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a b s t r a c t

A comprehensive spectral element formulation for nonhomogeneous heat flow in a shallow geothermal
system consisting of a borehole heat exchanger embedded in a multilayer soil mass is introduced. The
spectral element method is utilized to solve the governing heat equations in the borehole heat exchanger
and the soil mass simultaneously using the fast Fourier transform, the eigenfunction expansion, the
Fourier Bessel series and the complex Fourier series, together with the finite element method. Only
one spectral element is necessary to describe heat flow in a homogeneous domain. For a nonhomoge-
neous multilayer system, the number of spectral elements is equal to the number of layers. The proposed
spectral element model combines the exactness of the analytical methods with an important extent of
generality in describing the geometry and boundary conditions of the numerical methods. Verification
examples illustrating the model accuracy, and numerical examples illustrating its capability to simulate
multilayer systems are given. Despite the apparent rigor of the proposed model, it is robust, computation-
ally efficient and easy to implement in computer codes.
Ó 2017 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Heat flow in nonhomogeneous domains consisting of compo-
nents with different physical properties is central among numer-
ous engineering applications. Heat flow in pipes, heat
exchangers, solids and layered domains are only few examples of
such applications. Solution of the involved heat equations vary
between analytical, semi-analytical and numerical, depending on
the complexity of the problem. In this publication, we present a
semi-analytical methodology for solving transient conductive-
convective heat flow in nonhomogeneous domains, which might
consist of multiple components with different geometrical and
physical properties. The proposed methodology is applicable to a
wide range of engineering applications, but the focus here is on
shallow geothermal systems.

A shallow geothermal system, known as geothermal heat pump
(GHP) or ground source heat pump (GSHP), is a source of renew-
able energy that utilizes the earth heat energy from shallow depths
for heating and cooling of buildings. It works by circulating a fluid
(refrigerant), mostly water with antifreeze solution, through a
closed loop of polyethylene U-tube pipe that is inserted in a
borehole in a soil mass. The borehole is filled with grout to fix
the polyethylene pipe and to ensure a good thermal interaction
with the soil.

The borehole heat exchanger is a slender heat pipe with dimen-
sions of the order of 30 mm in diameter for the U-tube, and
150 mm in diameter and 100 m in length for the borehole. The cir-
culating fluid in the U-tube collects heat from the surrounding soil
mass via convection-conduction heat flowmechanisms. Physically,
the heat flow mechanism in such a system is well understood, but
computationally, and in spite of the bulk of existing models, still
creeping due to the combination of the slenderness of the bore-
holes heat exchangers and the involved thermal convection. This
combination of geometry and physics constitutes the main source
of computational challenges in this field. Consequently, several
geometrical and physical simplifications have been introduced in
order to circumvent this problem and obtain feasible solutions.
All known solution techniques, such as analytical, semi-analytical
and numerical, have been utilized for this purpose. Nevertheless,
in spite of the versatility of the numerical methods, analytical
and semi-analytical solutions are yet preferable because of their
comparatively little demands on computational power and ease
of use in engineering practice.

Most of the current analytical and semi-analytical models for
heat flow in geothermal heat pumps are based on the work of Cars-
law and Jaeger [1] for modeling heat flow in finite, semi-infinite
and infinite domains subjected to point, line, plane and cylindrical
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heat sources. In these models, the BHE detailed composition and
heat transfer mechanisms are totally ignored and considered as a
constant heat source. Gu and O’Neal [2] introduced an analytical
model simulating transient heat flow in a composite domain sub-
jected to a constant heat source, resembling U-tubes surrounded
by grout, and a soil mass bounded by a far field boundary. They uti-
lized the eigenfunction expansion to solve the governing partial
differential equation. Based on Gu and O’Neal’s approach,
Lamarche and Beauchamp [3] solved the composite domain prob-
lem using Laplace transform. They solved both forward and inverse
Laplace transforms analytically. Bandyopadhyay et al. [4] solved
the same problem using dimensionless equations, and employed
the Gaver–Stehfest numerical algorithm for solving the inverse
Laplace transform.

Eskilson and Claesson [5] diverged from the Carslaw and Jaeger
solutions and introduced a semi-analytical model for ground
source heat pumps that approximates heat flow in the borehole
heat exchangers by two interacting channels conveying a circulat-
ing fluid in the vertical axis and embedded in an axisymmetric soil
mass. Heat flow in the channels is assumed steady state convec-
tive, and in the soil, transient conductive. They utilized Laplace
transform to solve the heat equations of the channels, and the
explicit forward difference method to solve the heat equations of
the soil mass. Zeng et al. [6] solved the same problem but using
dimensionless heat equations for the channels.

Marcotte and Pasquier [7] introduced a semi-analytical model
for a transient pseudo convection using the fast Fourier transform
for discretizing the time domain, and the cubic spline for interpo-
lating results obtained at selected spatial samples. They utilized
the principle of superposition to simulate the response to multiple
heat fluxes. Javed and Claesson [8] solved Gu and O’Neal’s problem
using a similar pseudo convective approach.

Recently, notable attempts have been introduced to account for
the inevitable presence of multiple soil layers in shallow geother-
mal systems. Raymond and Lamarche [9] analyzed the effect of
multiple layers in determining the thermal parameters from the
thermal response test (TRT) results. They adopted an analytical
computer code for transient well flow in layered aquifer systems
to describe conductive heat transfer in shallow geothermal sys-
tems constituting multiple layers and subjected to a variable heat
injection rate. The Laplace transform is utilized to solve the system
of partial differential equations describing heat flow in the layered
system. Abdelaziz et al. [10] extended the finite line heat source
solution to a multiple segment finite line heat source resembling
a layered soil profile. The temperature of the heterogeneous
domain is obtained by summing up the temperature of the typical
homogeneous domain with that obtained due to the presence of
other layers. The latter is calculated by assuming a composite sys-
tem constituting smeared thermal parameters, described as a func-
tion of the relative distances of the layers from the point of
interest.

Despite the appeal of these endeavors, current analytical and
semi-analytical models are in general limited in describing the
geometry and physics of heat flow in shallow geothermal systems.
The main shortcomings are twofold: (1) Not all the details of heat
transfer mechanisms in the BHE are taken into consideration. The
BHE is considered as a line or cylindrical heat source, ignoring
the heat flow in its components and their thermal interactions.
(2) The soil mass is in general considered infinite or semi-
infinite. Even if a multilayer system is adopted, the BHE is assumed
a line or a cylindrical heat source with a constant or a variable heat
flux. Here, these two shortcomings are treated.

In a previous work, Al-Khoury [11,12] introduced a semi-
analytical model for transient conductive-convective heat flow in
shallow geothermal systems based on the spectral analysis. The
model is valid for a semi-infinite domain, where the system can
extend to infinity in the vertical and the radial directions. No soil
layers with different physical parameters are permitted. However,
it is likely that the soil mass surrounding the BHE consists of sev-
eral layers with different thermal interaction effects. To tackle this,
here, the spectral element method is utilized to formulate a semi-
analytical model for shallow geothermal systems consisting of a
single U-tube borehole heat exchanger embedded in a layered soil
mass.

The spectral element method (SEM) is a semi-numerical (semi-
analytical) technique which combines the spectral analysis
method, basically the discrete Fourier transform, with the finite
element method. In the literature, the spectral element method
corresponds to two different techniques. The first corresponds to
the work introduced by Patera [13], and the second corresponds
to the work introduced by Doyle [14]. Patera’s spectral element
method deals mainly with spectral formulations in the spatial
domain. In this, the domain is discretized into a number of ele-
ments, and the field variable in each element is represented by a
high-order Lagrangian interpolation through Chebyshev colloca-
tion points. It is thus a finite element method with high degree
piecewise polynomial basis functions capable of producing high
order accuracy.

Doyle’s spectral element method, on the other hand, deals
mainly with a spectral formulation in the temporal domain. It is
a combination of the spectral analysis method, the dynamic stiff-
ness method and the finite element method. In this work, we adopt
the temporal SEM of Doyle. For more account of the historical and
theoretical background of the spectral element method, see Lee
[15].

The spectral element method is an elegant technique used
mainly for solving wave propagation problems. One of the impor-
tant features of this method is that its formulation leads to a set of
equations, similar to that of the conventional finite element
method. The fundamental difference, however, is that the spectral
element stiffness matrix is exact and frequency dependent. Due to
the exact formulation of the system, one element is sufficient to
describe a whole homogenous domain. For a nonhomogeneous
domain consisting of several layers or members, the number of
the spectral elements is equal to the number of the involved layers
or members. This feature significantly reduces the size of the prob-
lem, and rendering this method computationally very efficient.

The spectral element method discretizes a space–time field
variable into a frequency domain and an eigenmode domain. The
discretization of the time domain to the frequency domain is done
using the fast Fourier transform (FFT) algorithm, and the dis-
cretization of the spatial domain to the eigenmode domain is done
using the eigenfunction expansion. The general solution of the sys-
tem can be obtained by summing over all significant frequencies
and eigenvalues.

In this paper, we formulate a two-node spectral element for
transient conduction–convection heat flow in a single U-tube bore-
hole heat exchanger embedded in a layered soil mass. A detailed
modeling approach is given hereafter.
2. Modeling approach

A shallow geothermal system, particularly a geothermal heat
pump, consists basically of two thermally interacting domains:
the borehole heat exchanger and the soil mass.

Upon operating the geothermal heat pump, the temperature in
the soil mass arises as a result of the thermal interaction with the
borehole heat exchanger. The temperature in borehole heat
exchanger, on the other hand, arises from an inlet fluid tempera-
ture coming from a heat pump, and the thermal interaction with
the soil mass.



