
Performance of near-duplicate detection algorithms for
Crawljax

Erwin van Eyk Wilco van Leeuwen

Delft University of Technology
{E.D.C.vanEyk, W.J.vanLeeuwen}@student.tudelft.nl

Coach: Arie van Deursen
Client: Alex Nederlof

Bachelor Project Coordinator:
Martha A. Larson and Felienne Hermans

May 2014

1

Performance of near-duplicate detection algorithms for Crawljax page 2 of 68

1 Preface/Foreword

This report contains the documentation of the Bachelor of Science final project of Erwin
van Eyk and Wilco van Leeuwen. This project is the final stage of the Bachelor of Science
from the study Computer Science at the Delft University of Technology (TU Delft). The
project is concerned with Crawljax, an open source project maintained by TU Delft and
the University of British Colombia. Crawljax is a JavaScript-enabled web crawler that can
automatically discover user interface states of a web page. The goal of this project was to
detect near-duplicate states automatically during a crawl. In this document we will explain
the different approaches we used to tackle this problem, the way we tested the algorithms
and the decisions we made during the project.

Performance of near-duplicate detection algorithms for Crawljax page 3 of 68

Contents

1 Preface/Foreword 2

2 Summary 5

3 Introduction 6

4 Problem Definition 6

5 Problem Analysis 7

6 Requirements 8
6.1 Global Requirements . 8
6.2 Functional Requirements . 9
6.3 Non-functional Requirements . 9
6.4 Calibration Tool Requirements . 10

7 Project Methodology 10
7.1 Process Strategy . 10
7.2 Communication . 11
7.3 Planning . 11
7.4 Tools . 13

8 Design 14
8.1 Duplicate detection . 14

8.1.1 Features . 14
8.1.2 Simhash/Crawlhash . 15
8.1.3 Broder’s algorithm . 19

8.2 The testing environment . 20
8.2.1 CrawlManager Component . 21
8.2.2 Distributed component . 21
8.2.3 Analysis Component . 22
8.2.4 Annotation tool/website . 24

8.3 Threshold-slider in the crawloverview plugin 25
8.3.1 Changing the threshold with a slider 25
8.3.2 Slider algorithm . 25
8.3.3 Possible differences . 27

9 Implementation 28
9.1 Duplicate detection . 28

9.1.1 Class diagram . 28
9.1.2 Hamming distance . 30
9.1.3 Jacquard-coefficient . 30

Performance of near-duplicate detection algorithms for Crawljax page 4 of 68

9.2 Crawljax Calibration Tool . 30
9.2.1 Implementation details . 31
9.2.2 External Dependencies . 32

9.3 Threshold-slider . 32
9.3.1 Dealing with getDistance . 32
9.3.2 Screenshots . 33
9.3.3 Algorithm of the Threshold-slider 34

10 Code quality 35
10.1 Feedback SIG . 35
10.2 Static Code Analysis . 35
10.3 Code coverage . 37

11 Results from the calibration tool 37
11.1 Test-setup . 38
11.2 Results of Crawlhash . 38
11.3 Results of Broder . 41
11.4 Conclusion of the test-results . 43

12 Discussion and Recommendation 44
12.1 Parameter values . 44

13 Conclusion 45

14 Future work 46
14.1 Feature based on outgoing links . 46
14.2 Genetic Algorithm for the calibration tool 46

Performance of near-duplicate detection algorithms for Crawljax page 5 of 68

2 Summary

Crawljax is a crawler, which not only finds states via regular links, but also states that
are hidden by JavaScript actions. However, this leads to a gigantic number of states with
many duplicates.

A near-duplicate detection algorithm can be a solution to limit the number of states
found by Crawljax, while crawling the most essential, unique states. Through a literature
survey it became apparent that Simhash and Broder are two state-of-the-art near-duplicate
detection algorithms that are suitable for Crawljax.

In this project, both algorithms are implemented into Crawljax. These algorithms
have been tested extensively to determine the performance of the new duplicate detection
algorithms on Crawljax in comparison with the current version of duplicate detection. The
testing has been done using a separate calibration tool, which can distribute tasks over
different machines to lower the amount of time needed for the tests. This calibration
tool will return the number of mistakes of every near-duplicate detection algorithms for
many different parameter values. This make it possible to compare the performance of the
near-duplicate detection algorithms.

The results of the calibration tool showed us that Crawlhash was faster, but Broder
was slightly better.

Additionally the so-called threshold-slider has been designed to simulate what would
have happened with the state-flow-graph of a crawl if a higher threshold was used. This
makes it possible to find a nice threshold for one specific web application.

Performance of near-duplicate detection algorithms for Crawljax page 6 of 68

3 Introduction

A crawler is a program that automatically collects Web pages to create a local index and/or
a local collection of web pages [3]. Usually, this is done by providing the crawler with a
set of URLs, called seeds. The crawler will visit the websites of those URLs and search
for new URLs by following the hyperlinks. In this way, the assumption can be made that
every webpage has a unique URL. However this is not always true, because JavaScript
and dynamic DOM manipulation on the client side of Web applications is becoming a
widespread approach for achieving rich interactivity and responsiveness in modern Web
applications [8]. With the techniques, known as AJAX, it is possible that several different
states have the same URL.

Crawljax is specifically designed to solve this problem. Crawljax can explore any
JavaScript-based AJAX web application through an event-driven dynamic crawling en-
gine1. During the crawl, Crawljax will make a state-flow graph of the dynamic DOM
states and the event-based transitions between them [6]. Crawljax was originally designed
to make the dynamic content of websites visible to search engines. Later it was extended
for automatically testing interactive web applications [7].

Naturally with crawling rich interactive Web applications some interaction between the
user and the Web application leads to a new unique state and other interaction does not.
The major problem with this is how to differentiate unique states from duplicate states.
If every change leads to a new, unique, state the number of states will grow exponentially.
Having too many of these duplicate or redundant states will lead to increases in crawl time
and adds redundant states to the results. This is a problem for nearly all uses of Crawljax.
It is therefore necessary that a form of near-duplicate detection is used to determine if a
newly found state is a new unique state or a duplicate or redundant state.

In this report we will first identify the actual problem of this project in section 4 and
5. In section 6 all constraints and requirements of a possible solution to the problem are
defined. The project methodology and planning will be explained to show how the general
process went. After that, the general design of the important algorithms and classes will
be explained in section 8. Afterwards in section 9, the implementation of this design will
be discussed. Finally refsec:results will show the test-results of the algorithms.

4 Problem Definition

A crawler such as Crawljax attempts to find all possible states of a web application. A
crawl is called an exhaustive crawl if the crawler has found all the states of the crawled
web application. Exhausive crawling can lead to a gigantic number of states because each
minor change in the DOM will result is a new state. This can result in the ’state explosion
problem’, where the number of crawled states grows exponentially in the number of pages
on a website [8]. Adding one page to a website can result in an addition of a lot of states in
the state-flow-graph. For example the new added page can have some counters, timestamps

1http://crawljax.com/about/

Performance of near-duplicate detection algorithms for Crawljax page 7 of 68

or advertisements, which can be different for every visit of the page. This way, every link
to this new page adds a new state to the state-flow-graph, even though the relevant content
has not changed. See appendix C for the original project description.

A demonstration of this problem is when a website contains a counter to show the
number of visits to a certain page. Each time the crawler loads the URL, the counter
will be incremented. This affects the DOM, which leads to a new state. The result is an
infinite number of states, which leads to a crawl that is never exhaustive. Crawling too
many states will slow down Crawljax. Secondly, the result will be of less use, because the
resulting state-flow graph is cluttered with near-duplicate states.

The problem this thesis attempts to solve is: Let Crawljax recognise when it found a
state that is already crawled, to make it possible for Crawljax to crawl all unique states of
a web application without crawling duplicate states.

5 Problem Analysis

The solution to the problem just defined lies in determining when a change in the DOM
does not warrant creating a new state. Our way of solving this problem in this project is
to make use of a near-duplicate detection algorithm. This will make it possible to crawl a
web application exhaustive in a reasonable amount of time, because the crawler finds only
the unique states. When a near-duplicate state is found, the state should not be added to
the state-machine and all its outgoing links to other states should not be crawled at that
time. However, to determine whether a state is a near-duplicate of another state is not a
trivial task. The first step is to get the relevant content of the state, which, in this case,
is the main content of the state. This is due to the fact that we use the convention that
two states are near-duplicates if the textual content on both states are almost the same.
Using this definition all HTML-attributes, header-information and the white-space should
be ignored, when comparing states. The last and most important step is to find out if the
content is almost similar to another content. If both steps can be executed effectively, than
it is possible to lower the number of states that a crawler has to crawl substantially.

Current Situation
Crawljax has a configuration that limits the number of states that will be crawled at max-
imum depth. The problem with this is that the crawl will stop the branch which reaches
the maximum depth. But it can be possible that many different unique states exists on
a higher depth. In this way, Crawljax can miss a lot of states when the maximum depth
is to low. Making the maximum depth higher to find more states can result in way to
many states, while crawling a lot of duplicates. This can make the runtime of the crawl
very high. To solve this problem, Crawljax makes use of a duplicate detection algorithm
based on a manipulation of the DOM. The manipulation of the DOM is called the stripped
DOM. The stripped DOM contains only the HTML-attributes. Two states are duplicates
if the stripped DOM of both states are exactly the same. According to this algorithm, two
states are duplicates of each other if the stripped DOM of both states is exactly the same.

Performance of near-duplicate detection algorithms for Crawljax page 8 of 68

This approach provides decent duplicate-detection, for cases such as changes in timers.
Nevertheless there still many situations in which states that are duplicates in terms of

content are seen as unique states by Crawljax. Such a situation is for example the DOM

<HTML><HEAD></HEAD><BODY><div></div></BODY>/HTML>

It is still possible that a < p >< /p > element with some text will be added to the DOM,
with a JavaScript button. So this can also lead to an infinite number of states, because
every time Crawljax clicks on the button, the stripped DOM will be different.

On the other hand, the following situation could also occur. Suppose that the DOM

<HTML><HEAD></HEAD><BODY><p>...</p></BODY>/HTML>

has all of its textual content inside the < p >-element. When a user presses a button the
< p >-element is filled with completely new, unique content. Using the current duplicate-
detection algorithm, these states will all be regarded as one state. This is due to the fact
that the algorithm only checks for changes in the DOM and completely disregards the
textual content.

Both previous examples show that the current duplicate-detection algorithm in Crawl-
jax is far from optimal. Occasionally it fails to detect duplicate states and there are
situations were unique states are seen as duplicates. In this project we will try to solve the
question: How to detect near-duplicate states in terms of the content?

6 Requirements

With the problem of the project defined, the constraints of a possible solution should be
established. We define the global requirements in section 6.1. These will be expanded and
divided into functional and non-functional requirements, in section 6.2 and 6.3 respectively.
In section 6.4 a calibration tool will be introduced to find sensibe default values for the
configuration-setting of a near-duplicate detection algorithm.

6.1 Global Requirements

To provide an overview of what the final product must be capable of, first three global
requirements for the system that must be fulfilled are provided. By first painting a broader
picture of the goals of the project, the more specific requirements are put into context.

• The product should provide better duplicate-detection than the current duplicate-
detection implementation in Crawljax.

• The product should be seamlessly integrated in Crawljax, it should be highly config-
urable by the users.

• A blog post should be written about the product.

To expand on the global requirements provided above, we differentiate between func-
tional and non-functional requirements, in section 6.2 and 6.3 respectively.

Performance of near-duplicate detection algorithms for Crawljax page 9 of 68

6.2 Functional Requirements

The functional requirements of the near-duplicate detection describes the components and
functionality that defines what it is supposed to accomplish.

• Provided two states, the new near-duplicate detection should return a Boolean based
on whether those two states are near-duplicates, and if possible also the distance
between the two states.

• The product should be seamlessly integrated in Crawljax. It should be highly con-
figurable by the users.

• The strictness of near-duplicates, should be noted by and adjusted by a threshold-
variable.

• The user should be able to see implications of different thresholds by moving a slider
in the Crawl-overview

• All configuration-settings of the new near-duplicate detection should have the option
to be adjusted by the user in the Crawljax-Configuration.

6.3 Non-functional Requirements

During the initial meetings, the importance of high code quality was stressed by the client.
Therefore, several non-functional requirements were identified to which the project should
adhere to.

Efficiency
The new near-duplicate-detection should be able to process the states in a reasonable time-
frame, preferably not slowing down Crawljax.

Maintainability
Maintainability is a highly important aspect of the code, as stressed by the client. The
code should be of at least the same level of quality as the existing codebase. Additionally,
the code should also be written in the same style as the existing code.

Extendability
As mentioned in the functional requirements, the users should be able to adjust all settings
related to the near-duplicate-detection process. Additionally the code should be easily ex-
tendable for users wanting to make larger changes to the implementation.
Besides the extendable nature of the code, the code should also be as backwards-compatible
as possible. Users should only need to make minimal changes to their existing code to run
the new version of Crawljax.

Reliability

Performance of near-duplicate detection algorithms for Crawljax page 10 of 68

The new near-duplicate-detection should outperform the old implementation. This implies
that the new implementation should provide better results on average than the original
implementation. Additionally, the new implementation should provide stable results, when
repeating crawls.

Usability
Preferablly, no additional (hardware) dependencies should be introduced. The new version
of Crawljax should support and run on the same platforms as previous versions of Crawljax.

6.4 Calibration Tool Requirements

The near-duplicate detection has some configuration-settings, as described in the functional
requirements 6.2. We need to define sensible default values for these configurations. We
will set up a calibration tool to collect these values. The tool will test the algorithm on
as many different values and combinations as possible. This calibration tool will exist
alongside Crawljax, but will not be integrated into the Crawljax-project. Therefore the
initial requirements of the calibration tole won’t need to be as strict as the Crawljax-code.

• The calibration tool should automate the task of testing and comparing the different
settings of the near-duplicate-detection algorithms.

• It should allow for distribution of website-crawls over multiple computers, to decrease
the workload on a single computer.

