
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Evaluating Novel Matrix-Vector Multiplication
Strategies in the LSTRS and TRUSTµ Methods for

Large-Scale Trust-Region Subproblems and
Regularization.

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Kien Nguyen Hoang

Delft, the Netherlands
June 2014

Copyright c© 2014 by Kien Nguyen Hoang. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Evaluating Novel Matrix-Vector Multiplication Strategies in the LSTRS and
TRUSTµ Methods for Large-Scale Trust-Region Subproblems and Regularization”

Kien Nguyen Hoang

Delft University of Technology

Daily supervisor Responsible professor

Dr.M.D.L.C. Rojas Larrazabal Prof.dr.ir. A.W. Heemink

Other thesis committee members

Prof.dr.ir. C. Vuik Dr.ir. M.B. van Gijzen

June 2014 Delft, the Netherlands

Abstract

In the regularization of ill-posed problems from image restoration, where we want to
recover an image from blurred and noisy data, there are many methods that can be useful.
Among those, the TRUSTµ method proposed in Rojas and Steihaug, 2002, is an efficient
method for solving large-scale regularization problems with additional non-negativity con-
straints and is based on matrix-vector multiplication. The idea of TRUSTµ method is
to solve a sequence of Trust-Region-Subproblems using the method LSTRS from Rojas,
Santos and Sorensen, 2008.

The goal of this project was to evaluate the performance and accuracy of LSTRS and
TRUSTµ method when the following three different approaches to compute matrix-vector
multiplication were used: Fast Monte Carlo Algorithms, GPU computing, and parallel
computing. In order to work on the experiments, we developed a MATLAB software
implemented the TRUSTµ method and used the LSTRS software from Rojas, Santos and
Sorensen, 2008. The TRUSTµ software provided an interface that allows the user to pass
the input matrix as an array or as a function for computing matrix-vector products, possibly
with parameters. One of the application of this software was in image restoration field to
recover images from blurred and noisy data.

keyword: MATLAB, regularization, large-scale, TRUSTµ, LSTRS, matrix-vector prod-
uct, Fast Monte Carlo algorithm, GPU computation, Parallel computing.

Contents

1 Introduction 3

2 Theoretical Background 4
2.1 TRUSTµ method . 7

2.1.1 Algorithm TRUSTµ . 7
2.1.2 Update the barrier parameter µ . 8
2.1.3 Solving P (xk, µk) for zk : . 8
2.1.4 Choice of initial value x0, µ0 . 9
2.1.5 Line search . 9
2.1.6 Stopping criteria . 9

2.2 Matrix-vector Multiplication Approaches . 10
2.2.1 Fast Monte Carlo Algorithm for Matrices 10
2.2.2 GPU implementation . 12
2.2.3 Parallel Computing . 13

3 Numerical Experiments and Discussion 15
3.1 TRUSTµ Prototype . 16

3.1.1 TRUSTµ performance and accuracy. Problem phillips, small and
medium scale . 16

3.1.2 TRUSTµ performance and accuracy. Problem image restoration,
large scale . 18

3.2 Three Approaches To Compute Matrix-Vector Multiplication 20
3.2.1 Classic Matrix-Vector Multiplication and Monte Carlo - problem

phillips with LSTRS and FMCA, medium scale with sample sizes
from 10% to 50% of problem size . 21

3.2.2 Parallel Computing - image restoration problem with LSTRS and
FMCA, large scale with sample sizes from 10% to 50% of problem size 25

3.2.3 GPU Computation - problem phillip with LSTRS and FMCA, medium
scale . 33

4 Conclusion 37

2

1 Introduction

From the regularization of ill-posed problems in image restoration concerning with very
ill-conditioned matrices, we study TRUSTµ method for solving large-scale non-negative
regularization problems . The method is an interior-point iteration that requires the solu-
tion of a large-scale trust-region-subproblem (LSTRS) in each iteration. TRUSTµ method
is based on matrix-vector multiplication and the input matrix is either in form of an array
or a function to compute matrix-vector products, possibly with parameters.

The purpose of this project was to evaluate the accuracy and performance of the
TRUSTµ and LSTRS method when using these three approaches to compute the matrix-
vector products: Fast Monte Carlo Algorithms, GPU computation, and parallel computing.
Moreover in this project, we also developed a MATLAB software implementation TRUSTµ
method, in which provided an interface that allows the users to choose how to pass the sys-
tem matrix: explicitly as an array or implicitly as a function to compute the matrix-vector
multiplication with structured parameters.

In this paper, section 2 will include the theoretical background, derive the problem
to get to TRUSTµ method, present the Fast Monte Carlo Algorithm with three sam-
pling techniques, describe the GPU computation and parallel computing. Section 3 will
present the numerical results of MATLAB implementation of the TRUSTµ method and
three approaches to compute matrix-vector products, tested on Regularization and Im-
age restoration problems. Finally, Section 4 will give the conclusions and suggest future
developments.

3

2 Theoretical Background

In Rojas and Steihaug, 2002 [8], the problem is considered as follows:

min
1

2
‖Ax− b‖2

s.t.‖x‖ ≤ ∆
(1)

where A ∈ Rmxn,m ≥ n, b ∈ Rmand∆ > 0. Throughout the paper, ‖.‖ denotes the
l2-norm. Let us assume that m and n are large, and that the matrix A might not be
explicitly available, but that we know how to compute the action of A and AT on vectors
of appropriate dimensions.

In the problem (1), the matrix A is a discretized version of a blurring operator, b is a
vector representation of a degraded image, and ∆ is a positive scalar. In image restoration
problems, the norm constraint is a so-called regularization term that controls the growth
in the size of the least-squares solution observed in most ill-posed problems with noisy
data, and the non-negativity constraints reflect the fact that each component of the vector
x represents either the color value, or the light-intensity value, of a pixel in the digital
representation of the image, and therefore must be non-negative.

In the past, most techniques for image restoration did not take into account the non-
negativity constraints. Instead, they solve the regularization problem, for example, the
least-squares problem with the norm constraint only, and set to zero the negative compo-
nents in the solution. This strategy clearly introduces some errors, but produces satisfac-
tory results in certain cases, such as when the images are normal photographs. Nowadays,
the techniques have changed from time to time; the non-negativity constraints have proved
to be useful with the additional advantages.

Problem (1) always has a solution, which is unique when A has full rank. The optimal
conditions were derived to satisfy the solutions of problem (1). Let λ ∈ R and y ∈ Rn,
then the Lagrangian function associated with the problem is:

L(x, λ, y) = 1
2x

TATAx− (AT b)Tx+ 1
2b
T b− λ

2 (‖x‖2 −∆2) + yTx

and the Karush-Kuhn-Tucker (KKT) first order necessary conditions for a feasible point
x and Lagrange multipliers λ and y to be a solution of problem (2.1) are:

(i) ATAx−AT b− λx+ y = 0
⇐⇒ (ATA− λI)x = AT b− y

(ii) λ(‖x‖2 −∆2) = 0

(iii) yTx = 0

(iv) λ ≤ 0, y ≤ 0

4

The vector of Lagrange multipliers (or dual variables) y and the duality gap yTx will
play a key role in the TRUSTµ algorithm, which will be presented later in section 2.1.

Since problem (1) is a convex quadratic problem, the KKT conditions are both neces-
sary and sufficient.

Define H = ATA and g = −AT b.
Now, problem (1) is equivalent to

min
1

2
xTHx+ gTx

s.t.‖x‖ ≤ ∆

x ≥ 0

(2)

In order to develop the TRUSTµ method for problem (2), we first eliminate the non-
negativity constraints by restricting our attention to x > 0 and introducing a modified
objective function by the logarithmic barrier function as following:

fµ(x) = 1
2x

THx+ gTx− µ
∑n

i=1 logξi

where x = (ξ1, ξ2, , ξn)T and µ > 0 is the so-called barrier or penalty parameter. The
reason for choosing the logarithm function as the barrier is when the value of x is small
or close to zero, the logarithm function will be minus infinity, which makes the term
−µ

∑n
i=1 logξi very large and any minimazion method will avoid those points. Therefore,

the barrier will keep the function away from the small or zero values of x.

The modified function yields a family of problems depending on µ, given by:

minfµ(x) =
1

2
xTHx+ gTx− µ

n∑
i=1

logξi

s.t.‖x‖ ≤ ∆

(3)

And the Lagrangian function is:

L(x, λ) = fµ(x)− λ
2 (‖x‖2 −∆2)

Where λ ∈ R. Let X = diag(x) ,as a function in MATLAB, is a square matrix with
values of x on the diagonal. The KKT conditions for a feasible point x and Lagrange
multiplier λ to be a solution of problem (3):

(i) (H − µX−2 − λI)x = −g

5

(ii) λ(‖x‖2 −∆2) = 0

(iii) λ ≤ 0

The idea of the method is then to solve a sequence of problems of type (4), while
decreasing the parameter towards zero. By using problem (4), we have restricted the
solution to have positive components only.

