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A B S T R A C T

Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more
power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumi-
nation over a small solar cell, thereby increasing the incident light by several folds. This leads to non-uniform
illumination and temperature distribution on the front side of the cell, which reduces performance. A way to
limit this reduction is to optimize the metallization design of the solar cell for certain non-uniform illumination
and temperature profiles. Most of the existing metallization optimization methods are restricted to the con-
ventional H-pattern, which limits the achievable improvements. Topology optimization alleviates such restric-
tions and is capable of generating complex metallization patterns, which cannot be captured by the traditional
optimization methods. In this paper, the application of topology optimization is explored for concentrated il-
lumination conditions. A finite element model that includes all relevant resistances combined with topology
optimization method is presented and the applicability is demonstrated on non-uniform illumination and tem-
perature profiles. The finite element model allows accurate modeling of the current density and voltage dis-
tributions. Metallization designs obtained by topology optimization significantly improve the power output of
concentrating solar cells.

1. Introduction

Concentrated photovoltaic (CPV) systems allow a large amount of
solar power generation at a relatively lower cost, since the required
solar cell material is reduced (Mellor et al., 2009). In CPV systems,
lenses and curved mirrors are used to concentrate sunlight on small, but
highly efficient solar cells (Baig et al., 2012). For further improvement
in performance, additional elements such as sun trackers and cooling
systems are also used. The use of lenses and mirrors modifies the in-
cident radiation on the solar cells, amplifying it several folds in some
parts of the cell (Baig et al., 2012). Thus, a concentrated, non-uniform
illumination profile and a non-uniform temperature distribution are
created on the front side of the cell. Due to illumination being higher in
some parts of the cell, the photoillumination current density as well as
temperature increase locally, leading to a higher voltage drop and in-
creased ohmic losses. Mitchell (1977) showed that under non-uniform
illumination, series resistance can lead to significant reductions in
power output.

For a CPV system to be efficient, it is important that each of its
elements performs well individually as well as collectively. One of the
ways to improve the efficiency of CPVs is to improve the design of the
metallization patterns of the solar cells. Optimization of metallization

has been rigorously studied in the past in the context of uniform illu-
mination and one sun intensity (Beckman, 1967; Flat and Milnes, 1979;
Conti, 1981; Burgers, 1999; Gupta et al., 2014). In addition, there exist
works on designing efficient metallization patterns for certain solar cell
geometries under higher sun concentrations with uniform illumination
(Moore, 1979; Algora and Díaz, 2000; Bissels et al., 2011). However,
optimizing the metal grids under non-uniform sun intensity has re-
ceived relatively little attention. Mellor et al. (2009) optimized a con-
ventional H-pattern metallization for a Gaussian illumination profile
and constant temperature, and showed that the solar cell with such
metallizations could perform better under non-uniform illumination
conditions. Domenech-Garret (2011) studied the effect of several illu-
mination and temperature profiles on the performance of solar cells. In
these studies, linear concentrators were considered and non-uniformity
was only assumed along the finger direction (Mellor et al., 2009;
Domenech-Garret, 2011). Shifts in the illumination profile due to
tracking misalignment and the non-uniformity in the busbar direction
were not considered. Both studies restricted themselves to H-patterns
and spacing between the metal finger lines was optimized.

The H-pattern is known to be a very efficient metallization geometry
for uniformly illuminated, constant temperature cells. However, for
CPV, it is likely that other patterns are superior given the non-uniform
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illumination and temperature conditions. While simplifying the opti-
mization, geometrical restrictions (e.g. assumption of straight metal
fingers oriented parallel to each other, as in H-pattern) reduce the
flexibility of the optimization process and only limited improvements in
performance can be expected. More general metallization geometries
have been explored for solar cells under uniform illumination as well.
Burgers (1999) presented a two-step approach to optimize solar cell
front metallizations without any pre-assumptions of topology. In the
first step, a smeared version of electrode material distribution is opti-
mized in the whole domain. The second step involves a heuristic pro-
cedure to translate the optimized material distribution into a line pat-
tern. During the translation step, some prior information is needed from
the side of the designer (Burgers, 2005). The applicability of this ap-
proach for non-uniform illumination was briefly discussed.

In an earlier study concerned with uniform illumination and one sun
intensity (Gupta et al., 2014), we have presented a topology optimi-
zation (TO) formulation that can optimize the metallization patterns
without any interference from the side of the user. TO does not impose
any restriction on the design of the metal grids and is capable of gen-
erating metallization patterns that cannot be obtained with any of the
previously existing methods (Gupta et al., 2015). An application where
the advantage of TO has been particularly clear is the design of me-
tallization patterns for freeform solar cells, where the traditional pat-
terns are not suited and intuition based designs are far from optimal
(Gupta et al., 2016, 2017). Under higher illumination intensity (more
than one sun), the photoillumination current density is increased,
which in turn leads to a larger voltage drop on the front side of the cell.
Due to increased non-uniformity of the voltage profile, relatively larger
power losses occur and the solar cell efficiency is reduced. This effect is
more prominent under nonuniform illumination, where it is seen that
the efficiency of the solar cells drops dramatically (Johnston, 1998;
Luque et al., 1998; Mellor et al., 2009). Thus, it is of interest to optimize
the metal grids with minimal restrictions on the design and tailor them
for certain illumination and temperature profiles. With TO, it is not
required to restrict the non-uniformity only in x-direction. In this study,
we optimize the metallization designs for more general illumination
and temperature profiles, with non-uniformity in two dimensions, using
topology optimization.

During the optimization, it is important that at every iteration, the
current and voltage distributions on the front side of the cell are
modeled accurately. For this purpose, the finite element method
(Zienkiewicz et al., 2005) is a very suited approach, and has been used
in the past (Burgers, 1999, 2005; Mellor et al., 2009; Domenech-Garret,
2011; Wong et al., 2011). In Mellor et al. (2009) and Domenech-Garret
(2011), COMSOL© models have been used for FEM based modeling,
however, only limited mathematical details of the numerical model are
discussed. A discussion of FEM based implementation is provided in
Burgers (2005), where the numerical model is embedded into a two-
step optimization scheme for metallization design. Further, the TO
based approach presented by us in Gupta et al. (2014, 2015) uses a two-
dimensional finite element scheme for modeling the local current
densities and voltage distributions. However, this simplified model did
not include the shunt resistance and resistance due to contact of the
emitter with the metal electrode material, and is limited to uniform
illumination and temperature conditions for a single sun intensity. Al-
though the role of contact resistance can be neglected for good devices,
this may not be true in general. More importantly, the allowable con-
tact resistance is inversely proportional to the current density, due to
which it becomes important for concentrated illumination conditions
(Schroder and Meier, 1984).

