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Summary

Modeling the relationship between rainfall and runoff is a longstanding challenge in hydrology and is
crucial for informed water management decisions. Recently, Deep Learning (DL) models, particularly
Long Short-Term Memory (LSTM), have shown promising results in simulating this relationship. The
Transformer, a newly proposed deep learning architecture, has also demonstrated the ability to outper-
form LSTM in machine translation, text classification, etc. However, there has been limited research
on applying Transformers for rainfall-runoff modeling.

The research examined the performance of using Transformer architecture, including its time se-
ries forecasting variants, to develop rainfall-runoff models using the CAMELS (US) data set. These
models were compared to the LSTM regional rainfall-runoff models, with a particular focus on snow-
driven basins as the attention mechanism in Transformer is believed to allow it to attend to the earlier
precipitation events in the meteorological forcing. Additionally, the Transformer’s potential as a global
rainfall-runoff model was also tested using the global Caravan data to determine if it could learn and
generalize a wide range of rainfall-runoff behaviors, allowing it to potentially be applied in ungauged
basins.

The results suggest that while Transformer and its variants may not be able to fully replace LSTM for
rainfall-runoff modeling, the variant called Reformer has shown promise for daily discharge forecasting
in snow-driven basins, particularly in terms of peak flow and low flow prediction. However, using the
global Caravan data for building a global rainfall-runoff model was not successful due to uncertainty in
the forcing data, particularly precipitation. The code for Transformer-based rainfall-runoff modeling is
available publicly at https://github.com/Numpy-Panda/neuralhydrology_Transformer.
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1
Introduction

1.1. Background
Stream flow forecasting is crucial for hydrological research and water resourcemanagement, especially
in the context of flooding control and drought prevention (Brath et al., 2002). Worldwide, various natural
hazards threaten human life, among which floods are arguably one of the most devastating natural
hazards, contributing to one-third of the economic losses caused by natural hazards, in recent decades,
floods have caused thousands of deaths with an increasing trend, disrupted economic activities, and
destroyed infrastructure (Pinos & Quesada-Román, 2021). Drought was one of the hazards that led to
the largest human losses from 1970 to 2019, with a total of approximately 650,000 deaths (Edith et al.,
2021).

Rainfall-runoff relations denote how the basin discharge responds to the mass (i.e. water from pre-
cipitation) and energy (e.g. radiation) inputs. Rainfall-runoff modeling is important for water manage-
ment decision-making. For example, accurate and advanced streamflow forecasts from rainfall-runoff
simulation can help mitigate the impacts of flood and drought hazards by providing early warning, al-
lowing people to evacuate before floods or prepare for drought conditions. Rainfall-runoff models use
meteorological data, such as precipitation and evaporation, as inputs to predict the discharge of a
basin. The existing modeling approaches, depending on the extent to which physical process knowl-
edge is imposed in the simulation, range from fully data-driven, over conceptual, to physically based
approaches. Physics-based basin-scale models, which are based on a detailed understanding of phys-
ical processes, generally require a large amount of computational resources and data and are rarely
used for operational stream flow forecasting, except in small experimental basins. This limits their use
in larger basins (Kratzert et al., 2018). However, conceptual models, which are usually simpler and
require less data, are more commonly used for operational forecasting.

Prediction in Ungauged Basins (PUB), where discharge observations are lacking, is one of the
twenty-three Unsolved Problems in Hydrology (UPH) (Blöschl et al., 2019). When transferring a con-
ceptual model from gauged to ungauged basins, there may be sources of uncertainty due to errors in
computing local and regional model parameters, as well as the relationship between local parameters
and catchment attributes, and the model structure (Wagener & Wheater, 2006). But the hydrologic
model-independent data-driven methods can avoid the impact t of hydrologic model structure and pa-
rameter uncertainty (Razavi & Coulibaly, 2013) and so be the potential solution to PUB. Over the past
decades, numerous data-driven techniques, largely attributed to machine learning, have been devel-
oped and applied in rainfall-runoff modeling (Shrestha & Solomatine, 2008). These techniques include
Artificial Neural Networks (ANNs) (Daniell, 1991), fuzzy regression (Bardossy et al., 1990), genetic
programming (Babovic & Keijzer, 2000), model trees (Solomatine & Dulal, 2003), and support vector
machines (Bray & Han, 2004).

1



1.1. Background 2

Recently, due to the availability of huge data sets and powerful Graphics Processing Unit (GPU),
the neural networks-based DL technique has achieved great performance in a variety of fields (Schmid-
huber, 2015) such as computer vision (Farabet et al., 2012), natural language processing (Sutskever et
al., 2014), and speech recognition (Hinton et al., 2012). These advances have also drawn the attention
of the hydrological community, inspiring new efforts to apply the DL techniques in rainfall-runoff model-
ing. One notable work (Kratzert et al., 2018) that boosted machine learning development in hydrology
is the use of Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997) for 241
catchments rainfall-runoff modeling in the US when the large large-sample hydrology (LSH) dataset,
Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) (US), was available. This
LSTM model outperformed many conceptual models in simulating the rainfall-runoff relations in the
US and demonstrated the feasibility of using LSTM for this task, which then led to a proliferation of
research on LSTM-based rainfall-runoff modeling. For example, a single LSTM model (Kratzert, Klotz,
Shalev, et al., 2019) was used for daily rainfall-runoff modeling in 531 basins in the US, considering
catchment attributes to help the model learn differences in hydrologic behavior between basins. This
LSTM model achieved a median Nash–Sutcliffe Efficiency Coefficient (NSE) (Nash & Sutcliffe, 1970)
of 0.73 on the 531 basins and performed better than the previous LSTM model applied to 241 basins,
which did not utilize basin attribute data. Additionally, a multi-time scale LSTM model (Gauch et al.,
2021) was proposed, using hourly and daily forcing data as input to predict daily discharge in the same
531 basins, resulting in better performance (a median NSE of 0.77) than the previous 531 basins sin-
gle LSTM model. Concurrently, LSTM-based rainfall-runoff models have also achieved remarkable
success when used for out-of-sample prediction problems such as PUB (Kratzert, Klotz, Herrnegger,
et al., 2019) and extreme low-probability streamflow events (Frame et al., 2022) in US basins. LSTM
has also been used for rainfall-runoff modeling in areas outside of the US, such as Great Britain (Lees
et al., 2021) and Chile (Ma et al., 2021), with good performance.

In rainfall-runoff modeling, the discharge at a specific time step is determined by the meteorolog-
ical input from the previous time period. Building a DL-based rainfall-runoff model requires selecting
a suitable DL architecture and training it on a reliable dataset. In terms of architecture, while LSTM
models are currently the most accurate for rainfall-runoff prediction when DL methods are applied to
this problem (Frame et al., 2022), there are still some debates on the limitation of LSTM, which may
pose challenges in rainfall-runoff modeling. One potential challenge is that LSTM processes the input
sequence one step at a time, which can result in a long path between the input and output sequences
in the model, making it difficult to learn dependencies (Hochreiter et al., 2001). One experiment (Khan-
delwal et al., 2018) shows that LSTM language models have an effective context size of about 200
tokens on average. Another experiment (Kratzert, Klotz, Shalev, et al., 2019) explicitly demonstrated
that an LSTM-based rainfall-runoff model achieved better performance when a past 270-day meteo-
rological sequence was used as input, rather than longer sequences like 365 or 720 days. Based on
these findings, it is unclear whether LSTM can fully utilize and learn the information from very previ-
ous meteorological events in a long meteorological input sequence in rainfall-runoff modeling. This
may present a challenge for modeling in basins with significant storage effects, such as snow-driven
basins, where water requires a long time to be released into streamflow from snowfall. Besides, some
research (Kratzert, Klotz, Shalev, et al., 2019; Ma et al., 2021) also showed that LSTM performs badly
in arid-basin discharge forecasting. In terms of data, large sample datasets are necessary for develop-
ing generalizable hydrologic data-driven models. As a result, there has been an increasing number of
publicly available LSH datasets in specific regions or countries, such as Australia (Fowler et al., 2021),
Brazil (Chagas et al., 2020), and North America (Arsenault et al., 2020). Many of these datasets are
referred to as Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) datasets.
Furthermore, the availability of region-specific data may limit hydrological research due to the lack of
common standards for intercomparison, etc. (Addor et al., 2020). As a result, a global LSH data set
called Caravan (a series of CAMELS) (Kratzert et al., 2022) has been published. Uncertainty can be
introduced into this LSH data due to inappropriate measurement, interpolation, and other factors, lead-
ing to bias and error in analyses and conclusions. Therefore, the estimation of uncertainty is a crucial
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aspect of hydrological research (McMillan et al., 2018).
The Transformer (Vaswani et al., 2017), also known as the Vanilla Transformer, is a DL architecture

that was proposed in 2017 for machine translation. Nowadays, in the field of DL, the Transformer is
considered a foundational model that can be trained on broad data and be adapted to a wide range
of downstream tasks (Bommasani et al., 2021). In the past years, Transformer architecture has been
used in various tasks with great success thanks to its self-attention mechanism (Vaswani et al., 2017),
which can effectively establish long-range dependencies and shorten the calculation path between
input and output sequences (Bommasani et al., 2021). However, Transformer-based models have
struggled with modeling extremely long-range dependencies due to the large amount of quadratic com-
putation required by the self-attention mechanism (Wang et al., 2020). To address this issue, numerous
Transformer variants have been proposed to reduce the computational costs, such as the Informer (H.
Zhou et al., 2021), Reformer (Kitaev et al., 2020), and FED former (T. Zhou et al., 2022), which are
specifically designed for effective long-term time series forecasting.

In the last few years, there has been little research on the application of Transformer architectures
for hydrology, and only in recent months has some research in this area emerged. Most of these studies
have shown that Transformer-based hydrological models outperformed LSTM-basedmodels in terms of
discharge prediction. For example, RR-former (Yin et al., 2022) utilizes a nearly identical architecture
to the vanilla Transformer, which inputs both meteorological forcing and historical (known) runoff to
simulate multi-step-ahead daily discharge (i.e. 1-7 days) using CAMELS (US) data. The results were
compared with two LSTM-based rainfall-runoff models (LSTM-MSV-S2S (Yin et al., 2021) and LSTM-
S2S (Xiang et al., 2020)) and revealed that the RR-Former performed better than the LSTM-based
model in both individual (one model for each basin) and regional (one model for all basins) modeling,
and RR-Former is well-suited for large datasets. In addition, a study (Amanambu et al., 2022) used
Transformer architecture to predict hydrological drought for 30, 60, 90, 120, and 180 days into the future,
using daily stage-height data from two gauging stations in the Apalachicola River, Florida. The results
showed that, on average, the Transformer-based models performed better than the LSTM models
across all timestamps for predicting hydrological drought. A study (Castangia et al., 2023) utilized the
Transformer architecture, which inputs daily water level data from 13 upstream hydrological stations
to predict flooding in the downstream area of Doboj, Bosnia and Herzegovina. The results showed
that the Transformer-based forecasting model was superior to Gate Recurrent Unit (GRU) (Cho et al.,
2014) or LSTM-based models. The outstanding performance of the Transformer-based model can be
interpreted by its ability to accurately identify upstream stations with strong predictive capabilities and its
attention score maps that rapidly change at the start of a flooding event and quickly restore at the end of
the event. In addition, a study (Liu et al., 2022) employed a double-encoder Transformer architecture,
where two encoders input the streamflow and El Niño-Southern Oscillation (ENSO) (Ropelewski &
Halpert, 1986) data, respectively. Then, the ”cross-attention” mechanism was then utilized to capture
the relationship between the two time series sequences, enabling the ability to make precise long-term
predictions for the flow of the Yangtze River.