A further simplification is now presented by substituting the non-linear barrier problem
(3) by quadratically constrained quadratic problems, or trust-region subproblems, where
the objective function will be a quadratic approximation to the logarithmic barrier function,
and where the trust-region radius ∆ will remain fixed. The subproblems are constructed
as follows.

Consider the second-order Taylor expansion of fµ around a point x,

qµ(x+ h) = fµ(x) +∇fµ(x)Th+ 1
2h

T∇2fµ(x)h

With:

∇fµ(x) = Hx+ g − µX−1e

∇2fµ(x) = H + µX−2

On the other hand, we examine the function min qµ(x+h) by setting z = x+h, notice
that x is fixed and h is oscillated, thus the part including x can be dropped in the minimize
function.

We obtain a new trust-region subproblem, given by:

minfµ(x) =
1

2
zT (H + µX−2)z + (g − 2µX−1e)T z

s.t.‖z‖ ≤ ∆
(4)

The necessary and sufficient conditions for a feasible point z and Lagrange multiplier
λ ∈ R to be a solution of the problem above are:

(i) (H + µX−2 − λI)z = 2µX−1e− g

(ii) (H + µX−2 − λI) is positive semidefinite

(iii) λ(‖x‖2 −∆2) = 0

(iv) λ ≤ 0

6

Note that (ii) always holds in the convex case.
Our method consists of solving a sequence of problems of type (5) for z, for different

values of µ and x, while driving the barrier parameter µ towards zero, and preserving
positive iterative.

2.1 TRUSTµ method

In this section, the method TRUSTµ will be presented. First, the algorithm will be shown
to give an overview of the method. Then we will explain the details of the algorithm,
for example the choice of the initial values, range of stopping criteria and presenting the
linesearch.

2.1.1 Algorithm TRUSTµ

Input: H ∈ Rnxn , symmetric, or routine to compute H times a vector;
g ∈ Rn,∆ > 0, εx, εy, εf , σ ∈ (0, 1)
Output: x∗ satisfying (4) - condition (i), for µ close to zero.

1. Choose x0 > 0, µ0 > 0, set k = 0.

2. While (not convergence) do:

2.1 Solve P (xk, µk)forzk

2.2 Set hk = xk − zk

2.3 Compute βk such that xk + βkhk > 0

2.4 Set xk+1 = xk + βkhk

2.5 Compute µk+1 such that µk → 0

2.6 Set k = k + 1

end while

The input for the algorithm is the symmetric matrix H, which in many cases is large
and ill-conditioned. Thus, the algorithm has an alternative option is to provide the routine
to compute matrix H times a vector. The vector g and scalar ∆ is provided for the
constraint optimization. Last but not least, εx, εy, εf , σ are used for the stopping criteria
of the method.

The first step of the algorithm is to choose initial value x0, µ0, these two values are
solutions from trust-region-subproblem which can be solved by the LSTRS method and will

7

be described later in section 2.1.4. Meanwhile in the step 2.1 of the algorithm, P (xk, µk)
denotes the problem (4). The details in solving P (xk, µk)forzk will be presented in section
2.1.3.

2.1.2 Update the barrier parameter µ

We can derive a formula for updating the barrier parameter by first computing an approx-
imation to the dual variables y with y satisfies

y = −(H − λI)x− g
Notice that a solution z, λ of the trust-region subproblem will follow

−(H − λI)z − g = µX−2z − 2µX−1e
Now define ỹ = −(H − λI)z − g
Thus, ỹ is now used as an approximation to y. Also we can compute ỹ as following

ỹ = µ(X−2z − 2X−1e)
When x = z, then we have the approximation to the duality gap

ỹ = µ(X−2z − 2X−1e) = µ(−X−1e)
⇒ ỹTx = −µn

Which leads to the following formula for µ

µ = 1
n ỹ

Tx
In practice, the formulation using for updating µ is

µk+1 = σ
n |ỹ

Tx|
With σ ∈ (0, 1), and x = xk or x = xk+1, with ỹ = µ(X−2z − 2X−1e) for µ = µk, x = xk
or x = xk+1 and z = zk

2.1.3 Solving P (xk, µk) for zk :

P (xk, µk) denotes the problem from (2.4), which is finding the solution for:

min fµ(x) = 1
2z
T (H + µX−2)z + (g − 2µX−1e)T z

s.t. ‖z‖ ≤ ∆

with the input vector x, the matrix X is formed by X = diag(x), and µ tends to go to
zero, we have to find z. To solve the problem (4), we need a method which will compute the
multiplier when solving the problem, as well as accept the matrix-vector product as input.
Possibly, the candidate methods can be Steihaug [1983] and Toint [1981], Sorensen[1997],
or Rojas[2000]. As we can see problem (4) is in the form of Trust Region Subproblem [8],
and the solution for the problem also needs to deal with large scale issue. Therefore, in this
approach, the Lagre-Scale Trust-Region Subproblems (LSTRS) is chosen to be the method
for solving problem (4).

8

2.1.4 Choice of initial value x0, µ0

To compute initial values for x and µ , we first solve the trust-region subproblem without
the non-negativity constraints:

min 1
2x

THx+ gTx

s.t. ‖x‖ ≥ ∆

Denote the solution to this problem and the corresponding Lagrange multiplier by xTRS
and λTRS respectively. xTRS and λTRS will satisfy the options:

(H − λTRSI)xTRS = −g
with H − λTRSI positive semidefinite, λTRS < 0 and λTRS(∆− xTRS) = 0.
We use xTRS and λTRS to compute the initial value for µ as following:
We first compute an approximate initial value for the dual variables y as:

ỹ0 = −g − (H − λTRSI)xTRS
then compute µ0 as:

µ0 = σ
n |ỹ

T
0 x|

We then choose x0 as either x0 = ‖xTRS‖ with zero components replaced by a small positive
value, or x0 = xTRS with negative and zero components replaced by a small positive value,
so x0 > 0.
We use x0 to test for convergence as later described in section 2.1.6.

2.1.5 Line search

A linesearch is necessary to ensure that the iterates xk remain positive, since there is no
guarantee that zk computed in step 2.1 of the algorithm will have only positive compo-
nents. The (k + 1)th iterate is computed as, hkxk+1 = xk + βkhk = zk − xk and

βk < mini,s.t.1≤i≤n,ζi≤0
ξi
|ηi|

where xk = (ξ1, ξ2, ..., ξn)T , zk = (ζ1, ζ2, ..., ζn)T , hk = (η1, η2, ..., ηn)T .
In practice we use the following safeguarded formula to update the iterates:

xk+1 = xk + min { 1, 0.9995 βk } hk

2.1.6 Stopping criteria

The stopping criteria rely on the change in value of the objective function, the proxim-
ity of the iterates and the size of the duality gap. For the latter, we compute ỹk by

9

µ(X−2z − 2X−1e), with µ = µk−1 or µ = µk, x = xk−1 or x = xk and z = zk−1 computed
in step 2.1 of algorithm 2.1.1.

Let f(x) = 1
2x

THx + gTx, and εx, εy, εf ∈ (0, 1), then for f ≤ 1, algorithm 2.1.1 pro-
ceeds until

|f(xk)− f(xk−1)| ≤ εf |f(xk)|

Or ‖xk − xk−1‖ ≤ εx‖xk‖

Or |ỹTk xk| ≤ εy‖xk‖

The purpose of the stopping criteria is to test the relative error as well as the duality
gap. These values define the correctness of the solution. For k = 0 we only check the last
condition for the initial values of x and ỹm for example |ỹT0 x0| ≤ εy‖x0‖ with ỹ0 and x0 as
in section 2.1.3.

2.2 Matrix-vector Multiplication Approaches

In TRUSTµ method, one of the inputs of the algorithm is the matrix H. In the software,
providing the matrix H has two options: the matrix H is given in array form (as for sparse
matrix, the data is given in arrays of data values and indices), or the other option is to
provide the function for matrix-vector multiplication. These options allow the software to
handle the data flexibly and to get more efficient use of computational resources.

In this project, we would like to compute the matrix-vector multiplication on three
approaches: Fast Monte Carlo Algorithm, GPU computation and Parallel Computing.

2.2.1 Fast Monte Carlo Algorithm for Matrices

Nowadays, large-size input data requires enormous computational ability to process. In
modern computers, the growth of external memory capacity is enormous, while RAM and
computing speeds increased at lower pace. In this application, as the data is formulated
as large-scale matrix, we consider the algorithms which make more efficient use of compu-
tational resources, such as the computation time, memory, and the number of passes over
the data. Monte Carlo algorithm appeared as one of the most simple, yet still powerful
above other methods. Fast Monte Carlo algorithms aim to approximate the computations
on large-scale matrices. In this section, we describe the algorithm for the approximation of
the product between two matrices; this algorithm is called the BasicMatrixMultiplication
(BMM) algorithm [1]. The BMM algorithm selects a subset of columns and corresponding

10

rows from two matrices and computes the estimated product.

