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Abstract
We unify and extend the semigroup and the PDE approaches to stochastic maximal
regularity of time-dependent semilinear parabolic problems with noise given by a
cylindrical Brownian motion. We treat random coefficients that are only progressively
measurable in the time variable. For 2m-th order systems with VMO regularity in
space, we obtain L p(Lq) estimates for all p > 2 and q ≥ 2, leading to optimal
space-time regularity results. For second order systems with continuous coefficients
in space, we also include a first order linear term, under a stochastic parabolicity
condition, and obtain L p(L p) estimates together with optimal space-time regularity.
For linear second order equations in divergence form with random coefficients that
are merely measurable in both space and time, we obtain estimates in the tent spaces
T p,2
σ of Coifman–Meyer–Stein. This is done in the deterministic case under no extra

assumption, and in the stochastic case under the assumption that the coefficients are
divergence free.
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1 Introduction

On X0 (typically X0 = Lr (O; C
N ) where r ∈ [2,∞)), we consider the following

stochastic evolution equation:

{
dU (t) + A(t)U (t)dt = F(t,U (t))dt + (

B(t)U (t) + G(t,U (t))
)
dWH (t),

U (0) = u0,
(1.1)

where H is a Hilbert space, WH a cylindrical Brownian motion, A : R+ × � →
L(X1, X0) (for some Banach space X1 such that X1 ↪→ X0, typically a Sobolev
space) and B : R+ × � → L(X1, γ (H , X 1

2
)) are progressively measurable (and

satisfy a suitable stochastic parabolic estimate), the functions F and G are suitable
nonlinearities, and the initial value u0 : � → X0 is F0-measurable (see Sect. 3 for
precise definitions). We are interested inmaximal L p-regularity results for (1.1). This
means that we want to investigate well-posedness together with sharp L p-regularity
estimates given the data F,G and u0.

Knowing these sharp regularity results for equations such as (1.1), gives a priori
estimates to nonlinear equations involving suitable nonlinearities F(t,U (t))dt and
G(t,U (t))dWH (t). Well-posedness of such non-linear equations follows easily from
these a priori estimates (see e.g. the proofs in [94]).

1.1 Deterministic maximal regularity

In deterministic parabolic PDE, maximal regularity is routinely used without identi-
fying it as a specific property. It is traditionally established by showing that the kernel
of the semigroup is a standard Calderón–Zygmund kernel as a function of space and
time (see e.g. [78] for a general theory and [64] for a quintessential example). As a
property of abstract evolution equations, maximal regularity also has a long history.
A turning point, that can be seen as the starting point for the methods used in this
paper, was reached in [116]. He obtained a characterisation of maximal regularity in
the time-independent case: the deterministic problem

U ′(t) + AU (t) = f (t).

Under the assumption that the underlying space X0 is UMD, he showed that A has
maximal L p-regularity if and only if A is R-sectorial.

In the time-dependent case, maximal regularity is far less understood. For abstract
evolution equations, it has been established under regularity assumptions in time: con-
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tinuity when D(A(t)) is constant (see [109] and the references therein), and Hölder
regularitywhen D(A(t))varies (see [106]). For concretePDEwith verygeneral bound-
ary conditions, it has been established under continuity assumptions on the coefficients
in [28] and this was extended to equations with VMO coefficients in time and space
in [31]. For equations with Dirichlet boundary conditions one can obtain maximal
regularity when the coefficients satisfy a VMO condition in space and are measurable
in time, see [32,33,72] and references therein.

In Sect. 4 we apply the results of [33] to obtain an L p(Lq)-theory for higher order
systems. In Sect. 5 we consider second order systems and we use a more classical
technique: we obtain an L p(Lq) in the space independent case first, then for p = q we
use standard localization arguments to reach the space dependent case under minimal
regularity assumptions in the spatial variable.

Treating fully rough coefficients (merely bounded and measurable in both space
and time) seems to be much more difficult, despite the fact that it was already under-
stood in L2(R+; L2(Rd)) in the 1950s. The form method developed by J.L. Lions
and his school allows one, in that case, to prove the following variant of maximal
regularity:

‖u‖W 1,2(I ;W−1,2(Rd )) + ‖u‖L2(I ;W 1,2(Rd )) ≤ C‖ f ‖L2(I ;W−1,2(Rd )).

In Sect. 6, we initiate the development of Lions’s maximal regularity theory in appro-
priate analogues of Lions’s energy space L2(I ;W 1,2(Rd)). These spaces are the tent
spaces T p,2 introduced in [22], and extensively used in harmonic analysis of PDEwith
rough coefficients (see e.g. [5,6,48] and the references therein). It was discovered in
[10] that Lions’s well posedness theory for time-dependent divergence form parabolic
problems with L∞(R+ × R

d) coefficients can be extended to tent spaces. Here we
start extending the corresponding maximal regularity, both in the deterministic and in
the stochastic setting.

For deterministic equations maximal L p-regularity can be used to obtain a local
existence theory for quasilinear PDEs of parabolic type (see [21,108,111]). Moreover,
it can sometimes be used to derive global existence for semilinear equations (see
[103,108]). In [65] maximal L p-regularity was used to study long time behavior of
solutions to quasilinear equations. In [112] it was used to study critical spaces of initial
values for which the quasilinear equation is well-posed.

At the moment it remains unclear which of the mentioned theories have a suit-
able version for stochastic evolution equations. In this paper we develop a maximal
L p-regularity theory for (1.1) which extends several of existing known theories. In
future works we plan to study consequence for concrete nonlinear SPDEs. In the next
subsection we explain some of the known results, and then compare them to what is
proved in the current paper.
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1.2 SPDEs of second order

For second order elliptic operators A on R
d in non-divergence form, this theory was

first developed by Krylov in a series of papers [66–69] and was surveyed in [70,71].
These works have been very influential. In particular they have led to e.g. [35,55–
58,60,61,63,74] where also the case of smooth domains has been considered, and
later to e.g. [18–20,59,81] where the case of non-smooth domains is investigated. In
the above mentioned results one uses L p-integrability in space, time and�. In [58,69]
p 	= q is allowed but only if q ≤ p.

The above mentioned papers mostly deal with second order operators of scalar
equations. In the deterministic setting higher order systems are considered as well
(see e.g. [32,33,41,42,72]). In the stochastic case some L p-theory for second order
systems has been developed in [62,90] and an L p(�; L2)-theory in [36], but in the
last mentioned paper the main contribution is a Cα-theory.

1.3 The role of the H∞-calculus assumptions

In [94–96] together with van Neerven and Weis, the second author has found another
approach to maximal L p-regularity of SPDEs, based on McIntosh’s H∞-calculus
and square function estimates (see e.g. [23,47,53,54,85]). This allows one to obtain
maximal L p-regularity for (1.1) for any sectorial operator A on Lq -spaces (q ≥ 2)
with a bounded H∞-calculus of angle< π/2. There is a vast literature with examples
of operators with a bounded H∞-calculus (see [52, Section 10.8] for a more complete
list):

• [29]: 2m-th order elliptic systems with general boundary conditions and smooth
coefficients

• [37]: second order elliptic equations with VMO coefficients.
• [38]: second order elliptic systems in divergence form on bounded Lipschitz
domains, with L∞ coefficients and mixed boundary conditions.

• [76]: Stokes operator on a Lipschitz domain
• [79]: Dirichlet Laplace operator on C2-domains with weights
• [86]: Hodge Laplacian and Stokes operator with Hodge boundary conditions on
very weakly Lipschitz domains

One advantage of the above approach is that it leads to an L p(�× (0, T ); Lq)-theory
for all p ∈ (2,∞) and q ∈ [2,∞) (where in case q = 2, the case p = 2 is included),
and gives optimal space-time regularity results such asU ∈ L p(�; H θ,p(0, T ; X1−θ ))

or even U ∈ L p(�;C([0, T ]; X1− 1
p ,p

)), where we used complex and real interpola-

tion space respectively. Such results seem unavailable in the approach of Sect. 1.2.