1.2. Research Motivation
Currently, most existing studies on Transformer-based hydrological modeling have demonstrated su-
perior performance in forecasting discharge when compared to the LSTM architecture, which has been
the leader in this task. However, in these studies, discharge (or water level) has been used as input
for the Transformer model, which makes it difficult to transfer these models to ungauged basins.

From the perspective of Transformer architecture, using it for rainfall-runoff simulation seems desir-
able for several reasons. First, its self-attention mechanism can shorten the path between input and
output sequences and effectively focus on earlier rainfall events more efficiently than LSTM, which
is useful for simulating rainfall-runoff relations in basins with significant storage-effect, such as snow-
driven basins. Second, Transformer architecture has more trainable parameters compared to LSTM,
an experiment (Popel & Bojar, 2018) has shown that Transformer generally performs better on larger
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training datasets, which is consistent with the findings of RR-former study (Yin et al., 2022). This sug-
gests that using a larger dataset, containing a greater number of basins, to train a rainfall-runoff model
based on Transformer could be beneficial. On one hand, the Transformer may perform better on a
larger dataset, and on the other hand, it perhaps learns more rainfall-runoff behaviors from a diverse
range of basins, for example, from the global LSH Caravan data, which could potentially be transferred
to ungauged basins, thus addressing the PUB problem.

Given the limitations of existing Transformer-based hydrological models in terms of not being trans-
ferable and the potential suitability of Transformer architecture for rainfall-runoff modeling, a study focus-
ing on Transformer-based rainfall-runoff modeling that predicts discharge solely through meteorological
forcing would be significant and meaningful.

1.3. Problem Statement
The problem of this thesis is to investigate the potential or applicability of Transformer-based models
for rainfall-runoff modeling. It is hypothesized that Transformer architectures may be more effective
for rainfall-runoff modeling due to their ability to consider earlier rainfall events more effectively than
LSTM models and potentially being able to learn more rainfall-runoff behaviors, allowing for transfer
to ungauged basins. Exploring the potential and applicability of Transformer architecture includes the
possibility of outperforming LSTM-based models and serving as a global rainfall-runoff model based on
the Caravan dataset. This study is significant as it may lead to the development of a better rainfall-runoff
model and contribute to the advancement of machine learning in the field of hydrology.

1.4. Research Objective
The purpose of this research is to explore the applicability of the Transformer architecture to accurately
describe daily rainfall-runoff patterns in multiple catchments. It is generally computationally expensive
for the Transformer to predict streamflow on a finer timescale, such as hourly, due to the long input
sequence required (Gauch et al., 2021). As a result, the focus of this study will be on daily prediction.
The study also aims to compare the performance of both the Transformer and LSTM architectures in
rainfall-runoff modeling. To determine the generalizability and effectiveness of the Transformer-based
approach, experiments will be conducted on a large number of catchments from the CAMELS (US)
data set, which some LSTM-based rainfall-runoff models rely on. The Transformer-based rainfall-runoff
model will also be trained on the global LSH data set, Caravan, to assess its ability to operate as a
global model and evaluate the uncertainty in the global LSH data.

1.5. Research Question
Themain research question is: Howdo Transformer-based architectures perform as rainfall-runoff
models? To answer this main research question, the following sub-research questions have been
formulated:

• Sub-Research Question 1: Can the Transformer architectures outperform LSTM in rainfall-
runoff modeling?

• Sub-Research Question 2: Can the Transformer be a global rainfall-runoff model based on the
Caravan data set?

1.6. Reading Guide
The report is organized as follows: Chapter 2 provides background information on hydrological model-
ing based on DL techniques, including a description of the model calibration procedure and the feasible
DL architecture for rainfall-runoff modeling. Chapter 3 presents a detailed overview of the data sets
used in the research, and evaluation methods, and shows how the experiments were designed to
address the research questions. Chapter 4 presents the experimental results and provides some dis-
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cussion on the limitations of the experiments. Chapter 5 gives conclusions and recommendations and
discusses future work.



2
Theoretical background

This chapter introduces the background information on hydrological modeling based on DL techniques.
Section 2.1 explains how a DL-based hydrological model is calibrated, including the process of generat-
ing training, validation, and testing data, and how the model is trained and tested. Section 2.2 presents
some DL architectures that are suitable for hydrological modeling, with a focus on the Transformer
architecture.

2.1. Calibration procedure
Like a conceptual hydrological model, a DL-based rainfall-runoff model also needs to be calibrated,
which is commonly referred to as training. Essentially, the rainfall-runoff model translates meteoro-
logical data into discharge. For a specific catchment, the discharge can be seen as a function of past
meteorological data, such as precipitation, temperature, vapor pressure, and shortwave radiation, given
that the catchment characteristics do not vary over time.

To prevent overfitting, which is a common issue in DL that can lead to poor model generalization
to unseen data (Ying, 2019), it is necessary to split the observed data into training, validation, and test
sets. In this research, to ensure model convergence, the model was trained for 100 epochs based on
training data, which means the model was calibrated using the entire training data set 100 times and
the model parameters were saved after each epoch. This resulted in a total of 100 sets of parameters
(or weights) for the model. The validation data was then used to select the parameter set with the best
performance (seen Fig. 2.1). The model with the selected parameter set was finally tested on the test
data set using various metrics. This process can be seen in Fig. 2.2 and helps to ensure that the
model’s prediction capabilities are evaluated using data it has never seen before.

6
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Figure 2.1: An illustration of a training curve, the model was trained for 100 epochs to guarantee convergence and was
evaluated in each epoch using validation data by NSE loss. The parameter set chosen in the epoch where the the model

achieved best median NSE will be used for further testing.

Figure 2.2: The data splitting: training, test, and evaluation sets.

A large number of training samples are typically needed to train a DL-based rainfall-runoff model.
Each sample usually consists of observed meteorological forcing and discharge data. These samples
are obtained frommulti-year historical observation data by using a length-nmoving window that selects
the meteorological forcing data from the first day of the training period. Every time the window is moved
by one stride, a length-n (days) forcing data and the discharge data from the n-th time step (or day)
are obtained as one training sample. This process is repeated until it is no longer possible to select a
complete length-n forcing data, and it is important to ensure that every sample has the same length,
n. In addition, the DL model must be able to recognize differences in hydrologic behaviors between
different catchments because basins may respond differently to similar forcing input. To allow the
model to make these distinctions, extra information in the form of static catchment attributes such as
catchment slope and mean elevation, which do not change over time in our study, must be provided.
These static data are usually concatenated into each step of the samples, and samples from different
basins are concatenated with their unique basin attributes at each step. Then, m random samples
are shuffled and combined into a batch, as shown in Fig. 2.3 and Fig. 2.4. Shuffling the m samples
can help the model converge faster (Kratzert et al., 2018). The validation and test data come from the
validation and test periods.



2.2. Models 8

Figure 2.3: Examples of training samples taken from a historical record’s training period, typically spanning several years.

Figure 2.4: Batch of m shuffled samples being fed to deep learning model.

DL-based rainfall-runoff models take in m random samples at the same time and predict m dis-
charges, which are compared to the observed discharges based on a loss function, which measures
the error between the prediction and the observation and guides the model to update its trainable pa-
rameters. It is important to ensure that the value of m is not too small in order to avoid fluctuations in
the loss during training. In this way, the DL model can be trained to map meteorological forcing data
to discharge (Kratzert et al., 2018).

It’s important to note that the discharge observations can only be used for loss calculation and not as
input. There are time series forecasting neural networks that require both meteorological forcing data
and historical discharge as inputs to produce accurate predictions. However, a key reason for using a
DL model to simulate discharge in this research is to solve the PUB problem, and when transferring
the DL-based rainfall-runoff models to ungauged basins, discharge observations will not be available.

2.2. Models
This section will introduce some suitable DL-based models for rainfall-runoff modeling.
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2.2.1. Artificial Neural Network
ANNs are a fundamental and essential component of many DL architectures, also known as dense
layers or Multilayer Perceptron (MLP) (Hastie et al., 2009). As illustrated in Fig. 2.5, an ANNs archi-
tecture typically consists of an input layer, an output layer, and one or more hidden layers (two hidden
layers, in this case). The circles represent neurons, which gather information from previous layers and
transmit it to the next layers, as indicated by the black arrows. In this way, the input signal can pass
the network layer by layer and be transformed into the final output.

Figure 2.5: Diagram of an artificial neural network architecture (Dertat, 2017).

Each neuron receives information from all neurons in the previous layer. The received information
is a weighted sum of the information transmitted by the previous layer neurons, plus a bias term, and is
then activated using a nonlinear function. Simple ANNs can be used in rainfall-runoff modeling (Daniell,
1991; Halff et al., 1993), but perform poorly because they are not able to effectively utilize sequential
order information.

2.2.2. Recurrent Neural Network
Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986) are designed to handle sequential data,
and the most commonly used type of RNNs is LSTM (Hochreiter & Schmidhuber, 1997). Neuralhydrol-
ogy (Kratzert, Herrnegger, et al., 2019) is a Python library for training neural networks (primarily based
on LSTMs) with a strong emphasis on hydrological applications. It has been widely used in research in
recent years (Frame et al., 2022; Frame et al., 2021; Gauch et al., 2021), and has demonstrated that
LSTMs are capable of accurately simulating rainfall-runoff behaviors. The architecture of an LSTM can
be seen in Fig. 2.6.

Figure 2.6: Diagram of LSTM unit architecture (Calzone, 2022).
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As depicted in Fig. 2.6, an LSTM unit consists of four neural networks that serve the function of
selecting information, namely the forget gate Ft, the input gate It, the output gate Ot, and the input
node C̃t. The forget gate Ft determines which information should be discarded from the cell’s internal
state at the previous step Ct−1 based on the hidden state at the previous step Ht−1 and the current
input Xt. Then, the input node C̃t generates candidate information C̃t, which is then selected by the
input gate It and added to the internal cell state Ct. This process updates the cell state Ct and can be
described using the Eq. 2.1 (Calzone, 2022).

Ft = σ (XtWxf + Ht−1Whf + bf )

C̃t = tanh (XtWxc + Ht−1Whc + bc)

It = σ (XtWxi + Ht−1Whi + bi)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t

(2.1)

whereW is weight parameters and b is bias parameters, tanh and σ are the activation function, and
⊙ denotes product operator.