As in [1], we use A(j) and A(i) to denote respectively the jth column and the ith row
of a given matrix A, ‖.‖ denotes the 2-norm, ‖.‖F denotes the Frobenius norm and Pr will
denote the probability.

Algorithm BASICMATRIXMULTIPLICATION :

Input: A ∈ Rmxn, B ∈ Rnxp, c ∈ Z+ such that 1 ≤ c ≤ n and {pi}ni=1 such that pi ≥ 0
and

∑n
i=1 pi = 1

Output: C ∈ Rmxc and R ∈ Rcxp such that AB ≈ CR

1. For t = 1 to c,

(a) Pick it ∈ {1, ..., n} with Pr[it = k] = pk, k = 1, 2.., n, independently and with
replacement.

(b) Set C(t) = A(it)/
√
cpit and R(t) = B(it)/

√
cpit

2. Return C, R.

3. AB ≈ CR

The input of the algorithm is A ∈ Rmxn, B ∈ Rnxp, in general A and B are matrices,
for the special case of matrix-vector product, B is a vector or can be consider as matrix nx1.

The product AB can be written as the sum of n rank-one matrices:

AB =
∑n

t=1A
(it)B(it)

As the matrix multiplication is formed in this style, the algorithm follows as: with a
positive natural number c such that 1 ≤ c ≤ n and a probability distribution {pi}ni=1, we
pick a subset of columns from matrix A, and multiply with the corresponding set of rows
in B, with an appropriate scaled term. The result from the computation approximated the
multiplication between two matrices, A and B, shown as:

AB ≈ CR =
∑c

t=1C
(t)R(t) =

∑c
t=1

1
cpit

A(it)B(it)

11

It is clearly that sampling column and row pairs give the approximated result with the
scaling factor cpit , if the tth is sampled.

An important issue is choosing the scaling factor and the probabilities {pi}ni=1. In
the BASICMATRIXMULTIPLICATION algorithm, the scaling factor is chosen as 1√

cpit
.

There are many different approaches for the sampling probabilities, in this project, we offer
three sampling techniques as follows:

(*) Uniform sampling: each column in A has an equal chance to be picked in the ap-
proximation. It mean pi = 1

n with i = 1, .., n.

(*) Optimal sampling: proposed by Drineas, Kannan, and Mahoney, 2006, the optimal
probabilities were defined as follows:

pk =
‖A(k)‖‖B(k)‖∑n

k′=1 ‖A(k′)‖‖B(k′)‖

Optimal sampling minimizes the term E[‖AB−CR‖2F], which implies the minimized
upper bound of ‖AB − CR‖2F and ‖AB − CR‖22.

(*) Piecewise uniform sapling: proposed by Madrid,Guerra,and Rojas, 2012 [5]. This
technique divides the interval [1, n] into c subintervals, c < n, then uniformly select
one column in each subinterval. Piecewise uniform sampling prefers small sample
size. In the experiments done by Madrid,Guerra,and Rojas, 2012, it indicated that
for affinity* matrices, piecewise uniform sampling showed approximation with higher
accuracy for small sample size up to 25% of the input size.

Affinity: a matrix whose entries represent a measure of pairwise affinity or similarity
of pixel in an image.

The computational cost to implement the BASICMATRIXMULTIPLICATION method
depends on the sampling criterion. In the case of uniform sampling, only a single
pass over the data is sufficient, and the requirement time and storage to sample A,
B and construct C, R is O(c(m+ p)). In other cases with two passes over the data,
for both uniform and nonuniform sampling, the requirement is O(c(m+ n+ p)) [6].

2.2.2 GPU implementation

One main purpose of the project is to develop a MATLAB implementation the TRUSTµ
method. By using MATLAB, the software may use the computers graphics processing unit

12

(GPU) for matrix operations. In this case, the execution in the GPU is faster than in the
CPU, therefore using GPU would increase and improve the performance.

Send data to the GPU:

In MATLAB, gpuArray class represents data that is stored on the GPU. To transfer
the data between MATLABs Workspace and the GPU, we use the function gpuArray. For
example:

A = rand(100,100);

B = gpuArray(A);

B is the MATLAB gpuArray object that represents the data of the matrix size 100×100,
generated by rand() function, stored on the GPU. The input data must be non-sparse,
and it is either numerical or logical.

Retrieve Data from the GPU:

We use the gather() function to retrieve data from the GPU to the MATLAB workspace.
This takes data that is on the GPU represented by a gpuArray object, and makes it
available in the MATLAB workspace as a regular MATLAB variable. For example: C =

gather(B);

Executing MATLAB Code on GPU:

There are two options to get MATLAB code to work on the GPU. The first one is to
put the MATLAB code into a function file and run it directly on the GPU. The second
option is to use the gpuArray objects to create, transfer, and handle data on GPU, with
the built-in functions from the list in [3]. In this project, we use the second option as we
will transfer the matrix data to the GPU, compute the matrix-vector multiplication, and
then get the results back.

2.2.3 Parallel Computing

Besides the GPU, MATLAB provides another option to speed up operation by means of
parallel computing. The idea of parallelization is to divide work into independent tasks and
run them simultaneously. The Parallel Computing Toolbox consists of several high-level
routines that take into account multicore processors.

To improve the performance of a program, we can create tasks in parallel by using parfor

a parallel for-loop that can form independent tasks to multiple MATLAB sessions. A job
manager is the part of the computer that coordinates the execution of jobs and evaluates

13

tasks. The job manager distributes tasks to the individual MATLAB sessions, also known
as workers, for evaluation. The basic advantage of a parfor-loop in MATLAB is that: part
of the parfor-loop is executed on the MATLAB client (where the parfor is issued) and the
other part is executed in parallel on MATLAB workers. Because several MATLAB workers
can be computing concurrently on the same loop, a parfor-loop can provide significantly
better performance than a for-loop.

For example, the simple for loop in MATLAB:

for i = 1:10

y(i) = rand();

end

can be easily replaced by a parfor - loop as following:

parfor i = 1:10

y(i) = rand();

end

The difference is that: the for loop executes a series of statements (the loop body) over
a range of values, while in parfor-loop, the loop body is executed in parallel, which will be
much faster in execution. The necessary data on which parfor operates is sent from the
client to workers, where most of the computation happens, and the results are sent back
to the client and pieced together.

In order to tell MATLAB that the program runs in multiple processors, beside using
parfor, we need to give the instruction to MATLAB by using matlabpool.
At the beginning of the code, we need to indicate:

matlabpool(’open’,nrOfCore);

where nrOfCore is the number of cores you want to use (max is number of cores in your
PC). This instruction opens the parallel computing toolbox.
At the end of the code, type:

matlabpool(’close’);

This will close the parallel computing, however, the license will still be in use until you
close your MATLAB session.

14

3 Numerical Experiments and Discussion

In this section, we will present a numerical study to investigate the performance and
accuracy when we use different approaches for matrix-vector multiplication, such as the
three Fast Monte Carlo Algorithms (FMCA), GPU computation, and Parallel computing.
We performed the TRUSTµ experiments using a MATLAB prototype that we developed,
and the LSTRS experiments using the public version in [7]. We organized the presentation
into two parts: we will present the TRUSTµ prototype in Section 3.1, and the investigation
of matrix-vector multiplication approaches in Section 3.2.
In our project, we mainly did the experiments on two test problems: the reguralization
problem proposed in [6] and an image restoration problem. The regularization solutions
were computed by solving the quadratically constrained least squares problem and the
Trust-Region-Subproblems (TRS):

min
1

2
||Ax− b||2 s.t. ||x|| ≤ ∆ (5)

Matrix A is a discretized operator from an ill-posed problem, typically matrix A is very
ill-conditioned. Problem (5) is equivalent to a trust-region problem with H = ATA and
g = −AT b. We used the MATLAB routine phillips and blur from [2], which implemented
the problem in [6] and blurring operation, respectively. For the image restoration problem,
we used a black and white picture of an art gallery in Paris.

Problem phillips:
The test problem phillips from Regularization Tools is a discretization of the well-known
Fredholm integral equation deviced by D. L. Phillips [6]. The dimension of the problem is
n × n and the order of n must be multiple of 4 as indicated in [6]. The true solution to
the inverse problem was computed by the routine phillips and was stored in a vector for
later comparison. In this paper, we use two values for n: 300 and 1000.

