wi ← w′

i + Δ(t)

end

end
Algorithm 1. The issue weight update mechanism

detail, we need to define the following equation that defines the frequency of a
negotiation value j of issue i in a window of offers O:

Fri(j,O) =
1 +

∑
o∈O δi(j, o)

n + |O| (3)

The equation above counts the number of times that a value j appears in a
window of offers, and divides by the total number of offers in the window. Again,
the count is smoothed using Laplacian smoothing. This formula will be used in
Algorithm 1 to provide a frequency distribution for issue values given a window
of offers. Next, we explain the algorithm for updating issue weights in detail.

Initially, the new estimation for the weights W takes the value of the current
estimation W ′ in lines 3 and 4. Then, the algorithm iterates over every single
negotiation issue i from lines 5 to 15. In this loop, we calculate the frequency
distribution of the issue values in the previous window F ′

i and the frequency
distribution of the issue values in the current window Fi. Both frequency distri-
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butions are calculated by applying the expression in Eq. 3 to every single possible
value in the domain of issue i. Then, a Chi-squared test is carried out with the
null hypothesis being that both frequency distributions, Fi and F ′

i , are statisti-
cally equivalent. The main goal behind this test is checking whether or not the
distribution of issue values for i has changed from the previous window of offers
to the current one. This information will help us to determine if, overall, the
opponent has changed the type of offers sent. In the case that the null hypothe-
sis cannot be rejected (lines 9 and 10), we add the issue i to the set of issues e
whose distribution did not change from the previous to the current window.

When the null hypothesis is rejected (lines 11 to 15), it means that the
frequency distribution for issue i has been different from the past to the current
window. The question is in what direction the change points for that issue (e.g.,
concession, increase of utility). More specifically, inspired by classic frequency
approaches, we are interested in checking if the opponent has conceded in the
issue, because then we can update the weights for those issues that remained
the same. Again, the assumption is that opponents tend not to change the most
important issues more often than less preferred issues. In order to estimate if
the opponent has conceded in the issue, we employ the frequency distribution
for issue i during the whole negotiation Vi as an approximation of the real
valuations, as specified in Eq. 1. Then, the expected utility obtained in issue i
for the previous window of opponent offers E[Ui(O′)] is calculated in line 12.
The same procedure is applied to obtain the expected utility obtained in issue
i for the current window E[Ui(O)]. Then, both expected utilities are compared
to assess if a concession has been carried out in the issue i.

We take an agressive strategy to detecting overall concessions over two con-
secutive windows of opponent offers. We consider that there is a concession as
long as the opponent has conceded in one of the issues (line 16). In that case,
we update the importance for those issues that stayed in the same frequency
distribution (lines 17 and 18). We understand that there are other strategies to
detect an overall concession, and we are currently exploring the performance of
more conservative approaches and probabilistic approaches.

5 Experiments

In this section we evaluate the performance of the proposed frequency mecha-
nism, the distribution-based frequency model, and compare it with the classic
frequency opponent modeling mechanism. The goal of this section is assessing
whether or not the proposed strategy is capable of overcoming the shortcomings
highlighted in the previous sections. First, we describe how the experiments were
designed, and then we analyze the results gathered.

5.1 Experimental Design

Given the fact that the goal of this paper is comparing the performance of two
learning mechanisms (classic frequency model, and distribution-based frequency
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model), we decided to use the same bidding and concession strategies for both
strategies. This setting allows us to study both learning mechanisms in fair
and equal conditions. More specifically, we chose HardHeaded’s concession and
bidding strategy. The rationale for selecting this strategy is twofold. First, as
the agent employs a Boulware strategy [15], it guarantees that the agent will not
rapidly end the negotiation. A quick and abrupt end of the negotiation would pre-
clude learning mechanisms from being studied effectively, as they have not been
exposed to sufficient bids. Second, the HardHeaded’s bidding strategy actively
employs the opponent model to propose bids to the opponent. This is impor-
tant, as many times opponent modeling will have an impact on the opponent’s
actions and bidding steps. By taking this realistic setting, we are also able to
observe whether or not one’s opponent model influences the negotiation towards
actions that further improve one’s opponent model. For the sake of simplicity, we
decided to employ the alternating offers protocol although the opponent model-
ing mechanism should be applicable to other settings as long as multiple offers
are exchanged between parties over time. Accordingly, we employed bilateral
negotiation domains to experimentally test the performance of our opponent
modeling mechanism. More specifically, we decided to test our modeling mecha-
nism under a wide range of domain characteristics. These characteristics include
different domain sizes (i.e., number of possible outcomes) and different degrees
of competition between agents, measured by the distance from the Kalai point
to the complete satisfaction point (1,1) [9]. The list of domains can be found
in Table 1. Discount factors were ignored (i.e., removed) in this experimental
setting and they are regarded as a matter of future study.