To enable accurate modeling and optimization of concentrating
solar cells, this paper presents an advanced two-dimensional finite
element model and a topology optimization strategy. The numerical
model can be used to accurately model the current density and voltage
distributions on the front surface of the solar cell. Contact and shunt
resistances are included in the model and the effect of contact resistance

on the solar cell performance is studied. The numerical model is gen-
eralized for 1-diode and 2-diode models as well as other empirical I-V
relations. Based on this numerical model, a topology optimization for-
mulation and the associated adjoint sensitivity analysis are developed.
The proposed topology optimization methodology can optimize the
metallization patterns for solar cells under concentrating, non-uniform
illumination and temperature conditions. While the focus of this paper
is on CPV applications, the presented model as well as the optimization
strategy are equally applicable for uniform illumination conditions. The
numerical implementations are kept generic for follow up research and
a MATLAB® implementation of the modeling and optimization proce-
dure is provided.1 Using the proposed method, metallization patterns
are optimized for several cases, and relative performance improvements
of up to 26% are observed.

The outline for the rest of the paper is as follows. Section 2 discusses
the formulation of the two-layer finite element model. The results ob-
tained from the numerical model for several tests are presented in
Section 3. This includes numerical tests related to validation of the
proposed numerical model against the results reported in Mellor et al.
(2009) (Section 3.2), and study of the effect of contact resistance
(Section 3.3). Section 4 presents the optimization strategy and the ob-
tained results for various illumination and temperature profiles are
presented in Section 5. Finally, the conclusions related to this work are
stated in Section 6.

2. Modeling approach

In this section, a detailed numerical model is presented that can
efficiently model the current flow and voltage distributions on the front
surface of the solar cell. While the discussion is restricted to modeling
only the front metallization pattern, the rear side can as well be mod-
eled with slight modifications. To adapt the model for the rear side
metallization design, see (Gupta et al., 2017).

2.1. Equivalent circuit

Fig. 1 shows a simple solar cell circuit diagram applicable to both
the 1-diode (Shockley, 1950) as well the 2-diode model (Wolf and
Rauschenbach, 1963). Based on this circuit diagram, the characteristic
equation for the solar cell can then be stated as

= − − −I I I I I ,L d d SH1 2 (1)

where I I I I, , ,L d d1 2 and ISH denote the output current, photoillumination
current, the reverse saturation diode currents across diodes 1 and 2 and
the shunt current, respectively. Let Vj denote the junction potential,
then Eq. (1) can be rewritten as

⎜ ⎟ ⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

−I I I e I e
V

R
1 1 .L

βV
n

βV
n

j

SH
01 02

j j
1 2

(2)

Here, n1 and n2 are the ideality factors for diode 1 and 2, respectively
and =β q

k TB
, where q k, B and T denote elementary charge, Boltzmann’s

constant and absolute temperature of the cell, respectively. For a 1-
diode model, n1 and n2 can be set to 1 and ∞ respectively and for a 2-
diode model to 1 and 2, respectively. The shunt resistance RSH can
occur due to defects in the active layer. Due to this, a certain part of the
current, termed as shunt current ISH can take an alternate path (Wolf
and Rauschenbach, 1963). In case there are no defects in the circuit,
RSH can be set to ∞, and no shunt current is generated.

Next, the junction potential Vj is further expressed as

= +V V IR ,j s (3)

where V is the voltage across the circuit and Rs denotes the total series

1 A MATLAB® implementation is available to download from the repository at https://
github.com/dkgupta90/topsol.
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resistance. Here, Rs can consist of contributions from emitter sheet re-
sistance Re, ohmic contacts to the emitter Rc e, , metal finger resistance
Rfi, busbar resistance Rb, contributions from the wafer edges Redge, re-
sistance of the bulk material referred as base resistance Rbase, and re-
sistance due to the contact of the metal electrode on the rear side Rc r, .
Thus, it can be stated as

= + + + + + +R R R R R R R R .s e c e fi b edge base c r, , (4)

For the sake of simplicity, the resistive components associated with the
rear side as well as the edges, i.e., Rc r, and Redge, are ignored. However,
the inclusion of resistive components associated with the rear side
should be evident from the model description and from the study pre-
sented in Gupta et al. (2017). With these simplifications, Rs can be
restated as

= + + + +R R R R R R .s e c e fi b base, (5)

The electrical circuit shown in Fig. 1 is a lumped model, however, to
correctly model the current and voltage distributions in the emitter and
electrode layers, a distributed diode model is required (e.g. Galiana
et al., 2005). In this paper, a distributed model is used, where the
current flow at any point in the active layer is modeled using a diode
and the current flow in the emitter and the electrode layers is modeled
using a two-layer finite element mesh, as discussed in Section 2.3. Let
the current entering the emitter layer at any point be denoted by Ie,
then based on Eqs. (2) and (3),

⎜ ⎟ ⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

− + ∼+ +∼ ∼

I I I e I e V I R
R

1 1 .e
L

β V I R
n

β V I R
n

e
s

SH
01

( )
02

( )e s e s
1 2

(6)

Note that in Eq. (6), ∼Rs only includes the base resistance and any ad-
ditional resistances associated with the active layer. The resistances
associated with the emitter and electrode layers (R R R, ,e c e fi, and Rb) are
excluded, since they are separately modeled using the finite element
mesh.

2.2. Illumination and temperature distribution

In this study, solar cells with various illumination and temperature
profiles are considered. Illumination profiles for linear concentrators
have been identified to be Gaussian (Johnston, 1998). While any profile
can be used in our numerical model, following the work presented in
Domenech-Garret (2011), we use the Gaussian radiation profiles for this
study. The one-dimensional Gaussian profiles used for model validation
are same as that used in Mellor et al. (2009) and Domenech-Garret
(2011). However, since we do not restrict the radiation to vary only
along the finger direction, two-dimensional illumination non-uni-
formities are modeled as well. To account for a Gaussian radiation
profile, we define the radiation factor as

R =
−

r N A
ζ

e( ) ,
r r

S0 0 2
0

2

(7)

where R r( ) denotes the radiation factor at any point =r x y( , ) of the
solar cell front surface domain, and r0 refers to the radiation profile
center. Also, N0 denotes the average number of suns at any point of the
solar cell and S controls the width of the Gaussian curve. For the
Gaussian radiation profiles used in this study, =S r

π A
4 max

0
and

= +r 1max
L
L

y

x
, where Ly and Lx denote the cell lengths in y- and x-

directions, respectively. The term A0 controls the illumination contrast

and ζ is a normalizing term defined as ∫=
−

ζ e dΩ
r r

SΩ

0
2 2 , where Ω refers to

the solar cell domain. A more complex radiation distribution is an ir-
regular profile (caused due to misalignments, optical aberrations
(Luque et al., 1998)) which is modeled by adding multiple Gaussian and
anti-Gaussian profiles.