1.4 New results

Until now the approach based on functional calculus techniques was limited to equa-
tions where Awas independent of time and� (or continuous in time see [94]).Wewill
give a simple method to also treat the case where the coefficients of the differential

123



Stoch PDE: Anal Comp

operator A only depend on time and � in a progressive measurable way. The method
is inspired by [73, Lemma 5.1] and [62] where it is used to reduce to the case of second
order equations with constant coefficients.

Our paper extends and unifies the theories in [68] and [95] in several ways. More-
over, we introduce weights in time in order to be able to treat rough initial values. In
the deterministic setting weight in time have been used for this purpose in [110]. In
the stochastic case some result in this direction have been presented in [2], but not in a
maximal regularity setting. Furthermore, we initiate a Lions’s type stochastic maximal
regularity theory outside ofHilbert spaces, basedon the L2 theory (see [75,82,83,102]),
[10,114], and [9]. Our main abstract results can be found in Theorems 3.9 and 3.15
below. Our result in the Lions’s setting is Theorem 6.2.

Additionally we are able to give an abstract formulation of the stochastic parabol-
icity condition for A and B (see Sect. 3.5). It coincides with the classical one if A is
a scalar second order operator on R

d and B consists of first order operators.
In the applications of our abstract results we will only consider equations on the full

spaceR
d , but in principle other situations can be considered as well. However, in order

to include an operator B which satisfies an optimal abstract stochastic parabolicity
condition, we require certain special group generation structure.

The concrete SPDEs we consider are

• 2m-th order elliptic systems in non-divergence form with coefficients which are
only progressively measurable (see Theorem 4.5). The main novelties are that,
in space, the coefficients are assumed to be VMO, and we are able to give an
L p(Lq)-theory for all p ∈ (2,∞) and q ∈ [2,∞) (p = q = 2 is allowed as well).

• Second order elliptic systems in non-divergence form with coefficients which are
only progressivelymeasurable, with a diffusion coefficient that satisfies an optimal
stochastic parabolicity condition (see Theorem 5.3). When the coefficients are
independent of space we give an L p(Lq)-theory. Moreover, we give an L p(L p)-
theory if the coefficients are continuous in space.

• Second order divergence form equations with coefficients which are only progres-
sivelymeasurable in both the time and the space variables, but satisfy the structural
condition of being divergence free. We treat this problem in suitable tent spaces,
and in the model case where B = 0, u0 = 0.

Amajor advantage of our approach to the L p(Lq)-theory, is thatwe can obtain the same
space-time regularity results as in Sect. 1.3. This seems completely new in the case of
measurable dependence on (t, ω). Our approach to stochastic maximal regularity in
the Lions sense is nowhere as developed, but gives, to the best of our knowledge, the
first results (outside of Hilbert spaces) where no regularity in either space and time is
assumed.

1.5 Other forms of maximal regularity

To end this introduction let us mention several other type of maximal L p-regularity
results. In [13,25] maximal L p-regularity for any analytic semigroup was established
in the real interpolation scale. In [97]maximal regularity was obtained using γ -spaces.
In Banach function spaces variations of the latter have been obtained in [3].
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Notation

We write A �p B whenever A ≤ CpB where Cp is a constant which depends on the
parameter p. Similarly, we write A �p B if A �p B and B �p A. Moreover, C is a
constant which can vary from line to line.

2 Preliminaries

2.1 Measurability

Let (S, 
,μ) be ameasure space. A function f : S → X is called stronglymeasurable
if it can be approximated by μ-simple functions a.e. An operator valued function
f : S → L(X ,Y ) is called X -strongly measurable if for every x ∈ X , s 
→ f (s)x is
strongly measurable.

Let (�,P,A) be a probability space with filtration (Ft )t≥0. A process φ : R+ ×
� → X is called progressively measurable if for every fixed T ≥ 0, φ restricted to
[0, T ] × � is strongly B([0, T ]) × FT -measurable

An operator valued process φ : R+ × � → L(X ,Y ) will be called X -strongly
progressively measurable if for every x ∈ X , φx is progressively measurable.

Let � := {(s, t) : 0 ≤ s ≤ t < ∞} and �T = � ∩ [0, T ]2. Let BT denotes the
Borel σ -algebra on �T . A two-parameter process φ : � × � → X will be called
progressively measurable if for every fixed T ≥ 0, φ restricted to �T ×� is strongly
BT × FT -measurable.

2.2 Functional calculus

For σ ∈ (0, π) let 
σ = {z ∈ C : | arg(z)| < σ }. A closed and densely defined
operator (A, D(A)) on a Banach space X is called sectorial of type (M, σ ) ∈ R+ ×
(0, π) if A is injective, has dense range, σ(A) ⊆ 
σ and

‖λR(λ, A)‖ ≤ M, λ ∈ C\
σ .

A closed and densely defined operator (A, D(A)) on a Banach space X is called
sectorial of type (M, w, σ ) ∈ R+ × R × (0, π) if A + w is sectorial of type (M, σ ).

Let H∞(
ϕ) denote the space of all bounded holomorphic functions f : 
ϕ → C

and let ‖ f ‖H∞(
ϕ) = supz∈
ϕ
| f (z)|. Let H∞

0 (
ϕ) ⊆ H∞(
ϕ) be the set of all f

for which there exists an ε > 0 and C > 0 such that | f (z)| ≤ C |z|ε
1+|z|2ε .

For an operator Awhich is sectorial of type (M, σ ), σ < ν < ϕ, and f ∈ H∞
0 (
ϕ)

define

f (A) = 1

2π i

∫
∂
ν

f (λ)R(λ, A)dλ,
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where the orientation is such that σ(A) is on the right side of the integration path. The
operator A is said to have a bounded H∞-calculus of angle ϕ if there exists a constant
C such that for all f ∈ H∞

0 (
ϕ)

‖ f (A)‖ ≤ C‖ f ‖H∞(
ϕ).

For details on the H∞-functional calculus we refer the reader to [47] and [52]. A list
of examples has been given in the introduction.

For an interpolation couple (X0, X1) let

Xθ = [X0, X1]θ , and Xθ,p = [X0, X1]θ,p
denote the complex and real interpolation spaces at θ ∈ (0, 1) and p ∈ [1,∞],
respectively.

2.3 Function spaces

Let S ⊆ R
d be open. For a weight function w : R

d → (0,∞) which is integrable on
bounded subset of R

d , p ∈ [1,∞), and X a Banach space, we work with the Bochner
spaces L p(S, w; X) with norm defined by

‖u‖p
L p(S,w;X)

=
∫
S

‖u(t)‖p
Xw(t)dt,

We also use the corresponding Sobolev spaces defined by

‖u‖p
W 1,p(S,w;X)

= ‖u‖p
L p(S,w;X)

+ ‖u′‖p
L p(S,w;X)

.

If q < p, and wα(x) = |x |α with α/d <
p
q − 1, note that, by Hölder inequality

L p(S, wα; X) ↪→ Lq(S; X).
In several cases the class of weight we will consider is the class of Ap-weights

w : R
d → (0,∞). Recall that w ∈ Ap if and only if the Hardy–Littlewood maximal

function is bounded on L p(Rd , w).
For p ∈ (1,∞) and an Ap-weightw let theBessel potential spaces Hs,p(Rd , w; X)

be defined as the space of all f ∈ S ′(Rd ; X) := L(S(Rd), X) for which
F−1[(1 + | · |2)s/2 f̂ ∈ L p(Rd , w; X). Here F denotes the Fourier transform. Then
Hs,p(Rd , w; X) is a Banach space when equipped with the norm

‖ f ‖Hs,p(Rd ,w;X) = ‖F−1[(1 + | · |2)s/2 f̂ ]‖L p(Rd ,w;X).

The following is a well known consequence of Fourier multiplier theory.

Lemma 2.1 Let X be a UMD Banach space, p ∈ (1,∞), s ∈ R, r > 0 and k ∈ N.
Then the following give equivalent norms on Hs,p(Rd; X):

‖(−�)r/2u‖Hs−r ,p(Rd ;X) + ‖u‖Hs−r ,p(Rd ;X),
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∑
|α|=k

‖∂αu‖Hs−k,p(Rd ;X) + ‖u‖Hs−k,p(Rd ;X).