The output gate Ot filters the information from the updated internal cell state of Ct into LSTM cell
output Ht based on the previous hidden state Ht−1 and current input Xt. This process can be described
using Eq. 2.2 (Calzone, 2022).

Ot = σ (XtWxo + Ht−1Who + bo)

Ht = Ot ⊙ tanh (Ct)
(2.2)

When applying LSTM to rainfall-runoff modeling, the LSTM unit digests a sample step by step, as
depicted in Fig. 2.7. It is important to note that the gray square represents the same LSTM unit at a
different time step. It can also be observed that the output of the LSTM unit at time step i serves as its
input at step i+1, and the LSTM unit can only input data for step i+1 once the processing for step i is
completed. This is known as recurrent architecture. By processing the data step by step, the LSTM is
able to fully utilize the sequential order information within the sequence. The black square represents
the dense layer or ANNs, which transforms the output of the LSTM into the discharge at time step n.
The LSTM converts meteorological data of length n (concatenated with the attributes of the basin) into
a runoff sequence of length 1 (in the case of daily prediction in this research, the prediction length is
only 1).

Figure 2.7: Illustration of LSTM processing input step-by-step for rainfall-runoff modeling.
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2.2.3. Transformers
Transformer (Vaswani et al., 2017) was a novel DL architecture that is particularly effective for process-
ing sequential data such as time series, the architecture is shown in Fig. 2.8.

Figure 2.8: Transformer architecture (Vaswani et al., 2017).

As depicted in Fig. 2.8, the Transformer utilizes an encoder-decoder structure, denoted by ”N×”,
meaning N encoders or N decoders, which consists of feedforward neural networks and multiple self-
attention layers. The encoder processes the input sequence and extracts features, while the decoder
uses these features to generate the output sequence (Vaswani et al., 2017).

The LSTMmodels dependencies based on its recurrent architecture, while the Transformer relies on
attention mechanisms (as represented by the ”Multi-Head Attention” and orange square in Fig. 2.8). A
major difference between the two is that the recurrent architecture processes the sequence step by step,
while the attention mechanism inputs the entire sequence at once, resulting in the loss of sequential
order information in the Transformer’s input (Vaswani et al., 2017). In simpler terms, the Transformer
architecture is unable to determine the relative positions of the meteorological forcing sequence in
rainfall-runoff modeling. To address this issue, the Transformer employs positional encoding (denoted
by the circles in Fig. 2.8), which injects information about the relative or absolute position of the steps
into the sequence. The attention mechanism and positional encoding are vital components of the
Transformer architecture and are essential for time series forecasting tasks like rainfall-runoff modeling.

Self attention mechanism
The attention mechanism employed by the Transformer is known as Scaled Dot-Product Attention and
is depicted in Fig. 2.9.
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Figure 2.9: Illustration of the Scaled Dot-Product Attention mechanism in the Transformer architecture (Lee, 2019).

The Scaled Dot-Product Attention works as follows: given an input sequence A{a1, a2, a3, a4}, the
attention layer maps each element an to its corresponding output bn, n ∈ {1, 2, 3, 4}. First, trainable
parameters WQ, WK , and W k are used to generate corresponding query qn, key kn and value vn for
the input an, n ∈ {1, 2, 3, 4}. The query qn represents the information that the attention layer is trying to
output for an, the key kn represents the information from an that the attention layer is attending to, and
the value vn holds the information that the attention layer uses to compute the output bn. Taking the
first element a1 as an example, the attention scores α′

1,n, n ∈ {1, 2, 3, 4} of a1 are calculated as the dot
products of q1 with kn, n ∈ {1, 2, 3, 4}, and a softmax function (Bishop & Nasrabadi, 2006) is applied to
these dot products, which are then used as weights on the values vn, n ∈ {1, 2, 3, 4}, and the output of
a1 is b1, computed as the weighted sum of values vn. The self-attention mechanism in the Transformer
allows the model to selectively attend to different parts of the input sequence and use this information
to compute the output (Lee, 2019).

In fact, the attention layer in the Transformer processes a set of queries simultaneously by packing
them into a matrix Q, and the keys and values are also packed into matrices K and V . This allows the
Transformer to be significantly more parallelized. The Scaled Dot-Product Attention can be calculated
as Eq. 2.3 (Vaswani et al., 2017).

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2.3)

where
√
dk is the scaling factor to prevent dot products grow large in magnitude.

It has been found that better performance can be achieved by projecting the queries, keys, and val-
ues h times in parallel using different sets ofWQ,WK , andWV (Vaswani et al., 2017). These h Scaled
Dot-Product Attention layers will output results with the same dimensions, which will be concatenated
and projected again.

Positional encoding
The absolute positional encoding was used in the Vanilla Transformer, which is also called sinusoidal
positional encoding and can be summarized as Eq.2.4 (Vaswani et al., 2017).
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PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

)
,

(2.4)

where pos is the position and i is the dimension. The positional encoding and the embedding results
are combined to create the input for the Transformer. This allows the Transformer to include information
about the position of the elements in the sequence in the input, while still maintaining the order of the
sequence.

Transformer for rainfall-runoff modeling
Using Transformer-based architecture to model the relationship between rainfall and runoff is depicted
in Fig. 2.10. Note that the traditional Transformer architecture takes in both a source sequence and a
target sequence, which in the context of rainfall-runoff modeling represent the meteorological forcing
data (concatenated with basin attributes) and discharge, respectively. However, when transferring
the model to ungauged basins, the discharge data is not available, therefore, the Transformer-based
rainfall-runoff modeling only utilizes the encoder part.

Figure 2.10: Illustration of Transformer architecture applied to rainfall-runoff modeling, where only the encoder part is utilized.
The attention output at the final position (represented by the purple square) is connected to a dense layer and subsequently

converted into discharge.

2.2.4. Transformer Variants
Recently, Transformer architectures have garnered a great deal of interest in time series modeling
(Wen et al., 2022). However, the self-attention mechanism of the Transformer requires a large amount
of quadratic computational resources for long input sequences, making it difficult to use for time series
prediction (H. Zhou et al., 2021). For example, the Vanilla Transformer requires O

(
L2

)
computational

operations and memory in processing a length-L sequence. To address this issue, several Transformer
variants with modified attention mechanisms have been proposed for time series forecasting problems,
including Informer (H. Zhou et al., 2021), Reformer (Kitaev et al., 2020), FEDformer (T. Zhou et al.,
2022), and Linformer (Wang et al., 2020).

Informer: is a variant of the Transformer specifically designed for time series forecasting. It aims to
enhance the Transformer’s prediction capacity on time-series forecasting through the incorporation of
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innovations including the ProbSparse self-attention mechanism, self-attention distilling operation, and
a generative style decoder, in order to more efficiently model long-range dependencies in time series
data.

Reformer: introduces the novel Locality-Sensitive Hashing attention to reduce thememory and time
complexity into O(L logL), where L is the length of the sequence. In addition, the use of reversible
residual layers (Gomez et al., 2017) in the Reformer model also allows for faster and more memory-
efficient computations.

FEDformer: stands for Frequency Enhanced Decomposed Transformer, it was proposed for ana-
lyzing time series data that includes a mixture of experts for seasonal-trend decomposition to better
capture the global properties of the data. FEDformer is able to achieve linear O(L) computational
complexity and memory cost by randomly selecting a fixed number of Fourier components.

Linformer: approximates the self-attention mechanism through a low-rank matrix decomposition,
resulting in reduced space- and time-complexity of linear O(L), where L is the length of the sequence.
This makes it suitable for time series modeling.

In the real world, time series modeling often involves the use of timestamps, such as calendar
timestamps (e.g. second, minute, hour, week, month, year) or special timestamps (e.g. holidays,
events). These timestamps can provide valuable information but are not effectively utilized by the vanilla
Transformer’s positional encoding method (as shown in Eq.2.4) (H. Zhou et al., 2021). To address this
issue, the use of timestamps as positional encoding has been proposed.

The timestamp embedding consists of three parts, as shown in Fig 2.11 shows.

Figure 2.11: Illustration of Timestamp embedding (H. Zhou et al., 2021).

The Local Time Stamp embedding is the same as the vanilla Transformer (as shown in Eq. 2.4),
while the Global Time Stamp embedding will make the timestamp into [Day-Of-Week, Day-Of-Month,
Day-Of-Year], whose values range from -0.5 to 0.5. For example, Tuesday is the ( 16 − 0.5) Day-Of-
Week. The Positional embedding, Global Time Stamp embedding, and the original input sequences
will be projected into the same dimension as the model and summed as the input of the attention
mechanism.

The vanilla Transformer and its variants (i.e. Transformer Family), as well as timestamp positional
encoding, will be tested for their effectiveness in rainfall-runoff modeling. Simply put, different atten-
tion mechanisms and positional encoding methods will be used to simulate discharge based on the
architecture depicted in Fig. 2.10.
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Methodology

This chapter provides a detailed overview of the data sets used in the research, and the methods
to evaluate the performance of the model. Then how the experiments are designed to approach the
research question will be shown.

3.1. Data set
3.1.1. CAMELS
The CAMELS dataset, which stands for ”Catchment Attributes for Large-Sample Studies,” consists of
671 catchment areas in the CONUS with minimal human disturbance. It includes catchment meteo-
rological forcing data and daily streamflow observations starting in 1980 to 2010 for most catchments.
There are three different resolution meteorological forcing products available in the dataset: Daymet
(Newman et al., 2015), NLDAS (Xia et al., 2012), and Maurer (Maurer et al., 2002), which are local
and generally reliable. A small proportion of the daily discharge measurements are missing for a few
basins, but the meteorological forcing time series are all complete. For example, during the period
1990-2009, no more than 1% of the basins had more than 1% of their daily streamflow measurements
missing (Addor et al., 2017).

The CAMELS dataset will be used to compare Transformer-based rainfall-runoff models to LSTMs.
Many LSTM hydrological models have been developed using the CAMELS dataset, which has been
shown to be reliable for developing deep learning-based rainfall-runoff models. Fig. 3.1 and Fig. 3.2
depict the daily mean precipitation and aridity of the CAMELS dataset, respectively.

Figure 3.1: CAMELS basins mean daily precipitation, the
points denote the centroid of the basins.

Figure 3.2: CAMELS basins aridity, the points denote the
centroid of the basins.

15
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3.1.2. Caravan
The Caravan dataset (Kratzert et al., 2022) consists of almost forty years (1981-2020) of daily meteo-
rological forcing and discharge data, as well as basin attributes, for 2532 basins around the world. The
meteorological forcing data was derived from the ERA5-Land product (Muñoz-Sabater et al., 2021), the
basin attributes were taken from ERA5-Land and HydroATLAS (Linke et al., 2019), and the discharge
data was sourced from seven open datasets like CAMELS and CAMELS-AUS. A list of Caravan basins
and their corresponding discharge data sources can be found in 3.1.

Table 3.1: Overview of Caravan basins and sources of discharge data.