Under non-uniform temperature distribution, the terms I01 and I02 in
Eq. (6) are no longer constant in the whole solar cell domain. The re-
verse saturation diode currents can be expressed as functions of local
temperature as Mellor et al. (2009),

=
−

I I T e ,
E

k T01 001
3

G
B

0
(8)

=
−

I I T e ,
E

k T02 002
3

G
B

0
(9)

where I I,001 002 and EG0 (bandgap energy at 0 K) can be assumed to be
constant with respect to temperature.

The temperature profile depends on several factors, e.g. the dis-
tribution of incident illumination, solar cell properties, cooling device,
etc., and simulating it for a certain specific scenario is beyond the scope
of this paper. The choice of the temperature profile does not affect the
proposed modeling and optimization approach, hence we restrict our-
selves to some of the popularly used temperature profiles. In
Domenech-Garret (2011), it is stated that two of the prominent tem-
perature profiles for concentrators are the Gaussian and anti-Gaussian
distributions. For Gaussian radiation profiles, temperature field in si-
licon solar cells can be described using Gaussian distributions (Franklin
and Coventry, 2003). Temperature profiles can also be considered such
that they describe the role of cooling devices. Under such scenarios, the
temperature distribution can be described using an inverse Gaussian
distribution (Domenech-Garret, 2011). Similar to radiation profiles, we
do not restrict the temperature to vary only along the finger direction,
rather two-dimensional temperature non-uniformities are modeled as
well.

The Gaussian temperature distribution can be described as

= +
− −

T r Te T( ) Δ ,g

r r
S

( )
2 0T

0 2
2

(10)

where TΔ denotes the amplitude of temperature with respect to the
baseline temperature T0 and ST controls of the width of the temperature
curve. The anti-Gaussian profile can be described as

=
⎛

⎝
⎜ −

⎞

⎠
⎟ +

− −

T r T e T( ) Δ 1 .ag

r r
S

( )
2 0T

0 2
2

(11)

2.3. Finite element model

We model the solar cell using the finite element method (FEM).
Fig. 2 shows a two-layer finite element model for the front surface of a
solar cell. The lower layer models the voltage and current distributions
for the emitter layer and the upper layer similarly models these para-
meters for the metal electrode. The metallization pattern is defined on
the upper layer, and this pattern is optimized using a density-based
topology optimization approach (Bendsøe and Sigmund, 2003). For
optimization purposes, the metallization is defined using a set of den-
sity design variables ρ comprising the element densities for each finite
element. The term density here quantifies the amount of electrode ma-
terial inside each finite element of the metallization layer. For a density

Fig. 1. Equivalent electrical circuit diagram for a solar cell.

D.K. Gupta et al. Solar Energy 159 (2018) 868–881

870



value of 1, the finite element is fully filled with electrode material and
for 0, it is empty.

The reason to use a two-layer model is to accurately model the
contact resistance Rc e, between the electrode material and the emitter.
In general, losses due to the ohmic contact (contact resistance) depend
on the current flow between the metal and the emitter layer. Thus,
rather than the whole area of metal-emitter contact, only those parts
need to be considered where there is a current flow between the two
layers. In the proposed numerical model, this is achieved with two
layers of finite element mesh, where every node of the emitter layer is
connected to the corresponding node of the metal layer with a resistor
of resistance Rc e, . The losses due to local ohmic contact can then take
place only if there is a flow of current through the respective resistor
Rc e, .

To model the current and voltage distributions, the following partial
differential equations need to be solved:

∇ =
∼

σ V
δρ
δt

,e e
e

2
(12)

∇ =
∼

σ V
δρ

δt
.m m

m
2

(13)

Here and henceforth, the superscripts e and m refer to the emitter and
metal electrode layers, respectively. The material dependent con-
ductivities are represented by σ and ∼ρ refers to enclosed charge density.
Based on finite element discretizations (e.g. Zienkiewicz et al., 2005),
the systems of equations for the two layers are

− + =ρG V I V I V V 0( , ) ( , ) ,e e e e m e m (14)

− =ρG V I V V 0( ) ( , ) .m m m e m (15)

The conductivity matrices are denoted by G, and V and I refer to the
column vectors of voltage and current, respectively.

The current Ie, coming from active layer and entering the emitter
layer, depends on the local shading. Here, local shading refers to the
amount of sunlight blocked by the electrode metal in a certain part of
the cell, and is dependent on the element density of the respective finite
element in the metallization layer. On the other hand, Im, the ohmic
current flowing from the emitter layer to the metal electrode, does not
depend on the electrode material distribution. This current depends on
the contact resistance Rc e, and can be expressed as

= −
R

I V V1 ( ).m

c e

e m

, (16)

Using Eqs. (14)–(16), the system of equations can be combined into a
residual form as
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Eq. (17) can further be written as
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The conductivity matrix Ge is constructed from the global assembly
of the element conductivity matrices Gel

e , where

= σG G .el
e

s
e

0 (19)

Here, σs
e denotes the sheet conductivity of the emitter material and G0

denotes the normalized conductivity matrix (Gupta et al., 2015). The
conductivity for layer 2 depends on the electrode material distribution
and can be described using the Solid Isotropic Material with Penaliza-
tion (SIMP) model (Bendsøe, 1989) as follows:

= + −σ ρ σ σG G( ) ,el
m

s
p

s
m

s
0 0

0 (20)

where σs
m denotes the sheet conductivity of the constant thickness

electrode material and σs
0 is chosen as − σ10 · s

m12 to represent physically
void areas. A non-zero value is chosen to avoid numerical instabilities.
To include the shading effect of the metallization into the model, IL in
Eq. (6) is replaced by −I ρ(1 )L

r . Both p and r exponents are used to
penalize intermediate element densities. This is necessary from a fab-
rication point of view, since it helps to obtain 0 (electrode material) or 1
(void) values in the final metal layer.