The spaces Hs,p will also be needed on bounded open intervals I . For a I ⊆ R,
p ∈ (1,∞), w ∈ Ap, s ∈ R the space Hs,p(I , w; X) is defined as all restriction f |I
where f ∈ Hs,p(I , w; X). This is a Banach space when equipped with the norm

‖ f ‖Hs,p(I ,w;X) = inf{‖g‖Hs,p(R,w;X) : g|I = f }.

Either by repeating the proof of Lemma 2.1 or by reducing to it by applying a
bounded extension operator from H θ,p(I , w; Y ) → H θ,p(R, w; Y ) and Fubini, we
obtain the following norm equivalence.

Lemma 2.2 Let X be a UMD space, p ∈ (1,∞), s ∈ R, r > 0, k ∈ N, and let I ⊆ R

be an open interval. Let θ ∈ (0, 1) and w ∈ Ap. Then the following two norms give
equivalent norms on H θ,p(I ; Hs,p(Rd ; X)):

‖(−�)r/2u‖H θ,p(I ,w;Hs−r ,p(Rd ;X)) + ‖u‖H θ,p(I ;Hs−r ,p(Rd ;X)),∑
|β|=k

‖∂βu‖H θ,p(I ;Hs−k,p(Rd ;X)) + ‖u‖H θ,p(I ;Hs−k,p(Rd ;X)).

The next result follows from [88, Proposition 7.4].

Proposition 2.3 Let p ∈ (1,∞), α ∈ [0, p − 1), T ∈ (0,∞] and set I = (0, T ). For
all f ∈ H θ,p(I , tα; X) we have

‖ f ‖
C

θ− 1+α
p (I ;X)

≤ C‖ f ‖H θ,p(I ,wα;X) if θ >
1 + α

p
,

‖ f ‖
C

θ− 1
p ([ε,T ];X)

≤ Cε‖ f ‖H θ,p(I ,wα;X) if θ >
1

p
, ε ∈ (0, T ].

Proposition 2.4 Let X0, X1 be UMD spaces and assume (X0, X1) is an interpolation
couple. Let p ∈ (1,∞), w ∈ Ap, and let I ⊆ R be an open interval. If s0 < s1,
θ ∈ (0, 1) and s = (1 − θ)s0 + θs1, then the following assertions hold:

(1) W 1,p(I , w; X0) = H1,p(I , w; X0).
(2) [Hs0,p(I , w; X0), Hs1,p(I , w; X1)]θ = Hs,p(I , w; [X0, X1]θ ).
In particular, there exists a constant C such that for any f ∈ Hs1,p(I , w; X0 ∩ X1),

‖ f ‖Hs,p(I ,w;[X0,X1]θ ) ≤ C‖ f ‖1−θ
Hs0,p(I ,w;X0)

| f ‖θ
Hs1,p(I ,w;X1)

.

Proof (1): This can be proved as in [80, Proposition 5.5] by using a suitable extension
operator and a suitable extension of w|I to a weight on R.

(2): For I = R, this follows from [79, Theorem 3.18]. The general case follows
from an extension argument as in [80, Proposition 5.6]. ��

123



Stoch PDE: Anal Comp

The following result follows from [89, Theorem 1.1] and standard arguments (see
[1] for details). Knowing the optimal trace space is essential in the proof of Theo-
rem 3.15.

Proposition 2.5 (Trace embedding) Let X0 be UMD Banach spaces and A a sectorial
operator on X0 and 0 ∈ ρ(A) with D(A) = X1. Let p ∈ (1,∞), α ∈ [0, p − 1),
β ∈ (0, 1) and T ∈ (0,∞]. Set wα(t) = tα , I = (0, T ). Let

Xθ = [X0, X1]θ , Xθ,p = (X0, X1)θ,p

denote the complex and real interpolation spaces for θ ∈ (0, 1). Then

L p(I , wα; X1) ∩ W 1,p(I , wα; X0) ↪→ BUC(I ; X1− 1+α
p ,p),

L p(I , wα; Xβ) ∩ Hβ,p(I , wα; X0) ↪→ BUC(I ; Xβ− 1+α
p ,p).

In the one-dimensional casewewill also need themuch simpler fractional Sobolev–
Sobolewski spaces on I = (0, T ) with T ∈ (0,∞]. For β ∈ (0, 1), p ∈ (1,∞) and
a weight w ∈ Ap we define the fractional Sobolev–Sobolewski space Wβ,p(I , w; X)

as the space of all functions φ ∈ L p(I , w; X) for which

[φ]p
Wβ,p(I ,w;X)

=
∫ T

0

∫ T−h

0
‖φ(s + h) − φ(s)‖pw(s)h−β p−1dsdh < ∞. (2.1)

This space is a Banach space when equipped with the norm ‖φ‖Wβ,p(I ,w;X) =
[φ]Wβ,p(I ,w;X) + ‖φ‖L p(I ,w;X). In the case wα(t) = tα with α ∈ [0, p − 1) it is
well-known that (see [46] and [87, Proposition 1.1.13])

Wβ,p(I , wα; X) = (L p(I , wα; X),W 1,p(I , wα; X))β,p. (2.2)

For general Ap-weights such a characterization seems only possible if (2.1) is replaced
by a more complicated expression (see [89, Proposition 2.3 with p = q] for the case
I = R).

Note that, by (2.2), Proposition 2.4 and general properties of real and complex
interpolation [115, Theorems 1.3.3(e) and 1.10.3], we have

Wβ,p(I , wα; X) ↪→ H θ,p(I , wα; X) (2.3)

for any UMD space X , p ∈ (1,∞) and 0 < θ < β < 1.

2.4 Stochastic integration

Let L p
F (�; Lq(I ; X)) denote the space of progressively measurable processes in

L p(�; Lq(I ; X)).
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The Itô integral of an F-adapted finite rank step process in γ (H , X), with respect
to an F-cylindrical Brownian motion WH , is defined by

∫
R+

N∑
k=1

M∑
j=1

1(tk ,tk+1]×Fk ⊗ (h j ⊗ xk) dWH :=
N∑

k=1

M∑
j=1

1Fk [WH (tk+1)h j

−WH (tk)h j ] ⊗ xk,

for N ∈ N, 0 ≤ t1 < t2 < · · · < tN+1, and for all k = 1, . . . , N , Fk ∈ Ftk , hk ∈ H ,
xk ∈ X . The following version of Itô’s isomorphism holds for such processes (see
[93]):

Theorem 2.6 Let X be a UMD Banach space and let G be an F-adapted finite rank
step process in γ (H , X). For all p ∈ (1,∞) one has the two-sided estimate

E sup
t≥0

∥∥∥ ∫ t

0
G(s) dWH (s)

∥∥∥p
�p E‖G‖p

γ (L2(R+;H),X))
, (2.4)

with implicit constants depending only on p and (the UMD constant of) X.

The class of UMD Banach spaces includes all Hilbert spaces, and all Lq(O;G)

spaces for q ∈ (1,∞), and G another UMD space. It is stable under isomorphism of
Banach spaces, and included in the class of reflexive Banach spaces. Closed subspaces,
quotients, and duals of UMD spaces are UMD. For more information on UMD spaces
see [51] or [17].

Theorem 2.6 allows one to extend the stochastic integral, by density, to the closed
linear span in L p(�; γ (L2(R+; H), X)) of allF-adapted finite rank step processes in
γ (H , X)) (see [93]). We denote this closed linear span by L p

F (�; γ (L2(R+; H), X)).
Moreover, this set coincides with the progressively measurable processes in L p(�; γ
(L2(R+; H), X)).

If the UMDBanach space X has type 2 (and thus martingale type 2), then one has a
continuous embedding L2(R+; γ (H , X)) ↪→ γ (L2(R+; H), X) (see [91,113]). See
[52] or [30,104,105] for a presentation of the notions of type and martingale type.

