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Abstract
To aid in damage assessment, creating 3D re-
construction from borescope videos of jet engines
could be very beneficial. However, jet engines of-
ten have shiny and non-textured surfaces, and the
performance of 3D reconstruction methods is un-
known in this case. This paper aims to qualitatively
and quantitatively evaluate Structure from Motion
(SfM) on these borescope videos. SfM is a tech-
nique for 3D reconstruction that uses collections of
images to create 3D models. An evaluation was
done on borescope videos with differing charac-
teristics using SIFT, SuperGlue, and ground truth
for feature detection. Even though small experi-
ments with the global SfM approach produced in-
sufficient results, more extensive experiments using
incremental SfM show promising performance on
borescope videos and potential for accurate damage
assessment, especially when combined with multi-
view stereo.

1 Introduction
Damage assessment through industrial videos is crucial when
inspecting and dealing with certain products and should be
done as precisely as possible. Especially when human lives
depend on these products or when substantial amounts of
money are involved. Both of these are the case when dealing
with airplanes. Aiir Innovations works with aviation compa-
nies and creates software that automates borescope inspec-
tions of jet engines [6]. Borescope inspections are done when
difficult-to-reach places need to be visually inspected and use
a rigid or flexible tube with a camera and occasionally a light
on the end of it. The ideal way to do this is to create a 3D
model from an input video which can then be used to auto-
matically make measurements.

This research paper focuses specifically on the Structure
from Motion (SfM) technique for 3D reconstruction. SfM
is a technique for the 3D reconstruction of scenes or ob-
jects utilizing a sequence of 2D images taken from different
viewpoints. It is based on the same idea as finding structure
from stereo vision (vision from two views). Finding struc-
ture from stereo vision is done by using triangulation to cal-
culate the relative position of objects in 3D space. This is

similar to what humans use to perceive depth. Instead of a
view from two cameras (or eyes), SfM takes many overlap-
ping images of an object taken from different angles. It uses a
technique called feature matching, where features are tracked
between images. These feature matches are then used to re-
construct their 3D position and the camera positions resulting
in a point-cloud-based 3D model. There are several strategies
for performing SfM which have been extensively researched
including incremental SfM [14] and global SfM [22]. SfM
can be combined with Multi-View Stereo (MVS) to obtain
dense 3D models compared to the relatively spare 3D model
resulting from just SfM. MVS using results from SfM has
also been researched [15]. However, these researches focus
on 3D reconstruction of objects or scenes with a lot of tex-
ture and where a lot of images are made from good angles
at a good distance from the object or scene. Consequently, it
is not clear how these methods would perform when scenes
lack texture or are shiny and when the camera capturing the
images is not in the optimal position. This and several other
factors like the resolution of the images, the focal length of
the camera, quality of the lens, and lighting conditions can
affect the accuracy greatly [12]. All these factors are fairly
unique in the case of borescope videos so this research aims
to evaluate SfM in the context of borescope videos.

To formalize, the main research question that will be
answered in this paper is ”How well does SfM work on
borescope videos with shiny and non-textured surfaces?”.
Since there are two main strategies for SfM with each their
advantages and disadvantages this main research question can
be split up into the two sub-questions:

• How well does incremental SfM work on borescope
videos with shiny and non-textured surfaces?

• How well does global SfM work on borescope videos
with shiny and non-textured surfaces?

This research will evaluate the most prominent implemen-
tations of incremental and global SfM on efficiency and ac-
curacy when working with borescope videos. Accuracy will
be evaluated qualitatively and quantitatively.

2 Structure-from-Motion approaches
Although the different approaches to SfM differ in how the fi-
nal 3D model is constructed, they all start in identically. That
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is the extraction of features and matching of images. Fol-
lowing this, the two approaches both go in different direc-
tions with each their advantages and disadvantages. In the
following sections, all stages of these SfM approaches will
be discussed and related work will be introduced. Starting off
the task of feature extraction and matching is outlined, fol-
lowed by the different processes of reconstruction for every
approach.

2.1 Feature extraction and Matching

The first part of the SfM pipeline is to find overlapping im-
ages. With these overlapping images and their corresponding
feature pairs, 3D reconstructions can be created.