Table 1. The domains chosen for testing our opponent modeling mechanism

Laptop CypressI. EngvsZim. Grocery Amsterdam Camera S.market Travel

Size Small Small Medium Medium Medium Large Large Large

Conflict Low High Medium Low Low Low High Medium

Another important decision to take for the experimental setting was deciding
on the opponent agents to negotiate with. There were some factors that influ-
enced our decision in this matter. First of all, any agent with offline opponent
modeling was discarded as these may introduce interdependences between the
outcomes of different negotiations, leading to effects in our opponent model that
may be the by-product of past negotiation interactions. Second, we wanted to
expose our opponent modeling mechanism to a variety of concession behaviors
and bidding strategies representing the state of the art in negotiation. For that,
we employed the following opponent agents:

– AgentK [24]: This agent was the winning agent of the 2010 ANAC negotiation
competition. It is a conceder agent whose concession speed is regulated by the
average utility of all received bids and its standard deviation. In terms of bid
proposal, it just selects any offer from above the current aspiration. Hence,
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pairs of consecutive offers may not present an obvious decreasing trend. This
behavior is in conflict with assumption 1 in Sect. 3.

– IAmHaggler2011 [30]: A negotiating agent that uses Gaussian processes to
predict the future concession of its opponent, and then adjust its concession
rate accordingly to get the most from the negotiation. The goal of this agent
is that of optimizing one’s own utility while also trying to reduce the utility
received by the opponent. Bids are only selected from a small range around
the target utility. This aggressive stance usually results in the agent repeating
the same offers. This is contradiction with assumption 2 in Sect. 3.

– TheNegotiatorReloaded [13]: This agent was the best performing agent in
undiscounted domains for the ANAC 2012 agent competition. The agent
divides the negotiation into non-sliding windows, similarly to our approach.
For each window, the agent estimates the type of agent behavior that it is fac-
ing and adjusts its concession rate accordingly. The most similar bids to the
current target utility are sent back to the opponent. This agent was selected
for the experiment for similar reasons to IAmHaggler2011.

– Boulware agent [15]: A classic negotiation agent that adjusts its aspiration
levels according to time, only conceding in the later stages of the negotiation.
Bids close to the target utility are selected and sent to the opponent. This
agent was included as an example of scenarios where none of the aforemen-
tioned assumptions are strictly violated.

– Conceder agent [15]: A classic negotiation agent that adjusts its aspiration
levels according to time. However, concessions are carried out early on in
the negotiation process. Bid are randomly selected from above the threshold
defined by the concession strategy. Due to the rapid concessions at the start
of the negotiation, assumption 3 in Sect. 3 may be invalid very quickly.

The platform that supported our experiments was Genius [20]. We compared
our opponent modeling with the performance of the classic frequency model. For
that, both opponent models faced all of the opponents in every single domain,
which included two preference profiles per domain. In order to capture stochastic
variations in negotiations, each possible case was repeated a total of 20 times.
This gives a total of 3200 negotiations2.

In order to assess the quality of our opponent modeling mechanism, we
employed the following quality metrics:

– Pearson correlation of bids: It aims to compare the estimated outcome space
with the real outcome space. For that, the Pearson correlation of bids is
calculated and averaged. This metric is employed due to the fact that it has
a strong correlation with overall opponent modeling performance [7,8].

– Difference in surface of Pareto frontiers: Another metric that is employed to
assess the overall performance of an opponent modeling mechanism is the
absolute difference between the area under the real Pareto optimal curve and
the area under the estimated Pareto optimal curve. The rationale behind
this metric is that some claim that it is enough to accurately estimate the

2 2 models × 5 opponents × 8 domains × 2 profiles × 20 repetitions.
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Pareto optimal frontier for succesful negotiations with the opponent. Again,
this metric was shown to have a strong correlation with overall opponent
modeling performance [7,8].