In such a Banach space, (2.4) implies that

E sup
t≥0

∥∥∥ ∫ t

0
G(s) dWH (s)

∥∥∥p ≤ C p
E‖G‖p

L2(R+;γ (H ,X))
, (2.5)

where C depends on X and p. The stochastic integral thus uniquely extends to
L p
F (�; L2(R+; γ (H , X))) (as it does in [14,100]).
Note, however, that the sharp version of Itô’s isomorphism given in Theorem 2.6

is critical to prove stochastic maximal regularity, even in time-independent situ-
ations. The weaker estimate (2.5) (where the right hand side would typically be
L2(R+; L p(Rd)) instead of L p(Rd ; L2(R+))) does not suffice for this purpose (see
[95]).

We end this subsection with a simple lemma which is applied several times. It will
be stated for weights in the so-called Aq class in dimension one. In the unweighted
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case the lemma is simple and well-known. Note that w(t) = |t |α is in Aq if and only
if α ∈ (−1, q − 1).

Lemma 2.7 Assume X is a UMD space with type 2. Let p ∈ [2,∞), and w ∈ A p
2
(if

p = 2, then we take w = 1), θ ∈ (0, 1
2 ), and T ∈ (0,∞) and set I = (0, T ). Assume

U (t) = u0 +
∫ t

0
f (s)ds +

∫ t

0
g(s)dWH (s), t ∈ [0, T ].

where f ∈ L p
F (�; L p(I , w; X)) and g ∈ L p

F (�; L p(I , w; γ (H , X))). Then U ∈
L p(�;C(I ; X)) and there exists a constantC = C(p, w, T , X , θ)which is increasing
in T and such that

‖U‖L p(�;C(I ;X)) + ‖U‖L p(�;W θ,p(I ,w;X))

≤ ‖u0‖X + C‖ f ‖L p(�;L p(I ,w;X)) + C‖g‖L p(�;L p(I ,w;γ (H ,X))).

Proof Thedefinitionof a strong solution and the properties of the integrals immediately
give the existence of a continuous modification, and by (2.5), we find

‖U‖L p(�;C(I ;X))

�X ,p ‖u0‖L p(�;X) + ‖ f ‖L p(�;L1(I ;X)) + C‖g‖L p(�;L2(I ;γ (H ,X)))

�p,w,T ‖u0‖X + ‖ f ‖L p(�;L p(I ,w;X)) + ‖g‖L p(�;L p(I ,w;γ (H ,X))),

where in the last step we applied Hölder’s inequality.
To prove the estimate concerning the fractional regularity note that

‖u0‖W θ,p(I ,w;X) ≤ ‖u0‖L p(I ,w;X) ≤ C‖u0‖X

and

∥∥∥ ∫ ·

0
f (s)ds

∥∥∥
W θ,p(I ,w;X)

≤
∥∥∥ ∫ ·

0
f (s)ds

∥∥∥
W 1,p(I ,w;X)

≤ C‖ f ‖L p(I ,w;X)

which gives the required estimates after taking L p(�)-norms.
Let I (g) = ∫ ·

0 gdWH . By (2.5) and Hölder inequality the stochastic integral can
be estimated, for t ∈ I , by

‖I (g)(t)‖L p(�;X) ≤ C‖g‖L p(�;L p((0,T ),w;γ (H ,X))).

Taking L p((0, T ), w) norms, part of the required estimate follows. For the difference
norm part, first consider p ∈ (2,∞). Then, for s ∈ I , and M denoting the Hardy–
Littlewood maximal function,

‖I (g)(s + h) − I (g)(s)‖L p(�;X) ≤ C‖g‖L p(�;L2((s,s+h);γ (H ,X)))
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≤ Ch1/2‖(M‖g‖2γ (H ,X))
1/2‖L p(�).

Therefore, from (2.1) we obtain

[I (g)]p
L p(�;W θ,p(I ,w;X))

=
∫ T

0

∫ T−h

0
‖I (g)(s + h)

− I (g)(s)‖p
L p(�;X)

w(s)h−θ p−1dsdh

≤ C
∫ T

0
‖(M‖g‖2γ (H ,X))

1/2‖p
L p(�;L p(I ,w))

h( 12−θ)p−1dh

≤ C‖g‖p
L p(�;L p(I ,w;γ (H ,X)))

,

where we used θ ∈ (0, 1
2 ) and applied the boundedness of the maximal function in

L p/2(R, w) (see [45, Theorem 9.1.9]).
If p = 2, then w = 1 and we can write (using again that θ < 1

2 )

∫ T

0

∫ T−h

0
‖I (g)(s + h) − I (g)(s)‖2L2(�;X))

dsdh

≤ C
∫ T

0

∫ T−h

0

∫ s+h

s
‖g(σ )‖2L2(�;γ (H ,X)))

h−2θ−1dσdsdh

≤ C
∫ T

0

∫ T

σ

∫ T−s

σ−s
h−2θ−1dhds ‖g(σ )‖2L2(�;γ (H ,X)))

dσ

≤ C
∫ T

0

∫ σ

0
(σ − s)−2θds ‖g(σ )‖2L2(�;γ (H ,X)))

dσ

≤ C‖g‖2L2(�×I ;γ (H ,X)))
.

��
Remark 2.8 Fractional regularity of stochastic integrals in the vector-valued setting
is considered in many previous papers (see [14,101,107] and references therein). In
particular, the unweighted case of Lemma 2.7 can be found in [107, Corollary 4.9]
where it is a consequence of a regularity result on arbitraryUMD spaces. Theweighted
case appears to be new. Using Rubio de Francia extrapolation techniques one can
extend Lemma 2.7 to a large class of Banach functions spaces E(I , w; X) instead of
L p(I , w; X) (see [24]).

3 Maximal regularity for stochastic evolution equations

In this section we consider the semilinear stochastic evolution equation

{
dU (t) + A(t)U (t)dt = F(t,U (t))dt + (

B(t)U (t) + G(t,U (t))
)
dWH (t),

U (0) = u0.
(3.1)
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Here A(t) and B(t) are linear operators which are (t, ω)-dependent. The functions F
and G are nonlinear perturbations.

In Sects. 3.1 and 3.2 we introduce the definitions of maximal L p-regularity for
deterministic equations and stochastic equations respectively. This extends well-
known notions to the (t, ω)-dependent setting. Moreover, we allow weights in time.
In Sect. 3.3 we present a way to reduce the problem with time-dependent opera-
tors to the time-independent setting. In Sect. 3.4 we show that if one has maximal
L p-regularity, then this implies well-posedness of semilinear initial value problems.
Finally in Sect. 3.5 we explain a setting in which one can reduce to the case B = 0.

3.1 The deterministic case

Consider the following hypotheses.

Assumption 3.1 Let X0 and X1 be Banach spaces such that X1 ↪→ X0 is dense. Let
Xθ = [X0, X1]θ and Xθ,p = (X0, X1)θ,p denote the complex and real interpolation
spaces at θ ∈ (0, 1) and p ∈ [1,∞], respectively.

For f ∈ L1(I ; X0) with I = (0, T ) and T ∈ (0,∞] we consider:
{
u′(t) + A(t)u(t) = f (t), t ∈ I

u(0) = 0.
(3.2)

We say that u is a strong solution of (3.2) if for any finite interval J ⊆ I we have
u ∈ L1(J ; X1) and

u(t) +
∫ t

0
A(s)u(s)ds =

∫ t

0
f (s)ds, t ∈ J , (3.3)

Note that this identity yields that u ∈ W 1,1(J ; X0) and u ∈ C(J ; X0) for bounded
J ⊆ I .

Definition 3.2 (Deterministic maximal regularity) Let Assumption 3.1 be satis-
fied and assume that A : [s,∞) → L(X1, X0) is strongly measurable and
supt∈R ‖A(t)‖L(X1,X0) < ∞. Let p ∈ (1,∞), α ∈ (−1, p − 1), T ∈ (0,∞], and set
I = (0, T ). We say that A ∈ DMR(p, α, T ) if for all f ∈ L p(I , wα; X0), there exists
a strong solution

u ∈ W 1,p(I , wα; X0) ∩ L p(I , wα; X1)

of (3.2) and

‖u‖W 1,p(I ,wα;X0)
+ ‖u‖L p(I ,wα;X1) ≤ C‖ f ‖L p(I ,wα;X0). (3.4)
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In (3.3) we use the continuous version of u : I → X0. By Proposition 2.5 for
α ∈ [0, p − 1) we have

u ∈ Cub(I ; X1− 1+α
p ,p) and u ∈ Cub([ε, T ]; X1− 1

p ,p
), ε ∈ (0, T ).