• The suite should provide the user with some objective metrics about the performance
of the current setup of the near-duplicate-detection.

With this calibration tool, we can also measure the efficiency and reliability of a new
implemented near-duplicate detection algorithm. This can be done by comparing the
runtime and the number of mistakes of the current version and a new version of the near-
duplicate detection.

7 Project Methodology

In this section the methodology of the project is discussed. Additionally, the planning and
the tools that were used throughout the process.

7.1 Process Strategy

The entire project from the initial research up to developing the systems took place at
the Delft University of Technology (TU Delft), because Crawljax is a open-source project
mainly maintained by the TU Delft. Working in a team of two persons results in a different
strategy compared to the strategies used by larger teams. Such a small team allows for

Performance of near-duplicate detection algorithms for Crawljax page 11 of 68

working for constant communication and discussion. Such a situation are very suitable for
agile development processes.

Test-Driven Development
Testing and code quality are two key aspects in this project. Therefore, test-driven devel-
opment (TDD) will be applied in this project. This approach was particularly useful due
to the explorative nature of the project. By writing the tests first, the, sometimes difficult,
algorithms can be correctly implemented based on the test cases.

Agile Programming
Besides the Test-Driven Development approach a iterative approach fitted this project
well. Due to the explorative nature of the project a strict long-term planning would not
work. At the start of the project there was no real indicator of what issues would come up
throughout the process. Besides, the team existed out of just two students. Small teams
are ideal for Agile Programming, because of the constant communication.

7.2 Communication

For this project a high level of independent working was needed. The open-source nature of
Crawljax also means that there is no company or managers, who actively monitor progress.
On one hand, this allows a lot more freedom on all aspects. On the other hand, it is harder
to keep the project on the right track. To know whether the direction the team takes is
the right one. To prevent focusing on the wrong aspects, two procedures are implemented
to improve communication.

Meetings
Especially at the beginning of the project, every week a meeting with client Alex Nederlof
to discuss our progress helped a lot to differentiate main issues from the side issues. Addi-
tionally, we set up a Skype-meeting with the original author of Crawljax, Ali Mesbah, at
the end of the project to discuss our product.

Updates
Besides the physical meetings, the team kept all interested parties informed about the
progress and most important decisions. The informing was achieved by sending a email at
the end of every week. In this email the progress of the week was reported, along with the
planning of next week. Additionally, any major issues or decisions were explained, so all
parties could review our decisions and, if necessary, adjust the course of the project.

7.3 Planning

As explained in the previous section, it was clear that a very flexible planning was re-
quired for this project. Therefore, the project only identified two phases, namely the
research-phase and the prototyping/implementation-phase. The original planning called

Performance of near-duplicate detection algorithms for Crawljax page 12 of 68

for a extensive research-phase of at least 2 weeks. See appendix B for the initial action
plan. The summarized logging of the actual work is:

week 1 - 2:

• Decided on the delivarables, requirements and planning of the project with Alex and
coach Arie van Deursen in the first meeting.

• Investigated the ins and outs of Crawljax.

• Started researching relevant literature.

Week 3:

• Build initial version of the testing suite, which is able to crawl all websites from a
list with settings defined in a separate file.

• Finished up research report.

week 4 - 5:

• Implemented Crawlhash near-duplicate detection algorithm, see section 8.1.2.

• Tested performance of Crawlhash.

• Added distributed crawling functionality to the testing suite.

week 6 - 7:

• Implemented Broder’s near-duplicate detection algorithm, see section 8.1.3.

• Improved the structure of the Crawlhash to make switching to Broder easy.

• Tested performance of Crawlhash and Broder.

• Added analysis-functionality to the testing suite.

week 8 - 9:

• Implemented the threshold-slider in the Crawloverview-plugin, see section 8.3.

• Major code cleanup and sent the code to SIG.

• Testing out configurations of the near-duplicate detection algorithms to find optimal
values.

• Feedback of SIG and Alex incorporated into the project.

week 10:

Performance of near-duplicate detection algorithms for Crawljax page 13 of 68

• Code improvements based on static code analysis tools

• Refactoring of code to make it easier for users to change the near-duplicate detection.

• Additional testing out configurations of the near-duplicate detection algorithms to
find optimal values.

week 11 - 12:

• Added an example to Crawljax-core.

• Slight changes to the code.

• Write the final report according to the requirements on Blackboard.

• Prepare final presentation.

• Send code to SIG.

• Integrate code into official Crawljax

7.4 Tools

Throughout the project many different open source tools were used that improved the
development process in general and the quality of the software that was being developed.
In this section a short description is given for each of the tools.

Git and Github
At this moment in time Github2 is extremely popular in the open-source community.
Crawljax is no exception and is also located on Github. As the emphasis of this project is
on open-source development using Git3 as version-control system, the choice of using Git
was not difficult.

Maven
Maven4 is a software project management and comprehension tool. Based on the concept
of a project object model (POM), Maven can manage a project’s build, reporting and
documentation from a central piece of information.

JUnit and Eclemma
The keyword of this project is testing. Therefore, automated testing is essential. JUnit5

is the standard in Java for automated unit tests. Additionally, Eclemma6 shows the total

2http://github.com
3http://www.git-scm.com
4http://maven.apache.org/
5http://junit.org/
6http://www.eclemma.org/

Performance of near-duplicate detection algorithms for Crawljax page 14 of 68

code coverage. This makes sure that no methods remain untested.

Eclipse
With all of the tools mentioned, a IDE with support of all these tools would be incredibly
convenient. Eclipse7 is a mature open-source IDE for primarily Java with plugins for all
these tools.

8 Design

This project consist of two separate tasks. The first one is to develop a near-duplicate
detection algorithm for Crawljax. The design for two state-of-the-art near-duplicate de-
tection algorithms is shown in section 8.1. The second task is to make a calibration tool
to find good parameter values for the near-duplicate detection algorithms and measure its
performance. The design for the calibration tool is given in section 8.2. During the project,
the client mentioned that it would be nice to build a ’threshold-slider’ in the crawloverview
of Crawljax. This crawloverview is generated by Crawljax after a crawl of a web applica-
tion. A threshold in one of the parameter values of the near-duplicate detection algorithms.
The threshold determined the maximum level of the difference between two states to mark
the states as duplicates. The slider should make it possible to change the threshold for
a near-duplicate detection algorithm after a website is crawled. For more information see
section 8.3.

8.1 Duplicate detection

The ’state explosion problem’ where the number of crawled states grows exponential with
the number of pages and events on a website is discussed in section 4. We will try to solve
this problem with state-of-art near-duplicate detection algorithms. For Crawljax we will
use two state-of-the-art near-duplicate detection algorithms: Crawlhash, also known as
Simhash, and Broder’s algorithm. See appendix A for the introduction and explanation of
these algorithms from our research-phase in the first weeks of this project. In this section
we will describe these algorithms with a running example. In section 8.1.1 we will start
the example with generating features from some content, which will be used for calculating
the difference-distance between two states by Crawlhash and Broder in section 8.1.2 and
8.1.3 respectively.

8.1.1 Features

An important aspect of all near-duplicate-detection algorithms is the selection and weight-
assignment of features. Features are low dimensional mappings of high dimensional prop-
erties of the document/state. Nearly every commonly used duplication-detection research,
including Broder et al. [1] and Charikar [2], explains their algorithms using words. They

7http://www.eclipse.org/

Performance of near-duplicate detection algorithms for Crawljax page 15 of 68

use a set of unique w-shingles to split the text of a document into features. A shingle
is a subsequence, which can contain for example a fixed number of characters, words or
sentences. Both implemented algorithms, Simhash and Broder, can use shingles as feature-
type. Shingles originates from the analogy with roof tiles, as roof tiles tend to overlap each
other. To make this more clear, we will show an example. For this example we take words
as the feature-type-size and 3 as the feature-size. This means that a shingle, in this context,
is a sequence of 3 continuous words. Imagine that a state has the following content:

”Hello friends! This is my personal website.”

This content we be divided into 3-word-shingles as follows, use algorithm 1 with n=3:

Algorithm 1 Divide document into n-word-shingles

Divide the content into words
while it is possible to take n words do

Take the first three words
Remove the first word

end while

The first step gives an array of words:

{”Hello”, ”friends!”, ”This”, ”is”, ”my”, ”personal”, ”website.”}

The second step creates the features:

{”Hellofriends!This”, ”friends!Thisis”, ”Thisismy”, ”ismypersonal”,
”mypersonalwebsite.”}.

The elements in this list of the second step are called features, which together represent
the content of the state. The state has 7 words of content and we used 3 words as the
shingle size. This means that the number of obtained shingles will be equal to 7 - (3 -
1) = 5, or more abstract: number of elements in the content of the state - (number of
feature-size - 1).

This statement holds because for each new word in the content, a new shingle will be
added. However, there will not exist a single shingle if there are only one or two words in
the state, so we have to subtract this number from the total. This gives us 7 - 2 = 5.

8.1.2 Simhash/Crawlhash

Currently Charikar’s Simhash algorithm is one of the most popular near-duplicate detec-
tion algorithms [4]. The Simhash algorithm [2] is a dimensionality reduction technique.
It maps high-dimensional vectors to small-sized fingerprints [5]. In the research report
(Appendix A) the basic concept and the algorithm itself is explained. To demonstrate this
algorithm, an example will be described in section 8.1.1.

Performance of near-duplicate detection algorithms for Crawljax page 16 of 68

Generate fingerprint
Each states has its own fingerprint, which can be used to compare the similarity between
two states. The fingerprint is basically a hash with the property that relatively similar
values will be hashed to relatively similar hashes. The word relatively is important. It is
trivial that exactly the same values will be hashed to the same hash, but it is not trivial
that almost similar values will be hashed to almost similar hashes. This is different from
the usually used hashes, such as SHA256, because they will generate a completely different
hash when the value changes, even when the change is very small relative to the size of the
value.

Continue the shingle example
Consider the example from section 8.1.1. The generated featers are:

{”Hellofriends!This”, ”friends!Thisis”, ”Thisismy”, ”ismypersonal”,
”mypersonalwebsite.”}.

The first task is to hash all the features with a simple hashing algorithm. The result
of the hashCode() method in java will give the following result:

{01101101111010011110001110011100, 00001110001011110111000010010100,
01001101000111011010110000010100,

00111100101000001110100010010110, 11110010101010010100111011011111}.

All these hashes will be used to create the fingerprint of the content of the state. To
make this clear, we will put the hashes under each other and calculate the fingerprint. The
values in the field ’Addition’ are calculated by the values above. Add one if the value is 1
and subtract one if the value is 0. Finally, the fingerprint bit is 1 if the value in the row
’Addition’ is greater that 0 and the fingerprint bit is 0 if the value in the row ’Addition’ is
less or equal than 0.

Bit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1
0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1
0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1
0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1

Addition -3 1 1 -1 3 3 -1 -1 1 -3 3 -3 3 -1 -3 3
Fingerprint 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1

Performance of near-duplicate detection algorithms for Crawljax page 17 of 68

Bit number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0
0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0
1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0
1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0
0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1

Add 1 3 3 -3 1 -1 -1 -3 3 -3 -5 5 -1 5 -1 -3
Fingerprint 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 0

This will give the fingerprint ’01101100101010011110100010010100’ of the value ’Hello
friends! This is my personal website.’ using a shingle-size of 3-words.

Small change in the content
Lets change the content of the example a bit to see how the fingerprint changes. The new
content will be:

’Hello world! This is my personal website.’

Features of the content:

{”Helloworld!This”, ”world!Thisis”, ”Thisismy”, ”ismypersonal”, ”mypersonalwebsite.”}.
Hashes of the features:

{11100111011011001000110000111111, 01110011001101011101011111110111,
01001101000111011010110000010100,

00111100101000001110100010010110, 11110010101010010100111011011111}
This will change two of the five hashes. These rows are indicates with arrows.

Bit number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

→ 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0
→ 0 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1

0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1
0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 1

Addition -1 3 3 1 -1 1 -1 1 -1 -3 3 -1 1 -1 -5 1
Fingerprint 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1

Bit number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

→ 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1
→ 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1

1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0
1 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0
0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1

Add 3 1 -1 -3 3 3 -1 -3 1 -1 -1 5 -1 5 3 1
Fingerprint 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 1

Performance of near-duplicate detection algorithms for Crawljax page 18 of 68

So the fingerprint of

’Hello world! This is my personal website.’
=

’01110101001010011100110010010111’

Getting the similarity distance between states
In Crawlhash, the fingerprints can be compared using the Hamming distance. A small
Hamming distance indicates more similarity between two documents. In the previous ex-
ample, the change of the word ’friends’ to ’world’ caused the hash to change 8 of the 32 bits.

01110101001010011100110010010111← Fingerprint of the content with the word ’world’.
01101100101010011110100010010100← Fingerprint of the content with the word ’friends’.

Advantages of crawlhash
Crawlhash creates a small-sized fingerprint of the content of a state, which makes it easy
to calculate the distance between two states by just finding the hamming-distance of the
two fingerprints. This can be done in a constant time and space. The space is of com-
plexity O(1) because each state needs only 32-bits to save the fingerprint. The time is of
complexity O(1), because only the 32-bits of two fingerprints should be compared to each
other for differences.

Disadvantages of crawlhash
Crawlhash has some level of randomness. Every feature with different content will be
hashed to a different hash; one can see this hash as a random sequence of zeros and ones.
Because of this, it is not possible to predict the exact number of differences in the finger-
prints when there is a change in the content. It is only possible to predict some bounds
or make a confidence interval. Assume we use one-word-shingles for the content ”Nothing
or Broder”. When we change this to ”Crawlhash or broder”, it will probably give another
result as when we had changed the content to ”Something or broder”. This is not intuitive,
because we use one word to define the features and in both cases only one word changes.
It would be nice if the the number of different bits in the fingerprints would be the same.
The difference occurs because the hash of ’Nothing’ can have some bits in common with
”Crawlhash” but not with ”Something” or otherwise. This can result in a different value
for a bit in the fingerprint when both bits of the other two hashes are different. This due to
two of the three hashes that will remain the same. ”or” and ”Broder” remain unchanged.
So for the bit-numbers where the bits of both hashes are the same (both 0 or 1). The
possible change in the bit of the third hash will not affect the fingerprint. This problem
disappears largely when there are a lot of features and just a few that are different. Thus
to get rid of this disadvantage, more and smaller feature-sizes should be preferred above
less and bigger feature-sizes.