Sub-data No. of basins Location
CAMELS (US) 482 USA
CAMELS-AUS 150 Australia
CAMELS-BR 376 Brazil
CAMELS-CL 314 Chile
CAMELS-GB 408 Great Britain
HYSETS 323 Canada
LamaH-CE 479 Austrian territory and Danube catchment up to Bratislava

The Caravan dataset includes not only a large number of basins but also a long period of meteorolog-
ical and discharge records, making it suitable for developing a global Transformer-based rainfall-runoff
model. The distribution of basins in Caravan can be seen in Fig. 3.3.

Figure 3.3: Caravan basins distribution (Kratzert et al., 2022)

3.2. Evaluation methods
The most commonly used evaluation metrics and methods for rainfall-runoff models include the Nash-
Sutcliffe efficiency (NSE), peak flow bias, low flow bias, middle flow bias, the Kling-Gupta Efficiency
(KGE), and the Budyko Framework, etc. These metrics and methods provide information on the ac-
curacy and reliability of the model’s ability to predict discharge and can be used to compare different
models or to determine the best model for a particular application. These evaluation metrics and meth-
ods will be introduced in this section.

3.2.1. Metrics
There is no single metric that can fully evaluate the consistency, reliability, accuracy, and precision
of a rainfall-runoff model, and the evaluation of hydrological models should be approached as a multi-
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objective problem (Efstratiadis & Koutsoyiannis, 2010). Therefore, it is necessary to estimate the model
performance using multiple metrics (Gupta et al., 1998). More details about these metrics and hydro-
logical signatures will be presented in this section. The following notations are chosen for all metric
equations:

Q= discharge [mm/d]
Xo = observed X

Xm = modelled X

Q̄ = average discharge [mm/d]
r = correlation
µ = mean
t = time step
T = number of total time step
σ = standard deviation
An overview of all the hydrological signatures and metrics can be seen in Table 3.2.

Table 3.2: Overview of the hydrological signatures and the metrics.

Metric Abbr. ranges desirable value
Nash–Sutcliffe Efficiency NSE -∞− 1 1
basin-averaged Nash–Sutcliffe efficiency NSE* -∞− 1 1
alpha decomposition of NSE alpha-NSE 0 - +∞ 1
beta decomposition of NSE beta-NSE -∞−+∞ 0
Kling-Gupta Efficiency KGE -∞− 1 1
FDC High flow bias FHV -∞−+∞ 0
FDC Midsegment slope bias FMS -∞−+∞ 0
FDC Low flow bias FLV -∞−+∞ 0

NSE
NSE (shown in Eq. 3.1) is used to assess the predictive skill of hydrological models. It’s commonly
used in evaluating the model prediction accuracy but often criticized for the overestimation of model
skills in highly seasonal variables such as runoff in snowmelt-dominated basins (Gupta et al., 2009)
and guides the model more focus on simulating high flow and ignoring errors in the low flow prediction.

NSE = 1−
∑T

t=1 (Q
t
o −Qt

m)
2∑T

t=1

(
Qt

o − Q̄o

)2 (3.1)

When NSE is applied in multiple basins, the NSE from a basin with a low average discharge is
generally smaller than the NSE from a basin with a high average discharge. Therefore, the basin-
averaged Nash–Sutcliffe efficiency (NSE*) was used, which does not overweight the basins with high
average discharge (Kratzert, Klotz, Shalev, et al., 2019). NSE* can be described by Eq. 3.2.

NSE∗ =
1

B

B∑
b=1

N∑
n=1

(Qm −Qo)
2

(s(b) + ϵ)2
, (3.2)

where B is the number of basins, N is the number of samples (days) per basin, and s(b) is the
standard deviation of the discharge in basin b. Note that NSE* serves only as a loss function, measuring
the error between the prediction and observation from multiple basins in a batch rather than a metric
to evaluate the model performance.

NSE Decomposition
NSE can be divided into two parts (see Eq. 3.3) α and βn, α focuses on the evaluation of relative
variability of the simulated and observed discharge values (Gupta et al., 2009).
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NSE = 2 · α · r − α2 − β2
n

α = σm/σo

(3.3)

KGE
Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) evaluates the hydrologic model performance like
NSE does, and it was developed based on the limitation of NSE. KGE can be described by Eq. 3.4.

KGE = 1−
√
(r − 1)2 + (α− 1)2 + (βn − 1)2 (3.4)

FLow Duration Curve
Flow Duration Curve (FDC) is a cumulative frequency curve that shows the percentage of discharge
times equal to or exceeding the specified discharge times during a given period (Searcy, 1959) in a
Hydrograph. 0–0.02 flow exceedance probabilities part of FDC is the high-flow segment, 0.2–0.7 flow
exceedance probabilities part of FDC is the midsegment, 0.7–1.0 flow exceedance probabilities is the
low-flow segment part. An example of a hydrograph and its flow duration curve can be seen in Fig. 3.4.

Figure 3.4: Hydrograph and flow duration curve (logarithmic y-axis).

High flow bias: To assess the hydrological model’s skill in simulating exceedance percentage lower
than 2% peak flow, FDCHigh-segment Volume (FHV) of FDC is used and can be seen in Eq 3.5 (Yilmaz
et al., 2008).

% BiasFHV =

∑H
h=1 (Qm,h −Qo,h)∑H

h=1 Qoh

× 100, (3.5)

where h = 1, 2,…H are the flow indices for flows with exceedance probabilities lower than 0.02.
Midsegment slope bias & Low flow bias: Similarly, the evaluation on model performance in mid-

segment and low flow can be represented by the bias in FDC Midsegment Slope (FMS) and the bias
in FDC Low-segment Volume (FLV), respectively. The two can be described by Eq. 3.6 and Eq. 3.7
(Yilmaz et al., 2008).

% BiasFMS =
[log (Qm,m1)− log (Qm,m2)]− [log (Qo,m1)− log (Qo,m2)]

[log (Qo,m1)− log (Qo,m2)]
× 100, (3.6)

wherem1 andm2 are the lowest and highest flow exceedance probabilities (0.2 and 0.7, respectively).

% BiasFLV = −1 ·
∑L

l=1 [log (Qm,l)− log (Qm,L)]−
∑L

l=1 [log (Qo,l)− log (Qo,L)]∑L
l=1 [log (Qo,l)− log (Qo,L)]

× 100, (3.7)

where l = 1,2,…L is the index of the flow value located within the low-flow segment (0.7–1.0 flow
exceedance probabilities) of the flow duration curve, and L is the index of the minimum flow.
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3.2.2. Paired Wilcoxon test
When comparing the performance of different models based on metrics in numerous catchments, for
example, one model may have one NSE value for each of the 531 basins, resulting in 531 NSE values,
so the use of mean or median values of the metrics may not accurately reflect the performance of
each model. To more effectively compare the differences in the metrics obtained by different models in
multiple catchments, the Wilcoxon signed-rank test (Wilcoxon, 1992) is used to assess the significance
of the differences in the distribution of the metrics for each model in different catchments.

Wilcoxon signed-rank test is a nonparametric test used to compare two related samples or repeated
measurements on a single sample. It is used when the assumptions of the parametric paired t-test are
not met, such as when the data is not normally distributed (Wikipedia contributors, 2022).

3.2.3. Budyko Framework
Budyko framework was developed by Budyko (Budyko, 1963) to evaluate the connections and feedback
on the water between climate forcing and land surface characteristics (Xu et al., 2013). The relationship
between the actual evapotranspiration (AET) and runoff (Q), the change in catchment water storage
(∆S), and precipitation can be described by Eq. 3.8.

P = AET +Q+∆S (3.8)

Budyko framework assumed that the change in storage can be neglected over long-term timescales
(i.e. ∆S = 0) in the long-term, and underlines that actual evapotranspiration (AET) is a function of the
aridity index (ϕ) as Eq. 3.9 described. The aridity index (ϕ) is defined as the ratio between the potential
evapotranspiration (PET) and the precipitation (P).

AET

P
=

√
PET

P
∗ tanh PET−1

P
∗
(
1− e−

PET
P

)
(3.9)

Budyko framework is limited by the energy and water limit (see Fig. 3.5). The energy constraint
denotes there is not enough energy for more evaporation (EA ≤ EP ), and the water limit means no
more water can be evaporated than has entered the catchment as precipitation (EA ≤ P̄ ).

Figure 3.5: Budyko Framework.

3.3. Experiments design
Two experiments were designed to address the two sub-research questions, respectively. The first
experiment, using the CAMELS (US) dataset, aims to compare the performance of Transformer mod-
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els with LSTM models in rainfall-runoff modeling, particularly in snow-driven basins. This experiment
will focus on regional rainfall-runoff modeling in the US. The second experiment, using the Caravan
dataset, aims to evaluate the suitability of Transformer models for global rainfall-runoff modeling. This
experiment will focus on global modeling.

3.3.1. Experiment 1: regional modeling
In the first experiment, the overall modeling performance of LSTM and the Transformer family will be
compared on CAMELS basins. Additionally, the performance of LSTMs and Transformers in predicting
storage effect basins (i.e., snow-driven basins) will be examined. By conducting this experiment, it
will be possible to answer the first sub-research question: Can Transformer architecture outperform
LSTM in rainfall-runoff modeling? In addition, the effectiveness of the Transformer’s attention to all the
precipitation events in modeling the storage effect will be evaluated.

LSTM Benchmark
In this experiment, the state-of-the-art daily LSTM-based rainfall-runoff model (Kratzert, Klotz, Shalev,
et al., 2019) will be used as the benchmark. This benchmark has achieved a median NSE value of 0.73
on 513 basins in the US based on the CAMES data set and outperforms some conceptual hydrological
models. The overview of the benchmark can be found in Table 3.3.

Table 3.3: Overview of the configuration for the LSTM benchmark model (Kratzert, Klotz, Shalev, et al., 2019).

Configuration Configuration
Model LSTM Loss function NSE*
Hidden size 256 Input sequence length 270
Data CAMELS Output sequence length 1
Forcing product Maurer Training period 01/10/1999 - 30/09/2008
Forcing channel precipitation; etc Validation period 01/10/1980 - 30/09/1989
Attributes see Appendix B Test period 01/10/1989 - 30/09/1999

The LSTM benchmark model was trained using data from 531 basins in the CAMELS dataset and
was then validated and tested on the same basins over different time periods (as shown in Table 3.3).
The forcing channel refers to the types of dynamic meteorological forcing input used by the model,
including (i) daily cumulative precipitation, (ii) daily minimum air temperature, (iii) daily maximum air
temperature, and (iv) average short-wave radiation. In addition, 27 static basin attributes were used for
model training, and more information can be found in the Appendix B. It is worth noting that the LSTM
benchmark model was tested using different input sequence lengths (90, 180, 270, and 365 days), and
achieved the highest NSE when using a 270-day input sequence. This length-270 input LSTM model
will be used for comparison with Transformers in terms of general model performance.

To obtain a general comparison result in snow-driven basins, a benchmark model using a 365-day
input sequence for the LSTM model was also trained.