Feature extraction is done on every image individually and
results in a set of features that are characterised by an x and
y coordinate and a feature descriptor. Important is that these
features are invariant to rotation and scale so that identical
points can be matched in images from different angles. The
most widely used feature is SIFT [7] and its derivative SURF.
However, these two features do not perform well on shiny and
non-textured surfaces. Another newer class of features uses
neural networks to detect and describe interest points [13;
18]. These seem to have superior performance compared to
SIFT, SURF, and other traditional features. Especially when
dealing with shiny and non-textured surfaces.

Next, images are matched using the features obtained from
the previous step. For every feature in an image, it searches
for the most similar feature in a potentially overlapping im-
age. If these features are sufficiently similar, their corre-
sponding point can be considered to be the same in the con-
text of the scene. Finding the most similar feature between
images is often done using a nearest neighbour approach [16;
7; 23]. If two images then have a set of points in common
it means they see the same scene part. Exhaustively match-
ing all these images takes O(n2) time which means it is one
of the bottlenecks in the SfM pipeline. However, since the
borescope videos have the images collected sequentially only
consecutive frames can be matches which removes the need
to exhaustively match all images. This significantly reduces
the time complexity.

The final stage of feature extraction and image matching
is geometric verification. This is a critical step in the SfM
pipeline which removes outliers in image matches. The pre-
vious matching stage uses feature descriptors which only tells
you that two points in an image have a sufficiently similar ap-
pearance. It does not guarantee that these feature matches
also correspond to the same points in the scene. Geometric
verification verifies these matches by estimating a geometric
transformation that maps a sufficient amount of points be-
tween two matching images. To filter out as many of the
outliers as possible a robust estimation technique such as
RANSAC [3] is used. This geometric verification is espe-
cially important for global SfM since incremental SfM also
uses RANSAC when adding images to the model. The result
of this pipeline stage, after which the three SfM approaches
diverge in methodology, is a graph with images as nodes and
the edges connecting verified pairs of images.

Figure 1: Incremental SfM pipeline [14].

Figure 2: Global SfM pipeline [19].

2.2 Incremental SfM
The core idea of incremental SfM is to initialize a model with
a two-view reconstruction and then incrementally registering
new images to the model until you get a full reconstruction.
This initialization is very important since a bad initialization
will lead to an undesirable result. If a low run-time is im-
portant initializing from a sparse location in the image graph
decreases the run-time since the Bundle Adjustment will have
to deal with less information. However, this does come at the
cost of robustness and accuracy which you will have more of
if you start from a denser location in the image graph.

After the initialization of the model, the new images are
added incrementally in three steps: Image Registration, Tri-
angulation, and Bundle Adjustment(BA). Starting with image
registration, where a new image is registered to the model
while calculating the pose (position and rotation) of the cam-
era where the image is from. This pose can be calculated by
solving the Perspective-n-Point [3] problem which uses cor-
respondence between the 2D features in the newly registered
image and the 3D features already present in the model.
Also, here RANSAC is used to get a robust estimation of the
camera pose for the newly registered image.

The new image having been registered to the model, it now
can add new points to the model using triangulation. A new
point from the image can be added when at least one of the
previously registered images also observes this point. The
new 3D point is estimated by triangulation using the pose of
both image cameras and the overlapping point in both images.

Since in both the image registration step and the triangu-
lation step the results are estimated, these results can have
inaccuracies. An inaccuracy in one of these steps affects the
other step in both ways. Inaccurate camera poses affect tri-
angulation and in turn, small errors in triangulation can affect
the estimation of the next camera pose in image registration.
These small inaccuracies can then quickly become large inac-
curacies which will make the model unusable. Bundle adjust-
ment (BA) [21] aims to refine camera poses and points in the



model to optimize the 3D reconstruction. It does this by mini-
mizing the so-called reprojection error which is the difference
between the 3D point reprojected back into the camera image
and the 2D point of the camera image. This reprojection error
is minimized over all the combinations of images and points,
turning it into a large least-squares problem. The BA algo-
rithm most often used is Levenberg-Marquardt [21]. BA is
run locally on groups of highly connected images and glob-
ally when the model has grown by a certain percentage since
the last global BA.