Performance of near-duplicate detection algorithms for Crawljax page 19 of 68

8.1.3 Broder’s algorithm

Another way of finding duplicates is to use the number of common shingles in comparison
with the total number of different shingles. Broder’s duplicate detection [1] uses features
to divide the content of a state into a set of hashes These hashes will be used to compute
the resemblance with another state by calculating the Jacquard-coefficient. In this case,
similar to Crawlhash, shingles were used to generate the features.

Jacquard-coefficient
The set of features will be hashed and saved for each state. This set of hashed features is
used to compare the resemblance of two documents by calculating the ratio of the inter-
section divided by the union of the elements of the sets. This ratio is called the Jaccard
coëfficient: |S(d)∩S(c)|

|S(d)∪S(c)| , where d and c are documents, S(d) and S(c) are the the sets of

hashed features and |S(d)| is the number of elements in the set S(d). By using a threshold
t ∈ (0, 1), we can say that two pages are near-duplicates of each other when the ratio is
higher that t.

Consider again the example content

d = ”Hello friends! This is my personal website.”

As shown, this give the set of features

{”Hellofriends!This”, ”friends!Thisis”, ”Thisismy”, ”ismypersonal”,
”mypersonalwebsite.”}.

The next step is to hash these features. Basically, every feature that is not exactly the
same is hashed to a different hash. The make this example more clear, we will just use the
string-representation of the hashes instead of the hashes.

Now make a small change in the content

c = ”Hello world! This is my personal website.”

This gives the features

{”Helloworld!This”, ”world!Thisis”, ”Thisismy”, ”ismypersonal”, ”mypersonalwebsite.”}.

Calculate the Jacquard-coefficient
The intersection of S(d) and S(c):

{”Thisismy”, ”ismypersonal”, ”mypersonalwebsite.”}

The union of S(d) and S(c):

{”Hellofriends!This”, ”friends!Thisis”, ”Thisismy”, ”ismypersonal”,
”mypersonalwebsite.”, ”Helloworld!This”, ”world!Thisis”}

Performance of near-duplicate detection algorithms for Crawljax page 20 of 68

This will makes the Jacquard-coefficient equal to : 3/7 ≈ 0.43
The value would be 1 if both states are completely the same and 0 if they are both com-
pletely different. A value in between represents the corresponding similarity.

Advantages of Broder
Broder’s algorithm has less issues of randomness as crawlhash, see ’Disadvantages of Crawl-
hash’ in section 8.1.2. ”Just”, ”a”,”flesh” and ”wound” will be all hashed to different
hashes. Each sequence of two states with content ”Just or a”, ”a or flesh” and ”flesh or
wound” will give a total of 2 elements in the intersection and a total of 4 elements in the
union. So the similarity-value will be 2/4 = 0.5. This value say that these three states will
be near-duplicate if the threshold is at least 0.5. The advantage of Broder’s algorithm is
that the results will be more stable and reliable.

Disadvantages of Broder
The calculation of the difference-distance takes more time and space than the algorithm of
crawlhash. Space has a complexity of O(n), because content of n words/chars/sentences
has n-p+1 features, where p is the feature-size. All the hashes of these features should be
saved. Time has a complexity of O(n2): Union and the intersection can be in O(n2)-time.
Every element in first set should be compared with every element in the second set in
the worst-case scenario. The count of the elements in the sets can be done in linear-time
and the division O(n2). Therefore, the total complexity of time is O(n2). So compared to
Crawlhash, Broder takes in more memory and takes more computation time.

8.2 The testing environment

There are several ways to find duplicate or near-duplicate states during a crawl, see section
8.1.2 and 8.1.3. These different near-duplicate detection algorithms should be compared
with each other to decide which algorithm and which parameters will perform the best
for Crawljax. The comparison should give results, which make it possible find a reliable
near-duplicate detection algorithm for Crawljax.

In order to test the different near-duplicate detection algorithms, a automated calibra-
tion tool is needed. It was expected that several hundreds of test runs would be needed
to test a major number of different parameter situation. Doing the comparisons manu-
ally would cost far too much time and the comparisons would be prone to human error.
Therefore it was concluded that a automated testing tool was needed.

This calibration tool would be responsible for three aspects of the comparisons. First
of all, the tool should be able to run Crawljax-crawls with configurable settings. This way
we can easily test out various types of the near-duplicate detection algorithms by changing
the parameters. Secondly, the testing suite should be able to distribute the websites to
be crawled over multiple computers. By distributing the workload, the overall run-time
of the tests can be reduced. Finally, the calibration tool should be able to compare the
crawled results. These three aspects are represented in the Crawljax Calibration Tool as
the three major components. The CrawlManager Component, the distributed component

Performance of near-duplicate detection algorithms for Crawljax page 21 of 68

and the analysis component. These components will be covered in depth in sections 8.2.1,
8.2.2 and 8.2.3 resplectively. Finally, in section 8.2.4 we will explain how the the optimal
result of a website is found, which is necessary for the analysis component.

8.2.1 CrawlManager Component

The most essential component of the testing suite is the link between the testing suite
and the Crawljax-core. This component is responsible for mapping the configurations to a
Crawljax-configuration and launching Crawljax-sessions. As the name already suggests, the
ConfigurationMapper is the class that will be responsible for mapping the configurations
set in the testing suite to a configuration compatible with Crawljax. The CrawlManager
class is responsible for properly setting up and launching a Crawljax-session. Additionally,
to make the testing suite already fully functional, this component is able to read websites
and settings from local files. It will use the settings from the file to configure the Crawljax-
crawler and it will keep crawling until all websites from the file have been crawled.

8.2.2 Distributed component

The whole idea of having a separate calibration tool is to be able to distribute the crawling
of a large collection of websites over multiple computers. This is where the distributed
component comes into play. The distributed component is responsible for distributing
tasks over a number of computers. A task will be the crawl of a certain web application.
To distribute these tasks require two types of actors. At least one computer or server,
the distributor, should be in charge of distributing the tasks between the other computers,
called the workers. These workers just perform some tasks, i.e. crawling some websites and
return the output to the server. This configuration is known as a master-slave configuration,
where the workers act as slaves.

The main requirements for the distributed component in this situation, would be that
these workers should be flexible, should be easy to setup and should have the least necessary
interaction with (human) supervisors. Additionally, the workers should not impact the
entire session, when they fail to crawl a website.

There are three separate types of data which need to be distributed. These are the
tasks for the workers, the configuration-settings and the results of the crawls. Each of
these types of data has been implemented as a separate sub-component.

Instead of a traditional master-slave configuration, we opted for a slightly adjusted
configuration. The distributor is just a database-server, accessible over the network. When
workers are idle, they will poll the database to check if there are any free tasks available.
If there is a free task available, the worker will claim the task by updating the specific row
in the database. Other workers recognize the task as being claimed or not free.

After the worker has claimed a task, it will retrieve the relevant set of configurations.
Each task can have custom and/or common settings associated with it. The CrawlManager
will be called to setup the actual crawling. Afterwards the results of the crawl will be sent
to the database using the ResultProcessor. Finally to indicate that the task has been

Performance of near-duplicate detection algorithms for Crawljax page 22 of 68

Figure 1: Sequence diagram of a worker/slave that performs a task

successfully completed the task is marked as completed in the database. The whole path
that a worker performs is shown in the sequence diagram in Figure 1.

8.2.3 Analysis Component

The component that makes this software a calibration tool is the analysis component.
The analysis component can be used regardless of whether the websites have been crawled
locally or using the distributed component. It is responsible for processing and comparing
the crawled results.

The analysis component measures the effectiveness of the near-duplicate detection al-
gorithms, which are described in section 8.1. There should be a set of websites, for which
all the duplicate states have been manually marked, see section 8.2.4 how this will be done.
The analysis component compares a crawled set with a specific near-duplicate detection
algorithm with the perfect/benchmark set. The level of similarity between the crawled set
and the benchmark set provides an indication on the effectiveness of the used near-duplicate
detection algorithm.

The component has been designed to be very flexible and extendable, to easily allow

Performance of near-duplicate detection algorithms for Crawljax page 23 of 68

changes in the way the crawls are analysed without having to change several parts in the
software. The component can be subdivided into three sub-components, namely metrics,
processors and the analysis-core.

Analysis-core
The analysis-core is the only vital sub-component. It contains the AnalysisBuilder, Analy-
sis and the Statistic-classes. The Analysis-class is at the center of the analysis component.
An analysis-object represents a single comparison between the benchmark-set and the
newly crawled set. If the analyse is completed it also contains the statistics of the com-
parison. The AnalysisBuilder is responsible for fetching the benchmark-set and the crawl
or retrieve the new set. In our case the AnalysisBuilder will fetch the benchmarked-set
from the database and will issue a new distributed crawl for the new set. Finally there is
the Statistics-data object. This object is responsible for holding a single statistic about an
Analysis. Without any metrics the set of Statistics in an Analysis will be empty.

The set of metrics in a comparison are responsible for the way the comparison between
the benchmark-set and the newly crawled set is carried out. Each metric compares a single
attribute between the two sets. It reports the results of the comparison by returning a
Statistic-object. Metrics can easily be created and added to the analysis by having a class
implement the IMetric-interface and adding it to the AnalysisBuilder.

SpeedMetric
The speedmetric will compare the runtime of the test with the runtime of the crawl we used
to find the optimal result. The result of the metric will be the percentage of the increase
in runtime. The runtime of the crawl with the new duplicate-detection will be lower/faster
if the percentage if is positeve and higher/slower if the percentage is negative. The per-
centages of different crawls with different duplicate-detection can be compared with each
oter to see the change in runtime.

State-analysis metric
This metric compares the states of the two results. It will identify missed states and
duplicate states. Missed states are states that the crawl of the test has not included in
the resulting set, whereas the optimal/benchmark set do have these states. Duplicate
states are the states that are in the result, but are not in the optimal/benchmark set.
In this definition, missed states are false positives (the duplicate-detection says that the
states are duplicates, but they’re actually different) and duplicate states are false nega-
tives (duplicate-detection says that the states are not duplicate, but they’re actually are
duplicates).

Processors
After the comparison is completed, processors are responsible for processing and/or storing
the Analysis-object data. Multiple processors can be run on the same analyse-data indepen-
dently of each other. The only requirement is that a processor extends the AnalysisProcessor-
interface.

Performance of near-duplicate detection algorithms for Crawljax page 24 of 68

8.2.4 Annotation tool/website

The analysis component, described in section 8.2.3, needs benchmark sites to compare the
result of a crawl with. We obtain this benchmark site through crawling all states of the
site. This is done by setting the crawl-depth on infinite and using a duplicate detection
on the whole DOM, where every change results in a new state. Once all these states are
found, all the duplicate states should be found manually to be sure that the result will
be optimal. To find the duplicates in terms of content, we made a website to make this
process faster and to lower the possibility of mistakes. The website shows the screenshots
of every possible combination of states. For each combination, the user needs to tell the
website if the combination is a duplicate or not. Figure 2 shows a screenshot of this website.
The definition we used to decide when a state is a duplicate of another state is defined
in definition 1. The two states are sent to the database as a tuple if the combination is
marked as duplicate. After the decision is made, the next combination will be shown. This
process will be repeated until the last combination is reached.

Figure 2: Screenshot of the annotation tool

Definition 1. State B is a duplicate of another state A iff all relevant content is the same
in both states.

People come to a site for certain information. We define the relevant content as the
textual information on a site what for the user may visiting the site. All other things, like
advertisement, timestamps, navigation lists can also be present on a site, but don’t give
the visitor the information where he visits the site for, usually.

Performance of near-duplicate detection algorithms for Crawljax page 25 of 68

8.3 Threshold-slider in the crawloverview plugin

For the near-duplicate detection we need some threshold to determine the ‘near’ in the
word ’near-duplicate detection’. Two states that are not exactly the same, can be seen
as duplicate or unique states. We will use a threshold to define the maximum allowed
differences for which two states are duplicates. Two states are duplicate if the distance-
value obtain by Crawlhash or Broder, see section 8.1.2 and 8.1.3, is lower than the threshold.
Now that we know how we can determine It would be nice to change the threshold after
the crawl to see what will happen when the value for the threshold changes. This will be
done with the so-called threshold-slider, which will be introduced in section 8.3.1. The
goal is to get the same result with the slider as with a new crawl with the threshold of the
value defined by the slider. For example, crawl with threshold 2, move the slider to the
threshold 7 and check if this will give the same result as a new crawl with the threshold 7.
In section 8.3.3 we will see that it is not possible to guarantee that the results will be the
same. Section 8.3.2 will show how the graph is build when the slider changes.

8.3.1 Changing the threshold with a slider

A slider will be placed on the website that is generated in the Crawloverview-plugin. Using
this slider an user will be able to change the threshold and see how the graph will react.
This makes it possible to perform only one crawl and see what would have happened when
you have chosen a different value for the threshold. It is therefore not necessary to run
Crawljax again on the same website with the new threshold value, to view the differences.

When Crawljax crawls a new web-page, the fingerprint of the new content will be
checked against all fingerprints of all the states that are currently in the graph. If the
fingerprint can be matched with one of the existing fingerprints, the new state is a duplicate.
If this is the case, than the new state will not be added to the graph. So it is possible
for Crawljax to run with a certain threshold and discard near-duplicate states ‘on the
fly’, without saving all the duplicate-distances to the other states. This is not possible in
the threshold-slider, because it would take too much time to run Crawljax again for each
different threshold. To be able to determine duplicates with a different threshold without
recrawling the website the duplicate-distance is saved of each state with all other states.
This is done in the Crawloverview-plugin. This will make it possible to simulate what will
happen to the graph if the threshold changes.