The busbar is assumed to be directly connected to the external load
and is therefore set to the cell operating voltage Vb. For optimal per-
formance of the solar cell, the busbar potential is also considered as an
optimization parameter. Next, the nonlinear system of equations (Eq.
(17)) is solved in an iterative manner using the Newton method. An
initial guess for V is made and at every iteration, it is updated as fol-
lows:

⎜ ⎟= −⎛
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(23)

During optimization, the Newton iterations can be started from the
solution of V obtained in the previous optimization step. At every
Newton iteration, Ie and d

d
I
V

e
e need to be calculated, details of which are

given in Appendices A and B, respectively.

3. Modeling results

To validate the proposed numerical model, the numerical solar cell
example presented in Mellor et al. (2009) is modeled and the results are
compared. Further, based on our numerical model, the effect of contact
resistance on the performance of solar cell is studied for uniform and
non-uniform illumination conditions. For model validation as well as
for optimization, numerical examples of crystalline silicon solar cell are
used in this paper. However, the proposed approach is general and also
applicable to other solar cell types. In the past, variants of the method
have been used for other cell types such as thin films (Gupta et al.,
2014), organic cells (Gupta et al., 2017).

3.1. Model parameters

A monocrystalline silicon solar cell of dimensions 4.8 cm× 10.6 cm
is considered with a busbar width of 2mm and finger width of 35μm.
Additional input parameters used in our numerical model are the same

Fig. 2. A two-layer finite element model of the front surface of a solar cell. Layer 1
comprises the emitter material and layer 2 consists of electrode material parts and void
parts. Each node of the emitter layer is connected to the respective node in the metal layer
with a resistor (contact resistance Rc e, ).
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as that in Mellor et al. (2009) and are stated in Table 1. Note that in
Rosell and Ibañez (2006) and Mellor et al. (2009) as well as several
other works related to concentrated illuminations, a different curren-
t–voltage characteristic relationship is used. Here, current density and
voltage are related as follows:

⎜ ⎟⎜ ⎟= + ⎛
⎝

⎞
⎠

⎛
⎝

− ⎞
⎠

+
−

J C G C T e e C V1 ,e
E

k T
qV

n k T1 2
3

3

g
b b1

(24)

where Je and G denote current density in the emitter layer and illu-
mination, respectively, and C C,1 2 and C3 are coefficients specific to any
given cell (Rosell and Ibañez, 2006). The parameters C C,1 2 and C3 listed
in Table 1 are related to this curve. However, for modeling purpose, this
is not a problem and it can be transformed into the traditional IV curve
listed in Eq. (6) (see Appendix C).

For traditional solar cells, where an H-pattern is used for metalli-
zation, the size of the modeling domain can be significantly reduced
due to the lines of symmetry along the x- and y-directions. Thus, we
model here only one cell element as shown in Fig. 3. For FEM based
modeling, the domain of the element is discretized into a structured
grid of square elements with bilinear shape functions. The operating
voltage of the cell is optimized to achieve maximum performance for
the chosen metallization design.

3.2. Model validations

For validation purposes, two different illumination conditions are
considered. For the first test, a uniform illumination of 12 suns is as-
sumed on the front side of the solar cell. The optimal metallization
design for this scenario consists of 184 parallel metal fingers (Mellor
et al., 2009). The cell element domain is modeled using 4400× 117
square finite elements. Fig. 4 shows the illumination profile as well as
the current and voltage distributions modeled on the front side of one

cell element. The fill factor (FF) and efficiency η values obtained using
the proposed model are 0.79 and 19.25%. These values match with
those obtained in Mellor et al. (2009), where FF and η are equal to 0.79
and 19.25%, respectively.

In another test, a Gaussian illumination profile with a mean illu-
mination of 12 suns and peak to mean ratio (PIR) of 10 is used. The
metallization geometry is assumed to still consist of 184 fingers, which
is an optimal geometry of electrode fingers under uniform illumination.
With this metallization, the FF and η values drop to 0.73 and 17.49%,
respectively. For the non-uniform illumination of PIR= 10, the opti-
mized metallization geometry consists of 287 electrode fingers (Mellor
et al., 2009). For this case, the cell element is modeled using ×4400 84
electrode fingers. With this metallization, it is observed that the effi-
ciency improves from 17.49% to 18.58% and FF increases from 0.73 to
0.80. The Fig. 5 shows the illumination profile, voltage and current
distributions for one cell element.

For uniform as well as non-uniform illumination, it is observed that
the FF as well as η values obtained using the proposed numerical model
match well with the results in Mellor et al. (2009). Table 2 also reports
additional parameters associated with the output IV curves. These va-
lues also match well with those stated in Mellor et al. (2009). Thus, it is
observed that the proposed model can accurately model the published
solar cell cases of uniform and non-uniform illumination conditions.

3.3. Effect of contact resistance

Compared to the effect of other series resistances, generally the
effect of contact resistance is very small and can generally be neglected.
However, as stated in Schroder and Meier (1984), Meier and Schroder
(1984), and van Deelen et al. (2016), this holds for good devices and
may not be true in general. The effect of contact resistance is more
prominent under concentrated conditions. Thus, in the proposed finite
element model, the ohmic contact between the emitter layer and the
metal electrode is also modeled. Based on the model, here we briefly
study the effect of contact resistivity ρc e, on the performance of a solar
cell. Here, contact resistivity is chosen in place of contact resistance,
since it is an area independent parameter. To study its effect, the solar
cell example of Mellor et al. (2009) is studied and the input parameters
stated in Table 1 are used.

Fig. 6 shows efficiency for several values of contact resistivity ρc e, for
a uniform as well as a non-uniform illumination profile under an in-
tensity of 12 suns. For uniform illumination, it is observed that for a ρc e,
value close to −10 8 Ω m2, the drop in efficiency is less than 0.04%, which
is negligible. This result is in line with (Schroder and Meier, 1984),
where it has been stated that such a value of ρc e, should be adequate.
However, it is important to note that if the contact resistivity is high,
the performance of the cell is significantly affected. For example, for ρc e,
equal to −10 7 Ω m2, the efficiency drops by 0.23% and for −10 6 Ω m2, an
efficiency drop of more than 2% is observed. Clearly, it shows that the
contact resistance, if large, can significantly reduce the power output
from a solar cell.