Transformers
The Transformer family members (including vanilla Transformer, Informer, Reformer, Linformer, and
FEDformer) were used for the regional rainfall-runoff modeling experiment. There are several hyperpa-
rameters that must be set prior to training, including the number of heads, number of encoder layers,
number of embedding dimensions, learning rate, optimizer, etc. Due to the time-consuming nature
of training Transformer models and the limited research time available, only different layers, heads,
and positional encodings (including sinusoidal positional encoding and timestamp positional encoding)
were experimented with for each member of the Transformer family. The input embedding dimension
was fixed at 256 for the experiment, and the number of heads have to be divisible by this value, so 2,
4, 8, and 16 heads were tried. The number of encoder layers was also varied, with 2, 4, and 8 layers
being tested. A summary of the hyperparameters can be found in Table 3.4.
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Table 3.4: Overview of Transformer family configuration for regional rainfall-runoff modeling.

Configuration Configuration
Optimizer Adam Number of heads 2 / 4 / 8 / 16
Activation function tanh Input embedding dimention 256
Epoch 100 Learning rate 1e-4 ∼1e-3
Number of layers 2 / 4 / 8 Position encoding Timestamp / Sinusoidal

Note: Learning rates change over epochs.

The input for the Transformer family models was the same as the LSTM benchmark, including
the same basins, forcing channels, attributes, training, validation, and test period. A 365-day input
sequence was used to capture at least the dynamics of a full annual cycle. The performance of the
Transformers will be compared with the LSTM benchmarks using the previously mentioned evaluation
methods.

This experiment can be illustrated in Fig. 3.6.

Figure 3.6: The flow chart illustrates the process of the first regional experiment.

3.3.2. Experiment 2: global modeling
The hypothesis for the second experiment is that a larger training data size is generally better for
Transformer, and Transformer is able to learn a wide range of rainfall-runoff behaviors from various
basins around the world, allowing it to be used as a global rainfall-runoff model to address PUB. The
goal is to build a global Transformer-based rainfall-runoff model using the Caravan dataset. However,
it is recognized that the Caravan dataset may contain uncertainty, and the sources of this uncertainty
will also be examined in order to inform the modeling process.

LSTM Benchmark
Currently, there is no globally-trained DL-based rainfall-runoff model. However, the Transformer archi-
tecture is expected to achieve very good performance when trained on the global Caravan data. There-
fore, another LSTM-based regional rainfall-runoff model (Gauch et al., 2021), developed on CAMELS
(US) data with both hourly and daily forcing inputs and predicting discharge at a daily scale, was se-
lected as the benchmark. This benchmark shows better prediction skills on the same 531 basins than
the LSTM in the first experiment, with the only difference being the additional hourly meteorological
forcing input. This benchmark will be compared with the US part of the global Transformer model. The
configuration overview of the LSTM benchmark with multiple timescales input can be seen in Table 3.5.
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Table 3.5: Overview of LSTM benchmark configuration in the global modeling experiment (Gauch et al., 2021).

Configuration Configuration
Model LSTM Loss function NSE*
Data CAMELS Output sequence length 1
Forcing product NLDAS Training period 01/10/1990 - 30/09/2003
Forcing channel precipitation; etc Validation period 01/10/2003 - 30/09/2008
Attributes see Table 3.7 Test period 01/10/2008- 30/09/2018

Transformer
The global Transformer-based rainfall-runoff model will be trained on the Caravan data set, which in-
cludes various types of meteorological forcing and attributes not present in CAMELS. In order to fairly
compare the model to the LSTM benchmark, it will be trained with the same forcing (see Table 3.6)
and attributes (see Table 3.7) as the benchmark whenever possible. The training, validation, and test
periods will also be identical to those of the LSTM benchmark (see in Table 3.5). The performance of
the US part of the Transformer global model will then be compared to that of the benchmark in order to
determine whether Transformer can benefit from a larger dataset with diverse rainfall-runoff behaviors.

Table 3.6: The dynamic forcing used in Transformer global modeling.

Feature (ERA5-Land variable name) Aggregation
total_precipitation_sum Daily sum Precipitation
temperature_2m_mean Daily mean air temperature
surface_pressure_mean Daily mean surface pressure
surface_net_solar_radiation_mean Daily mean shortwave radiation
surface_net_thermal_radiation_mean Daily mean net thermal radiation at the surface
potential_evaporation_sum Daily sum potential evaporation
u_component_of_wind_10m_mean Eastward wind component daily mean
v_component_of_wind_10m_mean Northward wind component daily mean
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Table 3.7: The static basins attributes used in Transformer global modeling.

Variable Name in Caravan Description
p_mean Mean daily precipitation
pet_mean Mean daily potential evaporation
aridity Aridity index, ratio of mean PET and mean precipitation
seasonality Moisture index seasonality in range [0, 2], where 0 indicates

no changes in the water/energy budget throughout the year
and 2 indicates a change from fully arid to fully humid.

frac_snow Fraction of precipitation falling as snow
high_prec_freq Frequency of high precipitation days,

where precipitation ≥ 5 times mean daily precipitation
high_prec_dur Average duration of high precipitation events (number of consecutive

days where precipitation ≥ 5 times mean daily precipitation
low_prec_freq Frequency of low precipitation days,

where precipitation <1 mm/day
low_prec_dur Average duration of low precipitation events (number of

consecutive days where days precipitation <1 mm/day
ele_mt_sav mean Elevation
slp_dg_sav mean Terrain slope
for_pc_sse mean Forest cover extent
swc_pc_syr annual mean soil water content
snd_pc_sav mean Sand fraction in soil
slt_pc_sav mean Silt fraction in soil
cly_pc_sav mean Clay fraction in soil

To further investigate the forcing uncertainty impact on the Transformer-based rainfall-runoff model,
the global coverage ERA5-land forcing was compared with the local Maurer forcing. Additionally, the
individual forcing channels of the Caravan dataset (precipitation, vapor pressure, and radiation) are
replaced with the corresponding channels in Maurer forcing to identify which forcing channels are the
most influential or uncertain for the modeling process.

The second global modeling experiment can be summarised by Fig. 3.7.

Figure 3.7: Second global experiment scheme.
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3.4. Research equipments
The training of the Transformers requires significant computational resources, particularly a powerful
GPU. As a result, the experiment had to be conducted using the newly launched supercomputer cluster
DelftBlue ((DHPC), 2022), which provided powerful NVIDIA Tesla V100S GPUs. The NeuralHydrology
(Kratzert, Herrnegger, et al., 2019) package was also utilized for data splitting, loading, training, and
testing. A training configuration can be seen in Appendix A.



4
Results and discussion

This chapter is organized as follows:

1. Section 4.1 compares different Transformers and the LSTM benchmark in regional rainfall-runoff
modeling in the US. The focus of this comparison is to determine if Transformer-based architec-
ture can outperform LSTM in modeling rainfall-runoff behaviors, particularly in snow-driven basins
in the US.

2. Section 4.2 presents the results of Transformer global modeling, including the impact of global
ERA5-land and Maurer forcing on model performance, and identifies which forcing channel con-
tains the most uncertainty for Transformer-based rainfall-runoff modeling.

3. Section 4.3 discusses the results of the experiments and highlights some of the limitations present
in the experiment.

4.1. Regional modeling
The comparison between Transformers and LSTMs in the US regional rainfall-runoff modeling will be
conducted in two parts. The first part will compare the general performance of Transformers and LSTM.
The second part will compare the performance of the two models in snow-driven basins. This will
provide a broad overview of the Transformer architecture’s performance as a rainfall-runoff model in
relation to LSTM, as well as an examination of whether the Transformer’s attention on all precipitation
events can improve its predictions in snow-driven basins.

4.1.1. General comparison
After attempting various configurations of the Transformer family members, including variations in the
number of heads, encoder layers, and encoding methods (as shown in Table 3.4), the top-performing
models for each member were selected based on median NSE during the test period, excluding some
models that were unable to be trained due to too many parameters or stopped training after a few
epochs because of the limited memory. Details about each family member’s number of layers, heads,
trainable parameters, and positional encoding methods can be seen see in Appendix D.1. Fig. 4.1
shows the Cumulative Density Functions (CDF) of NSE values for LSTM and the Transformer family
across basins. The CDF shows that Reformer architecture demonstrates improved NSE in specific
basins compared with LSTM. Some hydrographs that show the Transformer and LSTM simulation can
be seen in Fig. 4.2, and more hydrographs can be seen in Appendix E.

25
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Figure 4.1: Cumulative density functions of NSE for Transformers and LSTM benchmark (Kratzert, Klotz, Shalev, et al., 2019)
in 531 CAMELS basins. NSE is capped at 0 for better visualization.

Figure 4.2: The hydrographs that show the LSTM and Transformer simulations vs the observations.

The median values of various metrics and hydrological signatures for the Transformer family, and
LSTM have listed in Table 4.1, along with the average training time for each. The box plots that show
each metric distribution can be seen in Appendix D. It can be observed that while none of the Transform-
ers significantly outperform the LSTM benchmark across most metrics, they all require more training
time than LSTM.

Table 4.1: Median metrics and hydrological signatures for the Transformer family and LSTM benchmark. Bolded values indicate
results that are significantly different from the LSTM benchmark model in the respective metric or hydrological signature
according to Wilcoxon signed-rank test (Wilcoxon, 1992) (α = 0.001). The average training time is also included but is not

related to the significance.

Reformer FEDformer Linformer Transformer Informer LSTM
NSE 0.728 0.732 0.715 0.725 0.709 0.732
Alpha-NSE 0.822 0.858 0.866 0.834 0.817 0.842
Beta-NSE -0.050 -0.011 -0.016 -0.006 -0.032 -0.039
FHV -17.376 -14.263 -13.368 -15.900 -17.717 -16.058
FLV -19.797 -1.806 -177.769 24.667 3.661 28.927
FMS 3.385 -9.191 -11.540 -13.742 -7.671 -8.021
Training time (min/epoch) 93.536 63.786 15.900 64.307 16.034 7.693
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In the experiment, Reformer, FEDformer, and Transformer took significantly longer to train com-
pared to the other Transformers and LSTM. This is due to an inefficient coding method used. As previ-
ously mentioned, the experiment was carried out using the NeuralHydrology package, which does not
allow for the option to load timestamps into the model. However, these Transformer variants require
timestamp positional encoding methods to achieve higher median NSE. To accommodate for this, the
code of NeuralHydrology was modified in an inefficient way, causing the timestamp data type to be
transformed multiple times (from NumPy to tensor). A significant portion of the training time for these
Transformers is a result of this inefficient timestamp data type transformation.

The 531 basins’ NSE values spatial distribution from Transformer and LSTM can be seen in Fig.
4.3, the Transformer and LSTM NSE spatial distribution pattern are similar: in the eastern part of the
United States, the basins have the highest NSE values, whereas the central US has the lowest NSE
values.