8.3.2 Slider algorithm

The threshold changes with a simple HTML-based slider. Upon a change every state will
be compared to check if the state is still a unique state. If this is the case, than the
algorithm will continue to the next state, otherwise the state will be removed from the
graph. If a state is removed from the graph, a new state should not be compared against
this already removed state. To give a more formal description of the algorithm:

Performance of near-duplicate detection algorithms for Crawljax page 26 of 68

Algorithm 2 Callback of the threshold-slider

statesInGraph ← empty array
for all state in states do

for all distance in state.duplicateDistance do
if statesInGraph contains distance.otherState && distance ≤ threshold then

remove state from the graph
end if
if state is not deleted then

add state to statesInGraph
end if

end for
end for
removeUnconnectedStates(graph)

States, which should be sorted from old to new, can for example contain the following
array:

1 ”states” : [”index ” , ”state2 ” , ”state3 ” , ”state4 ” ,
”state13 ” , ”state14 ” , ”state16 ” , ”state17”]

And state4.duplicateDistance can be for example:

”state4” : {
”duplicateDistance” : {

3 ”index” : 0 .8224163027656477 ,
”state2” : 0 .8503649635036497 ,
”state3” : 0.8170914542728636

}
}

If statesInGraph has [”index”, “state3”] state4 will only be compared with Index and
State3 to determine if state4 is a duplicate. State2 in duplicateDistance of state4 will
be ignored. This is done in the first check in the if-statement: statesInGraph contains
distance.otherState. The second check verifies if the distance between the two states i
below the threshold: item.value <= threshold. If both conditions are true, the new state
is a duplicate of a state that is already in the graph. So the state would be removed from
the graph. One interesting, obvious, limitation to the algorithm is that compared to the
initial threshold all other thresholds should be larger. This is due to fact that it is relatively
easy to remove states from graph, which happens at larger threshold. On the other hand
it is impossible to add states, so lower thresholds than the initial threshold are impossible
to display correctly. Notice that the first time graph first be build according to the initial
threshold. If the slider is used, states will be removed according to the value of the new
threshold. It is possible that the only parent-node of node v will be deleted, but that
node v will still exist. The result will be some different disconnected graphs. The method
removeUnconnectedStates(graph) will solve this problem by remove all disconnected states
of the graph. Just removing these nodes is a justified way of handling these nodes. A
new crawl with that threshold will not crawl any links of the removed state, because the

Performance of near-duplicate detection algorithms for Crawljax page 27 of 68

duplicate state will not be crawled.

8.3.3 Possible differences

As shown in previous sections, it is possible to get an indication of the different states that
Crawljax will return if you change the threshold for the near-duplicate detection with the
threshold-slider in the Crawloverview-plugin. Notice that the word ’indication’ is used.
It is not possible to get always the exact same result for a crawl with a threshold and
changing the slider. Consider the following example:

• A crawl with a threshold 0.3 and change it with the slider to 0.6

• A crawl with threshold 0.6

These two result can be slightly different. The reason for this is that there can be states
added with the crawl with a threshold of 0.6 that are not added with a threshold of 0.3.
This seems strange, so here is an example:

Index is added.
State3: {
index -> 0.5
}
In this instance state3 will only be added in the crawl with a threshold 0.3 and not with
the threshold 0.6

State5: {
index -> 0.7
State3-> 0.1 (Only for the crawl with threshold 0.3)
}

In this case, state5 will not be added for the threshold 0.3, because it is a duplicate
with state3. In the crawl with a threshold 0.6, state 5 will be added, because it is not
a duplicate of Index. It will not check if state5 is a duplicate of state3, as state3 is not
present in the graph. It was already detected as a near-duplicate with Index.
One could say that state5 is near-duplicate of state3 and state3 is near-duplicate with
Index, so state 5 is near-duplicate of index. This transitivity-attribute is true for exact
duplicates, but not for near-duplicates. A readable example can be:
A = “My software never has bugs. It just develops random features.”
B = “My software never has bugs. It constantly develops random features.”
C = “My software never has bugs. It just develops cool features.”

If the threshold for near-duplicate detection is one-word, two sentences are near-duplicates
if only one or none words in the sentence are different. Then A is a near-duplicate of B, B
is a near-duplicate of C, but A is not a near-duplicate of C, because they have two words

Performance of near-duplicate detection algorithms for Crawljax page 28 of 68

different.

To conclude, near-duplicate detection does not have a transitive relation. The absence
of this characteristic, can lead to slightly different results with the threshold-slider. The
threshold slider is only meant as a nice tool for visualizing the general changes in the
state-flow graph. It is not a replacement for actual recrawling a website with a different
threshold.

9 Implementation

In section 8 the three tasks of the project are introduced: implement near-duplicate detec-
tion algorithm in Crawljax, make a calibration tool to test the performance of the near-
duplicate detection algorithm on Crawljax and make a threshold-slider in the Crawloverview-
plugin generated by Crawljax. Now the implementation details of these tasks will be
discussed in section 9.1, 9.2 and 9.3 respectively.

9.1 Duplicate detection

There are important methods in the implementation of the near-duplicate detection algo-
rithms that we will describe in this section. The class diagram of the duplicate-detection
package we developed for Crawljax will be shown in section 9.1.1. The Hamming distance
method and the Jacquard-coefficient method are the most notable methods which return
the level of similarity between two states. Due to this importance, the implementation
details of these methods will be explained in section 9.1.2 and 9.1.3 respectively.

9.1.1 Class diagram

Figure 3 shows the class diagram of the duplicate-detection package that was developed
for Crawljax. In the interface, DuplicateDetection and Fingerprint are the central part
of this package. The first interface must be implemented to add a near-duplicate detec-
tion algorithm, Crawlhash and Broder. These algorithms generate objects of the interface
Fingerprint. Fingerprint is the basic element generated by a DuplicateDetection, which
essentially an abstraction of the underlying hashes and comparison methods. In Finger-
print, the method getDistance is defined. This method return a value that represents
the distance between two states. This means that the distance is low for similar states
and high for different states. The implementation of Broder DuplicateDetection uses the
Jacquard-coefficient to determine the distance, while Crawlhash uses the Hamming dis-
tance. Notable is that the Jacquard-coefficient gives the value 1 (high) if two states are
completely the same and 0 (low) if the states are completely different (both states does
not have nothing in common). With the Hamming distance the values are inverted, where
high values indicate no similarity. To make the getDistance-method more consistent the
result of the Jacquard-coefficient has been inverted. This is done by one minus the result

Performance of near-duplicate detection algorithms for Crawljax page 29 of 68

of the Jacquard-coefficient. This will give us a value between the 0 and 1 that represent the
level of difference between the states, where high values indicate more differences between
the states.

Figure 3: Class diagram of the duplicatedetection package developed for Crawljax

The isNearDuplicate-method uses the getDistance-method and compares that value to
the threshold and returns a Boolean-value. If the value of the getDistance-method is less
or equal to the threshold, than the two fingerprints are duplicates. In DuplicateDetection
the fingerprints can be generated from the content of a state with the generateFingerprint-
method. This gives us the following steps to determine in two states are duplicates, which
is also shown in figure 4. First get the DOM of the states. Secondly, strip the DOM to
get only the relevant content of the state using the DOM-strippers available in Crawljax.
Finally, generate the fingerprint using getFingerprint, which uses Features provided to the
DuplicateDetection.

Figure 4: Process for generating a fingerprint

Performance of near-duplicate detection algorithms for Crawljax page 30 of 68

9.1.2 Hamming distance

In the Crawlhash-algorithm, the initial algorithm for the hamming distance of two finger-
prints was just counting the number of ones in the exclusive-or operation of both finger-
prints, see algorithm 3. The exclusive-or operation sets every bit-position where the bits
of the two fingerprints are different to a one and sets a zero if both bits are the same. The
resulting distance is equal to the number of ones in the hash generated by the exclusive-or.

Algorithm 3 hammingDistance-function in Crawlhash

Pre: Two fingerprints
Post: Integer of the number of differences in the fingerprints

int exOr ← fingerprintFirst .̂ fingerprintSecond {The exclusive or operation}
String exOrString ← represent exOr as a bitstring
int distance ← 0;
for all bits in exOrString do

if bit is a 1 then
distance++

end if
end for
return distance

After some research, a faster algorithm was found to calculate the hamming distance.
This algorithm is an optimization of 3, which only uses bit-operations. This optimized
algorithm was many factors faster than the original. See this blogpost8 for a description of
this algorithm. We extensively tested the algorithm though unit-tests to make sure that
the optimizations of the algorithm did not result in broken functionality, but only in the
performance. The results of the unit-tests showed that the optimized algorithm did have
the same functionality as the original implementation.

9.1.3 Jacquard-coefficient

In the Broders-algorithm, the distance of two fingerprints can be found by calculating is
the intersection of two sets and dividing it by the union of the two sets. The resulting
value is called the Jacquard-coefficient. The two sets will be given in the parameters of
this function. For calculating the union and intersection, we made use of the package
com.google.common.collect.Sets from the Google Guava project9.

9.2 Crawljax Calibration Tool

In this section the implementation of the calibration tool will be explained. First, the
noteworthy implementation details are explained in section 9.2.1, including the used design

8http://yesteapea.wordpress.com/2013/03/03/counting-the-number-of-set-bits-in-an-integer/
9http://guava-libraries.googlecode.com/svn/tags/release04/javadoc/com/google/common/collect/

Sets.html

http://yesteapea.wordpress.com/2013/03/03/counting-the-number-of-set-bits-in-an-integer/
http://guava-libraries.googlecode.com/svn/tags/release04/javadoc/com/google/common/collect/Sets.html
http://guava-libraries.googlecode.com/svn/tags/release04/javadoc/com/google/common/collect/Sets.html

Performance of near-duplicate detection algorithms for Crawljax page 31 of 68

patterns. Finally, the necessary external dependencies are identified in section 9.2.2.

9.2.1 Implementation details

The testing suite has some notable implementation details. First, the used design patterns
are identified. Afterwards, the style conventions used in this system are regarded.

Design patterns
To help any future developers understand the source code quicker, the testing suite imple-
ments recognizable design patterns and common conventions.

Using Guice, a dependency injection library, all major classes make use of the depen-
dency injection design pattern. The dependency injection design pattern is based on the
Hollywood-principle: ”Don’t call us, we will call you.”. Rather than having a class creating
the needed objects at run-time, the required objects are passed into the class externally.
This increases the testability and centralizing the binding of implementations to interfaces.

Another design pattern that is used frequently throughout the project is the Data Ac-
cess Object (DAO) design pattern. This design pattern is responsible for decoupling the
retrieval and manipulation of data from the actual storage method. A object using a DAO,
does not care or even know what storage type is used underneath the DAO. In the cali-
bration tool this design pattern is used with every kind of interaction with the database.
Using this approach, the non-DAO code is not cluttered with any raw SQL-code and one
can easily replace the database-DAOs with another storage-type.

Other design patterns that are used in a couple of situation, are the factory and sin-
gleton design patterns. These are used to respectively avoid implementing concrete classes
and reduce unnecessary class-instantiations.

Style Conventions
To keep the code on a high stable level, the project uses the same code conventions as the
Crawljax-core. Most of these conventions are similair to ones preferred by the Google Style
Guide10. The project uses the common naming and style conventions, and uses interfaces
where potential extensions of the program could take place.

In Java there are two types of exceptions. Checked exceptions should be caught or thrown
on every level, while runtime exceptions, like the infamous NullPointerException, do not
have to be caught or explicitly re-thrown. According to the book Effective Java11, one
should use checked expections for recoverable conditions and runtime exceptions for pro-
gramming errors. As the custom exception we throw, such as the AnalysisException, are

10http://google-styleguide.googlecode.com/
11http://www.amazon.com/dp/0321356683/?tag=stackoverfl08-20

Performance of near-duplicate detection algorithms for Crawljax page 32 of 68

considered unrecoverable we implemented them as runtime exceptions.

9.2.2 External Dependencies

To adhere to the software principle of using tried and tested libraries where possible, we
have several dependencies to external code. First of all, we use Maven for build automa-
tion and dependency management. Next to that we have the obvious dependency to the
Crawljax-core module, to actually execute our crawls. ini4j is used to enable the read-
ing of ini-style configuration-files, which offers more functionality compared to the native
Properties-library in Java. The project uses the Mockito-library and the JUnit to enable
easy (unit) testing of the project. The ORMLite library is used to enable Object-Relational
Mapping (ORM) with the database, which removes lots of native SQL code from the java
code. Hibernate was considered to heavyweight for this project. The project makes use of
Lombok to decrease the amount of redundant code and increase the readability of the code.
The Google Commons and Apache Commons libraries are used for some useful classes,
such as immutable lists, immutable maps and argument interpretation. The project uses
Logback under the SL4J Facade for logging purposes. Finally Guice is used throughout
the project to make use of dependency injection, thereby increasing the testability and
centralizing the binding of implementations to interfaces.

9.3 Threshold-slider

As explained in the threshold-part in section design, two states are labeled as duplicates
depending to the threshold. To be consistent, this will be done by comparing the threshold
with the getDistance method, which will return the distance between two states. Two states
will be duplicates if the getDistance is lower than the threshold.

9.3.1 Dealing with getDistance

For CrawlHash, the distance can be an integer between the 0 and 32. The getDistance
method will also return a value between the 0 and 32. This value represents the number
of bits that are different in the fingerprints of both states. By using a threshold of 3, we
actually say that as long as two states that have a difference of 3 bits the hash they are
marked as duplicate states.
For Broder, the distance can be a value between the 0 and 1, because the Jacquard-
Coefficient is be used to calculate the correspondence. See section 8.1.3 for the description
of the Jacquard-coefficient. The Jaccard-coefficient gives the similarity-distance, where
a high value will be returned if both states have much in common. To keep return the
difference-distance between two states, i.e. a high value if both states are very different.
So we need to invert the value. This can be easily done though one minus the result of the
Jacquard-Coefficient.