Under non-uniform illumination, the role of contact resistance is
even more prominent. For a ρc e, value of −10 9 Ω m2, the drop in effi-
ciency is close to 0.04%. However, unlike uniform illumination, the
efficiency is reduced by more than 0.2% for ρc e, equal to −10 8 Ω m2.
Thus, under a non-uniform illumination profile, the drop in perfor-
mance is larger. For ρc e, equal to −10 7 Ω m2, an efficiency drop of around
1.5% is observed. Thus, based on these numerical experiments, it can be
seen that contact resistance can play an important role in determining
the performance of a concentrating solar cell.

4. Optimization approach

4.1. Optimization problem

The solar cell power maximization problem is an unconstrained

Table 1
Input parameters for a solar cell under 12 suns illumination (from Mellor et al.
(2009)).

Cell geometry and resistivities
Cell length (Ly) 10.6 cm
Cell width (Lx) 4.8 cm
Busbar width 2mm
Finger width 35μm
Finger sheet resistance × −1.05 10 Ω/3 sq
Emitter sheet resistance 100Ω/sq

Operation conditions
Temperature 320 K
Mean illumination intensity 12,000Wm−2

Diode parameters
C1 0.39444 AW−1

C2 −11,739 Am−2 −K 3

C3 −0.83584 Am−2 −V 1

Ideality factor n1 1.0603
Eg 1.124 eV

Fig. 3. The cell element used for modeling purposes. Here, Lx and Ly are the cell lengths

along x- and y-directions and nf denotes the number of metal fingers.
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optimization problem. To formulate the objective function, Kirchoff’s
law is used according to which all the generated current in the domain
must pass through the busbar which is set to a potential Vb. Thus, the
power output Pout for the solar cell is expressed as

∑ ∑= =
= =

P V I V I ,out b
i

N

i
m

b
i

N

i
e

1 1

el el

(25)

where Ii
e and Ii

m denote the currents in the ith finite element of the
emitter and electrode metal layers, respectively, and Nel denotes the
number of finite elements in either of the layers.

Traditionally, most of the optimization algorithms require the pro-
blem to be posed as a minimization problem. Thus, the objective
function J ρ( ) is

J

J

J

= −

ρ

ρ P

min ( ),

with ( ) .
ρ

out

( )

(26)

In this study, gradient-based optimization is applied, using the method
of moving asymptotes (Svanberg, 1987). In general, it is observed that
smaller electrode lines help to improve the solar cell performance. The
optimization process would prefer to design very fine electrode fea-
tures, however, from a fabrication point of view, there is a lower limit
on the feature sizes. To take this into account, the optimization process
needs to be constrained to not design electrode features smaller than
certain minimum size. To impose a restriction on minimum feature size
and to avoid any numerical artefacts, we use a density filter (Bruns and
Tortorelli, 2001; Gupta et al., 2015). Filtering averages the element
densities in a weighted sense within a radius rmin, thereby not allowing
electrode features smaller than rmin to occur. In addition, filtering re-
duces the contrast in density values between the adjacent neighbors,
which in turn avoids the formation of checkerboard patterns and other
numerical artefacts. For details on density filtering and other alter-
natives, see Sigmund (2007).

Since the density values are allowed to vary from 0 to 1, it is pos-
sible that the converged solution consists of intermediate density values
which are not desired from a fabrication point of view. Due to filtering,
this effect is more prominent and intermediate density values are seen
at the boundaries of the electrode designs. To achieve more crisp
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Fig. 4. Uniform illumination profile for 12 suns and the out-of-plane current density and voltage distributions observed in one cell element (1 sun=1000Wm−2).
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Fig. 5. Non-uniform illumination profile with an average illumination of 12 suns and peak illumination ratio of 10 and the out-of-plane current density and voltage distributions observed
in one cell element (1 sun=1000Wm−2).

Table 2
Number of electrode fingers used and respective output IV characteristics obtained using
our model and those reported by Mellor and co-workers.

Parameter Our results Mellor et al. (2009)

Uniform illumination with 12 suns (using 184 metal fingers)
Isc (in A) 20.69 20.79
Voc (in volts) 0.66 0.65
Fill factor 0.79 0.79
Efficiency (in %) 19.25 19.25

Average illumination of 12 suns with PIR=10 (using 184 metal fingers)
Isc (in A) 20.69 –
Voc (in volts) 0.65 0.64
Fill factor 0.73 0.73
Efficiency (in %) 17.49 17.50

Average illumination of 12 suns with PIR=10 (using 287 metal fingers)
Isc (in A) 20.02 –
Voc (in volts) 0.65 0.65
Fill factor 0.80 0.80
Efficiency (in %) 18.58 18.60

Fig. 6. Effect of resistivity of the ohmic contact between the emitter and electrode, ρc e, , on

the efficiency of a solar cell.
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solutions, a continuous approximation to the Heaviside function is
embedded in the optimization process. The slope of the Heaviside ap-
proximation is controlled using a parameter βH , which is initially
chosen to be 1 and its value is doubled at every 50 iterations up to a
maximum of 1024. For very high values of βH , the approximation
matches the exact Heaviside function very well. Such a continuation
scheme has proven to converge to well performing solutions for several
TO problems. The details related to the implementation of continuous
Heaviside approximation can be found in Guest et al. (2004) and
Sigmund (2007).

4.2. Sensitivity analysis

At every step of the optimization, gradient-based optimization al-
gorithms require information regarding the sensitivity of the objective
to each of the design variables. To compute the sensitivities, the adjoint
method is used (van Keulen et al., 2005). The adjoint sensitivity ana-
lysis of J requires an adjoint formulation where the augmented re-
sponse J is stated as

J Ĵ = + ⊺λs s V s R s V s( ) ( , ( )) ( ( , ( ))), (27)

where s is the set of design variables and can be expressed as
= …ρ ρ Vs [ , , , ]b1 2 . Using Eq. (18) and choosing =⊺ ⊺ ⊺λ λ λ[ ]e m , we obtain
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The sensitivities J ̂
ρ

d
d

and J ̂d
dVb

are obtained by taking the derivative of
Eq. (28) with respect to s, details of which are discussed in Appendix D.
The total computational cost of the sensitivity analysis for all design
variables corresponds to the solution time of a single Newton iteration
of the nonlinear solar cell analysis. This efficient approach enables the
optimization of detailed metallization topologies.