Problem image restoration:
In image restoration problems, we would like to recover an image from blurred and noisy
data. In this problem, the matrix A represents the blurring operator and was generated
with the routine blur from Regularization Tools [2]. The routine blur added the atmo-
spheric turbulence blur to the problem. The image deblurring problem arises in connection
with the degradation of images by atmospheric turbulence blur, modelled by a Gaussian
point-spread function:

h(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
)

The matrix A is a symmetric matrix with dimension of n2 x n2 , stored in sparse format.
The routine blur requires three input arguments: n, band and sigma. Only elements
within a distance band - 1 from the diagonal are stored. If band is not specified, then

15

band = 3 is used. The parameter sigma controls the amount of smoothing (the larger the
sigma, the less ill-posed the problem). If sigma is not specified, then sigma = 0.7 is used.

In our experiment for image restoration problem, the 2D degraded image was resized
to one dimension vector using the MATLAB routine imresize, the image was resized
columnwise and was stored in vector b. The true solution vector contained a black and
white picture of an art gallery in Paris. There is noise added to the picture, the noise
vector s was generated as a random Gaussian vector using MATLAB routine randn. The
noise level is defined as ||s||||b|| . In our experiments, we use noise level of 10−2. The image’s
dimension is 256x256, thus the size of A is 65536. Note that in the GPU experiments, we
had to resize the image to 96x96 due to memory limitation.
In the remainder of the paper, MVP will denote the number of matrix-vector products
that was used to compute the solutions.

3.1 TRUSTµ Prototype

We tested the TRUSTµ prototype on the two test problems: phillips of dimensions 300
and 1000 and image restoration problem of dimension 65536.
The experiments were performed in MATLAB R2011b on a Dell Desktop with a DuoCore,
3.16GHz processor, with 4GB of memory, running Debian GNU/Linux 7. The floating-
point arithmetic was IEEE standard double precision with machine precision 2−52 ≈
2.2204× 10−16.

3.1.1 TRUSTµ performance and accuracy. Problem phillips, small and medium
scale

In this experiment, we would like to investigate the performance and accuracy of TRUSTµ
method on problem phillips using the TRUSTµ prototype that we developed. We used
LSTRS as the Trust-Region Subproblem (TRS) solver for TRUSTµ. The LSTRS solution
denoted in this section was the solution of LSTRS on problem phillips. It was also used
as the initial value for TRUSTµ, with zero and negative elements were replaced by 10−5.

Figure 1 illustrates the solutions computed with TRUSTµ and LSTRS. In the lower
right corner of Figure 1, we can easily see that while the LSTRS solution has negative el-
ements, TRUSTµ solution is non-negative. Both the TRUSTµ and LSTRS solutions were
close to the true solution.

16

Figure 1: Problem phillips of dimension 1000, the solutions computed by TRUSTµ and
LSTRS (dashed) and true solution (solid).

17

Phillips dimension 300 Phillips dimension 1000

LSTRS mvp 156 342

LSTRS rel.error 3.83e-002 4.32e-002

TRUSTµ mvp 678 783

TRUSTµ rel.error 9.73e-003 1.77e-002

Table 1. Problem phillips: solutions of LSTRS and TRUSTµ in terms of number of
matrix-vector multiplication(mvp) and relative error.

From Table 1, notice that TRUSTµ’s relative error was less than LSTRS, in case of the
dimension 300, the magnitude was in term of 10−3 in TRUSTµ and 10−2 in LSTRS. Mean-
while, it took more computation for TRUSTµ to compute to the solution than LSTRS. The
reason is the initial value used in TRUSTµ was the of LSTRS solution with non-negative
elements, it meant the total number of mvp in TRUSTµ included the mvp of LSTRS.

In conclusion, TRUSTµ, with non-negative solution, showed a lower relative error but took
more computation than LSTRS, as the size of the problem increased, the more number of
mvp was required to come to the solution.

3.1.2 TRUSTµ performance and accuracy. Problem image restoration, large
scale

In this experiment, we would like to investigate the performance and accuracy of TRUSTµ
method on image restoration problem using the TRUSTµ prototype that we developed.
The image dimension was 256x256, thus the problem size was in large scale of 65536. As we
knew that the data of an image must be non-negative, therefore, if a solution appeared to
have negative elements, MATLAB automatically truncated these elements to zero, which
caused the loss of image data. Hence, TRUSTµ with non-negative solution was expected
to get more accuracy and lossless data in this image restoration problem.

We used LSTRS as the TRS solver for TRUSTµ. The LSTRS solution denoted in this
section was the solution of LSTRS on the image restoration problem with same settings
as TRUSTµ. It was also used as the initial value for TRUSTµ, with zero and negative
elements was replaced by 10−5.

18

Original Blurred

LSTRS TRUSTµ

Figure 2: Problem Paris of dimension 256x256, including the original picture, the blurred
image and the two solution of LSTRS and TRUSTµ. The images were resized for visual
purpose.

19

Figure 2 illustrated the solution of TRUSTµ and LSTRS. Visually, the two images
from TRUSTµ and LSTRS were clearer than the blurred image and look similar to each
other. Applying the command min and find on the two solutions to check the minimum
and non-negative elements, with TRUSTµ solution, the minimum value was 1.21e-2, while
LSTRS solution showed minimum equal zero and there were 17 elements that had zero
value, which meant MATLAB truncated the corresponding negative elements to those zero
values.

LSTRS TRUSTµ

mvp 201 995

rel.error 3.90e-2 4.19e-2

iteration 3 3

Table 2. Comparison problem Paris solutions of LSTRS and TRUSTµ in terms of
number of matrix-vector multiplication(mvp), relative error and iteration.
In this experiment, since the problem size increased to 65536, TRUSTµ took greater of
number of mvp to compute the solution than LSTRS did. TRUSTµ, to came up with the
solution, took the LSTRS solution with negative and zero elements changed to small values
as the initial value, then it took TRUSTµ three iterations to get to the final non-negative
solution, in each iteration there were 201, 392 and 201 mvp respectively. Thus, in total,
TRUSTµ took a number of mvp about four times larger than LSTRS.

3.2 Three Approaches To Compute Matrix-Vector Multiplication

We did our experiments on two test problems: phillips of dimension 1000 and image restora-
tion problem of dimension 65536. For testing the implementation of Fast Monte Carlo
Algorithms, various number of sample sizes were chosen, ranging from 10% to 50% of the
problem size.

In the beginning, we would like to run the problems on one machine and make the compar-
ison when running on CPU, on GPU and in Parallel. However, due to memory limitation,
GPU computation only worked with problem that had small or medium scale, while in
Parallel computing, in order to observe the speedup, the problem should be in large scale.
Therefore, we decided to make two separated comparison: one comparison CPU with GPU,
and one comparison CPU with Parallel computing.

20

3.2.1 Classic Matrix-Vector Multiplication and Monte Carlo - problem phillips
with LSTRS and FMCA, medium scale with sample sizes from 10% to
50% of problem size

In this experiment, we would like to investigate the performance of LSTRS method on
regularization problem phillips when the matrix-vector multiplication is implemented in
different approaches: MATLAB built-in matrix-vector multiplication function and three
Monte Carlo sampling techniques (uniform, optimal and piecewise uniform sampling - PWS
). In this section, the MATLAB built-in matrix-vector multiplication function is denoted as
classic or classical matvec, and the Fast Monte Carlo Algorithms is abbreviated as FMCA.

The experiments were performed on MATLAB R2011b, on a Dell Desktop with a Duo-
Core, 3.16GHz processor, 4 GB of memory, running on Debian GNU/Linux 7 for GPU
Computation, with GPU NVIDIA GT200 - Tesla C1060. The floating-point arithmetic
was IEEE standard double precision with machine precision 2−52 ≈ 2.2204× 10−16.

In our experiments, we would like to compute the Quasi-Optimal and Boundary solu-
tions of the regularization problem phillips. Thus, the setting lopts.interior was set to
’n’, indicated that no Interior solution should be computed. Since the FMCA with the ran-
domize routine might lead to a bad approximation in matrix-vector product, which would
cause the program to halt when solving the Interior solutions , therefore this setting is an
important aspect to prevent the program running into these bad approximation.

Sample size 100 200

Ave.results rel.error mvp exe.time rel.error mvp exe.time

Uniform 1.88e-1 284.3 1.55 1.81e-1 305.5 1.70

Optimal 1.73e-1 207.4 1.08 1.57e-1 217.3 1.11

PWS 3.09e-2 106.9 0.88 2.66e-2 97.3 0.93

Classic 4.32e-2 342.0 1.75 4.32e-2 342.0 1.75

Sample size 300 400

Ave.results rel.error mvp exe.time rel.error mvp exe.time

Uniform 1.73e-1 314.2 1.93 1.67e-1 371.6 2.01

Optimal 1.48e-1 233.6 1.16 1.37e-1 185.8 1.07

PWS 1.29e-1 102.4 0.91 1.13e-1 70.4 0.46

Classic 4.32e-2 342.0 1.75 4.32e-2 342.0 1.75

21

Sample size 500

Ave.results rel.error mvp exe.time

Uniform 1.34e-1 176.2 1.07

Optimal 8.70e-2 159.6 1.02

PWS 4.71e-2 91.2 0.87

Classic 4.32e-2 342.0 1.75

Table 3. phillips problem dimension 1000, LSTRS solutions with Monte Carlo sampling
techniques, sample size 100 to 500. Each sampling technique was ran for 100 times and
average results were calculated.