2.3 Global SfM
Compared to incremental SfM which registers cameras to the
model one by one, global SfM initializes all cameras at once.
Most of the earlier prominent SfM methods are incremental
since they are simpler and fairly robust due to the extensive
refining that is done using BA. They are however typically
fairly slow because of this same extensive refining and recent
studies seem to suggest that global SfM has the potential to be
more accurate and efficient [2; 24]. The general pipeline for
global SfM starts by estimating the set of camera poses, then
triangulating all points, and finally doing bundle adjustment
to optimize the cameras and 3D points together.

The first and most important part of the pipeline, estimat-
ing the camera poses is done using motion averaging. This
motion averaging is split into rotation averaging and transla-
tion averaging where relative rotation Ri and position ci of
the cameras are estimated. These two are constrained by the
following equations:

Rij = RjR
ᵀ
i (1)

λijtij = Rj(ci − cj), (2)

where Rij is a 3 X 3 relative rotation matrix, tij is a unit
vector representing the relative translation between i and j,
and λij a scale factor. Camera rotation and position can then
be obtained by solving the minimization problem for:

arg min
R′

∑
Rij∈R′

rel

dR(Rij , RjR
ᵀ
i ) (3)

arg min
T

∑
tij∈Trel

dT (tij , Rj(ci − cj)), (4)

where dR is a distance measure for 3 X 3 rotations, dT is a
dissimilarity measure, R′

rel and R′ are the sets of relative and
normal camera rotations, Trel is the set of relative translation
between cameras, and T is the set of global camera positions.
Several methods have been proposed to perform this motion
averaging as robust as possible [22; 1; 8; 11].

After obtaining the camera poses, 3D points can now be tri-
angulated to create a reconstruction. Since all camera poses
are known at once, this triangulation step can be done in par-
allel. Finally, to refine camera poses and 3D points BA is
done, using the same algorithm as the global BA discussed
for incremental SfM.

3 Evaluation of SfM on borescope videos
To find out how well SfM works on borescope videos with
shiny and non-textured surfaces a few aspects need to be con-
sidered. Namely the feature matching performance issues on
shiny and non-textured surfaces and how the SfM result will
be evaluated qualitatively and quantitatively. The evaluation
was done on borescope videos provided by Aiir Innovations
using the state-of-the-art open-source systems COLMAP1 for
incremental SfM [14] and OpenMVG 2 for global SfM [9].

3.1 Feature matching
One of the main issues being dealt with in the borescope
videos is the shininess and lack of texture on the engine ro-
tors. This issue lies mostly with the feature matching stage of
the pipeline. For the incremental SfM experiments, two dif-
ferent types of feature matching were used and evaluated. A
peer research was done by R. Huizert specifically on the per-
formance of different feature detectors and matchers on shiny
and non-textured surfaces [5]. In addition, for both qualitative
and quantitative evaluation, ground truth for feature matching
was used.
SIFT. As mentioned previously, SIFT is the most com-
mon feature used for the SfM algorithm and is considered an
industry-standard in the field of computer vision. However,
its performance on shiny and non-textured surfaces drops sig-
nificantly [20]. SIFT detects significant changes in pixel in-
tensity in all directions to find corners in an image. It could
potentially still detect the outlines of the jet engine rotors and
any visible damage therefore it was still used for the exper-
iments. The open-source implementations utilized use SIFT
by default so no pre-processing was necessary to run SfM
with SIFT.
Neural Networks. Using neural networks is a newer way
of finding and matching features that could potentially work
better on shiny and non-textured surfaces. The peer research
on feature detectors and matching mentioned earlier recom-
mended using SuperGlue (SG) and LoFTR as the neural net-
works to perform the feature detection and matching step. As
such, they provided us with the feature and matching data to
do so. Some pre-processing had to be done to get this data in
a format that could be used by COLMAP. This format can be
found in the documentation of these implementations.
Ground Truth. To accurately evaluate SIFT and the neural
networks for performance on SfM it is beneficial to have a
ground truth (GT) to compare these methods against. This
ground truth will have a very high accuracy but takes a lot of
time to create so will not be useful for the production use of
SfM. The feature and matching data for the ground truth have
been provided by peer research from D. Liew A Soe [17].