5. Optimization results

To demonstrate the applicability of the proposed methodology, a
number of test cases are considered. Unlike the traditional H-pattern,
where due to regularity of the metallization geometry, one cell element
(as shown in Fig. 3) can be used for optimization, no such regularity is
known beforehand for a TO problem. Although it is possible to perform
TO on a domain size of one cell element, this would considerably re-
strict the design freedom of the optimization problem, and limit the
performance improvement. For increased flexibility of the optimization
problem, considering a larger design domain is preferable. Thus, rather
than choosing just one cell element, half of the entire solar cell is used
to optimize the metallization design. The input parameters used are
same as those stated in Table 1. Since typically smaller solar cells are
used in CPVs, the physical size of the chosen cell is 2.42 cm× 1.18 cm,
and the minimum electrode width is restricted to 60μm. The contact
resistivity ρc e, is set to −10 Ω9 m2.

In general, for simple illumination profiles as in Mellor et al. (2009),
well performing H-pattern designs can be easily obtained. We observed
that for such illuminations, it is difficult to obtain better performing
designs using TO. However, for more complex illumination and tem-
perature profiles, the gain in performance is quite significant using TO,
due to which several such non-uniform illumination and temperature
profiles are considered here. Three Gaussian profiles (Fig. 7a) with A0
values of 10, 15 and 20, and an irregular profile comprising two
Gaussian distributions of A0 values 15 and 20 (Fig. 7b) are considered
for defining the illumination field. The average illumination intensity
for all the cases is equal to that of 12 suns. Note that these are synthetic
profiles for the purpose of illustrating the optimization process. The
three temperature profiles used in this work are a uniform field, a
Gaussian distribution (Fig. 8a) and an anti-Gaussian (Fig. 8b)

distribution. For all the three temperature profiles, the base tempera-
ture was set to 320 K and the temperature amplitude for the non-uni-
form profiles was set to 40 K.

The design domain of the cell is discretized using a structured mesh
of ×600 585 finite elements, and the filter radius rmin is set to 1.5 ele-
ments. This results in a minimum feature size of 60μm. The mesh re-
solution is chosen such that the desired feature size can be accurately
represented. In Gupta et al. (2015), it has been shown that the opti-
mized designs are not dependent on the choice of mesh, and show only
limited variations with change in mesh resolution. A penalty con-
tinuation scheme is used, where the exponents p and r are both set to 3
initially, and after every 50 iterations of TO, an increment of 0.5 is
made to each of them. For a solar cell problem, generally the amount of
electrode material to be used is decided by the optimizer based on the
compromise between shading and resistive losses (Gupta et al., 2015).
However, in this paper, numerical cases are considered where the il-
lumination intensity in some regions of the cell is close to zero. In those
parts, the optimizer prefers to use electrode material for a marginal gain
in conductivity, which can lead to significant parts of the domain being
covered with electrode material. To avoid this uneconomic use of ma-
terial, a constraint is imposed that not more than 10% of the solar cell
front surface can be covered with the metallization pattern.

To compare the performance of the designs obtained from TO, a
reference H-pattern is used. Parallel electrode fingers of width 60μm
are used and the spacing between the fingers is optimized for a uniform
illumination intensity of 12 suns and a uniform temperature distribu-
tion of 320 K. The efficiency of the reference design under various il-
lumination and temperature conditions is denoted by ∗η and the effi-
ciency of the optimized design obtained from TO under similar
conditions is denoted by η.

5.1. Illumination profiles

Figs. 9–11 show the optimized designs and the corresponding cur-
rent density and voltage distributions for the front side of the solar cell
for Gaussian illumination profiles with A0 equal to 10, 15 and 20, re-
spectively. To reiterate here, A0 controls the illumination contrast such
that for higher values of A0, the contrast is higher and the illumination
is localized in a smaller region. A uniform temperature distribution with
base temperature =T 3200 K is chosen. For A0 =15 and 20, an inter-
mediate post processing is involved where undesired electrode material
from non-illuminated regions of the domain is removed, however, this
does not affect the performance of the design. Fig. 12 shows the opti-
mized designs before and after processing for =A 200 . During optimi-
zation, removing material from the almost non-illuminated parts of the
cell does not help in improving its performance. Hence, some in-
effective electrode material is left in dark areas in the optimized design,
as can be seen in Fig. 12a. Table 3 states the solar cell efficiencies ob-
tained using the reference design as well as TO based designs for var-
ious illumination and temperature profiles considered in this study. A
general observation is that higher values of A0 result in lower perfor-
mances of the reference design (denoted by ∗η ) as well as the optimized
design obtained from TO (denoted by η).

Among the three Gaussian profiles used, it is observed that for
=A 150 and 20, the efficiency of the solar cells increases by 1.76% and

3.48%, respectively, for the TO based design compared to the reference
design. These imply relative performance improvements of approxi-
mately 11% and 26%, respectively for the two cases. However, for
A0 =10, the TO based design is slightly inferior to the reference design
with a reduction of around 0.38% in efficiency. We believe, it could be
a locally optimal solution and with different set of parameters and
starting design, it should be possible to obtain a better performing de-
sign. In general, given the freedom of design, TO based metallization
should be expected to perform better. The solar cell metallization de-
sign problem is a highly non-convex problem with many locally optimal
solutions in the design domain. At the same time, due to the large
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number of design variables (e.g. 0.3 million here), gradient-based op-
timization methods are used, which can occasionally converge to an
inferior locally optimal solution. For the chosen illumination profiles,
symmetric metallization designs are expected. However, we use the
Newton method to solve Eq. (18), and due to even small numerical
tolerances at any step of the optimization, the symmetry of the structure
can break. For this reason, optimized designs for the solar cell obtained
using TO can exhibit asymmetric features.

For the choice of A0 =15 and 20 as well as for various other cases
considered in this study, it is observed that there is a voltage drop in the
direction away from the busbar (e.g. Figs. 10c and 11c). The reason is
that there are some regions in the cell domain where the illumination
intensity is close to zero. Due to this, there is no illumination current
generated in those areas, which leads to a net current flow in the re-
verse direction creating local sinks in the cell domain and drop in
voltage towards these regions. However, the magnitude of this current
is very small compared to the high illumination regions of the cell, and
there is no significant impact on the performance of the cell due to the
local current absorptions.

Next, an irregular illumination profile is used and the performance
of the solar cell is evaluated. The irregular profile is formed by two
Gaussian distributions (A0 =15 and 20), with the centres located in
two different parts of the design domain as shown in Fig. 8b. Fig. 13
shows the optimized design and the current density and voltage dis-
tributions for the front side of the cell obtained using TO. Compared to

the reference design ( =∗η 16.035%), an increase of 1.43% is observed in
the solar cell efficiency when the TO based design is used ( =η 17.463%).