Figure 3: The average relative error of LSTRS solutions with FMCA on phillips problem
dimension 1000. The sample size ranged from 100 to 500.

Figure 3 illustrated the average relative errors of LSTRS solution, in comparison of
classical matvec with the three FMCA sampling techniques. Among the three FMCA,
PWS had the lowest relative error. As the sample size increased, the relative errors of
uniform and optimal got closer to classical matvec’s. At sample size 100 and 200, we can
see that the relative error of PWS was smaller than classic, which indicated that PWS
had a better solution. This was consistent with the assumption in [5] that PWS performs
better with small sample size from 10% to 20% of the problem size.

22

Uniform Sampling

Optimal Sampling

Piecewise Uniform Sampling

Figure 4: phillips problem, dimension 1000, the solutions computed by LSTRS and Monte
Carlo sampling techniques, in comparison of maximum, minimum and average relative
errors.

23

Figure 4 showed the relative errors of each FMCA sampling techniques, with sample
size from 100 to 500, in terms of maximum, minimum and average. In all three results, we
can see that the minimum solutions were closer to the average than the maximum. This
indicated that the bad solutions - maximum relative errors were rare, and therefore our
results were reliable.

Figure 5: The speedup in execution times of LSTRS solutions with FMCA on phillips
problem dimension 1000. The speedup is calculated as the different from execution times
of classical matvec and FMCA. The sample size ranged from 100 to 500.

Figure 5 showed the speedup in execution time of LSTRS solutions with FMCA, for
sample size from 100 to 500. Among the three techniques, PWS had the least execution
time hence the greatest speedup, then came optimal. According to Table 3, it took less
computation (number of mvp) for PWS and optimal to compute the solution than classic
and uniform. At sample size 100 and 200, compared to classic, PWS took about one third
of computation and about one half of execution time, yet yielded better solution.

In conclusion, consistent with the prediction from [5] that as matrix A was affinity, for
small sample size from 10% to 20% of the problem size, PWS performed better than the
other two techniques as well as better than classical matvec, with less computation, smaller

24

execution time and better solutions. Since the sample size increased, the relative errors of
uniform, optimal and PWS tended to get closer to classical matvec’s. Meanwhile, PWS
still showed least computation and execution time, then came optimal, uniform and classic
had the most number of mvp and execution time. Also, a conclusion from [5] indicated
that with FMCA, if one of the matrix was ill-conditioned then optimal performed better
than uniform, which we can clearly observe in this experiment.

3.2.2 Parallel Computing - image restoration problem with LSTRS and FMCA,
large scale with sample sizes from 10% to 50% of problem size

Image restoration problem Paris with image dimension 256x256, problem size 65536. The
original ’paris.jpg’ image was blurred with blur function from Regularization Tools, Band
3, Sigma 1.5.
The experiment was performed on MATLAB R2011b, on a Dell Desktop with a QuadCore,
2.66Ghz processor, with 4GB of memory, running on Debian GNU/Linux 7. The floating-
point arithmetic was IEEE standard double precision with machine precision 252 ≈ 2.2204×
10−16.
In this experiment, we would like to test the performance and accuracy of LSTRS on
image restoration, when the matrix-vector multiplication was implemented with classic and
FMCA. The test was run on single core, denoted as CPU or ’1 Core’, and on four cores,
denoted as Parallel 4 Cores. The command MATLABpool was called to control the number
of cores running with MATLAB, as in one experiment we compared the performance when
running the problem on different number of cores: four, three and two cores.

The tables below represented the results of LSTRS and FMCA - both running on Par-
allel 4 cores and on CPU 1 core, the sample sizes were chosen equal to 15%, 25% and 50%
of the problem size.

Sample size: 15% = 9830
Sampling Uniform Optimal PWS Classical

4 cores 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core

Relative Error 3.18e-001 2.83e-001 2.61e-001 1.06e-001

Number of mvp 233.6 178.0 154.1 201.0

Execution time 8.2 8.7 13.7 14.5 27.1 30.1 6.1 7.0

Speedup 1.06 1.06 1.11 1.15

Iteration 3.7 2.7 3.3 3.0

Nr of run 83 91 93 10

Sample size: 25% = 16384

25

Sampling Uniform Optimal PWS Classical

4 cores 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core

Relative Error 2.57e-001 2.37e-001 1.81e-001 1.06e-001

Number of mvp 173.2 321.0 109.8 201.0

Execution time 7.3 8.0 15.7 17.1 16.7 18.2 6.1 7.0

Speedup 1.10 1.09 1.09 1.15

Iteration 3.3 4.1 3.1 3.0

Nr of run 93 91 100 10

Sample size: 50% = 32768
Sampling Uniform Optimal PWS Classical

4 cores 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core

Relative Error 2.14e-001 1.94e-001 1.52e-001 1.06e-001

Number of mvp 167.5 230.0 168.2 201.0

Execution time 8.3 9.4 14.8 16.3 60.9 66.7 6.1 7.0

Speedup 1.13 1.10 1.10 1.15

Iteration 3.3 4.1 3.1 3.0

Nr of run 93 91 100 10

Table 4. Image restoration problem Paris, solved with LSTRS and three approaches
to compute matrix-vector multiplication: Monte Carlo sampling techniques (Uniform, Op-
timal and Piecewise Uniform Sampling - PWS) and built-in MATLAB matrix-vector
multiplication operation (classical) - sample sizes were 15%, 25% and 50% of problem size.

Figure 6 illustrated the behavior of the relative error of three FMCA sampling tech-
niques when increasing the sample sizes from 15%, 25% to 50%. All three techniques
tended to get closer to classical matrix-vector multiplication’s relative error when the sam-
ple sizes were increased. In comparison among the classical matrix-vector multiplication
and the three Monte Carlo sampling techniques, classical matrix-vector multiplication had
the lowest relative error, then came PWS, optimal and uniform was the worst. However,
because this experiment was an image restoration problem and the relative error was of
order O(10−1), the visual pictures was one of the most important in consideration.

26

Figure 6: The relative error of three FMCA sampling techniques and classic. sample sizes
were 15%, 25% and 50% of problem size.

27

Below are the worst and best pictures of the solutions.

Classic.
e=1.06e-1

Uniform.
e=2.21e-1

Optimal.
e=1.99e-1

PWS.e=2.46e-
1

Figure 7: Sample size 50%. Maximum relative error.

Classic.
e=1.06e-1

Uniform.
e=2.10e-1

Optimal.
e=1.91e-1

PWS.e=1.44e-
1

Figure 8: Sample size 50%. Minimum relative error.

28

From Figure 7 and 8, we can observe the visual solutions of Paris problem, with classical
matrix-vector multiplication and three Monte Carlo sampling techniques, including the
best and worst solution for the sample size 50%. In all cases, classical matrix-vector
multiplication showed the best visual picture among the techniques, while uniform and
optimal showed pictures with lots of noise, and PWS showed clearer pictures but with
blur. This observation was similar to an experiment in [5] indicated that PWS yielded an
valid approximation that contained the data for performing an acceptable segmentation of
the image, while the approximations obtained by uniform and optimal were not useful for
segmentation purposes. Therefore, in our image restoration problem, uniform and optimal
solutions contained noisy data, and PWS solutions got better result but still were a blurred
image.

Figure 9: The speedup of three FMCA sampling techniques and classic. Sample size of
15%, 25% and 50%.

From Figure 9, we can observe the difference in speedup when running the problem
in parallel 4 cores. In all cases, classical matrix-vector multiplication performed the best
speedup. Among the three Monte Carlo techniques, we can see at sample size 15% of
input size, PWS showed better result than uniform and optimal. This again illustrated the
assumption in [5] that with affinity matrix input, PWS performed better for small sample

29

sizes. When the sample sizes increased to 25% and 50% of input size, PWS’s speedup had
decreased, while uniform and optimal showed better results.

From Table 4, we can spot the difference in execution time when running the problem
in parallel 4 cores and on CPU 1 core. Among the three Monte Carlo sampling techniques,
uniform had the smallest execution time, and then came optimal and PWS performed
slowest. A time profile of the three techniques showed that most of the time was spent on
generating the indices for the sampled matrix. In uniform, generating the indices required
one call to randi(); in optimal, generating the indices required two steps: first compute
the probabilities, and then one call to randsample(); and in PWS, generating the indices
required a for loop, inside which there was one call to randi(). For example, to generate a
sample of size c, uniform and optimal required only one call to the random function, while
PWS required c calls to the random function. Between uniform and optimal, optimal sam-
pling took an extra step to compute the probabilities, thus uniform performed faster.