Fig. 1. (a) A schematic representation of an axial symmetric shallow geothermal system. (b) A schematic representation of a single U-tube BHE and its surrounding soil mass.
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For a geothermal system consisting of one borehole heat
exchanger embedded in a soil mass, the geometry can be described
by an axial-symmetric coordinate system. We assume that the
borehole heat exchanger is one-dimensional with its axis coincides
on the vertical z-axis. This assumption is valid because of the
extreme slenderness of the borehole that makes the temperature
gradient in the radial direction minimal. The vertical axis of the
borehole heat exchanger coincides with the axis of symmetry of
the soil mass, as shown in Fig. 1-a [12].

The borehole heat exchanger is modeled as a single U-tube, rep-
resenting pipe-in and pipe-out, surrounded by a grout and a thin
film of soil, Fig. 1-b. This thin soil film is added to the borehole heat
exchanger model for two reasons: (1) to accurately model the ther-
mal interaction between the BHE and soil mass, and (2) as it will be
apparent later, to formulate one spectral element describing heat
flow in the BHE and its surrounding soil layer simultaneously.
The computed thin soil film temperature within the BHE model
acts as an amplitude to the radial soil mass temperature.

The soil mass is modeled as an axial-symmetric domain, where
the axis of symmetry coincides with the centerline of the borehole
heat exchanger. The soil mass is in thermal contact with the BHE
thin soil film. It can consist of many layers with different physical
properties, such as different thermal conductivity, mass density
and specific heat capacity. This entails that different parts of the
soil mass can have different effects on the borehole heat
exchanger.

Solving heat flow in a such nonhomogeneous geometry typi-
cally requires the use of a numerical solution method, such as
the finite element, the finite volume or the finite difference. How-
ever, these methods, and due to the above described complicated
geometry and physical processes, require significant CPU time
and capacity. To avoid this, here, the spectral element method is
utilized. A new spectral element for heat flow in an axial-
symmetric domain consisting of a borehole heat exchanger and a
soil layer is formulated. The spectral element is designed to calcu-
late a propagating heat flow in the vertical z-direction, along the
borehole heat exchanger, and a diffusive heat flow in the radial
r-direction, through the soil layer. Temperature distributions in
all shallow geothermal components: pipe-in, pipe-out, grout and
soil, are calculated simultaneously.
3. Governing equations

Heat flow in a single U-tube borehole heat exchanger, consist-
ing of four components (pipe-in, pipe-out, grout, and a thin soil
film) in contact with a soil mass can be described as
Pipe-in

qc
@Ti

@t
dVi � k

@2Ti

@z2
dVi þ qcu

@Ti

@z
dVi þ bigðTi � TgÞdSig ¼ 0 ð1Þ

Pipe-out

qc
@To

@t
dVo � k

@2To

@z2
dVo � qcu

@To

@z
dVo þ bogðTo � TgÞdSog ¼ 0 ð2Þ

Grout

qgcg
@Tg

@t
dVg � kg

@2Tg

@z2
dVg þ bigðTg � TiÞdSig

þ bogðTg � ToÞdSog þ bgsðTg � TsÞdSgs ¼ 0 ð3Þ
Soil film

qscs
@Ts

@t
dVs � ks

@2Ts

@z2
dVs þ bgsðTs � TgÞdSgs

þ bssðTs � Tsoiljr¼0ÞdSs ¼ 0 ð4Þ
Soil mass

1
a
@Tsoil

@t
� @2Tsoil

@r2
� 1

r
@Tsoil

@r
� @2Tsoil

@z2
¼ 0 ð5Þ

where the subscripts g and s represent the grout and the soil film,
respectively; and Ti ¼ TiðzÞ; To ¼ ToðzÞ; To ¼ ToðzÞ, Tg ¼ TgðzÞ,
Ts ¼ TsðzÞ and Tsoil ¼ Tsoilðr; zÞ; are the temperatures in pipe-in,
pipe-out, grout, soil film and soil mass respectively; k; kg ; and ks
(W/m�K) are the thermal conductivity of the circulating fluid, grout
and soil film, respectively; u (m/s) is the circulating fluid velocity;
big , bog , bgs, bss (W/m2�K) are the reciprocal of the thermal resistance
between pipe-in-grout, pipe-out-grout, grout–soil film, and soil
film-soil mass, respectively; qc (J/m3�K) is the volume heat capacity,
with c (J/kg�K) the specific heat and q (kg/m3) the mass density; dVi,
dVo, dVg and dVs (m3) are the partial volume of pipe-in, pipe-out,
grout and soil film, respectively; dSig , dSog , dSgs, dSs (m2) are the par-
tial surface area of pipe-in, pipe-out, grout and soil film, respec-
tively; and a (m2/s) is the thermal diffusivity of the soil, described as

a ¼ ks
qscs

ð6Þ

The associated initial and boundary conditions are:

Tiðz;0Þ ¼ Toðz;0Þ ¼ Tgðz;0Þ ¼ Tsðz;0Þ ¼ Tsoilðr; z;0Þ ð7Þ

Tið0; tÞ ¼ T inðtÞ ð8Þ

TiðL; tÞ ¼ ToðL; tÞ ð9Þ
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Tsoiljr¼0 ¼ Ts ð10Þ
TsoilðR; z; tÞ ¼ 0 ð11Þ

where, initially, the temperature distribution in the BHE compo-
nents is equal to that of the steady state condition of the soil mass
before heating/cooling operation starts; T in is the fluid temperature
at z = 0, coming from the heat pump. At the bottom of the BHE,
(z = L) the fluid temperature in pipe-in is equal to that in pipe-out,
neglecting the elbow part since it is too small compared to the
BHE length. Eq. (10) implies that the temperature of the soil film
acts as the amplitude of the soil mass temperature in the radial
direction. In Eq. (11), we utilized the concept of region-of-interest
[11,12], where R represents a fictitious homogeneous boundary,
far away from the borehole heat exchanger, where it is known, intu-
itively or analytically, that heat flux from the BHE vanishes. This
choice, as it will be apparent later, results to an algebraic summa-
tion over Fourier–Bessel series, alleviating the need to solve semi-
infinite integrals of oscillatory transcendental functions.

The thermal interaction coefficients between the borehole com-
ponents, and between the borehole and the soil mass are calcu-
lated using the Y-configuration analogy to Ohm’s law [12]. The
thermal interaction coefficients of the BHE components are given
in Appendix A.
4. Two-node spectral element formulation

The spectral element method is utilized to formulate an axial-
symmetric spectral element for heat flow in a coupled borehole
heat exchanger and a soil mass. The element consists of two nodes
located at its boundaries, and denoting two parallel circular planes
within which the heat is constrained to flow, Fig. 2. In the vertical
z-direction, the element extends to cover a whole layer depth, h,
and in the radial direction, the element is assumed to extend to a
fictitious finite boundary, R, where the BHE heat flux is known a
priori to vanish. The response at any point within the element is
described as a superposition of an incident flux from one boundary
node and a reflected flux, if occurs, from the other boundary node.

The procedure for formulating a spectral element starts by the
Fourier transform of the governing partial differential equations,
to convert them from the time domain to the frequency domain.
Then, an eigenfunction expansion is employed on the homoge-
neous part of the equations, to obtain the eigenvalues. This is fol-
lowed by discretizing the resulting equations into the nodal
values, to formulate an algebraic spectral element equation, similar
to that of the force–displacement finite element method. This
equation is complex and frequency dependent.
Fig. 2. Two-node spectral element.
Eqs. (1)–(4) are functions of z only, and act as a source to the soil
mass. While Eq. (5) is a function of r and z, and acts as a source to
the borehole heat exchanger. These equations are solved simulta-
neously, using the eigenfunction expansion, to solve Eqs. (1)–(4);
and the separation of variables and the Fourier–Bessel series
expansion, to solve Eq. (5). Eq. (4) is nonhomogeneous due to the
presence of Tsoil. To make it homogeneous, Tsoil needs to be given
in terms of Ts.

In the following, we first solve the soil heat equation, Eq. (5),
followed by solving Eqs. (1)–(4) for the borehole heat exchanger.
Then, a two-node spectral element is formulated. But first, a brief
description of the spectral analysis is given.

4.1. Spectral analysis

Using the discrete Fourier transform, the temperature, which is
a function of time and space, can be discretized as

Tðz; tmÞ ¼
X
n

T̂ðz;xnÞeixntm ; T̂ðz;xnÞ ¼ 1
N

X
m

Tðz; tmÞe�ixntm ð12Þ

in which N is the number of the discrete samples, where, in the fast
Fourier transform, it is usually made N ¼ 2c ¼ 2;4;8; . . . ;2048; . . ..
For a real signal, such as the one treated in this work, the transform
is symmetric about a middle frequency, referred to as the Nyquist
frequency. This means that N real points are transformed into N/2
complex points.

The spectral representation of the time derivative is given by

@T
@t

¼ @

@t

X
T̂neixnt ¼

X
ixnT̂neixnt ) ixT̂ ð13Þ

and of the spatial derivative is given by

@mT
@zm

¼ @m

@zm
X

T̂neixnt ¼
X @mT̂n

@zm
eixnt ) @mT̂

@zm
ð14Þ

For clarity of notation, the summation, the exponential term
and the subscripts are ignored and the transform is represented

as T () T̂.