The spatial distribution of NSE values for 531 basins from the Transformer and LSTM models can
be seen in Fig. 4.3, and the difference of the NSE between the Transformer and the LSTM benchmark
can be seen in Fig. 4.4. The patterns of the Transformer family and LSTM NSE distributions are similar
according to Fig. 4.3, with the eastern part of the United States having the highest NSE values and the
central US having the lowest NSE values. The difference map of NSE shows that Transformer can only
achieve better NSE than LSTM in a small number of basins, and these basins are mainly concentrated
in the central region of the United States.

Figure 4.3: Spatial distribution of NSE values for Transformer and LSTM in 531 basins, with locations marked on the map. The
color maps are limited to a range of [0, 1] for better visualization. The NSE with a value over 0.5 is considered acceptable.
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Figure 4.4: The difference of the NSE between the Transformer and the LSTM benchmark model, blue colors (>0) indicate that
the Transformer performs better than the LSTM benchmark model, red (<0) the other way around). The color map is limited to

[−0.4, 0.4] for better visualization.

The NSE values distribution patterns of the Transformer and LSTM under the Budyko framework
can also be seen in Fig. 4.5.

Figure 4.5: Transformer and LSTM Budyko Framework, the color maps are limited to [0, 1] for better visualization. The NSE
with a value over 0.5 is considered acceptable.
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Based on Fig. 4.5, it appears that both Transformer and LSTM have difficulty with discharge fore-
casting in (semi-) arid basins where the aridity index (Potential ET/P) and Evaporative index (Actual
ET/P) are higher. This is particularly evident when the aridity index exceeds 2 (as indicated by the
dotted line). The poor performance of the two models may be due to uncertainty in discharge measure-
ment. An example of Transformer and LSTM discharge simulation in an arid basin can be seen in Fig.
4.6. It is common for flow observations to be small but may suddenly increase to very large values,
as shown in Fig. 4.6. The discharge of CAMELS (US) is not measured directly, but rather stages are
measured and discharge is decided using a rating curve which shows the relationship between stage
and flow rate (as Fig. 4.7shows). The rating curve is created from multiple observations of stage and
discharge, but due to the low frequency of high flow, errors in discharge decisions by rating curve are
often larger. As a result, LSTM and Transformer perform poorly in arid basins.

Figure 4.6: Transformer and LSTM discharge simulation in an arid basin.

Figure 4.7: Illustration of a rating curve (USGS, 2018).

An NSE value above 0.7 is considered good model performance while a value below 0.7 indicates
poor performance. After using the Transformer, the NSE values of 32 basins in the LSTM benchmark
model results improved from below 0.7 to above 0.7, indicating that the Transformer transforms them
from poor to good. Conversely, LSTM also improved the modeling performance of 52 basins in the
Transformermodel results, transforming them from poor to good. Therefore, the possibility of combining
the two models for improved prediction was also explored by feeding both models the same input data
and having them predict discharge together, with the hope that a dense layer could ”learn” how to utilize
the combined information and make more accurate predictions. This approach is shown in Fig. 4.8,
with both Transformer and LSTM receiving a 365-length input.
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Figure 4.8: The illustration of the combination model using both Transformer and LSTM. The two models are fed the same
input data and their outputs are concatenated and passed through a dense layer for prediction.

Table 4.2 shows the median metrics and their standard deviation for the combined and single LSTM
models. It is evident that, with the exception of FLV, most of the median metrics are improved by
the combined model compared to a single LSTM. This is similar to the findings of the previous study
(Kratzert, Klotz, Shalev, et al., 2019), where feeding the same data into 8 LSTMs and taking the mean
of the predictions resulted in better median NSE than a single LSTM, but also led to worse performance
in other median metrics. However, the Transformer and LSTM combination used in this study was able
to improve both median NSE and other median metrics.

Table 4.2: Overview of median metrics and hydrological signatures and the standard deviation for the combined model and
single LSTM. Bolded values indicate results that are significantly different from the LSTM benchmark model in the respective

metric or hydrological signature according to Wilcoxon signed-rank test (α = 0.001).

Combine Transformer & LSTM LSTM
Median Standard deviation Median Standard deviation

NSE 0.747 0.163 0.732 0.143
Alpha-NSE 0.864 0.163 0.842 0.163
Beta-NSE -0.012 0.067 -0.039 0.068

FHV -12.816 15.212 -16.058 15.538
FMS -8.875 4.805+07 -8.021 3.781e+06
FLV -228.202 4.842e+10 28.927 1.234e+11

Training time (min/epoch) 40.031 7.992

4.1.2. Snow-driven basins comparison
Snow-driven basins, which tend to have slower discharge responses to precipitation compared with arid
basins and therefore require longer periods of historical meteorological data as input for modeling the
rainfall-runoff relationship, will be used to evaluate the performance of the Transformer versus LSTM.
Transformer’s self-attention mechanism, which allows it to consider all precipitation events, may give
it an advantage in modeling discharge in these types of basins. The snow-driven basins are defined
as the basin with high frac_snow (>0.5) attribute in CAMELS, which means the fraction of precipitation
falling as snow is over 50%. The distribution of the snow-driven basins can be seen in Fig. 4.9. The
overview of the basins can be seen in Table 4.3.
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Figure 4.9: CAMELS snow-driven basins distribution

Table 4.3: Overview of snow-driven basins.

Number Catchments mean elevation
[m above sea level]

Snow-driven basins 55 2489.7

Snow-driven basins tend to experience a significant peak flow each year due to the melting of the
snow that is prevalent in these areas from June to August, as shown in Fig. 4.10.

Figure 4.10: Hydrograph of snow-driven basin 06221400 in CAMELS.

To allow for a more general conclusion, an LSTM trained on input sequences of length 365 was used
as a benchmark because the snow-driven basins’ discharges are influenced by the very earlier precipi-
tation events. The difference between the two LSTMs is the input sequence length. The comparison is
focused on the FDC signatures (FHV, FMS, and FLV) and alpha-NSE rather than NSE because these
metrics can show the model skills in predicting the peak, middle, low flow, and flow relative variability,
respectively.

Among all the Transformers and the variants, the Reformer model (hyperparameters can be seen
in Table: D.1) with timestamp positional encoding usually achieved better performance. The median
metrics of the Reformer and the two LSTM in snow-driven basins can be seen in Table 4.4. The
Reformer has better median metrics than the two LSTM models except for NSE. As mentioned before,
LSTM with length-270 achieved the best median NSE over all the basins, which is consistent in the
snow-driven basins (i.e. length-270 input LSTM still has the highest median NSE), and all metrics
medians of LSTM (270 seq-len) got better in the snow basin than in all basins (compared with Table
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4.1). Besides, it seems the longer input sequence helps LSTMs achieve better median metrics, except
for NSE, by comparing the two LSTMs.

Table 4.4: Overview of the median metrics and hydrological signatures of two LSTM and Reformer regional models in
snow-driven basins. The LSTM (270 seq-len) metrics are from (Kratzert, Klotz, Shalev, et al., 2019), while LSTM (365 seq-len)
was trained ourselves. Bolded values indicate results that are significantly different from the Reformer model in the respective

metric or hydrological signature according to Wilcoxon signed-rank test (α = 0.001).

Reformer LSTM (270 seq-len) LSTM (365 seq-len)
NSE 0.804 0.830 0.821
Alpha-NSE 0.965 0.874 0.892
FHV -2.872 -13.801 -11.354
FMS -3.244 -6.714 -6.008
FLV 12.376 46.989 -13.917

The Reformer was compared with the two LSTM models basin by basin. The results can be seen
in Fig. 4.11 and Fig. 4.12. It is discernible that Reformer performs better than LSTM in capturing the
top 2% peak flow, top 30% low flow, and the relative flow variability than both LSTMs in most basins.

Figure 4.11: Basin-by-basin metrics comparison in
snow-driven basins: Reformer vs LSTM (365 seq-len), the
numbers above each bar indicate the proportion on all snow
basins that Reformer is better than LSTM on the x-axis metric.

Figure 4.12: Basin-by-basin metrics comparison in
snow-driven basins: Reformer vs LSTM (270 seq-len), the
numbers above each bar indicate the proportion on all snow
basins that Reformer is better than LSTM on the x-axis metric.

To get a general result, the two LSTMs and the Reformer on the 55 snow-driven basins were re-
trained on the 55 snow-driven basins. The results of the metrics and hydrological signatures of the
three models can be seen in Table 4.5.

Table 4.5: Overview of the median metrics and hydrological signatures of two retrained LSTM and the retrained Reformer
models in snow-driven basins. Bolded values indicate results that are significantly different from the Reformer model in the

respective metric or hydrological signature according to Wilcoxon signed-rank test (α = 0.001).

Reformer LSTM
(Retrained 270 seq-len)

LSTM
(Retrained 365 seq-len)

NSE 0.823 0.840 0.836
Alpha-NSE 0.950 0.903 0.916
FHV -9.271 -11.379 -10.998
FMS 9.415 -7.034 -3.592
FLV 28.862 1.943 -45.137
Training time (min/epoch) 14.329 1.047 1.230

The comparison between Reformer and LSTMs can be seen on the basin-by-basin basis in Fig.
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4.13 and Fig. 4.14, with all models being retrained on the 55 snow-driven basins.

Figure 4.13: Basin-by-basin metrics comparison in
snow-driven basins: Retained Reformer vs Retrained LSTM
(365 seq-len), the numbers above each bar indicate the

proportion on all snow basins that retrained Reformer is better
than the retrained LSTM on the x-axis metric.

Figure 4.14: Basin-by-basin metrics comparison in
snow-driven basins: Retained Reformer vs Retained LSTM
(270 seq-len), the numbers above each bar indicate the

proportion on all snow basins that retrained Reformer is better
than the retrained LSTM on the x-axis metric.

The comparison of the Reformer model with two LSTM models showed that Reformer usually per-
forms better in alpha-NSE, FHV, and FLV. However, when retraining the models on only snow-driven
basins, the Reformer’s performance relative to the LSTMs was not as significant as when it was trained
on all 531 basins. This may be due to the smaller size of the training dataset (i.e. only 55 training basins
were used to train the Reformer).

4.2. Global modeling
To answer the second sub-research question: Can Transformer be a global rainfall-runoff model based
on the Caravan data set? The second experiment was conducted using the Transformer architecture
to determine if it could learn more rainfall-runoff behaviors from larger data sets, potentially enabling it
to function as a global rainfall-runoff model. In this experiment, the Transformer was trained using more
than two thousand basins of global LSH data from Caravan. For comparison, an LSTMmodel was also
trained with the same configuration. Due to the length of time required to train a global Transformer-
based rainfall-runoff model (nearly one week), and the fact that the Reformer model, which performed
well in the first experiment, had run out of memory in the global modeling, only the vanilla Transformer
with the sinusoidal positional encoding was trained to be a global model. As a result, only two global
rainfall-runoff models (Transformer and LSTM) were obtained, and the medians of their metrics and
hydrological signatures are shown in Table 4.6.

Table 4.6: Overview of the two global rainfall-runoff model median metrics.