– Spearman rank correlation of the issue weights: The previous two metrics offer
an insight into how the opponent modeling performs overall. However, both
our opponent modeling mechanism and the classic frequency model have two
components: the weight and the issue value update mechanisms. Therefore
we decided to include extra metrics to assess the performance of each of these
individual components. This metric compares the rank correlation between
the issue weights learned by an opponent modeling mechanism and the target
issue weights. The value is between −1 and 1, with 1 being used for a perfect
ranking of the issue weights and −1 for a completely opposite ranking. The
rationale for selecting a ranking metric is that a ranking of the issues is
normally enough to trade-off [14,21].

– Weighted Root Mean Squared Error of the issue values: Given an estimated
model and the target model, this metric computes a weighted version of the
root mean squared error (RMSE) per issue. Predicted issue values are com-
pared against the target issue values and weighted according to the impor-
tance of the issue value. This can be observed in Eq. 4

WRMSE(i) =
√ ∑

j∈Di

wj × (V̂i(j) − Vi(j))2 (4)

In our case, the weights for issue values wj were set to Vi(j)
maxk∈Di

Vi(k)
so that

more weight is given to those issue values that provide more utility to the
opponent. Then, after each negotiation, the metric is averaged with all the
issues. In this case we employed a metric that both captures ranking and value
accuracy. Although a ranking of issues is enough for carrying out trade-offs,
one needs to have an accurate estimation of values for successfully providing
appealing offers to the opponent.

As for the parameters of our model, we set α = 10 and β = 5 in Eq. 2. This
means that weight updates will have a greater magnitude at the start of the
negotiation, and they will gradually be reduced as the negotiation finishes. This
type of update is meant to avoid incorrect updates when the opponent starts
changing the most important issues relatively soon in the negotiation. With
regards to Eq. 1, γ was set to 0.25 to slow the growth of value importance when
the opponent tends to repeat the same offer repeatedly. These values were found
as good in a previous experimental setup. However, no exhaustive search was
carried out over them. Therefore, the performance depicted in these experiments
should be considered as a lower bound for the best achievable performance with
this opponent modeling mechanism.

5.2 Results

In this section we analyze the performance of our opponent modeling mecha-
nism with respect to the classic frequency model. As mentioned we employ four
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Table 2. Results obtained for the Pearson correlation of bids (Prs. B.), the difference
in surface of the Pareto optimal frontier (Par. Fr. D.), the Spearman rank correlation
of the issue weights (Spr. W.), and the weighted root mean squared error of the issue
values (WRMSE), aggregated by domain.

Distribution-based frequency model Frequency model

Prs. B. Par. Fr. D. Spr. W. WRMSE Prs. B. Par. Fr. D. Spr. W. WRMSE

EngZimb 0.91 0.003 0.35 0.053 0.80 0.007 0.32 0.080

Cypress 0.83 0.043 0.46 0.042 0.60 0.092 0.30 0.063

Travel 0.85 0.015 0.73 0.043 0.70 0.019 0.21 0.057

Amst. 0.91 0.004 0.61 0.044 0.86 0.015 0.31 0.072

Grocery 0.90 0.005 0.96 0.041 0.86 0.010 0.54 0.046

Laptop 0.87 0.006 0.84 0.094 0.89 0.006 0.59 0.10

Camera 0.89 0.006 0.77 0.035 0.86 0.005 0.57 0.041

S.Market 0.87 0.044 0.93 0.030 0.69 0.067 0.59 0.050

Table 3. Results obtained for aforementioned metrics, aggregated by opponent.

Distribution-based frequency model Frequency model

Prs. B. Par. Fr. Dis. Spr. W. WRMSE Prs. B. Par. Fr. Dis. Spr. W. WRMSE

AgentK 0.91 0.007 0.76 0.040 0.83 0.019 0.58 0.065

Haggler 0.93 0.005 0.78 0.035 0.88 0.014 0.32 0.036

TNR 0.79 0.024 0.63 0.079 0.74 0.018 0.50 0.092

Boulw. 0.91 0.007 0.70 0.033 0.78 0.017 0.35 0.072

Conc. 0.84 0.035 0.67 0.050 0.68 0.070 0.38 0.053

metrics: two that measure the overall quality of the model (i.e., Pearson cor-
relation of bids, and the difference between the surfaces defined by the Pareto
optimal frontiers) and two other metrics that assess the quality of the two indi-
vidual components of the opponent modeling (i.e., Spearman rank correlation of
the issue weights, and the weighted root mean squared error). Table 2 aggregates
the results obtained by domain, while Table 3 aggregates the results obtained by
opponent. Those results that are statistically better than its counterpart are
highlighted with a bold font. For statistical significance, a one-tailed Mann-
Whitney test was carried out with α = 0.05.