For all the four illumination profiles considered here, it is observed
that fine features are created in regions with very high illumination
intensity. This is because addition of electrode material leads to
shading, and in the regions of high illumination intensity, even the
addition of a small amount of electrode material leads to large reduc-
tions in the illumination, which can significantly affect the performance
of the solar cell. We observed that if the restriction on the minimum
electrode width is relieved, TO leads to finer electrode features and
further improvement in the performance of the solar cell.

5.2. Temperature profiles

The non-uniformity in temperature distribution can also affect the
performance of a solar cell. For CPVs, the concentration of sunlight in a
small part of the cell leads to a non-uniform temperature profile.
Additionally, the cooling systems can also create a non-uniform dis-
tribution of temperature. In this paper, we do not simulate the exact
temperature profile for a certain radiation profile and cell properties, as
this also requires accurate modeling of all surrounding systems and
their thermal properties, which is beyond the scope of this study.
Rather, the temperature profile is prescribed (as shown in Fig. 8) and
the metallization design is optimized, to study its influence on the op-
timal design. The resulting metallizations and the current density and
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Fig. 7. Non-uniform illumination profiles with an
average illumination of 12 suns (1
sun= 1000Wm−2). For the Gaussian profile, A0
is equal to 15 and for the irregular profile A0
values are 15 and 20 for the two Gaussian dis-
tributions.
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voltage distributions obtained using TO for the Gaussian and anti-
Gaussian temperature distributions are shown in Figs. 14 and 15, re-
spectively. The efficiency values obtained using these temperature
profiles for the reference design as well as for the designs obtained
using TO are stated in Table 3.

For the reference design itself, it is observed that performance of the
solar cell under a non-uniform illumination profile is lower than that of
the uniform distribution. The reason is that the local temperature in
some parts of the cell for the non-uniform profiles is higher than the
base temperature. Due to increased temperatures, the dark currents are
higher in those parts, which leads to an overall reduction in the gen-
erated current density and a reduction in performance.

With TO, the performance of the solar cell is improved for both non-
uniform temperature profiles (Table 3). Compared to the efficiency
values of 13.425% and 14.997% obtained for the reference design for
the Gaussian and anti-Gaussian temperature profiles, respectively,
those obtained using TO are 15.403% and 16.271%, respectively. It is
observed that the metallization designs obtained for the two cases are
different from that of a uniform temperature distribution (Fig. 10). The
change in temperature affects the current density and voltage dis-
tributions, which in turn affects the electrode material distribution on
the front surface. Thus, for the non-uniform temperature distributions,

a tailored metallization helps to improve the performance. Similar to
the previous cases, small negative currents are observed in some parts
of the cell, leading to absorption and a drop in voltage away from the
busbar.

6. Conclusions

In this paper, a finite element method based numerical model and a
topology optimization strategy have been presented to optimize solar
cell metallization patterns under concentrated illumination conditions.
All the relevant resistances including the contact and shunt resistance
are included in the model. The proposed model is validated through
comparisons with previously published modeling results for uniform
and non-uniform illumination conditions. Further, from our analysis of
solar cells under concentrated conditions, it is observed that contact
resistance can significantly affect the performance. Compared to uni-
form illumination, this effect is more prominent under concentrated
conditions. For example, for the case considered in this paper, it is
observed that for the same value of contact resistance, the reduction in
solar cell performance under concentrated illumination could be seven
times more than that observed under uniform sunlight of equal average
illumination. Clearly, this shows that contact resistance can be

0

0.5

1

1.5

2

2.5

3
10 4

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Fig. 9. Optimized design and the current density and voltage distributions for the front side of a solar cell under a Gaussian illumination of an average intensity of 12 suns ( =A 100 ). A
uniform temperature profile is chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.535 volts and 17.075%, respectively.

0

1

2

3

4

5

6

10 4

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Fig. 10. Optimized design and the current density and voltage distributions for the front side of a solar cell under a Gaussian illumination of an average intensity of 12 suns ( =A 150 ). A
uniform temperature profile is chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.562 volts and 17.271%, respectively.
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important for CPVs, and it should therefore be included in the model.
Based on the numerical model, a topology optimization strategy is

proposed to design efficient metallization patterns for solar cells under
non-uniform illumination and temperature conditions. The applic-
ability of the proposed optimization approach is demonstrated on
various synthetic illumination and temperature profiles and for most of

the cases, efficient metallization designs are obtained. Using TO, im-
provement of up to 26% in power output is observed compared to a
traditional H-pattern design, optimized for uniform incident sunlight
with equivalent average illumination. It is found that a non-uniform
temperature distribution can also affect the solar cell performance, and
with topology optimization it is possible to design metallization

0

2

4

6

8

10

10 4

0.54

0.56

0.58

0.6

0.62

0.64

0.66

Fig. 11. Optimized design and the current density and voltage distributions for the front side of a solar cell under a Gaussian illumination of an average intensity of 12 suns ( =A 200 ). A
uniform temperature profile is chosen with base temperature set to 320 K. The optimal busbar potential Vb and efficiency η values are 0.566 volts and 16.846%, respectively.

Fig. 12. Optimized design obtained using to-
pology optimization (left), and its post-processed
version (right) for the front side of a solar cell
under a Gaussian illumination of an average in-
tensity of 12 suns ( =A 200 ). The post-processing
removed electrode material that remained in dark
regions of the cell.

Table 3
Solar cell efficiencies obtained for various illumination and temperature profiles using a reference H-pattern design (denoted by ∗η ) and topology optimized designs (denoted by η). Here,
the term A0 is used to control the light intensity contrast for the illumination profiles, andT0 and TΔ max denote the base temperature and amplitude of change in temperature, respectively
for the temperature profiles.