3.2 Multi-View Stereo
After running the SfM pipeline the result is a scene recon-
struction in the form of a sparse point cloud. Following
this, a dense point cloud can be computed using multi-view
stereo(MVS) [4]. MVS takes as input a set of camera poses
and the sparse point cloud obtained from SfM to compute

1https://github.com/colmap/colmap
2https://github.com/openMVG/openMVG



depth and normal information for each pixel in an image.
Fusing this information for multiple images results in a dense
point cloud. COLMAP has its own built-in implementation of
MVS [15]. OpenMVG does not so only sparse reconstruction
will be looked at.

3.3 Qualitative evaluation
The goal of creating these models from borescope videos is
to accurately assess potential damage to the jet engine. To
evaluate this you want to look at the absolute best and final
result that would be used to achieve this goal. Evaluating the
sparse models resulting from only SfM does not give suffi-
cient insight into whether damage can be assessed. Therefore
the qualitative evaluation besides looking at the sparse mod-
els also focuses on how well SfM paired with MVS achieves
the goal of damage assessment. For this, a comparison was
done of the different models and the videos, seeing how sim-
ilar the 3D models look to the actual jet engine in the videos
and if damage visible in the borescope videos is also visible
in the 3D models.

Since OpenMVG does not allow for the ability to compute
these dense point clouds using MVS only the sparse recon-
struction between the incremental and global SfM implemen-
tations will be compared. Although this is not a full com-
parison, comparing the sparse point clouds could give suf-
ficient to predict their relative performance when combined
with MVS.

3.4 Quantitative evaluation
Besides comparing the 3D models to the video qualitatively
some quantitative analysis of the models was also done.
Looking at the model data a few evaluation metrics can be
looked at and analysed. These metrics apply to the sparse
model since the dense model created with MVS adds an extra
layer to the algorithm which is out of scope for this project to
analyse the data of.

The first metric is the number of registered images. All
experiments used the same amount of images as input so
a difference in the number of registered images can indi-
cate a disconnect between images through a lack of feature
matches or an issue with the 2D-3D correspondence. For
global SfM all images are always considered so this met-
ric only applies to incremental SfM. The second metric is
the number of points in the model. This will most likely
say something about the number of feature matches found in
the matching step of the pipeline but is also affected by the
number of images registered in incremental SfM. The next
metric is efficiency which is measured in the amount of time
it takes to construct the model. This time excludes the fea-
ture matching step since these feature matches for neural net-
work and ground truth were provided by peer researches [5;
17]. Finally, the average reprojection error is looked at. These
are important measurements since they will essentially show
how far BA was able to refine the model which gives an idea
of the accuracy of the points in the model. BA tries to min-
imize the reprojection error over the whole model as much
as possible while registering new images to it in incremental
SfM.

Figure 3: Video 3 global SfM sparse model with camera poses using
SIFT. A rough outline of an engine blade can be recognised.

4 Experimental Setup and Results
The experiments are run on datasets provided by Aiir. These
consist of videos of different jet engines filmed from differ-
ent angles. Covering multiple types of engines and angles
helps in determining which factors affect the reconstruction.
The datasets are collected using a borescope camera of which
the intrinsic parameters are not known. The videos are cut
into 150 frames each with a resolution of 1280 X 720 px. A
low amount of frames was chosen since more frames do not
aid in the accuracy of the model, it only makes the model
larger which is not needed for evaluation. Then the pre-
viously mentioned COLMAP and OpenMVG were run on
the datasets using SIFT, SuperGlue, LoFTR, and a ground
truth for feature matching. This was done on a 2.2GHz
machine with 16GB RAM. To get the best possible recon-
struction a few settings were changed from the COLMAP
default settings. These setting are: min num matches = 8,
init min num inliers = 50, init min tri angle [deg] = 8,00,
and abs pose min num inliers = 12.

4.1 Model comparison
The first part of the qualitative evaluation is a visual com-
parison between the different models and the dataset videos.
Three different borescope videos were evaluated where two
were similar in video angle but different material of blades
which meant a higher degree of shininess in video two com-
pared to video one. The third video was a completely differ-
ent angle from the other two videos. This gives insight into
the optimal angle for the borescope to be filmed in to obtain
a quality model. For all three videos, LoFTR did not produce
any model to be visually evaluated.