If α ∈ (−1, 0) the first assertion does not hold, but the second one holds on [0, T ] if
T < ∞.

Remark 3.3 Although we do allow T = ∞ in the above definition, most result will
be formulated for T ∈ (0,∞) as this is often simpler and enough for applications to
PDEs.

Note that A ∈ DMR(p, α, T ) implies that the solution u is unique (use (3.4)).
Furthermore, it implies unique solvability of (3.2) on subintervals J = (a, b) ⊆ I . In
particular, DMR(p, α, T ) implies DMR(p, α, t) for all t ∈ (0, T ].

3.2 Hypothesis on A and B and the definition of SMR

Consider the following hypotheses.

Assumption 3.4 Let H be a separable Hilbert space. Assume X0 and X1 are UMD
spaces with type 2. Let A : R+ ×� → L(X1, X0) be strongly progressively measur-
able and

CA := sup
t∈R,ω∈�

‖A(t, ω)‖L(X1,X0) < ∞.

Let B : R+ × � → L(X1,L(H , X 1
2
)) be such that for all x ∈ X1 and h ∈ H ,

(Bx)h is strongly progressively measurable and assume there is a constant C such
that

CB := sup
t∈R,ω∈�

‖B(t, ω)‖L(X1,L(H ,X 1
2
)) < ∞.

For f ∈ L1(I ; X0) and g ∈ L2(I ; γ (H , X 1
2
)) with I = (0, T ) and T ∈ (0,∞]

we consider:{
dU (t) + A(t)U (t)dt = f (t)dt + (

B(t)U (t) + g(t)
)
dWH (t),

U (0) = 0.
(3.5)

We say that U is a strong solution of (3.1) if for any finite interval J ⊆ I we have
U ∈ L0

F (�; L2(J ; γ (H , X1))) and almost surely for all t ∈ I ,

U (t) +
∫ t

0
A(s)U (s)ds =

∫ t

0
f (s)ds +

∫ t

0

(
g(s) + B(s)U (s)

)
dWH (s),

(3.6)
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The above stochastic integrals are well-defined by (2.5). Identity (3.6) yields that U
has paths in C(J ; X0) for bounded J ⊆ I (see Lemma 2.7).

Definition 3.5 (Stochasticmaximal regularity) SupposeAssumptions 3.1 and 3.4 hold.
Let p ∈ [2,∞), α ∈ (−1, p

2 − 1) (α = 0 is included if p = 2), T ∈ (0,∞], and set
I = (0, T ). We say that (A, B) ∈ SMR(p, α, T ) if for all f ∈ L p

F (� × I , wα; X0)

all g ∈ L p
F (� × I , wα; γ (H , X 1

2
)), there exists a strong solution

U ∈
⋂

θ∈[0, 12 )
L p(�; H θ,p(I , wα; X1−θ ))

of (3.5) and for each θ ∈ [0, 1
2 ) there is a constant Cθ such that

‖U‖L p(�;H θ,p(I ,wα;X1−θ ))

≤ Cθ‖ f ‖L p(�×I ,wα;X0) + Cθ‖g‖L p(�×I ,wα;γ (H ,X 1
2
)).

(3.7)

In the case B = 0 we write A ∈ SMR(p, α, T ) instead of (A, 0) ∈ SMR(p, α, T )

In the above we use a pathwise continuous version of U : � × I → X0. By
Proposition 2.5 if α ∈ [0, p

2 − 1) we even have

U ∈ L p(�;C(I ; X1− α+1
p ,p)) and U ∈ L p(�;C([ε, T ]; X1− α+1

p ,p)).

If α ∈ (−1, 0) the first assertion does not hold, but the second one holds on [0, T ] if
T < ∞.

A variant of Remark 3.3 holds for SMR. In particular, any of the estimates (3.7)
implies uniqueness.

Remark 3.6 Unlike in the deterministic case the stochastic case does not allow for an
optimal endpoint H

1
2 ,p, because already a standard Brownian motion does not have

paths in this space a.s. Therefore, we need to quantify over θ ∈ [0, 1
2 ) in the above

definition.
In the case −A is time-independent and generates an analytic semigroup, some

different type of end-point results on the time-regularity in terms of Besov spaces
have been obtained in [101] which even include regularity at exponent 1

2 which is
known to be the optimal regularity of a standard Brownian motion.

In the time-independent case, many properties of DMR and SMR are known such
as independence of p, α and T . For details we refer to [34,110] for the deterministic
case and [1,84] for the stochastic case.

In the next two results we collect sufficient conditions for DMR and SMR in the
time independent case. The first result follows from [53, Theorem 5.3 and (3.6)] and
[116, Theorem 4.2] (in the latter DMR was characterized in terms of R-boundedness).

Proposition 3.7 Suppose Assumption 3.1 is satisfied and assume X0 is a UMD space.
Assume A ∈ L(X1, X0).
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If A has a bounded H∞-calculus of angle < π/2 and 0 ∈ ρ(A), then A ∈
DMR(p, α, T ) for all p ∈ (1,∞), α ∈ (−1, p − 1) and T ∈ (0,∞].

In the time-independent setting the next result follows from [95] for α = 0 (also
see [96,98]). The case α 	= 0 was obtained in [1] by a perturbation argument.

Proposition 3.8 Suppose Assumption 3.1 is satisfied. Assume A ∈ L(X1, X0). Let
X0 be isomorphic to a 2-convex Banach function space such that (X1/2

0 )∗ has the
Hardy–Littlewood property (e.g. X0 = Lq(O; �2), where and q ∈ [2,∞)).

If A has a bounded H∞-calculus of angle < π/2 and 0 ∈ ρ(A), then A ∈
SMR(p, α, T ) for all p ∈ (2,∞), α ∈ (−1, p

2 − 1) and T ∈ (0,∞]. Moreover,
if X0 is a Hilbert space, then the result in the case (p, α) = (2, 0) holds as well.

3.3 SMR for time-dependent problems

The next result is a useful tool to derive A ∈ SMR from A ∈ DMR and A0 ∈ SMR
for a certain reference operator A0 which one is free to choose. It extends [73, Lemma
5.1] and [62] where the case with A0 = −� on X0 = L p with α = 0 was considered
and where A(t) was a second order operator.

Theorem 3.9 Suppose Assumptions 3.1 and 3.4 hold. Let p ∈ [2,∞), α ∈ (−1, p
2 −1)

(α = 0 if p = 2 is allowed as well) and T ∈ (0,∞).

(i) There exists a sectorial operator −A0 with D(A0) = X1, and X 1
2

= D((λ +
A0)

1/2) such that A0 ∈ SMR(p, α, T ).
(ii) Assume that there is a C > 0 such that for all ω ∈ �, A(·, ω) ∈ DMR(p, α, T )

and (3.4) holds with constant C.

Then A ∈ SMR(p, α, T ).

Proof In the proof we write

MRT := W 1,p((0, T ), wα; X0) ∩ L p((0, T ), wα; X1).

which we turn into a Banach space by using the sum norm.

Step 1: Progressive measurability and estimates for the deterministic part
Consider the mapping�T : � → L(MRT , L p(0, T , wα; X0)) given by�T (ω) =

d/dt + A(·, ω). Then �T is strongly FT -measurable and each �T (ω) is invertible.
It is well-known that its inverse mapping ω 
→ �T (ω)−1 is strongly FT -measurable
as well (see [99]). For convenience we include a short argument for this special case.
Fix ω0 ∈ �. Now ω 
→ �T (ω)�T (ω0)

−1 ∈ L(MRT ) is stronglyFT -measurable and
takes values in the invertible operators. Since taking inverses is a continuous mapping
on the open set of invertible mappings it follows that ω 
→ �T (ω0)�T (ω)−1 is
strongly FT -measurable as well. Clearly, the above holds with T replaced by any
t ∈ (0, T ] as well.