Figure 10: The time profile of the three techniques in matrix-vector multiplication. Sample
size 50% of input size.

Figure 10 showed the time profile for the three sampling techniques, comparing the
execution between the matrix-vector multiplication and the total time of the method to
get the final solution. As we can see, the time to compute matrix-vector multiplication
were about 80% to 85% of the total time.

30

Figure 11: The speedup of three FMCA sampling techniques and classic, running on
different number of cores. Sample size of 50%.

Figure 11 illustrated the speedup up of three FMCA sampling techniques and clas-
sic matrix-vector multiplication function when running on two,three and four cores. The
speedup was ideally linear when doubling the number of processors would double the speed,
however in this experiment, we can see that the speed increased slightly when changing
from two cores to three or four cores.

Since we were working on the image restoration problem which the blurring operator
stored as a sparse matrix, this might speedup the implementation matrix-vector multipli-
cation in MATLAB. As a matter of fact, since an update in version R2007a, MATLAB
implicitly supported multithreaded computation for sparse matrix [4]. We took a step
forward to take a test on Paris problem, running on full matrix to see the speedup when
running in parallel 4 cores. We had to decrease the image dimension from 256x256 to
96x96, because this is the maximum memory capacity of the computer when dealing with
full matrix. We used a sample size 25% of problem size.

31

Image restoration problem Paris with image dimension 96x96 problem size 9216:

The original ’paris.jpg’ image is blurred with blur function from Regularization Tools,
Band 3, Sigma 1.5.

Sample size: 25% = 2304 , matrix A is full
Sampling Uniform Optimal PWS Classical

4 cores 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core

Relative Error 2.81e-001 2.53e-001 2.21e-001 1.14e-001

Number of mvp 190.3 305.6 198.1 201.0

Execution time 75.6 89.3 83.5 99.7 89.4 107.7 74.0 90.7

Speedup 1.18 1.19 1.21 1.26

Iteration 3.5 4.1 3.6 3.0

Nr of run 93 91 100 10

Sample size: 25% = 2304 , matrix A is sparse
Sampling Uniform Optimal PWS Classical

4 cores 1 core 4 cores 1 core 4 cores 1 core 4 cores 1 core

Relative Error 2.81e-001 2.53e-001 2.21e-001 1.14e-001

Number of mvp 190.3 305.6 198.1 201.0

Execution time 8.4e-1 8.5e-1 9.1e-1 9.3e-1 4.1 4.3 6.8e-1 7.2e-1

Speedup 1.01 1.02 1.05 1.06

Iteration 3.5 4.1 3.6 3.0

Nr of run 93 91 100 10

Table 5. Paris problem with blurring operator matrix is sparse and full, solved with
LSTRS with three approaches to compute matrix-vector multiplication: Monte Carlo sam-
pling techniques (Uniform, Optimal and Piecewise Uniform Sampling - PWS) and built-in
MATLAB matrix-vector multiplication operation (classical) - with sample size of 25%.

From Table 5, we noticed the difference between solving the problem with input matrix
A in full and sparse format was the execution time and the speedup. As expected, the
execution time when solving the problem with a full matrix was much larger than with a
sparse matrix. From the speedup comparison, the speedups for the sparse matrix ranged
from 1.01 to 1.06, while for the full matrix, we obtained speedups from 1.18 to 1.26. This
meant that by default MATLAB already supports multithreaded computation for sparse
matrix so that the gain in sparse matrix case is less than in full matrix case.

32

3.2.3 GPU Computation - problem phillip with LSTRS and FMCA, medium
scale

In this experiment, we would like to investigate the performance of LSTRS method on
regularization problem phillips dimension 1000 when the matrix-vector multiplication is
implemented in different approaches: MATLAB built-in matrix-vector multiplication func-
tion and three Monte Carlo sampling techniques (uniform, optimal and piecewise uniform
sampling - PWS), the performance were tested on CPU and GPU. FMCA was set to run
for up to 100 times, and the average results are computed.

The experiments were performed on MATLAB R2011b on a Dell Desktop with a Duo-
Core, 3.16GHz processor, 4 GB of memory, running on Debian GNU/Linux 7 for GPU
Computation, with GPU NVIDIA GT200 - Tesla C1060. The floating-point arithmetic
was IEEE standard double precision with machine precision 2−52 ≈ 2.2204× 10−16.

In our experiments with FMCA, we would like to compute the Quasi-Optimal and
Boundary solutions of the regularization problem phillips. Thus, the setting lopts.interior

was set to ’n’, indicated that no Interior solution should be computed. Since the FMCA
with the randomize routine might lead to a bad approximation in matrix-vector product,
which would cause the program to halt when solving the Interior solutions , therefore this
setting is an important aspect to prevent the program running into these bad approxima-
tion.

Figure 12 illustrated the relative errors of LSTRS on problem phillips when running on
CPU and GPU, with FMCA implementation. It was clearly shown that the relative error
of LSTRS with classical matvec on CPU and GPU were equal. The same results occurred
for FMCA, thus in the figure, we only included one data for each FMCA sampling tech-
niques.
Among classical matvec on CPU, GPU and FMCA, the relative errors on CPU (and GPU)
were the lowest. Again we could see the same behavior for FMCA: at small sample sizes
of 10% to 20% of input size, PWS showed the best results as matrix A was affinity, and
because matrix A was also ill-conditioned then optimal performed more accurate than uni-
form.
However, one of the most important aspect in our experiments when running the problem
on CPU and GPU was to compare the performance between these two platforms in execu-
tion time. It was expected that running on GPU would be faster than on CPU.

Figure 13 represented the speedup of LSTRS running on GPU compared to CPU, with
classical matvec and three FMCA techniques. As we can see, classic had the most speedup.
Among the three FMCA techniques, optimal showed best performance in speedup, then

33

Figure 12: The relative errors of LSTRS on problem phillips dimension 1000, with three
FMCA sampling techniques and classic, running on CPU and GPU. Sample size from 10%
to 50% of input size.

came PWS and uniform was the lowest. To explain this behavior in speedup of FMCA,
we would reminded the number of function calls and implementation in each sampling
technique to generate a sampled matrix of size c: uniform took one call to randi function,
PWS took c call to rand function, while optimal took one to randsample function but
had an extra step to compute the probabilities. Therefore when running the operation on
GPU, uniform had the lowest speedup because it had the least computation. On the other
hand, optimal with the most computation showed the highest gain in speedup.
Moreover, even though the computation on GPU was faster than on CPU, we had to con-
sider the time consume for data transfer between GPU and CPU, for example we had to
transfer the data from CPU to GPU using gpuArray, did the computation on GPU then
collected the data using gather, and it took times for this process to be completed, hence
the speedup on GPU was reduced. Therefore, the more data in transfer would increase the
execution time and in order to get the best speedup, we had to transfer as much informa-
tion as possible in one operation. As it was clearly indicated in Figure 13, for three FMCA
techniques, the speedup was maximum at sample size 10% of input size, and as the sample
sizes increased, the speedup decreased, till sample size 50% of input size, we had no gain
in execution time as the speedup equals 1.

34

Figure 13: The speedup of LSTRS on problem phillips dimension 1000, with three FMCA
sampling techniques and classic, running on CPU and GPU. Sample sizes from 10% to
50% of input size. The speedup was computed by dividing the execution time running on
GPU to time on CPU.

In addition to this experiment, we ran the test not only on LSTRS but also on TRUSTµ
with the same settings, with the purpose to verify the behavior that we had observed. The
initial value for TRUSTµ was chosen as the LSTRS solution with zero or negative elements
were replace by 10−5.

According to Figure 14, we observed the similar behavior of TRUSTµ on problem
phillips, same as LSTRS did in our previous experiment. In relative errors, CPU and GPU
showed the best results, among the three FMCA, PWS performed better than the other
two techniques with sample sizes from 10% to 20% of input size. In speedup, we could see
that classical matvec had the most speedup. The three FMCA performed as optimal,PWS
and uniform in speedup descending order. Since the sample sizes increased from 10% to
50% of input size, the speedup of FMCA decreased and dropped close to 1 at sample size
50% of input size.

35

Relative Error

Speedup

Figure 14: The relative errors and speedup of TRUSTµ on problem phillips dimension 1000,
with three FMCA sampling techniques and classic, running on CPU and GPU. Sample size
from 10% to 50% of input size.

36

4 Conclusion

In this paper, we studied the TRUSTµ method for solving large-scale non-negativity reg-
ularization. The method based on matrix-vector multiplication. We also represented the
fast Monte Carlo algorithm with three sampling techniques and described the GPU com-
putation and parallel computing. In this project, we developed a MATLAB prototype
implemented the TRUSTµ method and performed the TRUSTµ experiments in [8], as well
as evaluated the accuracy and performance of the method when using the three approaches
to compute the matrix-vector products.