Performance of near-duplicate detection algorithms for Crawljax page 33 of 68

9.3.2 Screenshots

Below are two screenshots of the crawloverview-plugin with the threshold-slider. Figure
5 is the default situation where the slider is situated at the leftmost value. This value is
the initial threshold that was used for the crawl. Notice that lowering this value has no
use. Lowering the threshold in the Crawloverview-plugin should probably result in showing
states that are not crawled, because a lower threshold will make it less likely that two states
will be seen as duplicates. Two states who were duplicates in the crawl may be not seen
as duplicates with a lower threshold. The state was not added to the state-flow-graph
during the crawl, so it is not possible to show the state in the crawloverview when the
threshold is changed to a lower value. For this reason the threshold can only be changed
to a higher value in the crawloverview. Figure 6 shows what happened when the value in
the threshold-slide is moved to the right, thus increasing the threshold.

Figure 5: Threshold-slider at its default position

Performance of near-duplicate detection algorithms for Crawljax page 34 of 68

Figure 6: Threshold-slider moved to the right

9.3.3 Algorithm of the Threshold-slider

In the design of the Threshold-slider the method removeUnconnectedStates() was men-
tioned. During the design, not much attention was directed at this function, as it seemed
trivial. However to make the algorithm more efficient the original algorithm has been
re-factored to the following algorithm 4:

Algorithm 4 Changed callback of the threshold-slider

statesInGraph ← empty array
for all states in states do

for all distance in state.duplicateDistance do
if state can be reached from the index then

removeIfDuplicate(state)
else

remove state
end if

end for
end for

The two checks in the if-statement in algorithm 2 in the design-part will be performed
in the method removeIfDuplicate. Note that this method should only be performed if the
state is connected to the graph; there should be a path from the index to that state. If the
state is not connected, the state can be deleted. In such a case it does not matter whether
it is a duplicate state or not.

Performance of near-duplicate detection algorithms for Crawljax page 35 of 68

10 Code quality

A critical aspect of the project is the code quality. As mentioned in the requirements, a
high code quality has been stressed by the client. The code should be of at least the same
level of quality as Crawljax. In this section the different procedures that were used to
ensure and improve the code quality.

10.1 Feedback SIG

As a part of the general structure of the final bachelor project, the code had to be send
to the Software Improvement Group (SIG). At SIG, the software would be reviewed and
ranked based on the software quality. The feedback on the code should give some hints on
how to improve the software quality.

While we were still implementing new functionality, we sent the code so far to SIG on
June the 13th.

Initially we were disappointed by the lack of specific feedback. We expected to receive
all kinds of scores on various code quality aspects, so it would be clear on which aspects
the code quality had to improve. Instead we received feedback stating that our code was
”4 out of 5 stars”, which indicates that the code is of ”above average” quality (where 3
stars is the current industry state of practice). Additionally, the feedback included critique
on the number of parameters required in a function in the calibration tool. However, this
feedback seemed to be a misinterpretation of the code, as it was irrelevant in the context
of the code.

It was however a clear indicator that the code in some places was not as obvious as
we expected. Therefore, considerable effort was made to improve method-naming, class-
naming and java-docs. Additionally, some inconsistencies in the class APIs were fixed.

10.2 Static Code Analysis

We used additional code quality analysis tools to obtain feedback on the code quality.
CodePro Analytix12 was used for this purpose. CodePro is a static code analysis tool
maintained by Google. It uses highly extendable metrics to check on various code quality
aspects, including code coverage, conventions, bad practices and dependencies. Another
tool that was used was FindBugs13, which is an open-source project maintained by the
University of Maryland. Findbugs is quite comparable to CodePro, although it checks for
some different bugs and flaws. Finally, EclEmma14 was used to track the code coverage of
our test-cases.

These tools provided a lot of useful feedback, about minor inconsistensies in the code.
These minor inconsistencies include bad naming practices, magical numbers and attributes
missing the final indicator. We fixed nearly all kinds of inconsistencies we deemed relevant.

12https://developers.google.com/java-dev-tools/codepro/doc/
13http://findbugs.sourceforge.net/
14http://www.eclemma.org/

Performance of near-duplicate detection algorithms for Crawljax page 36 of 68

Therefore, the code adheres to all popular Java code and style conventions. Next to this
feedback, CodePro allowed us to view the dependencies of a package in a visual way, shown
below:

Figure 7: Dependency graph of the duplicatedetection-package in Crawljax

As can be seen in the graph of figure 7, the duplicate-detection package in Crawljax
does not depend on any package inside the Crawljax-project. By adhering to this good
practice of limiting the inter-package dependencies, it is very simple to reuse this package
in any other project without having to worry about breaking anything inside the package.

Performance of near-duplicate detection algorithms for Crawljax page 37 of 68

Figure 8: Dependency graph of Crawljax Calibration Tool

In the calibration tool-project dependencies on Crawljax are essential. The dependen-
cies are however limited to just the modules that are actually needed, namely Crawljax-core
and the Crawloverview-plugin. The other dependencies have all been assessed, whether
they are actually needed. For all remaining dependencies in the graph this is the case.
Figure 8 shows the resulting graph of the dependencies in the calibration tool.

10.3 Code coverage

Inherent to a project concentrated on improving a testing tool, is the need for tested code.
As mentioned in the methodology, a test-driven development (TDD) approach was used
in this project. Therefore, the code has a extensive set of tests. The current code coverage
is 97.4% for the code added to Crawljax and 75.5% for the testing suite.

Using the tools and feedback throughout the project, the code quality has been kept
up to a high standard. The code follows common Java code and style conventions, is
thoroughly tested and follows the conventions used by the original Crawljax Project.

11 Results from the calibration tool

At the moment, we have introduced two duplicate detection algorithms: Crawlhash 8.1.2
and Broder 8.1.3. Both algorithms need a certain feature-size, feature-size-type and thresh-
old. In this section we will test both algorithms on as many different values as possible

Performance of near-duplicate detection algorithms for Crawljax page 38 of 68

for these parameters. The results of Crawlhash on different parameters will be shown in
section 11.2 and the results of Broder in section 11.3.

11.1 Test-setup

To test the algorithms, we will run Crawljax on a training-set of 6 websites. These websites
will be annotated to get the optimal result for the duplicate detection. How this is done is
shown in section 8.2.4. Next we will run our analysis tool on these 6 websites for different
parameters. The analysis will get the difference between the crawl and the optimal result,
see section 8.2.3. The 6 website have a total of 119 states, where 51 are unique states. We
tested both algorithms on this training-set for the three shingle-size-types: chars, words
and sentences.

The old duplicate-detection in Crawljax gave an average of 11 false negatives and 0
false positives, so a total of 11 error. Because this algorithm made no use of parameters, it
will give the same result, 11, for all the different parameters. For reference, the plane with
value 11 will be shown in green in every graph of a new near-duplicate detection algorithms.
To get a better visual view, some figure are shown for two different viewpoints.

We tested the threshold to the value where the number of missed stated became higher
than the total error on several other values. Two stated have a higher probability to be
duplicates when the threshold increases. So the missed states will grow if the threshold
increases and make the results only worse. For the feature-size, we try to test as many
different values until we see some trend in the results.

11.2 Results of Crawlhash

This section shows the results of the performance of Crawlhash on Crawljax. The number
of mistakes are plotted into figures. A mistake is defined as: Crawlhash marks two states
as duplicates, but the states are actually not duplicates (false positive) or Crawlhash does
not mark them as duplicates, but they are actually duplicates (false negatives).

Shingle-type: words
Figure 9 shows the result of the total error that Crawlhash made on different values for
the feature-size and threshold for the feature-size-type ’words’.

Performance of near-duplicate detection algorithms for Crawljax page 39 of 68

Figure 9: Result of Crawlhash for feature-size: 1-9 words and threshold 1-8 for two different
viewpoints

One can see that there is a big area for very low and very high thresholds that is above
the plane. These thresholds will generate more mistakes than the current version of Crawl-
jax, so we should concentrate on the values below this plane. For the lowest feature-size,
the threshold of 2 to 4 this will give nice results. For higher feature-sizes, this threshold
will shift a bit to the right. This gives a threshold between 4 and 6 as good results for the
feature-size 9.

Shingle-type: sentences
The result for the feature-size-type sentences is shown in figure 10

Figure 10: Result of Crawlhash for feature-size: 1-6 sentences and threshold 1-14 for two
different viewpoints

The figure shows the same curve as the results for the words, but in this case, all the
values are above the plane. This means that Crawlhash has made more error than the

Performance of near-duplicate detection algorithms for Crawljax page 40 of 68

current duplicate-detection algorithm in Crawlhash for every tested combination of pa-
rameters.

Shingle-type: chars
The result for the feature-size-type sentences is shown in figure 11.

Figure 11: Result of Crawlhash for feature-size: 1-15 chars and threshold 1-5

Conclusion Crawlhash
The ’sentences’ are not useful, because they had many more errors than the current
duplicate-detection in Crawljax. The ’chars’ are unreliable, because a small change in
the threshold can lead to many unexpected changes in the number of errors. But the
’words’ are useful for certain thresholds. This optimal threshold shifts to higher values for
higher feature-sizes. Figure 12 shows all graphs in a single figure.

Performance of near-duplicate detection algorithms for Crawljax page 41 of 68

Figure 12:

11.3 Results of Broder

The results of Broder near-duplicate detection algorithm will be shown in this section in
the same way as the results of Crawlhash in section 11.2. Any value between 0 and 1 can
be chosen for the threshold for the fingerprints of Broders algorithm . We decided to use
step size of 0.05 to get a good overview of the performance of the algorithm, but also limit
the number of tests to make it possible to run the tests in a reasonable amount of time.
Additionally, the maximum threshold and maximum size of the shingles was limited to
reasonable values. When results were consistently getting worse, which often happends on
large thresholds and large shingle sizes, testing was stopped.

Feature-type: words
Figure 13 shows the results for the ’words’ type of shingles on two different viewpoints.

Performance of near-duplicate detection algorithms for Crawljax page 42 of 68

Figure 13: Result of Broder for feature-size: 1-7 words and threshold 0.05-0.4 with steps
of 0.05 for two different viewpoints

First thing to notice is that the figure is way more smooth than the figures of Crawlhash,
even though the step size is bigger for Broder (Broder: 0.05 and Crawlhash: 1/32≈0.03).
See the disadvantages of Crawlhash in section 8.1.2 for possible explanations of this be-
havior. Secondly, there clearly is a large area of threshold and shingle-size combinations
that substancially outperforms the original duplicate-detection of Crawljax.

Feature-type: sentences
Figure 14 shows the results for the feature-size-type ’sentences’.

Figure 14: Result of Broder for feature-size: 1-5 words and threshold 0.2-0.3 with steps of
0.05 for two different viewpoints

What can be noticed from the graph above is that only the results of the feature-size
’1-sentence’ have some threshold-values that outperform the original duplicate-detection
algorithm. All other values provide worse results than the current version of duplicate-
detection in Crawljax. A possible explanation for these results is that the average web-page

Performance of near-duplicate detection algorithms for Crawljax page 43 of 68

only has too few sentences to really generate a representative hash.

Feature-type: chars
Figure 15 shows the results for the ’chars’ shingle-type.

Figure 15: Result of Broder for feature-size: 1-9 chars and threshold 0-0.65 with steps of
0.05

A similar pattern like the sentences shingle-type can be seen in this figure; bad results
for very high and very low threshold values. Important to note is that a feature-size higher
than 3 chars will give nice results for a threshold value between 0.05 and 0.15.

Conclusion
In comparison with the Crawlhash results, the result of Broder looks more reliable. The
graphs show that there are large areas of threshold and feature-size combinations for words
and characters feature-types, that outperform the original duplicate-detection implemen-
tation. Especially, the ’words’ feature-type has a lot of combinations that substancially
outperform the original implementation.

11.4 Conclusion of the test-results

Most of the test-results shows a curve of a parabola that opens upward, which shows us
that the algorithms have some optimal values for the parameters that are best. The best
results in this case are the results with the least number of errors, where a missed state
count as one error even as a duplicate state. A very low threshold results in way to many
states, so the result has a lot of duplicate states. A very high threshold results in to less
states, to many states were seen as duplicates. This explains the worse results for low and
high thresholds. To get nice results, above figures shows that a value in between can give
very nice results if we look at the total number of mistakes. If duplicate states are prefered
above missed states, some smaller value than the optimal can be used and if missed states
are prefered, some higher value can be used. This shows that if will be very helpfull to

Performance of near-duplicate detection algorithms for Crawljax page 44 of 68

know the value of the threshold which gives the least amount of total error made by the
algorithm.

Another thing we noticed is that the optimal value for the threshold shifts to a slightly
higher value when the feature-size increases, but the number of mistakes are almost the
same.

The task in now to find out if the optimal value for the threshold will outperform the
other values for the parameters on most different web applications, or that this value is
dependent on certain aspects, such as the DOM-size.

12 Discussion and Recommendation

There are some decisions we had to make, which we want to discuss in this section. The
first decision is what parameter values should be used and how we should define these
parameters. One question can be: May the user change these parameters? The decisions
according to the parameters will be discussed in section 12.1.

12.1 Parameter values

For the near-duplicate detection are two parameters necessary. The first one is for the
features. This contains the feature-size-type: chars, words or sentences and a feature-size,
i.e. the number of chars/words/sentences. The second parameter is for the threshold to
decide when two states are duplicates of each other. We have considered the following
options to handle these parameters:

• Find a robust or optimal values and always use these values for the parameters

• Let the user decide the parameter values before each crawl

• Use default values that gives understandable results and make it possible to change
these values by the user

While testing the near-duplicate detection algorithm, we noticed that it was hard to
find one single optimal or robust value for the parameters. This makes the change to high
to get bad results for a crawl for some websites. At the moment we do not have such a
optimal value, so we cannot decide for the first option. The people who use Crawljax are
most of all people with technical knowledge, so letting the user decide the values for the
parameters is not a strange idea. But the problem is the first use of Crawljax. People
who use Crawljax for the first time will just run it on some web-application for there pur-
poses, for example, testing the web-application or finding all states to make it reachable
for search-engines. They probably do not want to bother about some parameter values for
near-duplicate detection the first time they use Crawljax. So leaving the decision to the
user, as we proposed in the second option will not be a good solution. This brings us to
the third option, where we predefine the values for the parameters, but make it possible
for the user to change these values. A user of Crawljax can first use Crawljax without

Performance of near-duplicate detection algorithms for Crawljax page 45 of 68

bothering about the parameter values, but if the result of the crawl is not satisfactorily,
he will be able to find the problem and change the parameter values according to his needs.