Global SfM
Since the global SfM implementation used did not allow for
importing features only the already available SIFT features
could be used for reconstruction. Experiments were run on all
three videos using SIFT for feature detection. Reconstruction
on the first video produced a few points but nothing resem-
bling the jet engine blades displayed in the video. Video two
did not produce any points. The third video performed better
resulting in a sparse point cloud where a rough outline of the
blades can be recognised (Fig. 3).



Figure 4: Video 1 comparison of reference video and dense models for GT, SIFT and SG (fLTR). The SuperGlue model is closer to the
ground than SIFT model.

Figure 5: Video 1 sparse models of GT, SIFT and SG models with
camera poses(fLTR). GT is substantially more dense compared to
SIFT and SG.

Incremental SfM video 1
The first video that incremental SfM was evaluated on was in
theory the video that was going to give the best results. The
blades do not have a lot of texture. but are not excessively
shiny and move horizontally across the screen. Running in-
cremental SfM on this video answers the question of how well
incremental SfM performs on a borescope video with these
characteristics. A visual comparison between the video itself
and the result of running incremental SfM + MVS with SIFT,
SuperGlue, and the ground truth can be seen in Fig. 4. True
to what was theorised, video 1 has the most visually accurate
ground truth and superglue generated dense models.

As for the comparison between the dense models of Super-
Glue, SIFT, and the ground truth on video 1, it can be seen
that superglue models the blades well but was not able to re-
construct as many blades. SIFT reconstructs only two blades
and is quite noisy. Fewer blades being reconstructed means
incremental SfM was not able to register all the images in the
dataset. The SIFT and to a lesser degree SuperGlue models
get saved by MVS however since the sparse reconstructions
do not perform well compared to the ground truth as seen in
Fig. 5 which partly explains the noisiness of the model. Also
visible in the sparse model comparison is the camera poses.
These appear to be accurate for all three models which would
mean accurate camera poses translate to accurate dense mod-

Figure 6: Video 2 comparison of reference video and GT dense
model. Blades can be clearly recognised.

els when using MVS.

Incremental SfM video 2
The second video is geometrically similar to the first one as
the blades also move horizontally across the screen. However,
the blades are shinier and have less texture. Due to the high
degree of shininess and lack of texture SIFT and SuperGlue
do not produce any model to be visually evaluated. This also
hinders the ground truth as seen in the models. They are quite
noisy and only the edges of the blades are sufficiently visible.
A visual comparison between the video itself and the result of
running incremental SfM + MVS with the ground truth can be
seen in Fig. 6.

Incremental SfM video 3
This video is filmed from a side angle with the blades mov-
ing diagonally and towards the camera. The blades them-
selves have shiny surfaces but they have grooves on them and
the edges are thick and prominent which are well picked up
by feature detectors. These grooves can be seen in the dense
reconstruction but are also picked up in the sparse reconstruc-
tion when using SIFT(Fig. 8). A visual comparison between
the video itself and the result of running incremental SfM +
MVS with SIFT, SuperGlue, and the ground truth can be seen
in Fig. 7.

The dense models all look greatly alike with the ground
truth and SuperGlue resulting in more blades than SIFT sim-
ilar to video 1. Looking at SuperGlue and the ground truth.
The ground truth has more noise compared to the SuperGlue,
but the blades themselves are slightly sharper.

For the sparse models a visual comparison between the
ground truth, SIFT and SuperGlue can be seen in Fig. 8.
The SuperGlue model seems to perform the worst here even
though a rough outline of the blades can be seen. Comparing
SIFT and the ground truth an observation that can be made is



Figure 7: Video 3 comparison of reference video and dense models for GT, SIFT and SG (fLTR). The three models look greatly alike.

Figure 8: Video 3 sparse models of GT, SIFT and SG models with
camera poses(fLTR).

that the SIFT model is still a lot less dense compared to the
ground truth model. However, the SIFT model captures the
details of the blades better as it appears to have less noise than
the ground truth model.