In conclusion, in the experiments to compute regularized non-negative solutions to the
inverse problem and image restoration problem, compare to LSTRS method, TRUSTµ
computed positive restorations with better accuracy but took higher computational cost.
For the evaluation of the three approaches to compute the matrix-vector multiplication,
we divided into separated comparison. Among the three fast Monte Carlo Algorithms
(FMCA) and classical matvec, consistent with the assumption from [5] that when matrix
A was affinity, for small sample size from 10% to 20% of the problem size, piecewise uniform
sampling(PWS) showed the best performance. Since the sample size increased, the accu-
racy of uniform, optimal and PWS got closer to classical matvec’s. In parallelization, we
investigated the parallel performance on up to 4 processors and found that the speed-ups
were modest. Our experiments also confirm the fact that by default MATLAB supports
multithreaded computation for sparse matrix. Finally, in GPU computation experiments,
we could see that among three FMCA techniques and classical matvec, running on GPU
and on CPU, classical matvec showed the best speedup, then came optimal, PWS and
uniform had the lowest speedup. The reason to the behavior in speedup of FMCA was the
implementation in each sampling technique to generate a sampled matrix: optimal with
the most computation showed the highest gain in speedup. Moreover, another aspect in
GPU computation was the time consume for transferring data between CPU-GPU. For the
FMCA, the speedup was maximum at sample size 10% of problem size, and as the sample
size increased, the speedup decreased. Our observation shows that the speed-up on the
GPU is rather disappointing: we only gain by percentages, not factors.

37

References

[1] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo Algorithms for Matrices
I: Approximating matrix multiplication. SIAM J. Comput., 36(1):132–157, 2006.

[2] P. C. Hansen. Regularization Tools: A MATLAB package for analysis and solution of
discrete ill-posed problems. Numerical Algorithms, 6:1–35, 1994.

[3] The Mathworks Inc. Run built-in functions on a GPU, June 2013.

[4] The Mathworks Inc. Which MATLAB functions benefit from multithreaded computa-
tion?, June 2013.

[5] H. Madrid, V. Guerra, and M. Rojas. Sampling techniques for Monte Carlo matrix
multiplication with applications to image processing. Lect. Notes Comput. Sc., 7329:45–
54, 2012.

[6] D. L. Phillips. A technique for the numerical solution of certain integral equations of
the first kind. J. ACM, 9:84–97, 1962.

[7] M. Rojas, S. A. Santos, and D. C. Sorensen. Algorithm 873: LSTRS: MATLAB soft-
ware for large-scale trust-region subproblems and regularization. ACM Trans. Math.
Software, 34(2):11, 2008.

[8] M. Rojas and T. Steihaug. An interior-point trust-region-based method for large-scale
non-negative regularization. Inverse Problems, 18(5):1291–1307, 2002.

38

APPENDIX

Settings for the experiment:

TRUSTµ performance and accuracy. Problem phillips, small and medium
scale:
For TRUSTµ : µ = 0.1;σ = 0.01; εx = εf = 10−5, εy = 10−12; initial value of TRUSTµ
equal solution of TRS solver, with negative or zero values replaced by 10−5.
For both LSTRS and TRUSTµ : epsilon.Delta = 10−2; epsilon.HC = 10−4;
epsilon.alpha = 10−8; lopts.heuristics = 1; lopts.alpha =′ deltaU ′;
eigensolverpar.tol = 0.5, eigensolverpar.p = 7.

TRUSTµ performance and accuracy. Problem image restoration, large scale:
For TRUSTµ: µ = 0.1;σ = 0.01; εx = εf = 10−5, εy = 10−12; initial value of TRUSTµ equal
solution of TRS solver, with negative or zero values replaced by 10−5.
For both LSTRS and TRUSTµ : eigensolver =′ tcheigs lstrs gateway′, with normalized
vector eigensolverpar.v0 = ones(65537, 1)/sqrt(65537); epsilon.Delta = 10−2; epsilon.HC =
10−4; epsilon.alpha = 10−8; eigensolverpar.tol = 0.5, eigensolverpar.p = 7.

Classic Matrix-Vector Multiplication and Monte Carlo - problem phillips
with LSTRS and FMCA, medium scale with various sample sizes.

epsilon.Delta = 10−2; epsilon.HC = 10−4; epsilon.alpha = 10−8;
lopts.heuristics = 1; lopts.alpha =′ deltaU ′; lopts.interior =′ n′

eigensolverpar.tol = 0.5, eigensolverpar.p = 7.

Parallel Computing - image restoration problem with LSTRS and FMCA,
large scale with various sample sizes.
eigensolver =′ tcheigslstrsgateway

′, epsilon.Delta = 1e − 2; epsilon.HC = 1e − 4; with
normalized vector eigensolverpar.v0 = ones(65537, 1)/sqrt(65537);
eigensolverpar.tol = 0.7; eigensolverpar.p = 7;
The original ’paris.jpg’ image is blurred with ’blur’ function from Regularization Tools,
Band 3, Sigma 1.5.

Image restoration problem Paris with image dimension 96x96 problem size 9216:
eigensolver =′ tcheigslstrsgateway

′, epsilon.Delta = 1e − 2; epsilon.HC = 1e − 4; with
normalized vector eigensolverpar.v0 = ones(9217, 1)/sqrt(9217);
eigensolverpar.tol = 0.7; eigensolverpar.p = 7; lopts.interior =′ n′.
The original ’paris.jpg’ image is blurred with ’blur’ function from Regularization Tools,
Band 3, Sigma 1.5.

39

GPU Computation - problem phillip with LSTRS and FMCA, medium
scale.
epsilon.Delta = 10−2; epsilon.HC = 10−4; epsilon.alpha = 10−8;
lopts.heuristics = 1; lopts.alpha =′ deltaU ′; lopts.interior =′ n′

eigensolverpar.tol = 0.3, eigensolverpar.p = 5.

GPU Computation - problem phillip with TRUSTµ and FMCA, medium
scale.
epsilon.Delta = 10−2; epsilon.HC = 10−4; epsilon.alpha = 10−8;
lopts.heuristics = 1; lopts.alpha =′ deltaU ′; lopts.interior =′ n′

eigensolverpar.tol = 0.3, eigensolverpar.p = 5.
µ = 0.1;σ = 0.01; εx = εf = 10−5, εy = 10−12;
initial value of TRUSTµ equals solution of TRS solver, with negative or zero values replaced by
10−5.

40

TRUSTµ: Matlab software for large-scale
non-negative regularization.

SOFTWARE MANUAL

Author:
NGUYEN HOANG KIEN and MARIELBA ROJAS
Delft University of Technology.

In this document, we would like to present the software manual of a MATLAB
implementation of TRUSTµ method with three approaches to compute the matrix-
vector multiplication: Fast Monte Carlo algorithm, GPU, and Parallel computing.
TRUSTµ method was described in Rojas and Steihaug,[3]. The method is based
on a non-negatively constrained quadratic problem. The method is an interior-
point iteration that solves a sequence of large-scale and possibly ill conditioned
trust-region subproblem. TRUSTµ method relies on matrix-vector products only.
In the MATLAB implementation, the Hessian matrix of the quadratic function
in the trust-region subproblem can be provided either explicitly, or implicitly as
a matrix-vector multiplication routine. A description of the MATLAB software, ver-
sion 1.1, is presented. A guide for using the software and examples are provided.

Authors’s Addresses:
K.H. Nguyen, Delft University of Technology (kiendhth@gmail.com)
M. Rojas, Delft Institute of Applied Mathematics, Delft University of Technology,
2600GA Delft ,The Netherlands (marielba.rojas@tudelft.nl)

1

1. INTRODUCTION:

This document contains the software manual for version 1.1 of a MATLAB imple-
mentation of the TRUSTµ method [3] for large-scale non-negative quadratic problem:

min1
2
xTHx+ gTx− µ∑n

i=1 logξi
s.t.‖x‖ ≤ ∆

x ≥ 0

in which, H is an n x n, real, symmetric matrix, g is an n-dimensional real vec-
tor, ∆ is a positive scalar, ‖.‖ denotes the Euclidean norm, x = (ξ1, ξ2, ...ξn)T and
µ > 0 is the barrier or penalty parameter. The idea of TRUSTµ method is to solve
a sequence of trust-region subproblem using the linesearch with barrier µ converges
to 0.

The MATLAB implementation of TRUSTµ described in this manual allows the
user to provide the matrix H explicitly as an array in MATLAB form, or as a func-
tion of matrix-vector multiplication, which preserves the matrix-free nature of the
method. Moreover, the software offers four options to compute the matrix-vector
product: built-in MATLAB function mtimes, Fast Monte Carlo algorithm, GPU
computation, or Parallel computing.