4.2. Solution of soil heat equation

Fourier transform of Eq. (5), gives

ix
a

T̂soil � @2T̂soil

@r2
� 1

r
@T̂soil

@r
� @2T̂soil

@z2
¼ 0 ð15Þ

The general solution of the soil heat equations in the frequency
domain can be expressed as [11,12]

T̂soilðr; z;xÞ ¼
X
m

AmJ0ðnmrÞeifmz ð16Þ

where

fm ¼ �j2 � n2m
� �1=2

j ¼
ffiffiffiffiffiffiffiffiffiffiffi
ix=a

q
nm ¼ bm

R

ð17Þ

in which bm is the roots of the Bessel function of the first kind, J0.
Note that the solution of Eq. (15) in the radial direction is the Bessel
functions J0 and Y0 of the first and second kind of order zero. Since
the temperature at the origin, r ¼ 0, is finite, and since Y0 is infinite
at this point, the Y0 solution is discarded [11,12].

Relating the soil mass temperature, Tsoil, to the soil film temper-
ature, Ts, in Eq. (4) can be done by substituting Eq. (16) into Eq.
(10), givingX
m

Ameifmz ¼ T̂s ð18Þ
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This equation is a typical complex Fourier series, and its coeffi-
cient can be expressed as

Am ¼ 1
h

Z h

0
T̂se�ifmzdz ð19Þ

where h is the height of the element. Solving for the integral, it
yields

Am ¼ ðe�ifmh � 1ÞT̂s

�ifmh
ð20Þ

Substituting Eq. (20) into Eq. (16), gives

T̂soil ¼ T̂s

X
m

�AmJ0ðnmrÞ ð21Þ

where

�Am ¼ ðe�ifmh � 1Þ
�ifmh

ð22Þ

It can be noticed that the exponential term over z in Eq. (16) has dis-

appeared in Eq. (21), because it is included in bT s, as it is apparent in
Eq. (28), given below.

At the boundary between the soil film and the soil mass, Eq.
(21) yields

T̂soil

���
r¼0

¼ T̂s

X
m

�Am ð23Þ
4.3. Solution of BHE heat equation

Applying Eq. (12) to Eqs. (1)–(4), and substituting Eq. (23) into
Eq. (4), gives

�k
d2T̂ i

dz2
dVi þ qcu

dT̂i

dz
dVi þ ðixqcdVi þ bigdSigÞT̂ i � bigT̂gdSig ¼ 0

ð24Þ

�k
d2T̂o

dz2
dVi � qcu

dT̂i

dz
dVo þ ðixqcdVo þ bogdSogÞT̂o � bogT̂gdSog ¼ 0

ð25Þ

� kg
d2T̂g

dz2
dVg þ ðixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgsÞT̂g

� bigdSigT̂ i � bogdSogT̂o � bgsdSgsT̂s ¼ 0 ð26Þ

� ks
d2T̂s

dz2
dVs þ ixqscsdVs þ bgsdSgs þ bssdSs 1�

X
m

�Am

 ! !
T̂s

� bgsdSgsT̂g ¼ 0 ð27Þ
which forms a homogeneous set of equations that can be solved
using the eigenfunction expansion.

The utilization of the spectral analysis has reduced the partial
differential equations, Eqs. (1)–(4), into ordinary differential equa-
tions, Eqs. (24)–(27). However, the resulting equations are fre-
quency dependent and need to be solved for every frequency xn.

4.3.1. Eigenfunction expansion
The solution of the primary variables in Eqs. (24)–(27) can be

given by:

T̂ i ¼ Aie�ikz; T̂o ¼ Aoe�ikz; T̂g ¼ Age�ikz; T̂s ¼ Ase�ikz ð28Þ
in which Ai;Ao;Ag and As are the integral constants, which are

related to T̂ i; T̂o; T̂g and T̂s, respectively; and k denotes the system
eigenvalues, which need to be determined.
Substituting Eq. (28) into Eqs. (24)–(27), gives

k2kdViAie�ikz � ikqcudViAie�ikz þ ðixqcdVi þ bigdSigÞAie�ikz

� bigdSigAge�ikz ¼ 0 ð29Þ

k2kdViAoe�ikz þ ikqcudVoAie�ikz þ ðixqcdVo þ bogdSogÞAoe�ikz

� bogdSogAge�ikz ¼ 0 ð30Þ

k2kgdVgAge�ikz þ ðixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgsÞAge�ikz

� bigdSigAie�ikz � bogdSogAoe�ikz � bgsdSgsAse�ikz ¼ 0 ð31Þ

k2ksdVsAse�ikz þ ixqscsdVs þ bgsdSgs þ bssdSs 1�
X
m

�Am

 ! !
Ase�ikz

� bgsdSgsAge�ikz ¼ 0 ð32Þ

Dividing Eqs. (29)–(32) by e�ikz, rearranging and putting it in a
matrix form, gives

a11 0 a13 0
0 a22 a23 0
a31 a32 a33 a34
0 0 a43 a44

0BBB@
1CCCA

Ai

Ao

Ag

As

26664
37775 ¼ 0 ð33Þ

where

a11 ¼ k2kdVi � ikqcudVi þ ixqcdVi þ bigdSig
a13 ¼ �bigdSig

a22 ¼ k2kdVo þ ikqcudVo þ ixqcdVo þ bogdSog
a23 ¼ �bogdSog
a31 ¼ �bigdSig
a32 ¼ �bogdSog

a33 ¼ k2kgdVg þ ixqgcgdVg þ bigdSig þ bogdSog þ bgsdSgs
a34 ¼ �bgsdSgs
a43 ¼ �bgsdSgs

a44 ¼ k2ksdVs þ ixqscsdVs þ bgsdSgs þ bssdSs 1�
X
m

�Am

 !

Since T̂ i; T̂g ; T̂o and T̂s are coupled, the constants, Ai;Ao;Ag and As

are related to each other. Using Eqs. (29)–(33), the following rela-
tionships exist:

Pipe in-grout

Ai ¼ YigAg

Yig ¼ bigdSig
k2kdVi � ikqcudVi þ ixqcdVi þ bigdSig

ð34Þ

Pipe out-grout

Ao ¼ YogAg

Yog ¼ bogdSog
k2kdVo � ikqcudVo þ ixqcdVo þ bogdSog

ð35Þ

Soil film-grout

As ¼ YsgAg

Ysg ¼ bgsdSgs

k2ksdVs þ ixqscsdVs þ bgsdSgs þ bssdSs 1�
X
m

�Am

 ! ð36Þ

For each k there is a corresponding Yig ;Yog and Ysg , i.e. there are

Yig
1 ;Y

og
1 ;Ysg

1 for k1, etc. [16].
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The þ� signs in Eqs. (34) and (35) refer to the fluid velocity direc-
tion at the nod. The fluid velocity in pipe-in at nod 1 is ð�Þ, while it
is ðþÞ at nod 2. For pipe-out, the signs are opposite.

Non-trivial solution of Eq. (33) can only be obtained by letting
the determinate equal to zero, giving a complex eight degree poly-
nomial of the form:

a8k
8 þ a7k

7 þ a6k
6 þ a5k

5 þ a4k
4 þ a3k

3 þ a2k
2 þ a1kþ a0 ¼ 0

ð37Þ
This polynomial represents the eigenfunction of the single U-

tube BHE system with k denoting its set of eigenvalues, which
can be obtained by solving for the roots of Eq. (37). Only for this
set of eigenvalues do the eigenfunction exist that satisfy the
boundary conditions of the problem. Eight eigenvalues in two
groups of four, differ in sign, are obtained from Eq. (37). The first
group is related to the positive fluid velocity, and the second to
the negative fluid velocity. The exact forms of the coefficients of
Eq. (37) are given in Appendix B. They are obtained using MAPLE
software [17].
4.3.2. Spectral element formulation in z-direction
Consider a one-dimensional heat flow in an element of length h

bounded by two nodes: node 1 and node 2, Fig. 2. At each node,
there are four degrees of freedom, representing the temperatures
in pipe-in, pipe-out, grout and soil film. Using Eq. (28), the temper-
T̂ i1

T̂o1

T̂g1

T̂s1

T̂ i2

T̂g2

T̂o2

T̂s2

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼

Yig
1 Yig

2 Yig
3 Yig

4 Yig
5 e

�ik5h Yig
6 e

�ik6h Yig
7 e

�ik7h Yig
8 e

�ik8h

Yog
1 Yog

2 Yog
3 Yog

4 Yog
5 e�ik5h Yog

6 e�ik6h Yog
7 e�ik7h Yog

8 e�ik8h

1 1 1 1 e�ik5h e�ik6h e�ik7h e�ik8h

Ysg
1 Ysg

2 Ysg
3 Ysg

4 Ysg
5 e

�ik5h Ysg
6 e

�ik6h Ysg
7 e

�ik7h Ysg
8 e

�ik8h

Yig
1 e

�ik1h Yig
2 e

�ik2h Yig
3 e

�ik3h Yig
4 e

�ik4h Yig
5 Yig

6 Yig
7 Yig

8

Yog
1 e�ik1h Yog

2 e�ik2h Yog
3 e�ik3h Yog

4 e�ik4h Yog
5 Yog

6 Yog
7 Yog

8

e�ik1h e�ik2h e�ik3h e�ik4h 1 1 1 1
Ysg

1 e
�ik1h Ysg

2 2e�ik2h Ysg
3 e

�ik3h Ysg
4 e

�ik4h Ysg
5 Ysg

6 Ysg
7 Ysg

8

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA

Ag1

Bg1

Cg1

Dg1

Ag2

Bg2

Cg2

Dg2

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð44Þ
atures at any point along the element are calculated by the super-
position of an incident flux, from node 1, and a reflective flux, from
node 2, as