Now we decided on the third option, we need to define the values of the defaults. With
our trainings-set we have tested all relevant combinations of values for the parameters. By
selecting some values which gives nice results and test these on other, randomly selected,
websites, we get the default values for the parameters. By selecting some values with nice
results, we prefer duplicate states above missed states, because it is clear what to do if
there are to many duplicates in the crawloverview. The threshold-slider can also be used
to see what would have happened when the user had run Crawljax with a higher threshold.
But if a crawl will give way to many states, a first-time user will probably not know what
went wrong.

We recommend to use the default values for the parameters and change them if the
result of the crawl is not satisfactory. Lower the threshold if there are to many states
missing and make the threshold higher if there are to many duplicate states.

13 Conclusion

Crawljax wants to find all relevant states of a web application. For a large web application
it can take a lot time to find all these states. To limit this number of states that Crawljax
should visit, we want to get rid of duplicate and near-duplicate states. Identifying near-
duplicate states at run-time makes it possible to merge the newly found state with an
existing state. The advantage of this is that near-duplicate states do not have to be crawled
and analysed, because it is a near-duplicate of a state which is already been crawled and
analysed. This makes it possible to crawl a web application in the same amount of time.

The problem of identifying near-duplicate states is an optimization problem, for which
no optimal algorithm exists. As described in the problem analysis, this is due to inability
to consistently identify unique content from near-duplicate content.

The main goal of this project was to build a near-duplicate detection algorithm for
Crawljax, which should consistently perform better duplicate-detection than the original
duplicate-detection of Crawljax. The product should be seamlessly integrated into Crawl-
jax offering the user various options to configure the duplicate-detection. On the other
hand the product should change as little as possible to the existing API of Crawljax.

The final product of this project satisfies all requirements. As shown in the test-
results. There are several configurations of the duplicate-detection which outperform the
old duplicate-detection consistently. To serve users with more options, two algorithms are
available, namely Crawlhash and Broder. Crawlhash is faster and costs less memory than
Broder. Broder on the other hand is more consistent and provides better results.

The product is highly customizable by users. Besides the choice between the two algo-
rithms, users can customize nearly everything about the algorithms. How the hashes are
generated. What features from the web-page should be taken in account when generating
the fingerprints. How strict system should be when deciding whether a state is a duplicate,

Performance of near-duplicate detection algorithms for Crawljax page 46 of 68

using a threshold-value.
Finally, to visualize some of the magic going on in the duplicate-detection-package, the

so-called threshold-slider is included in the final product. As explained in the implementation-
section, with this slider the user can view the state-flow graph under different threshold-
values.

This functionality does not target inexperienced users who are unfamiliar with the con-
cept of near-duplicate detection. For those users sensible defaults have been implemented.
However, for the experienced users this functionality offers better duplicate-detection and
more customization possibilities, which in the end increases the added value of Crawljax.

Based on the results from the calibration tool, we could say that it is possible to limit
the number of states that needs to be crawled to get an exhaustive crawl by using a near-
duplicate detection algorithm. When correct parameter will be used, it is possible to find
all states on a web application, while regarding all duplicate states.

14 Future work

Although the deliverables of this project provide a strong basis for near-duplicate detection
algorithms, there are still a lot of features that could potentially enhance the duplicate-
detection.

14.1 Feature based on outgoing links

Different feature types can be used in the future. Looking at the outgoing links to decide
if a state is a duplicate state can be a nice idea, because in that case you are sure that
the outgoing links of that states are already visited if the state is marked as duplicate.
With the textual near-duplicate detection it can be possible that two states have the same
content but the first state has less outgoing links than the second state. This results is
not crawling the links that are in the second state but not in the first state, because the
second state will be marked as duplicate so its candidate clickables will not be crawled.

14.2 Genetic Algorithm for the calibration tool

Using a genetic algorithm to find the optimal default values for the parameters of the
near-duplicate detection algorithm can result in better results, easier testing for optimal
values and less time spend for finding optimal values.

References

[1] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29(8):1157–1166, 1997.

Performance of near-duplicate detection algorithms for Crawljax page 47 of 68

[2] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388. ACM, 2002.

[3] Junghoo Cho and Hector Garcia-Molina. The evolution of the web and implications
for an incremental crawler. 1999.

[4] Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of al-
gorithms. In Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 284–291. ACM, 2006.

[5] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates
for web crawling. In Proceedings of the 16th international conference on World Wide
Web, pages 141–150. ACM, 2007.

[6] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling ajax by inferring user
interface state changes. In Web Engineering, 2008. ICWE’08. Eighth International
Conference on, pages 122–134. IEEE, 2008.

[7] Ali Mesbah and Arie Van Deursen. Invariant-based automatic testing of ajax user
interfaces. In Proceedings of the 31st International Conference on Software Engineering,
pages 210–220. IEEE Computer Society, 2009.

[8] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling ajax-based web appli-
cations through dynamic analysis of user interface state changes. ACM Transactions
on the Web (TWEB), 6(1):3, 2012.

Appendix A:

Survey of duplicate-detection algorithms for

Crawljax

Erwin van Eyk Wilco van Leeuwen

Delft University of Technology
{E.D.C.vanEyk, W.J.vanLeeuwen}@student.tudelft.nl

April 2014

Abstract

On the web near-duplicate documents are abundant. As many as 40%
of the pages on the Web are near-duplicates of other pages, according to
Manning et al. [10]. A web crawler should be able to recognize and deal
with near-duplicate web pages.
In this survey we will first explore the most prominent duplicate-detection
algorithms, which could be viable implementations in Crawljax. The
most prominent algorithms which could provide a solution are Charikar’s
Simhash algorithm [4] and Broder’s shingling algorithm [3]. Secondly, we
will identify the requirements for implementing the duplication-detection
algorithms. Additionally, requirements will be established for a testing
platform to be able to objectively benchmark the various duplication-
detection algorithm implementations.

Keywords: fingerprinting, Crawljax, near-duplicate, document simi-
larity, hashing, features

1 Introduction

Web crawlers attempt to find all the states of a provided domain, which can
be a single website up to the entire Internet. There are several motives to run
a web crawler. Google indexes the web to make it easy for people to find rel-
evant websites on the entire web [2]. The Internet Archive1 attempts to save
all information on the web to make it accessible to everyone, even when the
content on the original site has be removed or lost. Because of the extremely
large size of the entire web, currently estimated to contain 3.1 billion static web

1http://crawler.archive.org/index.html

1

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 2 of 13

pages2, efficient algorithms are needed for web crawlers. A lot of these web
pages or documents can be duplicates of near-duplicates of each other. These
duplicate and near-duplicate web pages create problems for web search engines:
They increase the space needed to store the index, slowing down the crawlers
and increasing the cost of serving results, and annoy the users [7]. It is possible
that the advertisement on a state changes, with the result that the state will be
seen as a new state while all the rest is the same. Another example is a counter
on a page that keeps track of the number of visits to that state. The counter is
different every time the crawler visit that state, so the crawler will continuously
see the state as a new state. Eventually the crawler will not finish crawling,
because it can finds an infinite number of ’new’ states.

Crawljax3 is a specific type of web crawler. Originally developed by Mesbah
et al. [11], it is a unique open-source web crawler with the purpose of automati-
cally testing websites for errors, inconsistencies and broken links. An important
feature of this crawler is the fact that it can deal with Javascript to search for
hidden links in the so-called hidden web [16]. Crawljax initially shipped with
a very basic duplicate-detection algorithm [11]. The algorithm compares the
complete DOM of one state to other states using Levenshtein method. This
basically comprises a string comparison. The number of different characters is
compared to a threshold. If the difference between the two states is smaller than
the threshold, the two states are considered to be equal. This algorithm fails
to recognize a chunk of the near-duplicate states. Additionally, this method is
quite expensive in terms of computation, because it compares each state with
each other state for each character of the whole DOM. The DOM can be very
great for large and complex states.

Currently, Crawljax makes use of string comparison on a normalized DOM.
The normalized DOM contains only the HTML-attributes of the DOM. This
is already much less expensive in terms of computation, but still is unable to
detect most near-duplicate states.

Implementing a more efficient way of detecting near-duplicates can result
in a better performance. In section 2 we will first discuss what a crawler is,
than explain the difference between Crawljax and other crawlers in section 3.
In section 5 the problem of duplicates will explained for web crawlers and in
section 6 some techniques are proposed tackle this problem with. Finally in the
last sections we will list the requirements and details of the implementation of
both the algorithm and the related testing environment.

2 What is a crawler

In order to understand the implications of the different fingerprinting algo-
rithms in Crawljax, it is useful to have a clear definition and understanding

2http://www.worldwidewebsize.com/
3http://www.crawljax.com

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 3 of 13

of the functionality of a regular web crawler. A web crawler, also known as a
(web) spider, searches the web for hypertext links, typically for the purpose of
web indexing [2]. There are numerous implementations of web crawlers. Some
of the better known crawlers are Googlebot4, Mercator [8], Bingbot5 and Ubi-
Crawler [1].

2.1 Purposes of crawlers

The most well known use of web crawlers has always been indexing. Brin and
Page [2] had ideas to use the index to make an effective search engine to make
it easy for people to find useful document on the web. The first idea was to
give every page a certain rank, whereby a higher rank would represent a more
useful result. Another idea was to use anchor text in the index to refer to the
page the link points to, in stead of the page where the link is on. This is useful,
because (1) anchors often provide more accurate descriptions of web pages than
the pages themselves and (2) anchors may exist for documents which cannot be
indexed by a text-based search engine. With these ideas, Brin and Page started
the search engine, Google, which eventually became the most popular search
engine in the world.

Another common use of crawlers is to use them to test a website. It allows
developers to automatically test their website as a black box. Crawlers build for
this purpose, like Crawljax, will exhaustively crawl a website and documenting
any errors, broken-links and inconsistencies found on the web pages.

2.2 Basic structure and components of a crawler

A crawler needs a list of seed URLs as its input in order to start crawling. It
will remove an URL from the list, called the URL frontier, and determine the
IP address of the host’s name by a domain name system (DNS) look-up. Once
the IP address is known, a connection with the server can be made and the
corresponding document is downloaded. The crawler will search the document
for links and add each link to the URL frontier if it is not encountered before.
This is shown in algorithm 1.

The functions in this algorithm are the basic components of a crawler. URLs
can be represented as a FIFO queue, where URLs.removeElement() always re-
moves and returns the first element in the list and URLs.addElement(URL)
adds the URL add the end of the URLs list. The common name of the list of
URLs is URL frontier. Another list, called visited, keeps track of all URLs that
are visited to avoid infinite loops. The notContains procedure will check if the
list, visited, does not contain a certain link, so the link is not seen before. This
component is often called URL-seen test.

4https://support.google.com/webmasters/answer/182072
5http://www.bing.com/webmaster/help/fetch-as-bingbot-fe18fa0d

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 4 of 13

Algorithm 1 Basic crawler

Input: List l of URLs
Input ← l
URLs ← l
visited ← ∅
while URLs 6= ∅ do

URL ← URLs.removeElement()
adress ← getIPadress(URL)
content ← download(adress)
for all links in content do
if visited.notContains(link) then

URL ← getAbsoluteURL(link)
URLs.addElement(URL)

end if
end for

end while

In this way, a crawler will only find pages that are reachable by hyper-
text links. In the next section we will look at Crawljax which also finds new
pages/states that are only reachable by inspecting Javascript functions.

3 Difference between Crawljax and other crawlers

The most well-known search engines only index the pages that are reachable
by hypertext links with a unique URL and ignoring search forms, pages that
require authorization or prior registration [16] and client-side scripting [12].
This is called the publicly indexable web. As mentioned in the introduction,
the web content behind forms and client-side scripting is referred to the hidden
Web. Crawljax differ from the well-known search engines, because it can de-
tect dynamic contents of AJAX-based Web applications automatically without
requiring specific URLs for each Web state [12].

Nederlof et al. [13] used Crawljax also for a testing purpose by applying the
W3C validator to the structure of every DOM/HTML state. In this way, all
states, even states in the hidden web can be tested for errors and warnings in
the HTML code.

4 Problem Analysis

Crawlers have to crawl a lot of states to complete crawls of big websites. Such
a website can contain a massive amount of different states. So it is important
for a crawler to detect duplicate states if the state is crawled before, that it
not crawl unnecessary states. Duplicate states occur because (1) many states
have links that refer to the same content and (2) many different states have the

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 5 of 13

same content. When a crawler does not take care of these problems, it will end
up crawling a lot of unnecessary web states and showing a lot of unnecessary
states in the result of a crawl. To avoid crawling an already visited state, a
list will be retained with visited URLs. This can solve the first problem where
many pages refer to the same URL, if the URL are different for each different
state. This is true for the static web. But with AJAX it is possible that two
completely different states have the same URL. The second problem, where the
same content is on different URLs, emphasizes the previous problem. Namely
that even without the use of AJAX, duplicates can occur, that cannot be solved
by simply crawling all different URLs. Different URLs can also contain duplicate
states. To detect these duplicates, the document should be downloaded before
the content can be used for a test to check on duplicates. The state will be
seen as a duplicate if the content is already been found earlier. The comparison
of the content of two pages is hard, because the content is mostly not exactly
equal. Two documents can be identical in terms of content but differ in a small
portion of the document such as advertisements, counters and timestamps [9].