Now for f ∈ L p
F (� × I ; X0), consider the problem

u′ = A(t)u + f , u(0) = 0.
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The solution is given by u(·, ω) = �T (ω)−1 f (·, ω) and by (ii)

‖u(·, ω)‖MRT ≤ C1‖ f (·, ω)‖L p((0,T ),wα;X0).

Moreover, by the previous observations u is strongly FT -measurable (as an MRT -
valued mapping) and we can take L p(�)-norms in the previous estimate to obtain

‖u‖L p(�;MRT ) ≤ C1‖ f ‖L p(�×(0,T ),wα;X0). (3.8)

In the same way one can see that u is progressively measurable. Indeed, for t ∈ (0, T )

f |[0,t] is stronglyFt ×B([0, t])-measurable and hence u|[0,t] = �−1
t f |[0,t] is strongly

Ft -measurable. By Proposition 2.4, we also have that u ∈ SMRT and that, for all
θ ∈ [0, 1

2 ), ‖U‖SMRT ,θ
� ‖ f ‖L p(�×(0,T ),wα;X0).

Step 2: Main step
It remains to prove existence and estimates in the space SMRT := ⋂

θ∈[0, 12 )
SMRT ,θ , where

SMRT ,θ := L p(�; H θ,p(I , wα; X1−θ )).

Let f ∈ L p
F (� × I , wα; X0) and g ∈ L p

F (� × I , wα; γ (H , X 1
2
)). In order to prove

A ∈ SMR(p, α, T ) consider

dU + AUdt = f dt + gdW , U (0) = 0. (3.9)

We will build U from the solutions of two sub-problems.
Since A0 ∈ SMR(p, α, T ) we can find V1 ∈ SMRT such that

dV1 + A0V1dt = gdW , V1(0) = 0

and one has the estimate, for each θ ∈ [0, 1
2 ),

‖V1‖SMRT ,θ
≤ C‖g‖L p(�×I ,wα;γ (H ,X 1

2
)). (3.10)

By Step 1 we can find V2 ∈ SMRT such that

V ′
2 + AV2 = f + (A − A0)V1, V2(0) = 0

and by (3.8) and (3.10)

‖V2‖SMRT ,θ
≤ C‖ f ‖L p(�×I ,wα;X0) + C‖(A − A0)V1‖L p(�×I ,wα;X0)

≤ C‖ f ‖L p(�×I ,wα;X0) + C‖g‖L p(�×I ,wα;γ (H ,X 1
2
)).

Now it is straightforward to check that U = V1 + V2 is a solution to (3.9) and
combining the estimates for V1 and V2 we obtain A ∈ SMR(p, α, T ). ��
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The solvability of (3.5) with B 	= 0 can be a delicate matter. In particular it
typically requires a stochastic parabolicity condition involving A and B. However,
there are several situations where one can prove an a priori estimate and where for
a simple related problem one can prove existence and uniqueness of a solution in
L p
F (�; L p(I , wα; X1)). These are the ingredients to apply the method of continuity

(see [43, Theorem 5.2]) to obtain existence and uniqueness of (3.5). This is a well-
known method, which we present in an abstract setting in the proposition below. For
convenience let

Eθ = L p
F (�; H θ,p(I , wα; X1−θ )),

Zθ = L p
F (�; L p(I , wα; Xθ )),

Zγ
θ = L p

F (�; L p(I , wα; γ (H , Xθ ))),

where I = (0, T ) with T ∈ (0,∞). The spaces Zθ are the spaces in which the data is
chosen. The spaces Eθ are the spaces in which the solution lives.

Proposition 3.10 (Method of continuity) Suppose Assumptions 3.1 and 3.4 hold. Let
p ∈ [2,∞), α ∈ [0, p

2 − 1), θ ∈ [0, 1
2 ), and T ∈ (0,∞), and set I = (0, T ). Let

Ã ∈ L(X1, X0) be given. For λ ∈ [0, 1] let

Aλ(t) = (1 − λ) Ã + λA(t), and Bλ(t) = λB(t).

Consider the problem U (0) = 0 and

dU (t) + Aλ(t)U (t)dt = f (t)dt + (
Bλ(t)U (t) + g(t)

)
dWH (t). (3.11)

(i) Assume that there is a constant C such that, for all λ ∈ [0, 1], all f ∈ Z0, and
all g ∈ Zγ

1
2
, any strong solution to (3.11) U ∈ Eθ ∩ E0 satisfies

‖U‖Eθ + ‖U‖E0 ≤ C(‖ f ‖Z0 + ‖g‖Zγ
1
2

). (3.12)

(ii) Assume that, for all f ∈ Z0 and all g ∈ Zγ
1
2
, there exists a strong solution

U ∈ Eθ ∩ E0 to (3.11) with λ = 0.

Then for all λ ∈ [0, 1], all f ∈ Z0, and all g ∈ Zγ
1
2
, there exists a unique strong

solution U ∈ Eθ ∩ E0 of (3.11), and it satisfies the estimate (3.12).

In particular, the above result implies that if ( Ã, 0) ∈ SMR(p, α, T ) and (i) holds
for all θ ∈ [0, 1

2 ), then (A, B) ∈ SMR(p, α, T ). Note that in (i) we only assume that,
as soon as a solution U ∈ Eθ ∩ E0 to (3.11) exists, then (3.12) holds.

Proof The proof is a generalization of a standardmethod (see [68, p. 218]).We include
the details for completeness. Note that uniqueness follows from (3.12). Let� ⊆ [0, 1]
be the set of all points λ such that for all f ∈ Z0 and g ∈ Zγ

1
2
(3.11) has a strong
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solution U ∈ Eθ . It suffices to prove 1 ∈ �. We claim that there exists an ε > 0 such
that for every λ0 ∈ �, [λ0 − ε, λ0 + ε]∩ [0, 1] ⊆ �. Clearly, proving the claim would
finish the proof.

To prove the claim let λ0 ∈ �. Fix λ ∈ [λ0 − ε, λ0 + ε] ∩ [0, 1], where ε > 0 is
fixed for the moment. For V ∈ Eθ , let U ∈ Eθ ∩ E0 be the solution to

dU (t) + Aλ0(t)U (t)dt = [ f (t) + (Aλ0(t) − Aλ(t))V (t)]dt
+ [

Bλ0(t)U (t) + g(t) + (Bλ(t) − Bλ0(t))V (t)
]
dWH (t).

In this case we write Lλ(V ) = U . It is enough show that Lλ : Eθ ∩ E0 → FFθ ∩ E0
is a strict contraction. Indeed, then by the Banach fixed point theorem there exists
a unique U ∈ Eθ ∩ E0 such that Lλ(U ) = U and this clearly implies that U is a
strong solution of (3.11). To prove that L is a strict contraction, let us note that for
V1, V2 ∈ Eθ ∩ E0 and V = V1 − V2, the process U = Lλ(V1) − Lλ(V2) is a strong
solution to

dU (t) + Aλ0(t)U (t)dt = (Aλ0 − Aλ(t))V (t)dt

+ [
Bλ0(t)U (t) + (Bλ(t) − Bλ0(t))V (t)

]
dWH (t).

Therefore, by (3.12)

‖Lλ(V1) − Lλ(V2)‖Eθ∩E0 ≤ C‖(Aλ0 − Aλ)V ‖Z0 + C‖(Bλ0 − Bλ)V ‖Zγ
1
2

≤ C̃ε‖V1 − V2‖E0 ≤ C̃ε‖V1 − V2‖Eθ∩E0
,

where C̃ = C(CA + ‖ Ã‖ + CB). Here we used

‖(Aλ0 − Aλ)u‖X0 ≤ |λ0 − λ|(CA + ‖ Ã‖)‖u‖X1 ,

‖(Bλ0 − Bλ)u‖X 1
2

≤ |λ0 − λ|CB‖u‖X1 .