T̂ i ¼ Ai1e�ik1z þ Bi1e�ik2z þ Ci1e�ik3z þ Di1e�ik4z þ Ai2e�ik5ðh�zÞ

þ Bi2e�ik6ðh�zÞ þ Ci2e�ik7ðh�zÞ þ Di2e�ik8ðh�zÞ ð38Þ

T̂o ¼ Ao1e�ik1z þ Bo1e�ik2z þ Co1e�ik3z þ Do1e�ik4z þ Ao2e�ik5ðh�zÞ

þ Bo2e�ik6ðh�zÞ þ Co2e�ik7ðh�zÞ þ Do2e�ik8ðh�zÞ ð39Þ

T̂g ¼ Ag1e�ik1z þ Bg1e�ik2z þ Cg1e�ik3z þ Dg1e�ik4z þ Ag2e�ik5ðh�zÞ

þ Bg2e�ik6ðh�zÞ þ Cg2e�ik7ðh�zÞ þ Dg2e�ik8ðh�zÞ ð40Þ

T̂s ¼ As1e�ik1z þ Bs1e�ik2z þ Cs1e�ik3z þ Ds1e�ik4z þ As2e�ik5ðh�zÞ

þ Bs2e�ik6ðh�zÞ þ Cs2e�ik7ðh�zÞ þ Ds2e�ik8ðh�zÞ ð41Þ
As for the finite element method, the governing equations are

solved in terms of the nodal values.
At node 1, z = 0, substituting Eqs. (34)–(36) into Eqs. (38), (39)

and (41), the nodal temperatures become
T̂i1 ¼ Ag1Y
ig
1 þ Bg1Y

ig
2 þ Cg1Y

ig
3 þDg1Y

ig
4 þAg2Y

ig
5 e

�ik5h

þBg2Y
ig
6 e

�ik6h þ Cg2Y
ig
7 e

�ik7h þDg2Y
ig
8 e

�ik8h

T̂o1 ¼ Ag1Y
og
1 þBg1Y

og
2 þ Cg1Y

og
3 þDg1Y

og
4 þAg2Y

og
5 e�ik5h

þBg2Y
og
6 e�ik6h þ Cg2Y

og
7 e�ik7h þDg2Y

og
8 e�ik8h

T̂g1 ¼ Ag1 þ Bg1 þ Cg1 þDg1 þAg2e�ik5h þ Bg2e�ik6h þ Cg2e�ik7h þDg2e�ik8h

T̂s1 ¼ Ag1Y
sg
1 þ Bg1Y

sg
2 þ Cg1Y

sg
3 þDg1Y

sg
4 þAg2Y

sg
5 e

�ik5h

þBg2Y
sg
6 e

�ik6h þCg2Y
sg
7 e

�ik7h þDg2Y
sg
8 e

�ik8h

ð42Þ

At node 2, z = h, and similarly, upon substituting Eqs. (34)–(36) into
Eqs.(38), (39) and (41), the nodal temperatures become

T̂ i2 ¼ Ag1Y
ig
1 e

�ik1h þ Bg1Y
ig
2 e

�ik2h þ Cg1Y
ig
3 e

�ik3h þDg1Y
ig
4 e

�ik4h

þAg2Y
ig
5 þ Bg2Y

ig
6 þ Cg2Y

ig
7 þDg2Y

ig
8

T̂o2 ¼ Ag1Y
og
1 e�ik1h þ Bg1Y

og
2 e�ik2h þ Cg1Y

og
3 e�ik3h þDg1Y

og
4 e�ik4h

þAg2Y
og
5 þ Bg2Y

og
6 þ Cg2Y

og
7 þDg2Y

og
8

T̂g2 ¼ Ag1e�ik1h þ Bg1e�ik2h þ Cg1e�ik3h þDg1e�ik4h þAg2 þ Bg2 þ Cg2 þDg2

T̂s2 ¼ Ag1Y
sg
1 e

�ik1h þ Bg1Y
sg
2 e

�ik2h þ Cg1Y
sg
3 e

�ik3h þDg1Y
sg
4 e

�ik4h

þAg2Y
sg
5 þ Bg2Y

sg
6 þ Cg2Y

sg
7 þDg2Y

sg
8

ð43Þ

In a matrix form, Eqs. (42) and (43) can be presented as
which indicates that the temperatures of pipe-in, pipe-out and soil
film are represented in terms of the grout coefficients. This equa-
tion can be written as

T̂node ¼ Hðk;xnÞA ð45Þ
Solving for A, gives

A ¼ Hðk;xnÞ�1T̂node ð46Þ
The next step is to relate the heat flux to the temperature at the

nodes. The heat fluxes for the BHE components are

q̂i ¼ þ� k
@T̂ i

@z
dAi

q̂o ¼ þ� k
@T̂o

@z
dAo

q̂g ¼ þ� kg
@T̂g

@z
dAg

q̂s ¼ þ� ks
@T̂s

@z
dAs

ð47Þ

where dAi, dAo , dAg and dAs are the cross sectional areas of pipe-in,
pip-out, grout and soil film respectively. The þ� sign refers to the
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direction of the heat flux: the heat flux at node 1 is ð�Þ while at
node 2, it is (+). Substituting Eqs. (34)–(36) and Eqs.(38)–(41) into
Eq. (47) gives

q̂i ¼ þ� kdAi �ik1Ag1Y
ig
1 e

�ik1z � ik2Bg1Y
ig
2 e

�ik2z � ik3Cg1Y
ig
3 e

�ik3z
�

�ik4Dg1Y
ig
4 e

�ik4z þ ik5Ag2Y
ig
5 e

�ik5ðh�zÞ þ ik6Bg2Y
ig
6 e

�ik6ðh�zÞ

þik7Cg2Y
ig
7 e

�ik7ðh�zÞ þ ik8Dg2Y
ig
8 e

�ik8ðh�zÞ
�

ð48Þ

q̂o ¼ þ� kdAo �ik1Ag1Y
og
1 e�ik1z � ik2Bg1Y

og
2 e�ik2z � ik3Cg1Y

og
3 e�ik3z

�
�ik4Dg1Y

og
4 e�ik4z þ ik5Ag2Y

og
5 e�ik5ðh�zÞ þ ik6Bg2Y

og
6 e�ik6ðh�zÞ

þik7Cg2Y
og
7 e�ik7ðh�zÞ þ ik8Dg2Y

og
8 e�ik8ðh�zÞ� ð49Þ

q̂g ¼ þ� kgdAg �ik1Age�ik1z � ik2Bge�ik2z � ik3Cge�ik3z � ik4Dge�ik4z
�

þik5Ag2e�ik5ðh�zÞ þ ik6Bg2e�ik6ðh�zÞ þ ik7Cg2e�ik7ðh�zÞ

þ ik8Dg2e�ik8ðh�zÞ� ð50Þ

q̂s ¼ þ� ksdAs �ik1Ag1Y
sg
1 e

�ik1z � ik2Bg1Y
sg
2 e

�ik2z � ik3Cg1Y
sg
3 e

�ik3z
�

�ik4Dg1Y
sg
4 e

�ik4z þ ik5Ag2Y
sg
5 e

�ik5ðh�zÞ þ ik6Bg2Y
sg
6 e

�ik6ðh�zÞ

þik7Cg2Y
sg
7 e

�ik7ðh�zÞ þ ik8Dg2Y
sg
8 e

�ik8ðh�zÞ� ð51Þ
At the element nodes, Eq. (48)–(51) becomes:
At node 1, z = 0:
(a) (b)
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Fig. 3. Spectral element model vs. van Genuchten and Alves solution: (a) with time at z = 100 m, (b) along the pipe at time = 500 s.
Table 1
Material and geometrical parameters.

Parameter Value

Borehole:
Borehole length 100 m
Borehole diameter 0.12 m
Pipe external diameter 0.026 m
Pipe roughness 3 E�6
Pipe thermal conductivity, kp 0.42 W/(m�K)
Fluid:
Density, q 1000 kg/m3

Specific thermal capacity, c 4186 J/(kg�K)
Thermal conductivity, k 0.56 W/(m�K)
Dynamic viscosity, l 0.001 Pa�s
q̂i1 ¼ �kdAið�ik1Ag1Y
ig
1 � ik2Bg1Y

ig
2 � ik3Cg1Y

ig
3 � ik4Dg1Y

ig
4

þ ik5Ag2Y
ig
5 e

�ik5h þ ik6Bg2Y
ig
6 e

�ik6h þ ik7Cg2Y
ig
7 e

�ik7h þ ik8Dg2Y
ig
8 e

�ik8hÞ
q̂o1 ¼ �kdAoð�ik1Ag1Y

og
1 � ik2Bg1Y

og
2 � ik3Cg1Y

og
3 � ik4Dg1Y

og
4

þ ik5Ag2Y
og
5 e�ik5h þ ik6Bg2Y

og
6 e�ik6h þ ik7Cg2Y

og
7 e�ik7h þ ik8Dg2Y

og
8 e�ik8hÞ

q̂g1 ¼ �kgdAgð�ik1Ag � ik2Bg � ik3Cg � ik4Dg þ ik5Ag2e�ik5h

þ ik6Bg2e�ik6h þ ik7Cg2e�ik7h þ ik8Dg2e�ik8hÞ
q̂s1 ¼ �ksdAsð�ik1Ag1Y

sg
1 � ik2Bg1Y

sg
2 � ik3Cg1Y

sg
3 � ik4Dg1Y

sg
4

þ ik5Ag2Y
sg
5 e

�ik5h þ ik6Bg2Y
sg
6 e

�ik6h þ ik7Cg2Y
sg
7 e

�ik7h þ ik8Dg2Y
sg
8 e

�ik8hÞ
ð52Þ

At node 2, z = h:

q̂i2 ¼ kdAið�ik1Ag1Y
ig
1 e

�ik1h � ik2Bg1Y
ig
2 e

�ik2h � ik3Cg1Y
ig
3 e

�ik3h

� ik4Dg1Y
ig
4 e

�ik4h þ ik5Ag2Y
ig
5 þ ik6Bg2Y

ig
6 þ ik7Cg2Y

ig
7 þ ik8Dg2Y

ig
8 Þ

q̂o2 ¼ kdAoð�ik1Ag1Y
og
1 e�ik1h � ik2Bg1Y

og
2 e�ik2h � ik3Cg1Y

og
3 e�ik3h

� ik4Dg1Y
og
4 e�ik4h þ ik5Ag2Y

og
5 þ ik6Bg2Y

og
6 þ ik7Cg2Y

og
7 þ ik8Dg2Y

og
8 Þ

q̂g2 ¼ kgdAgð�ik1Age�ik1h � ik2Bge�ik2h � ik3Cge�ik3h � ik4Dge�ik4h

þ ik5Ag2 þ ik6Bg2 þ ik7Cg2 þ ik8Dg2Þ
q̂s2 ¼ ksdAsð�ik1Ag1Y

sg
1 e

�ik1h � ik2Bg1Y
sg
2 e

�ik2h � ik3Cg1Y
sg
3 e

�ik3h

� ik4Dg1Y
sg
4 e

�ik4h þ ik5Ag2Y
sg
5 þ ik6Bg2Y

sg
6 þ ik7Cg2Y

sg
7 þ ik8Dg2Y

sg
8 Þ

ð53Þ
In a matrix form:

q̂node ¼ Mðk;xnÞA ð54Þ
where the matrix components are given in Appendix C.
Parameter Value

Grout:
Density, qg 1420 kg/m3

Specific thermal capacity, cg 1197 J/(kg�K)
Thermal conductivity, kg 0.62 W/(m�K)
Soil:
Film thickness 0.5 cm
density, qs 1680 kg/m3

Specific thermal capacity, cs 400 J/(kg�K)
Thermal conductivity, ks at z P �50 m 2.5 W/(m�K)
Thermal conductivity, ks at z 6 �50 m 5W/(m�K)



Fig. 4. A schematic representation of a semi-infinite solid subjected to a constant
heat source.
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Substituting Eq. (46) into Eq. (54), yields

q̂node ¼ Kðk;xnÞT̂node ð55Þ

in which Kðk;xnÞ ¼ Mðk;xnÞH�1ðk;xnÞ, representing the spectral
element stiffness matrix, in resemblance to that of the finite ele-
ment method. However, the spectral element matrix is exact and
frequency-dependent.

4.3.3. General solution BHR heat equations
Having determined the eigenvalues and the integration con-

stants, the general solution of the single U-tube BHE system of
equations can then be obtained by summing over all eigenfunc-
tions (corresponding to k1, k2, . . ., k8) and frequencies, as
(a)                                 
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Fig. 5. SE model vs. ILS model. (a) 5 days,
Tðz; tÞ ¼
X
n

A1e�ik1z þ B1e�ik2z þ C1e�ik3z þ D1e�ik4z þ A2e�ik5ðL�zÞ�
þB2e�ik6ðL�zÞ þ C2e�ik7ðL�zÞ þ D2e�ik8ðL�zÞ�eixnt ð56Þ

where Tðz; tÞ represents Ti, To, Tg and Ts.
5. Spectral element mesh assembly and solution

Eqs. (21) and (56) solve the temperature distributions in all BHE
components and the surrounding soil layer. For a multilayer sys-
tem, assembly of the global system of equations is necessary. For
this, the finite element techniques for element numbering, node
numbering and mesh assembly are utilized [18]. The solution of
the global system of equations is conducted using the IMSL math-
ematical library subroutine, lin_sol_gen, which solves a general sys-
tem of linear equations Ax ¼ b, [19]. Eq. (37) is solved using the
IMSL subroutine, DZPOCC, which solves for the roots of a polyno-
mial with complex coefficients. The reconstruction of the time
domain is carried out using the inverse FFT algorithm.
6. Model verification

Exact solution describing heat flow in a single U-tube BHE
embedded in a multilayer soil mass has not been introduced
before. Accordingly, verification of the proposed model is done
by comparing its computational results with those obtained from
analytical solutions of simplified cases. The BHE model is verified
against the van Genuchten and Alves [20] solution of a one-
dimensional advective–dispersive solute transport equation. The
soil mass model is verified against the Carslaw and Jaeger [1] solu-
tion of an infinite line source embedded in a semi-infinite solid.
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Fig. 6. A schematic representation of a 5 layers shallow geothermal system.
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6.1. Verification against van Genuchten and Alves solution

van Genuchten and Alves provided an analytical solution to a
one-dimension advective–diffusive partial differential equation of
the form:

R
@c
@t

� D
@2c
@z2

þ F
@c
@z

þ lc � c ¼ 0 ð57Þ
The initial and boundary conditions are:

cðz;0Þ ¼ AðzÞ ¼ c
l
þ ðCint � c

l
ÞeðF��uÞ

2D z

cð0; tÞ ¼ Cin 0 < t < to
0 t > to

�
@c
@z

ð1; tÞ ¼ 0

ð58Þ

where R;D; F;l and c are constants, and �u ¼ F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4lD

F2

q
. The initial

value, AðzÞ in Eq. (58), is determined by solving the steady state con-
dition of Eq. (57).

Their solution is:

cðz;tÞ¼AðzÞþ1
2
ðCin�CintÞ e

ðF��uÞ
2D zerfc

Rz� �ut

2ðDRtÞ12

" #
þe

ðFþ�uÞ
2D zerfc

Rzþ �ut

2ðDRtÞ12

" # !
0< t6 to ð59Þ

and
Table 2
Material and geometrical parameters.

Parameter Value

Borehole:
Borehole length 100 m
Borehole diameter 0.126 m
Pipe external diameter 0.032 m
Pipe roughness 3 E�6
Pipe thermal conductivity 0.42 W/(m�K)
Fluid:
Density, q 1000 kg/m3

Specific thermal capacity, c 4186 J/(kg�K)
Thermal conductivity, k 0.56 W/(m�K)
Dynamic viscosity, l 0.001 Pa�s
Velocity, u 0.5 m/s
Grout:
Density, qg 1420 kg/m3

Specific thermal capacity, cg 0.62 W/(m�K)
Thermal conductivity, kg 1197 J/(kg�K)
cðz;tÞ¼AðzÞþ1
2
ðCin�CintÞ e

ðF��uÞ
2D zerfc

Rz� �ut

2ðDRtÞ12

" #
þe

ðFþ�uÞ
2D zerfc

Rzþ �ut

2ðDRtÞ12

" # !

�1
2
Cin e

ðF��uÞ
2D zerfc

Rz� �uðt� toÞ
2ðDRðt� toÞÞ

1
2

" #
þe

ðFþ�uÞ
2D zerfc

Rzþ �uðt� toÞ
2ðDRðt� toÞÞ

1
2

" # !
t> t0 ð60Þ

The van Genuchten and Alves model and the proposed spectral
element model are employed to solve heat flow in a heat pipe
embedded in a constant temperature environment. The geometry
and material parameters are:

Pipe length = 100 m
Pipe radius, ri = 0.016 m
Fluid qc = 4.1298E6 J/m3�K
Fluid k = 0.56 W/m�K
Fluid velocity, u = 0.1 and 1 m/s
big = 12 W/m2�K

The initial steady state temperature, and the temperature at the
pipe inlet are:

Tstðt ¼ 0; zÞ ¼ 10 �C

T inðt; z ¼ 0Þ ¼ 20 �C 0 < t 6 4000s
0 �C 4000 < t < 1s

� ð61Þ

In the spectral element model, T in is equal to Tst þ DT in, where,
in this case, DT in = 10 �C.

To compare between the two models, the van Genuchten and
Alves parameters need to be adjusted to match the physical
parameters of the spectral element model. Comparing Eq. (1) with
Eq. (57), yields:

R ¼ qcdVi

D ¼ kdVi

F ¼ qcudVi

l ¼ bigdSig
c ¼ 0
Cint ¼ Tst

Cin ¼ T in

ð62Þ

Also, and as the proposed model is general and applicable to a
multiple component domain, the following adjustments are
necessary:

a. The thermal interaction coefficient, bog , is made relatively
small (0.01 W/m2�K) to insure insulation, such that there is
no heat flow between pipe-in and pipe-out.
Parameter Value

Soil:
Film thickness 0.5 cm
Density, qs 1680 kg/m3

Specific thermal capacity, cs 400 J/(kg�K)

0 P z P �20 m
Thermal conductivity, ks 2.5 W/(m�K)
�20 P z P �40 m
Thermal conductivity, ks 1W/(m�K)
�40 P z P �60 m
Thermal conductivity, ks 4W/(m�K)
�60 P z P �80 m
Thermal conductivity, ks 0.5 W/(m�K)
�80 P z P �100 m
Thermal conductivity, ks 3W/(m�K)



Fig. 7. Ti , To , Tg and Ts at (a) z ¼ 0 m, (b) z ¼ 50 m, (c) z ¼ 100 m.
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b. The thermal interaction coefficients of the grout–soil film
and the soil film-soil mass are made relatively high
(bgs ¼ bss ¼ 1000W/m2�K) so insure a full contact.

c. The soil mass temperature is made constant, by setting �Am in
Eq. (22), equal to zero.