Illumination profile Temperature profile ∗η (in %) η (in %) = − ∗η η ηΔ

Gaussian (A0 = 10) Uniform ( =T 3200 K) 17.458 17.075 −0.383
Gaussian (A0 = 15) Uniform ( =T 3200 K) 15.511 17.271 1.760
Gaussian (A0 = 20) Uniform ( =T 3200 K) 13.366 16.846 3.480
Irregular (multi-
Gaussian with A0
= 15 and 20)

Uniform ( =T 3200 K) 16.035 17.463 1.428

Gaussian (A0 = 15) Gaussian ( =T 3200 K,
=TΔ 40max K)

13.425 15.043 1.618

Gaussian (A0 = 15) Anti-Gaussian
( =T 3200 K,

=TΔ 40max K)

14.997 16.271 1.274
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patterns tailored for such profiles. Based on the improvement in per-
formance observed for various cases presented in this study, it can be
argued that the proposed approach could serve as an important tool to
design solar cell metallizations tailored for concentrated sunlight.
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Fig. 13. Optimized design and the current density and voltage distributions for the front side of a solar cell under an irregular illumination of an average intensity of 12 suns. The irregular
profile is obtained using two Gaussian distributions with A0 values of 15 and 20. A uniform temperature profile is chosen with base temperature set to 320 K. The optimal busbar potential
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Fig. 15. Optimized design and the current density and voltage distributions for the front side of a solar cell under a Gaussian illumination of an average intensity of 12 suns ( =A 150 ) and
an anti-Gaussian temperature profile with base temperature of 320 K and temperature amplitude equal to 40 K. The optimal busbar potentialVb and efficiency η values are 0.532 volts and
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Appendix A. Computing Ie

Taking the non-uniform illumination and shading effects into account, Ie for any element can be calculated as
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This is a transcendental equation and cannot be solved directly. Thus, we solve it numerically using inner Newton iterations. Eq. (A.1) is rewritten as
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⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

+ + =
∼+ +∼ ∼

I I ρ I e I e V I R
R

(1 ) 1 1 0.e
L

r
β V IR

n
β V IR

n
e e

s

SH
01

( )
02

( )s s
1 2

(A.2)

Using (A.2) with some rearrangements, a function ψ is defined for any element of the emitter layer as
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To obtain ψ II , ( )e e needs to be assembled for all the finite elements of the domain and the root of equation =ψ I 0( )e needs to be calculated. This is
achieved using Newton method, where following is the update scheme:

= −
′+

ψ
ψ

I I
I
I

( )
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,i
e

i
e

e

e1 (A.4)

where ′ψ I( )e for any finite element is stated as
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Appendix B. Computing d
d

I
V

e
e

From Eq. (A.1), it can be seen that the current at any point of the emitter layer depends only on the local voltage. Thus, d
d

I
V

e
e can be obtained by

assembling the terms dI
dV

e
e for the whole finite element domain. For dI

dV

e
e , the derivative of Eq. (A.2) with respect to V e is taken and the following is

obtained:
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Rewriting in terms of dI
dV

e
e ,
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Appendix C. IV curves for concentrated illuminations

The IV curve stated in Eq. (6) can be written for 1-diode model ( = ∞n2 ) and expressed in terms of current density Je as

AA
⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− + ∼+ ∼

J J J e V J R
R

1 / .e
L

β V J R
n

e
s

SH
01

( )e s
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(C.1)

where A denotes the local area, and JL and J01 refer to photoillumination current density and dark current density in diode 1, respectively.
Comparing Eqs. (24) and (C.1), following is obtained:

=J C G,L 1 (C.2)
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Appendix D. Sensitivity analysis

For clarity, we assume  = + = −W K W,e
R R1
1

2
1

c c
and = +W Km

R3
1
c

and Eq. (28) is rewritten as

J Ĵ = + + − + ⎡
⎣
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⎤
⎦
⎥ +⊺
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λ
λ
λ

W V W V I W V W V( ) ( ),e
e m e mf
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e m
1 2 2 3

(D.1)

where, the subscripts mf and mp refer to the free degreees and fixed degrees of freedom, respectively for the metal electrode layer. Eq. (D.1) should
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hold for all values of λe and λm. Thus, we can reduce it by putting =λ 0mp . Thus, we obtain

J Ĵ = + + − + +⊺ ⊺λ λW V W V I W W V W W V( ) ([ ] [ ] ),e
e m e

mf ff fp
e

ff fp
m

1 2 2 2 3 3 (D.2)

where = ⎡
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2 2

2 2
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Taking the derivative of Eq. (D.2) with respect to the design variables’ set s,
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Since W1 and W2 are constant matrices, the associated derivative terms with respect to s can be set to 0. In addition, since J and Ie do not have a
direct dependence on Vm, the terms J∂

∂Vm and ∂
∂

I
V

e
m can be set to 0. Taking these into consideration,
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Rearranging the terms and putting = ⎡

⎣
⎢

⎤

⎦
⎥V

V
V

m f
m

p
m ,

J J

J

̂

⎜ ⎟

= + ⎡
⎣⎢

⎤
⎦⎥

− + ⎡
⎣

⎤
⎦

+

+ + − +

+ ⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

+ ⎞

⎠

∂
∂

⊺ ⊺ ∂
∂

⊺ ⊺

∂
∂

⊺ ⊺ ∂
∂

⊺

⊺ ⊺

( )
λ λ λ λ

λ λ λ

λ λ

W
W V W

W W W

W
W W

[ ]

.

d
d e

fp

pp

d
d e mf

d
d

d
d

m
mf fp

d
d

e e mf ff fp
d
d

e
ff

pf
mf ff

d

d

s s
V

s
I
s

W
s

W
s

V
s

V
I
V

V
s

V

s

2

2
3

1 2 2

2

2
3

p
m e ff fp p

m

e
e
e

e

f
m

3 3

(D.5)

To eliminate d
d
V
s

e
and

d

d

V

s
f
m
, we define the following adjoint problem:
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which yields
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Using the values of λe and λmf given in Eqs. (D.8) and (D.9), Eq. (D.5) simplifies to
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D.1. Computing J
∼

ρ
d

d

To calculate the sensitivities of the augmented response J
∼

with respect to the design density field ρ s, is replaced by ρ in Eq. (D.10). Since V p
m

does not depend on material distribution, = 0ρ
d

d
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. Thus,
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From Eq. (26), J = ∑ = =∂
∂

∂
∂ =

∂
∂

⊺ ⊺ ∂
∂( )V I V V1 I 1( ) ( )ρ ρ ρ ρb i
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, where ∂
∂ρ
Ie

can be calculated as discussed in Appendix E.

D.2. Computing J
∼d

dVb

To calculate the sensitivities of the augmented responseJ
∼

with respect to the busbar potential V s,b is replaced by Vb in Eq. (D.10). Also, W3 and

Ie do not depend on Vb and = 1
d
dV
V

b

p
m

. Thus,
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From Eq. (26), J = ∑ = ∑∂
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Appendix E. Computing ∂
∂ρ
Ie

The photoillumination current at any point on the emitter surface is assumed to depend on the shading only at that point. Thus, ∂
∂ρ
Ie

can be

obtained by assembling the terms ∂
∂
I
ρ

e
for the whole finite element domain. Thus, Taking the derivative of Eq. (A.2) w.r.t ρ, following is obtained:
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Putting together all the terms with dJ
dV

,
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This further simplifies to
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