Therefore, letting ε = 1
2C(CA+‖ Ã‖+CB )

we see that Lλ is a strict contraction. ��

3.4 Semilinear equations

In this section we show that our maximal regularity set-up allows for simple pertur-
bation arguments in order to include nonzero initial values and nonlinear functions
F and G as in (3.1) on a fixed time interval I = (0, T ) as soon as one knows that
(A, B) ∈ SMR(p, α, T ). The results extend [94, Theorems 4.5 and 5.6] to a setting
where we only assume measurability in time and where we can take rough initial
values.

Consider the following conditions on A:
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Assumption 3.11 Suppose Assumptions 3.1 and 3.4 hold. Assume (A, B) ∈ SMR
(p, α, T ) and let Kdet and Kst be such that the strong solution to (3.5) satisfies

‖U‖L p(�;L p(I ,wα;X1)) ≤ Kdet‖ f ‖L p(�;L p(I ,wα;X0)) + Kst‖g‖L p(�;L p(I ,wα;γ (H ,X 1
2
))).

Note that the constants Kdet and Kst exists by the condition (A, B) ∈ SMR(p, α, T ).
We introduce them in order to have more explicit bounds below.

Consider the following conditions on F and G.

Assumption 3.12 The function F : [0, T ] × � × X1 → X0 is strongly progressively
measurable, F(·, ·, 0) ∈ L p(�; L p(I , wα); X0), and there exist LF and L̃ F such that
for all t ∈ [0, T ], ω ∈ �, and x, y ∈ X1,

‖F(t, ω, x) − F(t, ω, y)‖X0 ≤ LF‖x − y‖X1 + L̃ F‖x − y‖X0

Assumption 3.13 The function G : [0, T ] × � × X1 → γ (H , X 1
2
) is strongly pro-

gressive measurable, G(·, ·, 0) ∈ L p(�; L p(I , wα); γ (H , X 1
2
)) and there exist LG ,

L̃G such that for all t ∈ [0, T ], ω ∈ �, and x, y ∈ X1,

‖G(t, ω, x) − G(t, ω, y)‖γ (H ,X 1
2
) ≤ LG‖x − y‖X1 + L̃G‖x − y‖X0 .

Definition 3.14 Suppose Assumptions 3.1, 3.4, 3.12 and 3.13 are satisfied. Let u0 :
� → X0 be strongly F0-measurable. A process U : [0, T ] × � → X0 is called a
strong solution of (3.1) if it is strongly progressively measurable, and

(i) almost surely, U ∈ L2(0, T ; X1);
(ii) almost surely for all t ∈ [0, T ], the following identity holds in X0:

U (t) +
∫ t

0
A(s)U (s) ds = u0 +

∫ t

0
F(s,U (s)) ds

+
∫ t

0

(
B(s)U (s) + G(s,U (s))

)
dWH (s).

It is straightforward to check that all integrals are well-defined by the assumptions.
Now we state the main result of this subsection:

Theorem 3.15 Let p ∈ [2,∞) and α ∈ [0, p
2 − 1) (α = 0 is allowed if p = 2) and

T ∈ (0,∞). Set δ = 1 − α+1
p and I = (0, T ). Consider the following conditions:

(1) Suppose Assumptions 3.11, 3.12, 3.13 hold, and u0 ∈ L p(�,F0; Xδ,p).
(2) Assume the Lipschitz constants LF and LG satisfy

KdetLF + KstLG < 1.

(3) There exists a sectorial operator A0 on X0 with D(A0) = X1 and angle < π/2.
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Then the following assertions hold:
Problem (3.1) has a unique strong solutionU ∈ L p

F (�; L p(I , wα; X1)). Moreover,
there exist constants C,Cε,Cε,θ depending on X0, X1, p, α, T , A, B, A0, Kdet, Kst
and the Lipschitz constants of f and g such that

‖U‖L p(�;C(I ;Xδ,p))
≤ CKu0,F,G , (3.13)

‖U‖L p(�;C([ε,T ];X
1− 1

p ,p
)) ≤ CεKu0,F,G , ε ∈ (0, T ]. (3.14)

‖U‖L p(�;H θ,p(I ,wα;X1−θ ))
≤ CθKu0,F,G , θ ∈ [0, 1

2 ) (3.15)

‖U‖
L p(�;Cθ− 1+α

p (I ;X1−θ ))
≤ CθKu0,F,G , θ ∈ ( 1+α

p , 1
2 ) (3.16)

‖U‖
L p(�;Cθ− 1

p ([ε,T ];X1−θ ))
≤ Cε,θKu0,F,G, θ ∈ ( 1p ,

1
2 ), ε ∈ (0, T ]. (3.17)

where

Ku0,F,G = ‖u0‖L p(�;Xδ,p) + ‖F(·, ·, 0)‖L p(�;L p(I ,wα,X0))

+ ‖G(·, ·, 0)‖L p(�;L p(I ,wα,γ (H ,X 1
2
))).

(3.18)

Furthermore, if U 1,U 2 are the strong solution of (3.1) with initial value u10, u
2
0 ∈

L p(�,F0; Xδ,p) respectively, then each of the above estimates holds with U replaced
by U 1 −U 2, and Ku0,F,G replaced by Ku10−u20,F,G on the right-hand side.

Proof In the proof we use a variation of the arguments in [94, Theorems 4.5]. Let us
assume, without loss of generality that LF , LG 	= 0, and that KdetLF+KstLG = 1−ν

for some ν ∈ (0, 1).
Step 0: Reduction to u0 = 0. We consider � : t 
→ e−t A0u0. Since u0 ∈ Xδ,p, we

have, by [115, 1.14.5], that

‖�‖L p(I ,wα;X1) + ‖�‖W 1,p(I ,wα;X0)
≤ C‖u0‖Xδ,p .

Moreover, � is strongly progressively measurable, and Proposition 2.4 gives that

‖�‖L p(�,H θ,p(I ,wα;X1−θ ))
≤ C‖u0‖L p(�,Xδ,p), (3.19)

for all θ ∈ [0, 1].
Similarly,� can be estimated in all of the norms used in (3.13)–(3.17), by a constant

multiple of ‖u0‖L p(�,Xδ,p). The process V := U − � is then a solution of

dV (t) + A(t)V (t)dt = F̃(t, V (t))dt + [B(t)V (t)

+G̃(t, V (t))]dWH (t), V (0) = 0

where F̃(t, x) = F(t, x + �(t)) and G̃(t, x) = B(t)�(t) + G(t, x + �(t)) satisfy
the same conditions as F and G. This completes the reduction to u0 = 0.
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Step 1: Local existence and uniqueness. We first prove existence in spaces of the
form

Zθ,κ = L p
F (�; L p((0, κ), wα; Xθ )),

Zγ
θ,κ = L p

F (�; L p((0, κ), wα; γ (H , Xθ ))),

where κ ∈ (0, T ) will be determined later, and θ ∈ [0, 1]. To simplify notation, we
omit the parameter κ , and consider the norm ||| · ||| on Z1, defined by

|||φ||| = ‖φ‖Z1 + M‖φ‖Z0

with M = (1 − ν)−1(Kdet L̃ F + Kst L̃ B).
For φ ∈ Z1 we consider the linearised problem

{
dU (t) + A(t)U (t)dt = F(t, φ(t))dt + (

B(t)U (t) + G(t, φ(t))
)
dWH (t),

U (0) = 0.
(3.20)

By Assumptions 3.12 and 3.13, we have that F(·, φ) ∈ L p
F (�; L p(I , wα; X0)) and

G(·, φ) ∈ L p
F (�; L p(I , wα; γ (H , X 1

2
)). Therefore, by Assumption 3.11, there exists

a bounded map L : Z1 → Z1 such that L(φ) is the (unique) strong solution of (3.20).
By linearity, we thus have that, for φ1, φ2 ∈ Z1, the process U = L(φ1) − L(φ2)

is a strong solution of

dU (t) + A(t)U (t)dt = f (t)dt + (
B(t)U (t) + g(t)

)
dWH (t), u(0) = 0, (3.21)

where f = F(·, φ1)− F(·, φ2) and g = G(·, φ1)−G(·, φ2). Therefore, by Assump-
tions 3.11, 3.12 and 3.13,