Using the spectral element model, two analyses were con-
ducted: one using one spectral element only, with element length
equal to 100 m; and another using 5 elements, with an element
length equal to 20 m. Two fluid velocities were analyzed: 0.1 m/s
and 1 m/s.

The input temperature time histories of Tin and Tst were trans-
formed to the frequency domain using the forward FFT. 16,384
samples, with a sample rate of 1 s, were used, giving a time win-
dow of 16384 s.

Fig. 3-a, shows the temperature distributions versus time at
z ¼ 100 m, obtained from the van Genuchten and Alves solution
and the spectral element model, for both mesh sizes and fluid
velocities. Fig. 3-b, shows the temperature distributions along the
depth of the BHE, at time t ¼ 500 s, obtained from both models.
Apparently, the computational results are nearly identical.

6.2. Verification against Carslaw and Jaeger infinite line source (ILS)
model

Carslaw and Jaeger [1] provided an analytical solution to heat
flow in a semi-infinite solid, subjected to a constant heat flow from
an infinite line source. In such a domain, only radial heat flow
exists, and the temperature distribution is described as

T ¼ Tst þ q
2pk

Z 1

b

e�b2

b
db ð63Þ

in which

b ¼ r
2
ffiffiffiffiffi
at

p ; and a ¼ k
qc

ð64Þ

with r the radial distance from the source, t the time, k the soil heat
conductivity, q the mass density, c the heat capacity, Tst the initial
soil temperature, and q heat flux per meter length of the line source
(pipe).

Solution for this semi-infinite upper limit integral is available in
exact form for b < 0:2, and in tables, for larger values of b. For
b < 0:2, the solution to the integrand of Eq. (63) is:

IðbÞ ¼ ln
1
b
þ b2

2
� b4

8
� 0:2886 ð65Þ

The tabulated values b < 3:1 are available in Ingersoll et al. [21].
In such a domain, it is assumed that there is a full contact

between the heat source and the medium. To simulate such a
domain, the temperature along the pipe must be constant. This
can be done by assuming a high flow rate, generated by the
refrigerant.

The ILS model and the proposed spectral element model are
employed to solve heat flow in a soil mass consisting of two layers,
and subjected to a constant line heat source equal to 0 �C. The ini-
tial temperature, Tst , is assumed 10 �C. The material and geometri-
cal parameter of the system are shown in Table 1, and illustrated in
Fig. 4.

The ILS model does not recognize the layers, and hence the tem-
perature distributions are obtained for each layer, regardless of the
other layer. In the spectral element model, however, this is possi-
ble, but requires two spectral elements.

In the spectral model, the inlet temperature, T in, is equal to 0 �C,
and the fluid velocity, u, is equal to 5 m/s, a relatively high velocity
to insure a constant 0 �C along the whole length of the BHE. The
thermal interaction coefficients, big , bog , bgs and bss, are calculated
using Eqs. (A1)–(A8). The homogeneous fictitious boundary of
the soil layer, R, is calculated by:

R ¼
ffiffiffiffiffiffiffiffi
6at

p
ð66Þ

where a is the thermal diffusivity of the soil and t is the time when
the temperature at point R reaches its maximum [1].

The number of FFT samples is 16,384, with a sample rate of 1 h,
giving a time window of 16,384 h. The number of the Fourier–Bes-
sel series terms is 500. Four calculations with different transient
times of 5 days, 25 days, 50 days and 100 days were conducted.

Fig. 5, shows the computational results at z ¼ 49 m (top layer)
and at z ¼ 51 m (bottom layer), along the radial direction, obtained
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from both models. The radial distances from the line heat source
are chosen such that they are solvable by Eq. (65), or available in
the Carslaw and Jaeger tables. Apparently, the two results are
nearly identical.

Note that as the ILS model adopts a Neumann boundary condi-
tion with constant heat flux and our model adopts a time-
dependent Dirichlet boundary condition, we compared the results
by first running our model with a prescribed Tin at the inlet of pipe-
in. Then we calculate the resulting heat flux at a certain time and
depth along the BHE as a post processing. This heat flux is applied
to the ILS model to calculate the soil temperature.

7. Numerical examples

To illustrate the model computational capabilities, a numerical
example illustrating the behavior of a shallow geothermal system
subjected to a varying temperature signal is introduced. A 100 m
single U-tube BHE embedded in a soil mass consisting of 5 layers
with different physical properties, Fig. 6, is studied. The material
and geometrical properties are given in Table 2. Relatively short
and long terms were studied.

For the short term, the initial and boundary conditions are:

Tst ¼ 10 t ¼ 0

T in ¼

20 t < 5h
10 5h 6 t < 7h
18 7h 6 t < 12h
10 12h 6 t < 14h
16 14h 6 t < 19h
10 19h 6 t

8>>>>>>>><>>>>>>>>:
ð67Þ
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Fig. 8. Ti , To , Tg and Ts along the BHE at (a)
where it can be seen that the BHE has a 2 h off after every 5 h of
operation.

The frequency discretization of T in was conducted using 16,384
(214) FFT samples with a sample rate of 10 s, giving a time window
of approximately 45.5 h. The thermal coefficients big , bog , bgs and bss

are determined using Eqs. (A1)–(A8). The domain is discretized
using 5 spectral elements, one for each layer.

Fig. 7 shows the temperature distributions versus time for pipe-
in (Ti), pipe-out (To), grout (Tg) and soil film (Ts) at different
depths: z ¼ 0;50 and 100 m. The figure shows that, although not
verified quantitatively, the response signals are smooth and exhibit
thermal dissipation with distance.

For the relatively long term, the inlet temperature varies as

Tin ¼ 20 t < 15000 hours
10 15000 hours 6 t

�
ð68Þ

The frequency discretization of T in was conducted using 32,768
(215) FFT samples with a sample rate of 1 h, giving a time window
of approximately 3.5 years.

Fig. 8 shows the temperature distributions along the BHE in z
direction for pipe-in (Ti), pipe-out (To), grout (Tg) and soil film tem-
perature (Ts) at different times: 1 h, 1 day, 1 month and 1 year. It
can be seen that at the first hour, the effect of the different thermal
parameters of the surrounding soil layers was not apparent, but
became significant with increasing time.

This example shows that the model is capable of calculating
heat flow in a relatively complicated geometry, consisting of mul-
tiple layers, and subjected to a complicated boundary conditions
consisting of multiple pulses. The CPU time of conducting this
example was on average less than 1 min for 100 output values in
z domain, and 30 output values in r domain, in a normal Intel PC.
 (b)
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8. Conclusion

In this publication, a spectral element model for the simulation
of transient conduction–convection heat flow in an axisymmetric
shallow geothermal system consisting of a single U-tube borehole
heat exchanger embedded in a layered soil mass is introduced. A
new two-node spectral element is formulated. For a homogeneous
domain, the heat equations are solved analytically. For a multiple
nonhomogeneous domain with different physical properties, the
finite element technique is utilized to assemble an algebraic sys-
tem of linear equations, Ax ¼ b, which can be solved using standard
solvers. One element is sufficient to describe heat flow in all BHE
components and its surrounding soil layer. For a multilayer system,
the number of elements is equal to the number of layers, making
the model highly efficient.

Despite the apparent rigor of the model, it is relatively easy to
implement in computer codes. Standard MAPLE commands and
IMSL subroutines can be utilized to solve the eigenfunction and
the global system of equations. As a result of the model accuracy
and computationally efficiency, it can be utilized directly for for-
ward analysis, or in an iterative scheme for parameter identifica-
tion of system thermal parameters. Also, it is generic and can be
utilized for modeling a wide range of engineering mechanics appli-
cations involving linear heat flow or other diffusive-advective pro-
cesses occurring in relatively complicated geometries.
Appendix A.

The thermal interaction coefficients between the borehole com-
ponents, and between the borehole and the soil mass are calcu-
lated using the Y-configuration analogy to Ohm’s law [12],
Fig. A1. Following this configuration, the thermal interaction coef-
ficient for pipe-in - grout is described as

big ¼ 1
Rig

ðA1Þ

where

Rig ¼ Rconvection þ Rpipe material ¼ 1
ro=ri�h

þ ro lnðro=riÞ
kp

ðA2Þ

in which ri and ro are the inner and outer radius of pipe-in, respec-
tively; kp is the thermal conductivity of pipe-in material; and
�h ¼ Nuk=D is the convective heat transfer coefficient, where D is
the inner diameter of the pipe and Nu is the Nusselt Number of
the circulating fluid. A similar formulation is valid for pipe-out-
grout, Rog .
Fig. A1. BHE-soil Y-configuration thermal circuit.
The thermal resistivity for the grout –soil film can be expressed
as

Rgs ¼ 1
RigkRog þ Rg

¼ 1
RigRog
RigþRog

þ Rg

ðA3Þ

where

Rg ¼ rg lnðrg=reqÞ
kg

ðA4Þ

in which rg is the radius of the grout (borehole), and

req ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2in þ r2out

q
with rin is pipe-in inner radius and rout is pipe-

out inner radius. The thermal interaction coefficient of the grout–
soil is described as

bgs ¼ 1
Rgs

ðA5Þ

The thermal resistivity for the soil film-soil mass can be
expressed as

Rss ¼ 1
Rgs þ Rs

ðA6Þ

where

Rs ¼ rs lnðrs=rgÞ
ks

ðA7Þ

in which rs is the radius of the soil film. The thermal interaction
coefficient of the soil film-soil mass is then described as

bss ¼ 1
Rss

ðA8Þ

It is worth mentioning that the use of an equivalent area of the
grout might be a shortcoming of using the Y-configuration thermal
circuit. However, the error introduced by this assumption is minor.
In principle, the thermal resistance must be determined experi-
mentally. But to avoid this relatively expensive experiment, engi-
neers usually utilize mathematical models to describe the BHE
thermal resistance. So far, there is not yet a consensus among
geothermal engineers on a unique model, which has so far proved
to be an ideal representation of the real BHE thermal resistance.
However, the proposed spectral element model is generic and
can incorporate any constitutive relationship, provided that it is
physically accurate.