This document is organized as follows: in Section 2, we describe the main features
of the software: interface, data structure, options for using matrix-vector product.
In Section 3, we provide instructions for installing and running the software, also we
provide some example using the software.

2. MATLAB SOFTWARE IMPLEMENTATION:

In this section, we will describe the MATLAB implementation of TRUSTµ method
[3].

2.1 The interface of TRUSTµ:

The routine to call for the method is named TRUSTmu, the general form for
the calling is as follows:

2

[x, info] = TRUSTmu(H, g,Delta, sigma,Epsilons, trs solver, Opts,Hpar)
2.1.1. Inputs of the software:

The input is described in the form as follows: Input name (type of input, default
value if available): input description.

Compulsory (3) :

• H (string, function handle, ordouble): real, n x n, symmetric matrix, or
string or function-handle specifying a matrix-vector multiplication routine.

• g (double) : real, n x 1 array.

• Delta (double) : positive scalar (trust-region radius).

Optional (5) :

• sigma (double, 10−2) : parameter to update µ.

• Epsilons (struct): contains the tolerances for the stopping criteria.

* Epsx (double, 10−5): tolerance for x.

* Epsy (double, 10−12): tolerance for y.

* Epsf (double, 10−5): tolerance for f.

• trs solver (string,′ lstrs′) : solver for Trust-Region Subproblem (TRS).

• Opts (struct): options for TRS solver and initial values for TRUSTµ method.

* x0 (double, []) : initial value for x.

* µ0 (double, []) : initial value for barrier parameter µ.

* xinitopt (string,′ pos′): decide the value to pass to TRUSTµ solver:
either it is the initial value with small elements (≤ 10−5) replaced by a larger
number (10−2), or the absolute of initial value with small elements (≤ 10−5)
replaced by a larger number (10−2) . Options are ’pos’ and ’abspos’.

* maxit (double, 50): maximum number of iteration for TRUSTµ solver.

* mvopt (string,′mv′): decide the approach to compute matrix-vector
product. The options are ’mv, mcmv uni, , mcmv opt, mcmv pws, mv par,

3

mv gpu’. ; in which ’mv’ is MATLAB built-in ’mtimes’ function, mcmv uni, ,
mcmv opt, mcmv pws are Monte Carlo algorithm with uniform sampling, op-
timal sampling and piecewise uniform sampling respectively, mv par is parallel
computing and mv gpu is GPU computation.

* trs opt (struct): Option parameters for TRS solver, provided by user.

• Hpar: structure containing parameters for H.

* A (double, string, orfunction handle): matrix storage for the matrix-
vector product routine.

* mu (double): barrier parameter storage for the matrix-vector product
routine, updated inside TRUSTµ method.

* x2 (double, []): vector storage for the matrix-vector product routine.

* mv (stringorfunction handle, []): store the function name of the matrix-
vector product routine.

* c (double, []): the sample size for Monte Carlo algorithm, default value
is [] which is set to 20% of the problem size.

* colnorm (double, []): the column norm to calculate the probabilities in
optimal sampling.

2.1.2. Outputs:

• x : solution of the trust-region problem.

• info:

* info.mvp : number of matrix-vector multiplication used in total.

* info.iter : number of iteration of TRUSTµ solver.

* info.x0 : solution of trust-region subproblem without negativity con-
straint.

2.2. Method for calling the matrix-vector multiplication :

4

• Fast Monte Carlo Multiplication: in order to use the FMCA, change the value
of mvopt in Opts.

Option to choose:

′mcmv uni′ : FMCA with uniform sampling

′mcmv opt′ : FMCA with optimal sampling

′mcmv pws′ : FMCA with piecewise uniform sampling

• GPU computation for matrix-vector multiplication: change the value of mvopt
in Opts to ′mv gpu′

• Parallel computing for matrix-vector multiplication: change the value of mvopt
in Opts to ′mv par′

2.3. The trust-region subproblem (TRS) solver interface:

Choosing the TRS solver comes from the option trs solver. If the TRS solver is
user-defined, it needs to takes inputs and outputs in a corresponding form as follows:

[x, infor] = trs solver(H, g,Delta, trs opt);

The function should take three compulsory inputs H, g, Delta described in 2.1.1.
Also, further options for the TRS solver (if needed) should be put in the structure
option trs opt.

The function returns:

• x : solution for TRS solver.

• infor (struct): include the information for TRS solver.

mvp: number of matrix-vector multiplication used in TRS solver.

iter: number of iteration processed in TRS solver.

3. SOFTWARE INSTALLATION AND EXAMPLES:

5

In this section, we will present the TRUSTµ software package files, installation
manual and some examples on executing the software. For the TRS solver, we offer
an existing solver called LSTRS, [2]. The download link for LSTRS software can be
found at:

http : //ta.twi.tudelft.nl/wagm/users/rojas/lstrs.html

The MATLAB M-files containing the components of the TRUSTµ software are
presented as follows:

• TRUSTmu.m: interface routine for TRUSTµ method.

• TRUSTmu method.m: main iteration for TRUSTµ method.

• lstrs gateway.m: gateway routine for LSTRS solver.

• user trs gateway.m: gateway routine for user-defined TRS solver.

• mv.m: routine for matrix-vector multiplication.

• mv lstrs.m: routine for matrix-vector multiplication in LSTRS solver.

• mv trustmu.m: routine for matrix-vector multiplication in TRUSTµ method.

• mcmv uni matrix.m: routine for FMCA matrix-vector multiplication - uni-
form sampling with matrix input.

• mcmv uni routine.m: routine for FMCA matrix-vector multiplication - uni-
form sampling with routine input.

• mcmv opt.m: routine for FMCA matrix-vector multiplication - optimal sam-
pling.

• mcmv pws matrix.m: routine for FMCA matrix-vector multiplication - piece-
wise uniform sampling with matrix input.

• mcmv pws routine.m: routine for FMCA matrix-vector multiplication -
piecewise uniform sampling with routine input.

• mv trustmu par.m: routine for matrix-vector multiplication with parallel
computing.

• mv trustmu gpu.m: routine for matrix-vector multiplication with GPU com-
putation.

6

• pre prob.m: compute the column norm of the input matrix.

• prob.m: compute the probabilities in FMCA optimal sampling.

• set mvpar.m: routine to set parameters for variable Hpar.

The file Phillips test.m is included in the software, the file contains the example
for using TRUSTµ method to solve Phillips problem, C. Hansen 2007.

SOFTWARE INSTALLATION:

The TRUSTµ MATLAB software is distributed as an archive in zip or rar format
in the TRUSTmu.zip and TRUSTmu.rar, respectively. The Unix/Linux command
tar xvf lstrs.rar will create a directory LSTRS in the current directory where all the
M-files listed above will be stored. For the zip format we recommend that the user
creates a directory TRUSTµ-directory and store the TRUSTµ files in that directory.

In either case, the TRUSTµ directory should be included in MATLAB’s search
path. This can be accomplished with one of the following commands: path(path,’TRUSTµ-
directory’) or addpath ’TRUSTµ-directory’. Moreover, if you download and use
LSTRS solver, also include the search path to LSTRS-directory using the same com-
mands.

EXAMPLES:
Phillips Problem:
Phillips test problem from Regularization Tools is a discretization of the well-known
Fredholm integral equation, deviced by D. L. Phillips, [1].

Figure 1. Generate Phillips problem of size 300

7

Settings for the experiment:

For TRUSTµ: µ = 0.1;σ = 0.01; εx = εf = 10−5, εy = 10−12; initial value of
TRUSTµ equal solution of TRS solver, with small or zero values replaced by 10−5.
For both LSTRS and TRUSTµ :
epsilon.alpha = 10−8; epsilon.Delta = 10−2;
eigensolverpar.p = 7, eigensolverpar.tol = 0.5;
epsilon.HC = 10−4; lopts.heuristics = 1; lopts.alpha =′ deltaU ′.

Figure 2. Setting for TRUSTµ function.

8

Figure 3. Call to TRUSTµ function with 2 options to choose input as a matrix
or a matrix-vector multiplication routine.

Figure 4. TRUSTµ solution plot for regularization problem Phillips of size 300.
The LSTRS solution is the result from TRS solver for initial value of TRUSTµ. The
blue curve is the exact solution which has been added to the plot for comparison (this
curve is not generated by TRUSTµ).

9

References

[1] P. C. Hansen. Regularization tools: A matlab package for analysis and solution
of discrete ill-posed problems. Numerical Algorithms, 6:1–35, 1994.

[2] Marielba Rojas, Sandra A. Santos, and Danny C. Sorensen. Algorithm 873: Lstrs:
Matlab software for large-scale trust-region subproblems and regularization. ACM
Trans. Math. Software, 34(2):11, 2008.

[3] Marielba Rojas and Trond Steihaug. An interior-point trust-region-based method
for large-scale non-negative regularization. Inverse Problems, 18(5):1291–1307,
2002.

10