4.1 Many pages refer to the same content/page

Crawlers must detect whether a link has already been visited. Mercator [8]
uses a URL set containing all the URLs seen. Before some URL is added a
URL-seen test is performed. To make this scalable, it should be time and space
efficient. To save space, the URL is saved as a fixed-sized checksum and to save
time, Mercator keeps an in-memory cache of popular URLs and recently added
URLs. But several different URLs can point to the same location, so it can be
efficient to compare the IP addresses instead of the URLs. This will cause a
bottleneck for the DNS lookup, because every URL must be mapped to its IP
address. Heydon and Najorkmade [8] made a multi-threaded DNS resolver that
can made multiple requests in parallel which solves this bottleneck. All this
looks promesing for the static web, where every different URL or IP points to a
new state. But with the technology called AJAX, this is not the case anymore.
States found with an URL that is already present in the URL set should also
be checked to see if the content different of the previous found states.

4.2 Same content on different pages

A lot of pages on the web contain the same information. There are many causes
for the existence of near-duplicate data. For example typographical errors, ver-
sioned, mirrored, or plagiarized documents, multiple representations of the same
physical object, spam emails generated from the same template, etc [17]. De-
tecting this similar content will result in ignoring the page, which saves network
bandwidth, reduces storage costs and improves the quality of search indexes [9].

Mercator [8] uses a content-seen test to decide if a document had already
been processed. It would be to expensive to save the whole content of every
downloaded document, so it uses a document fingerprint set, that stores a 64-bit

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 6 of 13

checksum of the contents of each downloaded document. Munku et al. [9] pro-
posed to use simhash [4] to represent the page as a bit-string fingerprint and use
hamming distances of the fingerprints to measure the similarity between pages.
Similar documents will be hashed to similar hases, which makes it possible to
compare the content of the document with the content of other document on
the web.

5 Problem definition

In this paper we will focus on the problem of finding near-duplicate web pages.
As mentioned in the introduction, the current state of detecting duplicate states
by Crawljax is suboptimal. Due to the lack of effective duplicate-detection, this
could lead to the state explosion problem6. There are several algorithms, which
could improve the duplicate-detection, which we will describe in the next section.

6 Duplicate detection algorithms

To improve the performance of Crawljax, it is necessary to know that the con-
tents of a web page have already been crawled. If a page is a near-duplicate of
another crawled web page, it is likely that the candidate clickables on that page
have already been crawled. If Crawljax detects a near-duplicate, it can ignore
the web-page and the related clickables. Another advantage of near-duplicate
detection is that two near-duplicate states will not both appear in the result-
ing state diagram of Crawljax. So near-duplicate detection can make Crawljax
performance better, as long as the algorithm is efficient.

Duplicate detection can start from the moment that a crawler receives the
HTML-code from a web page. All the unnecessary content of the HTML-code
will be deleted, for example all HTML-tags and formatting instructions. This
will results is a very large string of alphanumeric characters. In order to handle
this large data, it will be split up in features. This separate can be done in
several ways. We will explain some of these in section 6.1. Charikar [4] and
Broder [7] found efficient ways to represent these features as relatively small bit
string that can be used to find near-duplicates, which we will explain in section
6.2 and section 6.3.

6.1 Feature-selection

An important aspect of all near-duplicate-detection algorithms is the selection
and weight-assignment of features. Features are low dimensional mappings of
high dimensional properties of the document/state. In the rest of this section
the general types of features are discussed.

6http://en.wikipedia.org/wiki/Model checking

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 7 of 13

Shingles

Nearly every established duplication-detection algorithm, including Broder et
al. [3] and Charikar [4], explain their algorithms using words. They use a set
of unique w-shingles to split the text of a document into features. A shingle
is a subsequence, which can contain for example a fixed number of characters,
words or sentences.

Traditional IR techniques

On contrast with the use of shingles there is also the generation of features using
regular Database Management System (IR) techniques. The idea is to compute
”document-vector” of the document by case-folding, stop-word removal, stem-
ming, computing term-frequencies and finally weighing each term by its inverse
document frequency (IDF) [9].

Connectivity information

Besides actual content of the page, the paper by Dean et al. [5] suggest using
connectivity information as additional features. These features would require
the crawler to basically compute a feature from all links from the page. This
method is based on the idea that (near-)duplicate pages probably also have the
same outgoing links.

Anchor text and anchor window

Similar to the features based on connectivity information, Haveliwala et al. [6]
suggests using anchor text and anchor windows as features. In this context an
anchor-window is the neighbouring content of a hypertext-link. The idea behind
this approach is that similar pages have the same descriptions for links.

Document meta-data

Finally there is the meta-data of a web page. Attributes, such as the language-
type, encoding and description, are often also similar for duplicate pages as
Manku et al. [9] suggest. Combined with features mentioned in this section,
these attributes could improve the duplicate-detection.

Other forms of meta-data

Besides the regular meta-data from the document, it also possible to use the
meta-data about the web page from other sources. Attributes about the web
page taken from other or derived sources could be used as features. These could
include, Search Engine Ranking or screenshots of the web page.

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 8 of 13

6.2 Charikar’s Simhash algorithm

Currently Charikar’s Simhash algorithm is one of the most popular near-duplicate
detection algorithms [7]. The simhash algorithm [4] is a dimensionality reduc-
tion technique. It maps high-dimensional vectors to small-sized fingerprints [9].
Afterwards these fingerprints can be compared using the Hamming distance. A
small Hamming distance indicates more similarity between two documents. In
algorithm 2 we show the basic steps for the implementation of Simhash.

Algorithm 2 Charikar’s Simhash algorithm

define a constant b
define a vector V of size b
retrieve a set of features (e.g. word shingles) from the document
hash each feature using a b-bit hashing function
for each hash h do

for bit i in h do
if bit[i] of h is set then

add 1 to V[i]
else

subtract 1 from V[i]
end if

end for
end for
for each bit in V do

if V[i] > 0 then
V[i] ← 1

else
V[i] ← 0

end if
end for

An advantage of this algorithm is that the results, very small hashes, are
easy and cheaply to compare to each other. Thus, for large datasets, which are
often the case with crawlers, this method would result in less space reserved
for fingerprints and faster similarity-comparisons between pages, according to
Manku et al. [9] Besides the well-known Charikar’s Simhash algorithm, there
are also some closely related algorithms. These include I-Match and SpotSigs.
On the other hand, the excellent comparison by Henzinger [7] showed that the
effectability of simhash is suboptimal. Although simhash outperforms Broder’s
shingling algorithm overall, the shingling algorithm has a higher fraction of the
duplicates found on the same site than simhash. As Crawljax mainly focusses
on one website at a time, this would require some tweaking of the simhash al-
gorithm to be as effective as the shingling algorithm.

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 9 of 13

6.3 Broder’s shingling algorithm

As mentioned in section 6.2, Broder’s algorithm has a higher fraction of the du-
plicates found on the same site than simhash. Henzinger [7] evaluated Broder’s
algorithm on 1.6B distinct web pages. She showed that 92% of near-duplicate
pairs found by the algorithm of Broder belong to the same site. Simhash found
only 74% of its near-duplicates on the same site. This makes the algorithm
of Broder very attractive for Crawljax, because Crawljax is only interested in
duplicates on the same site.

The algorithm of Broder uses w-shingles to divide the document into a set of
continuous sequences of w words [3]. All the sequences in the set are hashed with
Rabin’s fingerprinting method. This set of hashed features is used to compare
the resemblance of two documents by calculating the ratio of the intersection
divided by the union of the elements of the sets. This ratio is called the Jaccard

coëfficient: |S(d)∩S(c)|
|S(d)∪S(c)| , where d and c are documents, S(d) and S(c) are the the

sets of hashed features and |S(d)| is the number of elements in the set S(d). By
using a threshold t ∈ (0, 1), we can say that two pages are near-duplicates of
each other when the ratio is higher that t.

To make this algorithm faster, Border et al. [3] described super shingles,
which are computes by sorting the shingles and than shingling the shingels.
When two document have one super shingle in common, so the documents have
a sequence of shingles in common, then it is likely that the two documents are
near-duplicates. Near-duplicate detection consist now only of finding a single
super shingle that the documents have in common. This extra efficiency come
to a cost. Short documents, which already have a few shingles, will only per-
form worse with super shingles, because a super shingle represent a sequence of
shingles. The probability of a common shingles will be low in this case, which
can lead to a lot of false negatives for short documents.

6.4 Locality Sensitive Hashing using bins

Another (although proprietary) method by Pugh and Henzinger [15] for finding
near-duplicate documents, uses a method already widely used in the generation
of checksums. The idea is that the words are splitted, and perhaps other fea-
tures, into tokens. Afterwards the tokens are divided over k buckets (similair to
md5). For each bucket a checksum is computed. The set of checksums or hashes
of two apparently similar documents should agree for most of the buckets [9].
(e.g. by defining a threshold)

7 Testing environment

In order to have an objective comparison of the performance of the possible
algorithms mentioned in section 6 there is a need for a testing environment.

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 10 of 13

There are several requirements to keep in mind when considering a testing en-
vironment.

1. The testing environment should be able to configure and run Crawljax.

2. The environment should have functionality to distribute the crawls or have
other similar functionality to finish a test in a reasonable time span.

3. The database used by the environment should be able to deal with large
amounts of data.

4. The environment should capture the DOM structures, besides all the reg-
ular results (e.g. states, edges, screenshots) of Crawljax.

5. The environment should collect the results in a centralized location, such
as a database and/or server.

After doing a survey of available testing environments, which would fulfil the
mentioned requirements above, we concluded that there is no testing environ-
ment available yet that meets the requirements. The crawling setup/environment
mentioned in the paper of Nederlof et al. [13] is the most viable alternative.
However, the software is specifically targeted at the goals of the relevant paper.
It would require time to master and significant refactoring to make it comply
to the requirements.
Therefore, the best option in our opinion is to build a new testing environ-
ment. The advantage of this option is that the entire testing environment can
be custom tailored to the requirements, resulting in a lightweight application
without any unnecessary functionality. The costs to build this small testing
environment, would be more or less equal to refactoring the alternative option.

8 Implementation considerations

Knowing the requirements and the conceptual outline of the software, it is also
important to consider the various choices that have to be made for the imple-
mentation. These aspects, such the choice of programming language, platform
and additional components, should be carefully reviewed to ensure the optimal
approach. In the following subsections we will discuss the possible trade-offs
that need to be made in the fingerprinting algorithm and the testing environ-
ment.

8.1 Duplicate-detection algorithm

As there has not been much research on the effectiveness of the different duplicate-
detection algorithms, it will require some explorative testing of the different
algorithms to find the optimal one. We will begin with implementing simhash,
as it was used successfully by the AJAX-enabled crawler of Peng et al. [14]
For the implementation of the duplicate-detection algorithm, there are only mi-
nor considerations possible. What is certain is that our implementation of the

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 11 of 13

algorithm will be implemented in or extending the Crawljax-platform Due to
the nature of the internals of the Crawljax-core, the algorithm will also be im-
plemented using Java.
Any components on which the algorithm depends will be managed using Maven7,
which is already used by Crawljax.
Lastly, a component will be needed to store and retrieve the fingerprints during
a crawl-session. Crawljax is meant to crawl a single website at a time. Therefore
only the fingerprints of the pages of the website currently being crawled need
to be stored. The fingerprints are expected to be small enough to keep them
in the memory. Otherwise, if the memory usage becomes an issue, a tempo-
rary lightweight database will be needed, for which the lightweight Database
Management Systems (DBMSs) SQLite8, Java DB (Derby)9 or H210 would be
excellent options, because these DBMSs do not require any servers or additional
setup and are completely embedded in the application.

8.2 Testing Environment

The implementation of the testing environment as mentioned in section 7 pro-
vides, in contrast to the fingerprinting algorithm, more freedom in terms of the
choice of platform, components and programming language.
However, in this case writing the software in Java is the best option. Crawljax
and the custom plugins, that also need to be written, are already written in
Java. Moreover, by using Maven in the testing environment, the management
of the dependencies by both Crawljax and the relevant plugins are easier to
manage. Additionally, useful features from the crawling environment by Ned-
erlof et al. [13], also written in Java, can be reused.

Finally there is a choice to be made in terms of the database. The database
does not need very advanced functionality, it mostly just needs to be capable of
holding large datasets, including the screenshots.
The first decision that has to be made is whether a relational SQL database or
a so called noSQL database will be used. The major advantage of noSQL over
traditional databases is that it is fast and highly scalable.
Although noSQL has some theoretical performance advantages over relational
SQL, we chose to use a relational database, due to our knowledge of SQL and
the limited scope/timespan of our project. Therefore, we consider a noSQL
database a nice-to-have feature.
When considering free relational databases, a choice has to be made between
the two major DBMSs MySQL11 and PostGreSQL 12. Benchmarks13 show that
on large datasets PostGreSQL currently nearly always outperforms MySQL on

7http://maven.apache.org/
8http://www.sqlite.org/
9http://www.oracle.com/technetwork/java/javadb/

10http://www.h2database.com/
11http://www.mysql.com/
12http://www.postgresql.org/
13http://www.randombugs.com/linux/mysql-postgresql-benchmarks.html

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 12 of 13

large datasets. On the software-side, both DBMSs don’t differ significantly. In
the Java-environment for both DBMSs drivers are available. Thus, the testing
environment will use a PostGreSQL DBMS.

9 Conclusion

Although there has not been much research on the implementation of duplication-
detection algorithms in AJAX-enabled crawlers, there are a few well established
algorithms used in static crawlers. Two of these currently most-used algorithms
are Charkard’s Simhash and Broder’s shingling algorithm. Both algorithms are
highly configurable in terms of the selection of features, which makes them excel-
lent candidates to implement in the duplication-detection component of Crawl-
jax. Therefore, we plan program and test implementations these algorithms
in Crawljax. Because the algorithms’ performance depends on the selection of
features and weights given to features, each of the algorithms will have to be
tested multiple times. Using this research, we hope to provide Crawljax with an
efficient algorithm, which enhances the ability of Crawljax to detect and handle
(near-)duplicate states.