Appendix B.

The coefficients of the eight-degree polynomial of the single U-
tube eigenfunction are:

a8 ¼ kskgk
2dVgdVsdVodVi

a7 ¼ 0

a6 ¼ �bssdSskgk
2dVgdVodVi

P �Am þ kskgq2c2u2dVgdVsdVodVi

þbgsdSgskgk
2dVgdVodVi þ 2ixqckskgkdVgdVsdVokdVi

þkskgkbigdSigdVodVgdVsþ kskgkbogdSogdVgdVsdVi

þiqscsdVgdVsxkgk
2dVodVi þ ksk

2bogdSogdVsdVodVi

þbssdSsdVgkgk
2dVodVi þ bigdSigdVsksk

2dVodVi

þbgsdSgsdVsksk
2dVodViþ iqgcgdVgdVsxksk

2dVodVi

a5 ¼ iqcukskgbigdSigdVgdVsdVo � iqcukskgbogdSogdVgdVsdVi
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a4¼�k2bigdSigbssdSsdVodVi
P�Am�k2bogdSogbssdSsdVodVi

P�Am

�k2bgsdSgsbssdSsdVodVi
P�AmþkskbogdSogbigdSigdVsdVo

þkgkbssdSsbigdSigdVgdVoþkgkbssdSsbogdSogdVgdVi

þkskgbogdSogbigdSigdVgdVsþkgkbgsdSgsbigdSigdVgdVo

þkgkbgsdSgsbogdSogdVgdViþkskbgsdSgsbigdSigdVsdVo

þkskbgsdSgsbogdSogdVsdViþkskbigdSigbogdSogdVsdVi

þixqgcgkskbigdSigdVgdVsdVoþ ixqgcgkskbogdSogdVgdVsdVi

þixqscskgkbigdSigdVgdVsdVoþ ixqsckgkbogdSogsdVgdVsdVi

þ2ixqckskbgsdSgsdVsdVodViþ2iqcxkskbigdSigdVsdVodVi

þ2iqcxkgkbgsdSgsdVgdVodVi� iqgcgxk2bssdSsdVgdVodVi
P�Am

þ2iqcxbogdSogdVskskdVodViþ2iqcxkgkbssdSsdVgdVodVi

þiq2c2u2qscsxkgdVgdVsdVodViþ iq2c2u2qgcgxksdVgdVsdVodV

�2iqcxkgkbssdSsdVgdVodVi
P�Amþ iqgcgxk2bgsdSgsdVgdVodVi

þiqgcgxk2bssdSsdVgdVodViþ iqscsxk2bgsdSgsdVsdVodVi

þiqscsxk2bigdSigdVsdVodViþ iqscsxk2bogdSogdVsdVodVi

�q2c2u2bssdSskgdVgdVodVi
P�Am�qgcgqscsx2k2dVgdVsdVodVi

�2qcqgcgx2kskdVgdVsdVodVi�2qcqscsx2kgkdVgdVsdVodVi

þiqcxkskgbigdSigdVgdVsdVoþ iqcxkskgbogdSogdVgdVsdVi

þbgsbssdSgsdSsk
2dVodViþbgsbogdSgsdSogk

2dVodVi

þbigbssdSigdSsk
2dVodViþbogbssdSogdSsk

2dVodVi

þbgsbigdSgsdSigk
2dVodViþq2c2u2ksbogdSogdVsdVodVi

þq2c2u2kgbssdSsdVgdVodVi�q2c2x2kskgdVgdVsdVodVi

�bssdSsbigdSigkgkdVgdVo
P�Am�bssdSsbogdSogkgkdVgdVi

P�Am

þq2c2u2bgsdSgskgdVgdVodViþq2c2u2bgsdSgsksdVsdVodVi

þbigdSigdVsksq2c2u2dVodVi

a3 ¼ iqcuksbgsdSgsbigdSigdVsdVo� iqcukgbssdSsbogdSogdVgdVi

þiqcuksbogdSogbigdSigdVsdVoþ iqcukgbgsdSgsbigdSigdVgdVo

þqscsxqcukgbogdSogdVidVgdVs� iqcuksbigdSigbogdSogdVsdVi

þiqcukgbssdSsbogdSogdVgdVi
P�Am� iqcukgbssdSsbigdSigdVgdVo

P�Am

þiqcukgbssdSsbigdSigdVgdVoþqcuqgcgxksbogdSogdVgdVsdVi

�qcuqscsxkgbigdSigdVgdVsdVo� iqcuksbgsdSgsbogdSogdVsdVi

�qcuqgcgxksbigdSigdVgdVsdVo� iqcukgbgsdSgsbogdSogdVgdVi
a2 ¼bigdSigbssdSsbogdSogkdViþbgsdSgsbogdSogbigdSigkdVo

þbgsdSgsbssdSsbigdSigkdVoþbogdSogbssdSsbigdSigkdVo

þbssdSsbogdSogbigdSigkgdVgþbgsdSgsbogdSogbigdSigkgdVg

þbgsdSgsbogdSogbigdSigksdVsþbgsdSgsbigdSigbogdSogkdVi

þbgsdSgsbssdSsbogdSogkdViþ2iqcxkbogdSogbssdSsdVodVi

þiqcxksbgsdSgsbigdSigdVsdVoþ iqcxksbgsdSgsbogdSogdVsdVi

þiqcxksbogdSogbigdSigdVodVsþ iqscsxkgbogdSogbigdSigdVgdVs

þiqcxkgbssdSsbigdSigdVgdVoþ iqscsxkbgsdSgsbigdSigdVsdVo

þiqgcgxksbogdSogbigdSigdVgdVsþ iqscsxkbogdSogbigdSigdVsdVo

þiqcxksbigdSigbogdSogdVidVs� Iqgcgq2c2x3ksdVgdVsdVodVi

�iqscsq2c2x3kgdVgdVsdVodViþ2iqcxkbgsdSgsbigdSigdVodVi

þ2iqcxkbgsdSgsbogdSogdVodViþ2iqcxkbgsdSgsbssdSsdVodVi

þ2iqcxkbigdSigbssdSsdVodViþ iqcxkgbgsdSgsbigdSigdVgdVo

þiqscsxkbgsdSgsbogdSogdVsdViþ iqscsxkbigdSigbogdSogdVsdVi

þiqgcgxkbgsdSgsbogdSogdVgdViþ iqgcgxkbssdSsbogdSogdVgdVi

þiqcxkgbssdSsbogdSogdVgdViþ iqcxkgbgsdSgsbogdSogdVgdVi

þiqgcgxkbgsdSgsbigdSigdVgdVoþ iqgcgkxbssdSsbigdSigdVgdVo

þiq2c2u2qscsxbogdSogdVsdVodVi� iqgcgxkbssdSsbogdSogdVgdVi
P�Am

�ixqckgbssdSsbigdSigdVgdVo
P�Am�2ixqckbigdSigbssdSsdVodVi

P�Am

�2ixqckbogdSogbssdSsdVodVi
P�Am� ixqckgbssdSsbogdSogdVgdVi

P�Am

�2ixqckbgsdSgsbssdSsdVodVi
P�Am� ixqgcgkbssdSsbigdSigdVgdVo

P�Am

þ2x2qcqgcgkbssdSsdVgdVodVi
P�Amþ ixq2c2u2qgcgbgsdSgsdVgdVodVi

þixq2c2u2qscsbgsdSgsdVsdVodViþ ixq2c2u2qscsbigdSigdVsdVodVi

þixq2c2u2qgcgbssdSsdVgdVodVi�x2q2c2u2qgqscgcsdVgdVsdVodVi

þx2q2c2kgbssdSsdVgdVodVi
P�Am�q2c2u2bgsdSgsbssdSsdVodVi

P�Am

�q2c2u2bigdSigbssdSsdVodVi
P�Am�bogbssdSogdSsq2c2u2dVodVi

P�Am

�2ix3qcqgcgqscskdVgdVsdVodVi� ixq2c2u2qgcgbssdSsdVgdVodVi
P�Am

�2x2qcqscskbogdSogdVsdVodVi�2x2qcqgcgkbgsdSgsdVgdVodVi

�2x2qcqgcgbssdSsdVgdVokdVi�x2qcqgcgksbogdSogdVgdVsdVi

�x2qcqscskgbogdSogdVgdVsdVi�x2qgcgqscskbogdSogdVgdVsdVi

�2x2qcqscskbgsdSgsdVsdVodVi�x2qgcgqscskbigdSigdVgdVsdVo

�x2qcqgcgksbigdSigdVgdVsdVo�x2qcqscskgbigdSigdVgdVsdVo

�2x2qcqscsbigdSigdVsdVokdVi�x2q2c2ksbigdSigdVsdVodVi

þbgsdSgsbssdSsq2c2u2dVodViþbigdSigbssdSsq2c2u2dVodVi

þq2c2u2bogdSogbssdSsdVodVi�x2q2c2ksbogdSogdVsdVodVi

�x2q2c2kgbssdSsdVgdVodViþbgsdSgsbigdSigq2c2u2dVodVi

þq2c2u2bgsdSgsbogdSogdVodVi�kdVobogdSogbssdSsbigdSig
P�Am

�kgdVgbssdSsbogdSogbigdSig
P�Am�kdVobgsbssdSgsdSsbigdSig

P�Am

�kdVibgsdSgsbssdSsbogdSog
P�Am�kdVibigdSigbssdSsbogdSog

P�Am

�x2q2c2bgsdSgsdVgkgdVodVi�bgsdSgsdVsksx2q2c2dVodVi
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a1 ¼ iqcubgsbogdSgsdSogbigdSigdVo� iqcubgsdSgsbssdSsbogdSogdVi