4.2 Damage visualisation
To qualitatively evaluate if damage can be assessed, some
datasets were chosen where damage was clearly visible in the
images. A side-by-side comparison between that image and
the dense models can visualise how well incremental SfM can
be used for damage assessment. Dents in the blade edges are
visualised well in the ground truth as seen in the model of
video 1 (Fig. 9). For the SuperGlue model, there is a visible
change in density of the edge where the damage in the blade
is, but it is substantially less clear that those density changes
are meant to represent dents. However, the models are not
dense enough to visualize any scratches or dents that don’t
alter the shape of the blades visibly.

4.3 Data analysis
Data results of the sparse reconstructions and thereby an eval-
uation of the incremental SfM system can be seen in Table
1. For each video, the best reconstruction resulting from the
qualitative analysis is reported. A few standouts and take-
aways will be highlighted here.

Global SfM experiments produced only one sufficient
model for data analysis so no table is needed to lay out these
results. The result of running global SfM with SIFT on video

Figure 9: Damage in video 1 seen in the dense GT (right) and SG
(bottom) models.

3 contained 360 points with a mean reprojection error of 1.08
pixels.

On all three videos, LoFTR did not produce any results.
For the first video, SIFT and SuperGlue do not register all im-
ages in the dataset resulting in fewer points but also a lower
runtime and mean reprojection error compared to the ground
truth. Video two only produced a reconstruction with the
ground truth so not much comparison could be done between
the different features. The third video had SIFT and Super-
glue performing substantially better compared to the first two
with all images being registered and a significantly higher
amount of points in the sparse point-cloud. SIFT here per-
forming better than SuperGlue and also breaking the trend in
the data of more points being registered resulting in a higher
mean reprojection error.

5 Responsible Research
To make sure the results of this study are published respon-
sibly some ethical aspects were considered while researching
as well as the reproducibility of the research and experiments
done. These considerations will be outlined in the following
section.

Probably the most important ethical aspect to be consid-
ered is that the damage assessment of jet engines has to be
done very thoroughly since a lot of human lives can be in
danger when this damage is missed. Relying solely on the
programs used in this study or any program that is not proved
to be perfect would be extremely irresponsible. Therefore



# Images # Registered #Points Time (min) Mean Reproj. Error (px)

SIFT SG LoFTR GT SIFT SG LoFTR GT SIFT SG LoFTR GT SIFT SG LoFTR GT

Video 1 150 18 83 - 150 716 1497 - 52409 2.0 1.7 - 14.78 0.58 1.28 - 1.35

Video 2 150 - - - 80 - - - 10283 - - - 20.8 - - - 1.35

Video 3 150 150 150 - 150 6924 4741 - 20782 14.1 22.0 - 45.2 1.09 1.41 - 1.28

Table 1: Results for sparse reconstruction on video 1, 2 and 3 using SIFT, SuperGlue, LoFTR and a ground truth

any use of SfM techniques should be overseen by a human
and any conclusions that a damage assessment program us-
ing SfM makes should be verified. Tying into this is the
fact that two open-source implementations were used for this
study, which raises the question of who is legally responsible
when this software is used in production and fails. COLMAP
and OpenMVG are licensed under the BSD and the MPL2 li-
censes respectively, which both indemnify every contributor
of the software for any liability when these implementations
are used in commercial products.

To ensure that the experiments done in this study are re-
producible a lot of documentation was done while perform-
ing them. The open-source implementations used both have
extensive documentation and any setting changes have been
mentioned in section 4 of this paper. Software used to convert
feature matching files received from peer researches to files
that could be used by COLMAP can be shared. The videos
used for experiments are not publicly available, but similar
borescope videos can be found online.

6 Discussion
In this research, knowledge on the performance of SfM is ex-
tended with experiments that showcase the result of running
SfM on borescopes videos with shiny and non-textured sur-
faces. Discussed in this section are an interpretation of the
experiment results, limitations of these experiments, and fu-
ture work that can be done on this topic.

The performance of SfM on borescopes videos with shiny
and non-textured surfaces is considerably lower than re-
ported SfM results run on more traditional datasets using the
COLMAP and OpenMVG open-source SfM implementations
as used in this research [14] and other studies done on the
performance of SfM. Comparison of the amount of points in
the model and run-time is difficult since these studies used
much larger datasets and stronger machines to run the SfM
algorithms on.