First, we will analyze the results per domain. Both the Pearson correlation of
bids, and the difference between Pareto optimal frontiers tend to indicate that
our opponent modeling provides a more accurate and overall estimation of the
opponent’s preferences. In the case of the Pearson correlation of bids, our app-
roach is statistically better for all domains except for the Laptop domain, where
the classic frequency model obtains a better estimation. However, the difference
between both metrics is small for that domain. Similarly, our model outperforms
when it comes to estimating the Pareto optimal frontier in all domains except
for the Laptop and Camera domain, where there is no difference between our
and the classic frequency model. Both the Laptop and the Camera domain are
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two of the less competitive domains. This may suggest that our opponent mod-
eling may not necessarily outperform the classic frequency model for domains
with low conflict. However, further experiments will be needed to make that con-
clusion. In this very same table, we can also observe that both our weight and
issue value estimation are statistically more accurate than the classic frequency
model. This is supported by statistically better results in both the Spearman
rank correlation of issue weights and the weighted root mean squared error for
issue values. Only in the Laptop domain the issue value estimation is no better,
but also no worse, than the classic frequency model.

We can observe very similar results if we focus on the results aggregated
by opponent. Overall, our opponent model produces a statistically better and
more accurate model of the opponent’s preferences (i.e., Pearson correlation
of bids, and Pareto frontier estimation). Only in the case of The Negotiation
Reloaded (TNR) the estimation of the Pareto optimal frontier is no better, but
also no worse than the classic frequency model. Component by component, we
can appreciate that our weight update mechanism is consistently more accurate
at detecting the relative importance of issues (i.e., Spearman rank correlation of
weights). We also tend to produce a better value estimation for issue values for
most opponent agents (i.e., WRMSE). Only we produce a statistically equivalent
estimation against IAmHaggler2011 and the Conceder agent.

Overall, it can be appreciated that our opponent modeling mechanism tends
to produce more accurate models of the opponent’s preferences, regardless of
opponent and domain. The differences tend to be more acute in the weight
update mechanisms (i.e., Spearman rank correlation of weights) than in the
issue value update mechanism (i.e., WRMSE). This suggests that, most likely,
an important part of our improvement is due to the weight update mechanism.
Other issue value update mechanisms may be necessary to further improve the
classic frequency model. Further exploring other issue value update mechanism
is highlighted as future areas of improvement for our current opponent modeling.

6 Conclusions

In the last few years, frequency modeling has been shown to outperform more
sophisticated opponent modeling techniques like Bayesian approaches. The rea-
son for this result is, among others, weaker assumptions on the opponent’s behav-
ior. Nevertheless, frequency models still rely on some underlying assumptions
that may not be fully realistic in many scenarios. In this paper we have presented
a new frequency approach to opponent modeling in automated negotiation. This
new approach, which we named as distribution-based frequency model, soothes
the effect of some of the assumptions in the classic frequency model. More specif-
ically, the main characteristics of our opponent modeling are: (i) comparison of
windows of offers instead of consecutive pairs of offers, offering a more robust
estimation on the opponent’s behavior; (ii) decayed weight update to avoid incor-
rect updates when the opponent starts conceding on the most important issues;
and (iii) slow growth of issue values importance, avoiding unbalanced issue value
distributions when the opponent offers the same offer repeatedly.
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This paper advances the state of the art in frequency approaches to opponent
modeling in automated negotiation by showing that the model proposed in this
work outperforms the accuracy of the opponent obtained by the classic frequency
model. The increased accuracy is observable in the learned outcome space, the
estimated Pareto optimal frontier, and both in the learned issue weights and issue
values. The difference in accuracy is specially acute in estimated issue weights,
where our approach produces more accurate rankings of issues.
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