References

[1] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.
Ubicrawler: A scalable fully distributed web crawler. Software: Practice
and Experience, 34(8):711–726, 2004.

[2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems, 30(1):107–117,
1998.

[3] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey
Zweig. Syntactic clustering of the web. Computer Networks and ISDN
Systems, 29(8):1157–1166, 1997.

[4] Moses S Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on The-
ory of computing, pages 380–388. ACM, 2002.

[5] Jeffrey Dean and Monika R Henzinger. Finding related pages in the world
wide web. Computer networks, 31(11):1467–1479, 1999.

[6] Taher H Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk. Evalu-
ating strategies for similarity search on the web. In Proceedings of the 11th
international conference on World Wide Web, pages 432–442. ACM, 2002.

[7] Monika Henzinger. Finding near-duplicate web pages: a large-scale evalu-
ation of algorithms. In Proceedings of the 29th annual international ACM

Appendix A:
Survey of duplicate-detection algorithms for Crawljax page 13 of 13

SIGIR conference on Research and development in information retrieval,
pages 284–291. ACM, 2006.

[8] Allan Heydon and Marc Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, 2(4):219–229, 1999.

[9] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting
near-duplicates for web crawling. In Proceedings of the 16th international
conference on World Wide Web, pages 141–150. ACM, 2007.

[10] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to information retrieval, volume 1. Cambridge university press
Cambridge, 2008.

[11] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling ajax by in-
ferring user interface state changes. In Web Engineering, 2008. ICWE’08.
Eighth International Conference on, pages 122–134. IEEE, 2008.

[12] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-based
web applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web (TWEB), 6(1):3:1–3:30, 2012.

[13] Alex Nederlof, Ali Mesbah, and Arie van Deursen. Software engineering
for the web: The state of the practice. 2014.

[14] Zhaomeng Peng, Nengqiang He, Chunxiao Jiang, Zhihua Li, Lei Xu, Yipeng
Li, and Yong Ren. Graph-based ajax crawl: Mining data from rich internet
applications. In Computer Science and Electronics Engineering (ICCSEE),
2012 International Conference on, volume 3, pages 590–594. IEEE, 2012.

[15] William Pugh and Monika H Henzinger. Detecting duplicate and near-
duplicate files, December 2 2003. US Patent 6,658,423.

[16] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web.
2000.

[17] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang.
Efficient similarity joins for near-duplicate detection. ACM Transactions
on Database Systems (TODS), 36(3):15, 2011.

Appendix B:

Plan of action

Erwin van Eyk Wilco van Leeuwen

Delft University of Technology
{E.D.C.vanEyk, W.J.vanLeeuwen}@student.tudelft.nl

May 2014

1 Preface

Crawljax is a JavaScript-enabled web crawler that can find all states of a web page, even if they
are hidden by JavaScript actions instead of via regular links. However, this leads to a gigantic
number of states with many duplicates. In this document we will explain how we will approach
this problem and what agreements we have made with the client.

2 Summary

During this project the team will attempt to improve the detection of (near-)duplicate states in
the open-source project Crawljax. The first objective is to construct a stable testing environment
to easily and objectively benchmark the detection of duplicate states with a specific configuration.
Secondly, our objective is to find and design a configuration or algorithm which provides optimal
detection of duplicate states.
The client will provide us with feedback during the weekly or semi-weekly meetings on our progress.
Additionally, the client will provide us with feedback online when we pull request the code to the
main repository.

3 Introduction

There is not a optimal solution to detect near-duplicate states in terms of the content in the
current version of Crawljax. This has two big disadvantages, 1) The crawloverview has way to
much states, which makes the result of crawljax of less use and difficult to analyse with the human
eye and 2) Crawljax needs to do more work than necessary, because it crawls a single state more
times in stead of just noticing that this states is already been processed.

3.1 Agreement and Adjustment

During the first meeting with Alex and Arie, we discussed and agreed upon the aspects in this
document. An additional email with an overview of the discussed aspects was send. This document
has been composed using the verbal and non-verbal agreements.

3.2 Structure

In this document we will first elaborate the project assignment. Identifying the current situation,
goal, deliverables and the associated constraints. Secondly, we will explain the agreed upon plan-

1

ning. After that, the project organization will be explained. Finally, the mechanisms concerning
quality control will be identified.

4 Project Assigment

In this section we make more clear what the project consist of by explaining the basic concept of
the project, agreements we made with our client, Alex, and the current status of the project we
are going to work on.

4.1 Project Environment

Crawljax is a JavaScript-enabled web crawler that can find all states of a web page, even if they are
hidden by JavaScript actions instead of via regular links. However, this leads to a gigantic number
of states with many duplicates. This makes it necessary to use a proper duplicate detection to
prevent Crawljax to crawl already crawled states. Currently, crawljax has a duplicate detection
which use string comparison of a normalized DOM. 1 But the problem with this method is that
minor or irrelevant changes can not be detected as duplicate states. We define irrelevant changes
as changes that do not change the informative content of the state, what for the user is visiting
the site. Irrelevant changes can be, for example, timestamp, advertisement or counter changes.
Because of this changes, the duplicate detection will be called near-duplicate detection.

4.2 Project Goal

With a proper near-duplicate detection, it is possible for Crawljax to end up with a result of
all states that contains different relevant content for the visitors, of the site that is crawled by
Crawljax.

4.3 Project description

The duplicate detection of Crawljax can be improved significantly by implementing a fingerprinting
algorithm used by many other crawlers. The project will consist of the following phases:

• Research several fingerprinting mechanisms used by other crawlers.

• Set-up a test environment for Crawljax the measures the number of (duplicate) states.

• Implement the new fingerprinting algorithm.

• Verify that it improves Crawljax’s performance.

4.4 Deliverables

We will implement near-duplicate detection algorithms in Crawljax and prove by empirical exper-
iments that this improves the performance of Crawljax.

4.5 Requirements and constraints

Programming will be done in Java. And the near-duplicate detection algorithm should be pro-
grammed with the same level of quality as the current implementation of Crawljax. We also have
to work autonomously, but have every week a short meeting with Alex, the client.

1http://bepsys.herokuapp.com/projects/view/17

2

5 Problem Approach and Planning

The phases will be divided according to section 4.3.

Phase I
Research on basic crawlers, Crawljax and fingerprinting mechanisms and document the findings.

Phase II
Construction of a testing environment to compare the performance of Crawljax before and after
the near-duplicate detection we will implement in Crawljax.

Phase III
Iteratively follow the next steps:

• Design/find a new fingerprinting algorithm

• Implementation of the fingerprinting algoritm

• Test the new version of Crawljax empirically

• Document the results of the test.

6 Project Organization

In this section we will discuss the constraints regarding the communication and other non-software
aspects of the project. Due to the nature of the project and the organization behind Crawljax
most of the aspects discussed will be similar to any other open-source project.

6.1 Organization

Due to the flexible and remote nature of the project, the team-members are both responsible for
all types of tasks, including organizing, designing, implementing and communicating the progress
with all parties.

6.2 Team

Both team-members are expected to be active on this project at least 40 hours per week. Besides
unforeseen events, the team-members will be work on the project for at least 8 hours on the usual
workdays. Additionally the members will be able to work during weekends and/or evenings if this
is necessary because of deadlines.
Extensive knowledge of Java and complementary libaries and tools, such as Maven and Git, is a
requirement. Additionally the client also likes to see knowledge about various high-level software
concepts and the ability to work with large open-source software projects.

6.3 Administrative Procedures

The progress can be tracked by anyone looking into the open-source repositories used for this
project. 2 3 Branches and pull requests will be used to clarify the nature of specific progress. The
team will also update any interested parties by mail.

2https://github.com/erwinvaneyk/crawljax
3https://github.com/erwinvaneyk/crawljax-functional-testing-suite

3

6.4 Financing

No financing is needed, because for the open-source project only free open-source libraries will
be used. Any (database-)servers needed will be self-hosted or hosted using free services. The
team-members will use their own equipment or equipment provided to them free of charge.

6.5 Reporting

Every week the team will update all concerned parties with a progress report by email. This email
will contain a brief overview of what progress has been made, what issues where encountered and
what will be planning of next week.
Alongside the email, the team will meet up with Alex to discuss the progress and issues in more
detail. These meetings will be scheduled every one or two weeks, depending on the schedule of
Alex.

6.6 Resources

The nature of this project is flexible and remote. Therefore the team will find their own workplaces.
Additionally, the team-members will use their own equipment (computer, software ect.) and any
equipment available at the TU Delft. If deemed necessary, Alex could provide a dedicated server
for testing purposes.

7 Quality Control

The contact of the organization, Alex, will have the main responsiblity of quality control. Alex will
comment on our code, online and/or during the meetings. He will also provide us with feedback
and additional tips and tricks to improve the code. Furthermore, the guiding principle here for
the quality of the code is that it has to have the same quality as the existing codebase.
To prevent any decrease in quality of the original codebase, the team will use git. During the
project the team will code in a separate repository. When there is a supposedly finished product,
a pull request will be issued to the main Crawljax-repository. Using this approach any concerned
parties of Crawljax can review and comment on the code, thus ensuring the code quality. Addi-
tionally all code in a pull request has to be tested.

4

Appendix C:

Project description

1 Project description

Crawljax is a JavaScript-enabled web crawler invented at the TU-Delft and now maintained by
the TU-Delft and the University of British Colombia. This crawler can find all states of a web
page, even if they are hidden by JavaScript actions instead of via regular links. However, this leads
to a gigantic number of states with many duplicates. To compare the states, we currently use
string comparison of a normalized DOM. This could be improved significantly by implementing
a fingerprinting algorithm used by many other crawlers. The project will consist of the following
phases: - Research several fingerprinting mechanisms used by other crawlers. - Set-up a test
environment for Crawljax the measures the number of (duplicate) states. - Implement the new
fingerprinting algorithm. - Verify that it improves Crawljax’s performance. You will learn: how
crawlers really work, applying scientific methods, empirical analysis, working on a Open Source
project.

2 Company description

Crawljax is an Open Source project that is maintained by TU-Delft and the University of British
Colombia. Several big companies are backing the development including Intel, Fujitsu, SAP and
Google. If you don’t want to just implement some functionality for a company, but really want
to do something challenging from both a development and intellectual perspective, this is your
chance. Because the project is Open Source, this also looks great on you resume since all job
seekers check your open source activity these days.

3 Auxiliary information

Programming will be done in Java. Requires knowledge of web applications. Only apply if you are
unafraid of complicated problems, can work autonomously, and want to kick-ass. Read more about
fingerprinting in this example paper: http://www.wwwconference.org/www2007/papers/paper215.pdf
Project will be mentored by prof. Arie van Deursen and ir. Alex Nederlof, the CTO of Magnet.me
and lead developer of the Crawljax project.

1

Appendix D:

Blogpost

1 States receive fingerprints!

Tired spending most of the time crawling near-duplicate states? The solution has been added to
the new release of Crawljax!

Up until now Crawljax had rather limited functionality for detecting duplicate states. This
algorithm depends on a strict comparison between stripped DOMs. Only states with completely
the same stripped DOM were considered to be duplicates. This caused the stateflow-graph to have
lots of useless states that were near-duplicates.

In this release a solution will be provided for this problem, by allowing users to configure their
own near-duplicate detection for Crawljax. Each state will have a fingerprint which represents the
most essential parts of that state. This fingerprint will be used to identify a new found state as a
unique one or as a near-duplicate of an already found state.

The near-duplicate detection system can be described as follows. Starting with the raw DOM,
it will be converted to a stripped DOM using the existing DOM strippers. The strippers can
be viewed as determining what parts of the content should be represented in the fingerprint.
Afterwards, the stripped DOM is turned into small features. These features essentially describe
how the content can be turned into fixed-length hashes. Finally the features are turned into one
small-sized fingerprint. With the simple fingerprint-API it is very intuitive to compare fingerprints
with each other.

Figure 1: Generate fingerprint of a state

To check out this awesome new functionality either run the DuplicateDetectionExample in the
examples. Or use the CLI to check it out by running the following command. java –jar crawljax-
core.4.0.jar http://demo.crawljax.com/ example/ –useBroder There are several additional options
available to tweak the functionality, which can be found in the documentation.

As a bonus, a so-called threshold-slider has been included along with the near-duplicate de-
tection functionality. This cool little feature is basically a visualization of all the near-duplicate
detection magic. By adjusting the slider the state-flow graph is shown under a different threshold.

Checkout some live examples of the slider here: http://erwinvaneyk.github.io/crawljax/.

1

Figure 2: The state-flow graph under a threshold of 0.25

Figure 3: The state-flow graph under a threshold of 0.8

2

Figure 4: The state-flow graph under a threshold of 0.85

3

	Preface/Foreword
	Summary
	Introduction
	Problem Definition
	Problem Analysis
	Requirements
	Global Requirements
	Functional Requirements
	Non-functional Requirements
	Calibration Tool Requirements

	Project Methodology
	Process Strategy
	Communication
	Planning
	Tools

	Design
	Duplicate detection
	Features
	Simhash/Crawlhash
	Broder's algorithm

	The testing environment
	CrawlManager Component
	Distributed component
	Analysis Component
	Annotation tool/website

	Threshold-slider in the crawloverview plugin
	Changing the threshold with a slider
	Slider algorithm
	Possible differences

	Implementation
	Duplicate detection
	Class diagram
	Hamming distance
	Jacquard-coefficient

	Crawljax Calibration Tool
	Implementation details
	External Dependencies

	Threshold-slider
	Dealing with getDistance
	Screenshots
	Algorithm of the Threshold-slider

	Code quality
	Feedback SIG
	Static Code Analysis
	Code coverage

	Results from the calibration tool
	Test-setup
	Results of Crawlhash
	Results of Broder
	Conclusion of the test-results

	Discussion and Recommendation
	Parameter values

	Conclusion
	Future work
	Feature based on outgoing links
	Genetic Algorithm for the calibration tool