Transformer LSTM
NSE 0.511 0.539
KGE 0.544 0.565
Alpha-NSE 0.721 0.732
Beta-NSE -0.046 -0.008
Pearson-r 0.767 0.778
FHV -27.609 -26.850
FMS -18.425 -21.003
FLV 26.965 30.419
Training time (min/epoch) 95.130 55.464
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The overview performance of the two models can be seen in Fig. 4.15 and Fig. 4.16. The Caravan
sub-areas median NSE comparison between the two global models can be seen in Fig 4.17.
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Figure 4.15: The NSE distribution of sub-regions of Caravan as simulated by the global LSTM model, the color maps are limited to [-1, 1] for better visualization. The NSE with a value over 0.5
is considered acceptable.
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Figure 4.16: The NSE distribution of sub-regions of Caravan as simulated by the global Transformer model, the color maps are limited to [-1, 1] for better visualization. The NSE with a value
over 0.5 is considered acceptable.
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Figure 4.17: The difference of the NSE between the global Transformer and the global LSTM model, blue colors (>0) indicate that the Transformer performs better than the LSTM benchmark
model, red (<0) the other way around). The color map is limited to [−0.4, 0.4] for better visualization.
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As can be seen from Fig. 4.17, in the United Kingdom, Canada, and Australia regions, the results
of LSTM are better than the Transformer (light red dots clearly dominates). However, Transformer
appears to have better modeling results in the northeastern part of Central Europe than LSTM.

Figure 4.18: The Caravan sub-areas meidan NSE comparison.

Upon closer examination of the results of the Transformer global model for the United States (as
shown in Fig. 4.19), it was found that, although the pattern is similar to the previous first experiment
(with higher NSE in the western basins), the median NSE of the Transformer model in the US region
is significantly lower than the multiple timescale LSTM benchmark (with a median NSE of 0.75). This
suggests that the Caravan data set may not be of as high quality as CAMELS. As a result, no com-
parison with the benchmark was made. Note that the US portion of the Caravan data used for the
Transformer-based global rainfall-runoff model was derived from the CAMELS data set, but the basin
attributes and meteorological forcing were sourced from the global ERA5-Land data in Caravan. This
change in input (from local to global) may have caused a degradation in modeling performance.

Figure 4.19: Global Transformer-based rainfall-runoff model the US part NSE distribution, the color map is limited to [-1, 1] for
the NSE differences for better visualization. The NSE with a value over 0.5 is considered acceptable.

To verify the conjecture that the large difference in median NSE between the global Transformer
model and the LSTM benchmark in the US is caused by the uncertainty of the Caravan data set, an
experiment was conducted with the following three steps. First, the US portion of the Caravan data was
trained alone to eliminate the possibility that the poor performance of the Transformer global model in
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the US region was due to data from other areas in the Caravan data set. Next, the Caravan catchment
attributes were replaced with the CAMELS data (i.e., the basin attributes were changed from global
to local Maurer product) to determine if the degradation in modeling performance was caused by the
global coverage of the basin attributes. Finally, the Caravan meteorological forcing was replaced with
CAMELS Maurer forcing based on the second step, to determine if the performance degradation was
due to the meteorological forcing. A summary of the three steps of the above experiment and the
results can be seen in Table 4.7.

Table 4.7: The overview of test the how the local and global Meteorological Forcing and basin attributes impact Transformer
global modeling.

Step Model Forcing Attributes median NSE

-
Global Model
(trained on
2532 basins)

Global
(ERA5-land)

Global

(ERA5-land & HydroATLAS)
0.515

0
the US part of
Global model
(482 basins)

Global
(ERA5-land)

Global

(ERA5-land & HydroATLAS)
0.473

1 Regional Model
(retrain on 482 basins)

Global
(ERA5-land)

Global

(ERA5-land & HydroATLAS)
0.431

2 Regional Model
(retrain on 482 basins)

Global
(ERA5-land)

Local
(CAMELS) 0.462

3 Regional Model
(retrain on 482 basins)

Local
(maurer)

Local
(CAMELS) 0.749

As can be seen from Table 4.7, neither the local nor global basin attribute significantly improves
the median NSE of the model by comparing step 0, 1 and 2, but the median NSE of the model is
significantly increased (from 0.462 to 0.749) based on step 2 and 3 comparison when the model input
changed from global to local. This shows that the quality of the meteorological forcing data from the
Caravan is not high compared to the local Maurer product, at least for these 482 basins in the US.

From Table 4.7, it can be seen that local meteorological forcing can significantly improve the median
NSE of the Transformer compared to using the global forcing. To find out which channel in the meteo-
rological forcing in Caravan impacted the model performance most, some forcing channels in Caravan
were replaced with Maurer data based on step 1 in Table 4.7, and only one channel was replaced at a
time, keeping the remaining unchanged, and trained the Transformer model on the same 482 basins
again. There are 5 channels in Maurer data, namely, daily cumulative precipitation, daily minimum air
temperature, daily maximum air temperature, average short-wave radiation, and vapor pressure.

In the forcing data of Caravan, three similar channels can be found to correspond to the Maurer
forcing, namely daily total precipitation, shortwave radiation, and surface pressure. After replacing
these three data one by one, the results can be obtained as shown in Table 4.8.

Table 4.8: The results of replacing ERA5-land forcing channels.

Model Forcing Replaced Channel
(in ERA5-land)

Replaced by
(in Maurer)

median
NSE

Regional Model
(retrain on 482 basins) Global - - 0.431

Regional Model
(retrain on 482 basins) Global

Surface pressure vapor pressure 0.450
Shortwave radiation average short-wave radiation 0.433
Daily total precipitation daily cumulative precipitation 0.687
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As can be seen in the summary Table 4.8, a great improvement in median NSE can be achieved
by replacing the precipitation data from global to local (from 0.473 to 0.687), which shows that the
quality of rainfall data is very important for hydrological modeling, and precipitation data of the Caravan
contains the significant uncertainty for global rainfall-runoff modeling.

4.3. Discussion
The main objective of this study is to investigate the potential of the Transformer architecture in rain-
runoff modeling. In this research, some regional rainfall-runoff models based on the Transformer ar-
chitectures were trained using CAMELS (US) data, and a global rainfall-runoff model based on the
Transformer architecture was trained using Caravan data. All models were evaluated using various hy-
drological signatures and metrics. In regional rainfall-runoff modeling, the Transformer-based rainfall-
runoff model was not able to fully replace LSTM, but the Reformer model performed well in snow-driven
basins. In global modeling, the Transformer-based rainfall-runoff model did not perform well, mainly
due to the uncertainty in the global Caravan data.

The existing results of using the Transformer architecture in hydrological research (Amanambu
et al., 2022; Castangia et al., 2023; Yin et al., 2022) generally indicate that the Transformer-based
hydrological models can outperform the LSTM benchmarks in discharge prediction such as floods and
droughts forecasting, which is different from the results of this study. The main differences between
these existing studies and this study are that the existing studies used the discharge (or water level)
as input and performed long-term forecasting, while this study only predicted 1 day. The lack of using
the target sequence (i.e. discharge) as input and short-term forecasting may be the reason why the
Transformer in this study did not outperform LSTM.

There is still a work (Zeng et al., 2022) doubts about the effectiveness of using Transformer archi-
tecture for time series prediction due to Transformers do not preserve temporal order well. There is an
experiment that was not mentioned in this study, in which different lengths (i.e. 10, 30, 50, 70, 100, 150,
270, 365, 548, and 730 days) of meteorological input were used to train the Transformer and LSTM
using CAMELS (US) 531 basins. The results show that the two architectures have different responses
to the various input length. As shown in Fig. 4.20, the CDF curves of LSTM almost overlap when the
input length is 150, 270, 365, 548, or 730. However, for longer inputs such as 548 or 730, the CDF
curves of the Transformer showed a slight shift to left, indicating a decline in the Transformer model
performance (especially obvious when the input length is 730). These two different responses can
be explained as LSTM is not able to effectively focus on earlier precipitation events in meteorological
forcing, so longer meteorological input does not change the performance of the rainfall-runoff model
based on LSTM, significantly. However, Transformer is able to attend very early precipitation events
in meteorological input, but because it cannot preserve temporal information, longer input introduces
more noise, causing the performance of the Transformer-based rainfall-runoff model to decline.
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Figure 4.20: The effect of input length on the NSE CDF, Transformer’s NSE CDF curve shifts left when really long forcing was
fed, which is different from LSTM.

Additionally, there are still some limitations in this study, such as model parameter set selection and
positional encoding methods.

Model selection In each experiment, eachmodel was trained for 100 epochs, resulting in one hundred
sets of parameters (weights) obtained. Then, the ”best” set of parameters was selected using
the validation data based on the median NSE. This method ensures that the model converges
well but it should be noted that the ”best” parameter set does not necessarily indicate superior
performance compared to the other 99 sets. The distribution (variance) of NSE for the model
should also be taken into account. Additionally, a higher NSE could indicate that the model excels
at predicting peak flow, but may perform poorly in predicting low flow.

Timestamp positional encoding In this study, the timestamp positional encoding method was used,
which included [Day-Of-Week, Day-Of-Month, Day-Of-Year] information. However, [Day-Of-Week]
information has no obvious significance for hydrological modeling and may introduce more noise.
Similarly, [Day-Of-Year] information may also have a negative impact on global-scale rainfall-
runoff modeling because the seasons in the northern and southern hemispheres are opposite.
Therefore, although many Transformer models designed specifically for time series prediction
use this positional encoding method, it does not have clear applicability in hydrological modeling.

Data uncertainty In this study, the uncertainty of CAMELS (US) and Caravan data were not evaluated
prior to training the model, which may have led to inaccurate predictions from the model after
training.



5
Conclusion and future work

This chapter will draw conclusions by answering the two sub-questions of this study and provide rec-
ommendations for using the Transformer architecture for modeling rainfall-runoff modeling, while also
suggesting some future work.

5.1. Conclusion and recommendations
Can Transformer architectures outperform LSTM in rainfall-runoff?

In the regional rainfall-runoff modeling experiment, based on metrics or hydrological signatures
such as NSE and FDC, no Transformer architecture was found to significantly outperform LSTM, but
all Transformer architectures took much longer time to train than the LSTM benchmark. In snow-driven
basins, the Reformer architecture was found to be superior to LSTM in simulating peak and low flow,
and relative variability in flows, and this still holds true for retraining LSTM and Reformer only on the
snow-driven basins.

Therefore, the Reformer architecture may be an option for simulating rainfall-runoff in snow-driven
basins. However, it should be noted that this conclusion was only drawn from 55 snow-driven basins
in the US.

Can Transformer be a global rainfall-runoff model based on the Caravan data set?
No, according to the results of the second experiment, it appears that the Caravan data quality is

not sufficient to build a global rainfall-runoff model. Whether training on the entire Caravan dataset or
just its US portion, the model was unable to achieve good performance. The main barrier to global
rainfall-runoff modeling appears to be the uncertainty in precipitation data.