Looking at the difference in results between global and in-
cremental SfM is difficult since few experiments were able
to be done using global SfM. For both approaches SIFT per-
formance was poor for videos 1 and 2, SIFT on video one
performing slightly better for incremental SfM. On video 3
SIFT performed the best for both approaches. Here it is very
clear that incremental SfM outperforms global SfM. Having
only one experiment where this can be clearly seen makes it
so no definite conclusions can be made about the relative per-
formance of the two approaches, but the results from this sin-
gle overlapping experiment do agree with existing literature

which most often picks incremental SfM as the more robust
approach.

Going more in-depth for incremental SfM, a compari-
son between the videos and features used shows SuperGlue
and the ground truth performing the most consistent over all
videos. SIFT does outperform SuperGlue and also the ground
truth on accuracy through the lowest mean reprojection error
on video 3. This suggests that the combination of edges and
grooves in the blades itself increases the performance of SIFT
because of the extra interest points it can detect.

The main goal of this research was to investigate if dam-
age can be assessed using incremental SfM reconstructions.
It was shown that large dents in the edges of the blades can
clearly be seen which would suggest that this goal of damage
assessment can be successful achieved. However, the clear
visualisation of these dents only shows that a human can de-
tect those types of damage in the model. Since the models all
had quite some noise, future algorithms that look for dents in
these models might be unsuccessful.

For the qualitative analysis, a major aspect that might hin-
der the accurate evaluation of incremental SfM is the use of
MVS to create dense models. An explanation of why MVS
was used is written in 3.3, but the result of using it is that bad
sparse reconstructions can get ’saved’ by running MVS on it.
They can only be saved however, if the camera poses are cor-
rect and in most cases, the best sparse result corresponded to
the best dense results.

In the evaluation of incremental SfM, it is assumed that
for these videos the experiment results are the best possible
results that could be achieved using incremental SfM on the
borescope videos. However, settings had to be changed from
the default to improve the reconstructions or in a few cases
even obtain a reconstruction. These settings were picked out
and changed by experimentation which means they are not
necessarily the setting changes that achieve the best results.
Also, intrinsic parameters of the camera were not known so
could not be used as input during experiments for both SfM
approaches. Literature shows that knowing these intrinsic pa-
rameters improves the performance of SfM. Further investi-
gation can be done into these points.

Another assumption that was made is that the ’ground
truth’ used for evaluation provided by peer research is really
the ground truth for the feature matching. Creating a fea-
ture detection ground truth that is perfect is challenging and
it being a 10 week research project, a perfect ground truth
is not realistic to expect. That the provided ground truth is
not perfect can be seen in the results of video 3 where using
SIFT resulted in a lower mean reprojection error compared



to the ground truth. There is also no guarantee that a per-
fect feature matching ground truth would even translate into
a perfect ground truth model. In the future better ground truth
feature matching or other ground truth methods, like utilizing
synthetic data as researched by E. Klein Onstenk in a peer
research [10], could be used.

7 Conclusions
In this paper Structure from Motion (SfM) is evaluated in the
context of jet engine borescope videos with shiny and non-
textured surfaces. Small experiments were performed using
a global approach to SfM and more extensive research was
conducted on incremental SfM. The goal of this research was
to determine if SfM works well enough to aid in damage as-
sessment of jet engines. Different feature matching methods
and different borescope videos were compared qualitatively
and quantitatively.

Results indicate that global SfM using SIFT underperforms
compared to incremental SfM due to a lack of robustness
against outliers in feature matches. In general, incremental
SfM shows promising results when using SuperGlue for fea-
ture matching. SIFT only shows these promising results if
blades contain enough large discernible features like grooves.
Experiments performed show that incremental SfM definitely
has potential as a tool for aiding damage assessment or as a
method of assessing damage by itself. To be able to asses
damage itself, work needs to be done on reducing noise in
the models. Further work can be done to improvethe evalua-
tion of SfM such as using improved ground truth and utilizing
point cloud comparison techniques. The performance of SfM
can also be improved in future researches by using known in-
trinsic parameters of the borescope cameras instead of having
SfM estimate them.
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