þxqcuqgcgbssdSsbigdSigdVgdVo
P�AmþxqcuqscsbgsdSgsbogdSogdVsdVi

þxqcuqscsbigdSigbogdSogdVsdViþ iqcubogdSogbssdSsbigdSigdVo

þiqcubgsdSgsbssdSsbigdSigdVo� iqcubgsdSgsbigdSigbogdSogdVi

þxqcuqgcgbssdSsbogdSogdVgdVi�xqcuqgbsscgdSsdVgbogdSogdVi
P�Am

�xqcuqscsbogdSogbigdSigdVsdVoþ ix2qcuqgcgqscsbogdSogdVgdVsdVi

þxqcuqgcgbgsdSgsbogdSogdVgdVi� iqcubigdSigbssdSsbogdSogdVi

�xqcuqgcgbssdSsbigdSigdVgdVoþ iqcubigdSigbssdSsbogdSogdVi
P�Am

�iqcubgsdSgsbssdSsbigdSigdVo
P�Am� ix2qcuqgcgqscsbigdSigdVgdVsdVo

þiqcubgsdSgsbssdSsbogdSogdVi
P�Am� iqcubogdSogbssdSsbigdSigdVo

P�Am

�xqcuqscsbgsdSgsbigdSigdVsdVo�xqcuqscsbgsdSgsbigdSigdVsdVo

a0¼bgsdSgsbssdSsbogdSogbigdSig � ix3q2c2qscsbgsdSgsdVsdVodVi

�ix3q2c2qscsbigdSigdVsdVodVi� ix3q2c2qscsbogdSogdVsdVodVi

�ix3q2c2qgcgbgsdSgsdVgdVodVi� ix3q2c2qgcgbssdSsdVgdVodVi

þixqcbgsdSgsbssdSsbigdSigdVoþ ixqcbgsdSgsbogdSogbigdSigdVo

�x2qcqscsbgsdSgsbogdSogdVsdVi�x2qcqscsbigdSigbogdSogdVsdVi

�x2qcqgcgbgsdSgsbogdSogdVgdVi�x2qcqgcgbssdSsbogdSogdVgdVi

þx4q2c2qgcgqscsdVgdVsdVodViþ ixqgcgbssdSsbogdSogbigdSigdVg

þixqcbgsdSgsbigdSigbogdSogdViþ ixqcbgsdSgsbssdSsbogdSogdVi

þixqcbigdSigbssdSsbogdSogdVi�x2qgcgqscsbogdSogbigdSigdVgdVs

�x2qcqscsbgsdSgsbigdSigdVsdVo�x2qcqscsbogdSogbigdSigdVsdVo

�x2qcqgbgscgdSgsbigdSigdVgdVo�x2qcqgcgbssdSsbigdSigdVgdVo

þixqcbogdSogbssdSsbigdSigdVoþ ixqscsbgsdSgsbogdSogbigdSigdVs

þixqgcgbgsdSgsbogdSogbigdSigdVgþx2q2c2bgsdSgsbssdSsdVodVi
P�Am

þx2q2c2bigdSigbssdSsdVodVi
P�AmþbogbssdSogdSsx2q2c2dVodVi

P�Am

�ix3qcqgcgqscsbogdSogdVgdVsdVi� ix3qcqgcgqscsbigdSigdVgdVsdVo

�x2q2c2bgsdSgsbigdSigdVodVi�x2q2c2bgsdSgsbogdSogdVodVi

�x2q2c2bgsdSgsbssdSsdVodVi�x2q2c2bigdSigbssdSsdVodVi

�x2q2c2bogdSogbssdSsdVodVi�bgsdSgsbssdSsbogdSogbigdSig
P�Am

�ixqcbgsdSgsbssdSsbigdSigdVo
P�Am� ixqgcgbssdSsbogdSogbigdSigdVg

P�Am

�ixqcbogdSogbssdSsbigdSigdVo
P�Am� ixqcbgsdSgsbssdSsbogdSogdVi

P�Am

�ixqcbigdSigbssdSsbogdSogdVi
P�Amþ ix3q2c2qgcgbssdSsdVgdVodVi

P�Am

þx2qcqgcgbssdSsbogdSogdVgdVi
P�Amþx2qcqgcgbssdSsbigdSigdVgdVo

P�Am
Appendix C.

The matrix components of Eq. (54) are

q̂i1

q̂o1

q̂g1

q̂s1

q̂i2

q̂o2

q̂g2

q̂s2

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
¼

b11 b12 b13 b14 b15 b16 b17 b18

b21 b22 b23 b24 b25 b26 b27 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b88 b82 b83 b84 b85 b86 b87 b88

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

Ag1

Bg1

Cg1

Dg1

Ag2

Bg2

Cg2

Dg2

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
ðC1Þ
where
b11 ¼ ik1Y
ig
1 kdAi

b12 ¼ ik2Y
ig
2 kdAi

b13 ¼ ik3Y
ig
3 kdAi

b14 ¼ ik4Y
ig
4 kdAi

b15 ¼ �ik5Y
ig
5 kdAie�ik5h

b16 ¼ �ik6Y
ig
6 kdAie�ik6h

b17 ¼ �ik7Y
ig
7 kdAie�ik7h

b18 ¼ �ik8Y
ig
8 kdAie�ik8h
b21 ¼ ik1Y
og
1 kdA0

b22 ¼ ik2Y
og
2 kdA0

b23 ¼ ik3Y
og
3 kdA0

b24 ¼ ik4Y
og
4 kdA0

b25 ¼ �ik5Y
og
5 kdA0e�ik5h

b26 ¼ �ik6Y
og
6 kdA0e�ik6h

b27 ¼ �ik7Y
og
7 kdA0e�ik7h

b28 ¼ �ik8Y
og
8 kdA0e�ik8h
b31 ¼ ik1kgdAg

b32 ¼ ik2kgdAg

b33 ¼ ik3kgdAg

b34 ¼ ik4kgdAg

b35 ¼ �ik5kgdAge�ik5h

b36 ¼ �ik6kgdAge�ik6h

b37 ¼ �ik7kgdAge�ik7h

b38 ¼ �ik8kgdAge�ik8h
b41 ¼ ik1Y
sg
1 ksdAs

b42 ¼ ik2Y
sg
2 ksdAs

b43 ¼ ik3Y
sg
3 ksdAs

b44 ¼ ik4Y
sg
4 ksdAs

b45 ¼ �ik5Y
sg
5 ksdAse�ik5h

b46 ¼ �ik6Y
sg
6 ksdAse�ik6h

b47 ¼ �ik7Y
sg
7 ksdAse�ik7h

b48 ¼ �ik8Y
sg
8 ksdAse�ik8h
b51 ¼ �ik1Y
ig
1 kdAie�ik1h

b52 ¼ �ik2Y
ig
2 kdAie�ik2h

b53 ¼ �ik3Y
ig
3 kdAie�ik3h

b54 ¼ �ik4Y
ig
4 kdAie�ik4h

b55 ¼ ik5Y
ig
5 kdAi

b56 ¼ ik6Y
ig
6 kdAi

b57 ¼ ik7Y
ig
7 kdAi

b58 ¼ ik8Y
ig
8 kdAi
b61 ¼ �ik1Y
og
1 kdA0e�ik1h

b62 ¼ �ik2Y
og
2 kdA0e�ik2h

b63 ¼ �ik3Y
og
3 kdA0e�ik3h

b64 ¼ �ik4Y
og
4 kdA0e�ik4h

b65 ¼ ik5Y
og
5 kdA0

b66 ¼ ik6Y
og
6 kdA0

b67 ¼ ik7Y
og
7 kdA0

b68 ¼ ik8Y
og
8 kdA0
b71 ¼ �ik1kgdAge�ik1h

b72 ¼ �ik2kgdAge�ik2h

b73 ¼ �ik3kgdAge�ik3h

b74 ¼ �ik4kgdAge�ik4h

b75 ¼ ik5kgdAg

b76 ¼ ik6kgdAg

b77 ¼ ik7kgdAg

b78 ¼ ik8kgdAg
b81 ¼ �ik1Y
sg
1 ksdAse�ik1h

b82 ¼ �ik2Y
sg
2 ksdAse�ik2h

b83 ¼ �ik3Y
sg
3 ksdAse�ik3h

b84 ¼ �ik4Y
sg
4 ksdAse�ik4h

b85 ¼ ik5Y
sg
5 ksdAs

b86 ¼ ik6Y
sg
6 ksdAs

b87 ¼ ik7Y
sg
7 ksdAs

b88 ¼ ik8Y
sg
8 ksdAs
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