Therefore, as stated above, the Transformer architecture cannot replace the LSTM architecture for
rainfall-runoff simulation, but when simulating rainfall-runoff in a snow-driven basin, particularly when fo-
cusing on the peak and low flow, the Reformer architecture is worth considering and trying. Additionally,
it is not feasible to establish a global rain-runoff model based on the Caravan data set, as it contains
uncertainty for modeling, especially in the precipitation data. Besides, it is still unclear whether the
Transformer can become a global rain-runoff model and learn a diverse range of rain-runoff behaviors.

5.2. Future work
The Reformer architecture has shown good results in snow-driven basins. Both LSTM and Transformer
architectures-based hydrological models’ performance can be explained by LSTM’s cell states (Kratzert
et al., 2018) and attention scores from different heads (Castangia et al., 2023), respectively. Therefore,
some attempts can be made to interpret the Reformer’s good performance in snow-driven basins.

42
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As discussed in the discussion section, the Transformer architecture seems to have difficulty in
preserving temporal information well (Zeng et al., 2022), which is detrimental for time series forecasting.
This issue may also be present in Transformer-based rainfall-runoff modeling, and if this issue could
be mitigated, the Transformer architecture may have the potential to outperform LSTM in tasks such
as rainfall-runoff modeling.

It remains unsure if Transformer-based rainfall-runoff models would improve with larger training data
sizes due to failure in global modeling. One of the main obstacles to global modeling is uncertainty in
precipitation data. However, other global forcing data, such as Tropical Rainfall Measuring Mission
(TRMM) (Kummerow et al., 1998), may be utilized as a global precipitation source to train a global
model. An alternative approach to consider would be to train the Transformer using multiple CAMELS
datasets, such as a combination of CAMELS (US) (Addor et al., 2017) and CAMELS-GB (Coxon et al.,
2020). Some experimental results (Kratzert, Klotz, Shalev, et al., 2019; Lees et al., 2021) have shown
that the LSTM architecture can achieve median NSE values of over 0.7 and 0.8 on these two datasets,
respectively.

One of the important starting points of this study is to address the PUB problem, but the Transformer-
based rainfall-runoff model in this study has not yet been tested in ungauged basins, and this is one of
the possible future works.
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A
A Training Configuration Example

1 additional_feature_files: None
2 batch_size: 256
3 cache_validation_data: true
4 checkpoint_path: None
5 clip_gradient_norm: 1
6 clip_targets_to_zero:
7 - QObs(mm/d)
8 commit_hash: a4c284b
9 data_dir: /scratch/kangminmao/data/CAMELS_US
10 dataset: camels_us
11 device: cuda:0
12 dynamic_inputs:
13 - prcp(mm/day)
14 - srad(W/m2)
15 - tmax(C)
16 - tmin(C)
17 - vp(Pa)
18 dynamics_embedding:
19 type: fc
20 hiddens:
21 - 30
22 - 20
23 - 64
24 activation: tanh
25 dropout: 0.0
26 epochs: 100
27 evolving_attributes:
28 experiment_name: Transformer_seq365
29 forcings:
30 - maurer_extended
31 head: regression
32 hidden_size: 256
33 img_log_dir: /scratch/kangminmao/exp/runs/Transformer_seq365_1810_000943/img_log
34 initial_forget_bias: 3
35 learning_rate:
36 0: 0.001
37 10: 0.0005
38 20: 0.0001
39 log_interval: 5
40 log_n_figures: 2
41 log_tensorboard: true
42 loss: NSE
43 metrics:
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44 - NSE
45 - MSE
46 - RMSE
47 - KGE
48 - Alpha-NSE
49 - Pearson -r
50 - Beta-KGE
51 - Beta-NSE
52 - FHV
53 - FMS
54 - FLV
55 - Peak-Timing
56 model: transformer
57 num_workers: 16
58 number_of_basins: 531
59 ode_method: euler
60 ode_num_unfolds: 4
61 ode_random_freq_lower_bound: 6D
62 optimizer: Adam
63 output_activation: linear
64 output_dropout: 0.4
65 package_version: 1.3.0
66 per_basin_test_periods_file: None
67 per_basin_train_periods_file: None
68 per_basin_validation_periods_file: None
69 predict_last_n: 1
70 regularization:
71 run_dir: /scratch/kangminmao/exp/runs/Transformer_seq365_1810_000943
72 save_train_data: false
73 save_validation_results: true
74 save_weights_every: 1
75 seed: 502918
76 seq_length: 365
77 shared_mtslstm: false
78 static_attributes:
79 - p_mean
80 - pet_mean
81 - aridity
82 - p_seasonality
83 - high_prec_freq
84 - high_prec_dur
85 - low_prec_freq
86 - low_prec_dur
87 - elev_mean
88 - slope_mean
89 - area_gages2
90 - lai_max
91 - lai_diff
92 - gvf_max
93 - gvf_diff
94 - soil_depth_pelletier
95 - soil_depth_statsgo
96 - soil_porosity
97 - soil_conductivity
98 - max_water_content
99 - sand_frac
100 - silt_frac
101 - clay_frac
102 - geol_permeability
103 statics_embedding:
104 type: fc
105 hiddens:
106 - 30
107 - 20
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108 - 64
109 activation: tanh
110 dropout: 0.0
111 target_noise_std:
112 target_variables:
113 - QObs(mm/d)
114 test_basin_file: /scratch/kangminmao/exp/basin/531_basin_list.txt
115 test_end_date: 30/09/1999
116 test_start_date: 01/10/1989
117 train_basin_file: /scratch/kangminmao/exp/basin/531_basin_list.txt
118 train_data_file: None
119 train_dir: /scratch/kangminmao/exp/runs/Transformer_seq365_1810_000943/train_data
120 train_end_date: 30/09/2008
121 train_start_date: 01/10/1999
122 transfer_mtslstm_states:
123 h: identity
124 c: identity
125 transformer_dim_feedforward: 32
126 transformer_dropout: 0
127 transformer_nheads: 4
128 transformer_nlayers: 4
129 transformer_positional_dropout: 0.0
130 transformer_positional_encoding_type: sum
131 use_basin_id_encoding: false
132 validate_every: 1
133 validate_n_random_basins: 3000
134 validation_basin_file: /scratch/kangminmao/exp/basin/531_basin_list.txt
135 validation_end_date: 30/09/1989
136 validation_start_date: 01/10/1980
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B
Regional modeling static basins

attributes

Table B.1: Table of catchment attributes used in the regional modeling

p_mean Mean daily precipitation.
pet_mean Mean daily potential evapotranspiration.
aridity Ratio of mean PET to mean precipitation.
p_seasonality Seasonality and timing of precipitation. Estimated by representing annual

precipitation and temperature as sine waves. Positive (negative) values indicate
precipitation peaks during the summer (winter). Values of approx. 0 indicate
uniform precipitation throughout the year.

frac_snow_daily Fraction of precipitation falling on days with temperatures below 0 ◦C.
high_prec_freq Frequency of high-precipitation days (≥5 times mean daily precipitation).
high_prec_dur Average duration of high-precipitation events (number of consecutive days with

≥5 times mean daily precipitation).
low_prec_freq Frequency of dry days (<1 mm d−1).
low_prec_dur Average duration of dry periods (number of consecutive days

with precipitation <1 mm d−1).
elev_mean Catchment mean elevation.
slope_mean Catchment mean slope.
area_gages2 Catchment area.
forest_frac Forest fraction.
lai_max Maximum monthly mean of leaf area index.
lai_diff Difference between the max. and min. mean of the leaf area index.
gvf_max Maximum monthly mean of green vegetation fraction.
gvf_diff Difference between the maximum and minimum monthly

mean of the green vegetation fraction.
soil_depth_pelletier Depth to bedrock (maximum 50 m).
soil_depth_statsgo Soil depth (maximum 1.5 m).
soil_porosity Volumetric porosity.
soil_conductivity Saturated hydraulic conductivity.
max_water_content Maximum water content of the soil.
sand_frac Fraction of sand in the soil.
silt_frac Fraction of silt in the soil.
clay_frac Fraction of clay in the soil.
carb_rocks_frac Fraction of the catchment area characterized as “Carbonate sedimentary rocks”.
geol_permeability Surface permeability (log10).
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Table B.1 lists the catchment attributes used by the LSTM benchmark in regional modeling. The
Transformer-based models also used these attributes except:

• frac_snow_daily,
• forest_frac,
• and carb_rocks_frac,

because some of the 531 basins miss three attributes, but there are still 24 attributes that can be
used for model training. One of our experiments: a length-270 model based on the same forcing as
(Kratzert, Klotz, Shalev, et al., 2019) and the rest 24 attributes, can achieve the close performance as
the benchmark (Kratzert, Klotz, Shalev, et al., 2019), which shows that missing these 3 attributes won’t
really affect the model performance, significantly.
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LSTM & Transformer Global Models

Results

Figure C.1: Global LSTM-based rainfall-runoff model NSE, the color map is limited to [-1, 1] for the NSE differences for better
visualization
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Figure C.2: Global Transformer-based rainfall-runoff model NSE, the color map is limited to [-1, 1] for the NSE differences for
better visualization



D
Transformer family regional modeling

Table D.1: Transformer family configuration

Model Layer Head Embedding Seed Number of Trainable Parameters
Reformer 2 8 timestamp 483593 1157005
FEDformer 2 8 timestamp 710046 100796373
Linformer 2 16 sinusoidal 936305 669881
Transformer 4 4 timestamp 733480 402573
Informer 2 8 sinusoidal 192899 450573

Figure D.1: Transformer family regional modeling NSE distribution, the color map is limited to [0, 1] for the NSE differences for
better visualization
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Figure D.2: Transformer family NSE boxplot, y-axis is limit to [0, 1] for a visualization

Figure D.3: Transformer family Alpha-NSE boxplot, y-axis is limit to [0, 1.5] for a visualization

Figure D.4: Transformer family Beta-NSE boxplot, y-axis is limit to [-0.4, 0.4] for a visualization



58

Figure D.5: Transformer family FHV boxplot, y-axis is limit to [-60, 25] for a visualization

Figure D.6: Transformer family FLV boxplot, y-axis is limit to [-800, 150] for a visualization

Figure D.7: Transformer family FMS boxplot, y-axis is limit to [-70, 80] for a visualization
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Figure D.8: Models negative prediction per thousand days in the test period.



60

Figure D.9: Transformer family Budyko frame, the color maps are limited to [0, 1] for better visualization



E
Regional modeling hydrographs

Figure E.1: Hydrographs

61



62

Figure E.2: Hydrographs



F
Positional encoding difference

The Transformers are thought the positional information is needed, but in our regional modeling, we
can find that: the model performance will not decrease a lot when the positional encoding layer were
dropped.

Figure F.1: Transformer with different (and no) positional encoding CDF

Figure F.2: Transformer with different NSE distribution
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Table F.1: The median metrics of Transformer with different (and no) positional encoding

Sinusoidal Timestamp No
NSE 0.723 0.725 0.715
Alpha-NSE 0.848 0.834 0.839
FHV -14.982 -15.900 -15.628
FMS -8.817 -13.742 -12.101
FLV 19.006 24.667 -30.635
Training time (min/epoch) 19.327 64.307 20.115
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