‖L(φ1) − L(φ2)‖Z1 = ‖U‖Z1

≤ Kdet‖ f ‖Z0 + Kst‖g‖Zγ
1
2

= Kdet‖F(·, φ1) − F(·, φ2)‖Z0 + Kst‖G(·, φ1) − G(·, φ2)‖Zγ
1
2

≤ KdetLF‖φ1 − φ2‖Z1 + Kdet L̃ F‖φ1 − φ2‖Z0

+ KstLG‖φ1 − φ2‖Z1 + Kst L̃G‖φ1 − φ2‖Z0

We thus have that

‖L(φ1) − L(φ2)‖Z1 ≤ (1 − ν)|||φ1 − φ2|||, (3.22)

by definition of ν and ||| · |||.
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Moreover, for fixed t ∈ [0, κ], we have that

‖L(φ1)(t) − L(φ2)(t)‖L p(�;X0) = ‖U (t)‖L p(�;X0)

≤ CACκ,1‖U‖Z1 + Cκ,1‖ f ‖Z0

+ CBCXCκ,1‖U‖Z1 + Cκ,1CX‖g‖Zγ
1
2

,

using (3.21) and the easy part of Lemma 2.7. HereCX denotes the embedding constant
of X1/2 ↪→ X0, and CA,CB are the constants in Assumption 3.4. Then, using first
Hölder’s inequality, Assumptions 3.12 and 3.13, and estimate (3.22) next, we have
that

‖L(φ1)(t) − L(φ2)(t)‖L p(�;X0)≤Cκ,2‖U‖Z1 + Cκ,2‖φ1 − φ2‖Z1 ,

≤Cκ‖φ1 − φ2‖Z1 .

Taking L p((0, κ), wα)-norms in t on both sides we obtain

‖L(φ1) − L(φ2)‖Z0 ≤ c(κ)|||φ1 − φ2|||,

and thus

|||L(φ1) − L(φ2)||| ≤ (1 − ν + Mc(κ))|||φ1 − φ2|||,

with limκ↓0 c(κ) = 0. Setting

κ := inf{t ∈ (0, T ] : Mc(t) ≥ 1
2ν},

(or κ = T if the infimum is taken over the empty set), we have that (1−ν+Mc(κ)) ≤
1 − 1

2ν, and therefore that L has a unique fixed point U ∈ Z1. The end time κ only
depends on ν, p, α, the constants CA,CB, Kdet, Kst, the Lipschitz constants of F and
B, and the spaces X0 and X1.

Considering a version of U with continuous paths (see comment below (3.6)), we
can assume that, for all t ∈ [0, κ], U (t) = L(U (t)) holds almost surely. The process
U is thus the unique strong solution of (3.1), and satisfies

‖U‖Z1 = ‖L(U )‖Z1 ≤ ‖L(U ) − L(0)‖Z1 + ‖L(0)‖Z1≤(1 − 1
2ν)‖U‖Z1 + Ku0,F,G,

which gives

‖U‖Z1,κ ≤ CKu0,F,G ,

Step 2: Regularity. Let S ∈ (0, T ), and U be a strong solution of (3.1) on the time
interval J = [0, S]. Assume that

‖U‖Z1,S ≤ CKu0,F,G . (3.23)
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Then, from Step 0 and (A, B) ∈ SMR(p, α, S), we obtain, for U = L(U ):

‖U‖L p(�;H θ,p(J ,wα;X1−θ ))
≤ C‖u0‖L p(�;Xδ,p) + C‖F(·,U )‖Z0,S + C‖G(·,U )‖Zγ

1
2 ,S

≤ CKu0,F,G + CF,G‖U‖Z1,S

≤ CK̃u0,F,G,

for all θ ∈ [0, 1
2 ), using Assumptions 3.12, 3.13 and (3.23). This proves (3.15) for

I = J . Thus (3.16) and (3.17) for I = J follows from Proposition 2.3. Finally, (3.13)
and (3.14) follow from Proposition 2.5.

Step 3: Global existence and uniqueness.
To prove global existence and uniqueness let S ∈ (0, T ), andU ∈ Z1,S be a strong

solution of (3.1) on the time interval J = [0, S]. To obtain global existence, we just
have to show that there exist an η > 0 (independent of S) and a strong solution
U ∈ Z1,S+η on the interval [S, S + η], with initial condition U (S) at time S. By Step
2, we have that, for every ε ∈ (0, S),

‖U‖L p(�;C([ε,S];X
1− 1

p ,p
)) ≤ CεKu0,F,G .

We can thus define V (t) = U −e−(t−S)A0U (S) and, reduce the problem to V (S) = 0,
as in Step 0. Repeating Step 1, we find an η > 0 (depending on the parameters only as
ν did) and a unique strong solution U ∈ L p(�; L p((S, S + η); X1)). The regularity
estimates (3.13)–(3.17) then follow from Step 2, and global existence and uniqueness
is proven by repeating this procedure finitely many times.

Step 4: Continuous dependence. For κ as in Step 1, the process U = U 1 −U 2 is a
strong solution of

dU (t) + A(t)U (t)dt = f (t)dt + (
B(t)U (t) + g(t))

)
dWH (t), u(0) = u10 − u20,

with f = F(·,U 1) − F(·,U 2) and g = F(·,U 1) − F(·,U 2). Repeating Step 1, we
have that

|||U 1 −U 2||| ≤ (1 − 1

2
ν)|||U 1 −U 2||| + ‖u10 − u20‖L p(�;Xδ,p),

and thus

‖U 1 −U 2‖Z1,κ ≤ C‖u10 − u20‖L p(�;Xδ,p).

Step 2 then gives the regularity estimates, while Step 3 extends the result from [0, κ]
to [0, T ], which concludes the proof. ��
Remark 3.16 The results of Theorem 3.15 can be further “localized” to include non-
integrable initial values, and locally Lipschitz functions F and G. We refer to [94,
Theorem 5.6] for details.
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3.5 Reduction to B = 0

Before we continue to applications to SPDEs we show that there is a setting in which
one can reduce to the case where B = 0 by using Itô’s formula. Such a reduction is
standard (cf. [16, Theorem 3.1], [26, Section 6.6] and [68, Section 4.2]), but it seems
that the general setting below has never been considered before. It leads to an abstract
form of a so-called stochastic parabolicity condition. In the variational setting (p = 2)
a stochastic parabolicity condition appears in a more natural way (see [83,114]). We
refer to [15,36,62,74] for situations in which one cannot reduce to B = 0, but where
one still is able to introduce a natural p-dependent stochastic parabolicity condition.

Assumption 3.17 Let B : R+ × � → L(X1,L(H , X 1
2
)) be given by

B(t)x =
J∑

j=1

b j (t) ⊗ Bj x (3.24)

Here b j : R+ × � → H is progressively measurable and there is a constant M0 ≥ 0
such that for almost all (t, ω), ‖b j (t, ω)‖H ≤ M0. Each of the operators Bj generates
a strongly continuous group on Xk for k ∈ {0, 1} and there exists an M1 ≥ 0 such
that for all t ∈ R, ‖et B j ‖L(Xk ) ≤ M1 for k ∈ {0, 1}. For every i, j ∈ {1, . . . , J }
and s, t ∈ R, esBi and et B j commute on X0, and esBi and A(t) commute on X1.
Furthermore assume X 1

2
⊆ D(Bj ) and X1 ⊆ D(B2

j ).

The adjoints A(t, ω)∗ are closed operators on X∗
0 and have a constant domain DA∗

such that DA∗ ⊆ D((B∗
j )

2).

Let α ∈ [0, 1], SB : R
J → L(Xα) and ζ : R+ × � → R

J be given by

SB(a) = exp
( J∑

j=1

a j B j

)
, and ζ j (t) =

∫ t

0
b jdWH . (3.25)

Consider the problem

dŨ (t) + Ã(t)Ũ (t)dt =
(
f̃ (t) − [B(t), g̃(t)]

)
dt + g̃(t)dWH (t)

Ũ (0) = u0,
(3.26)

where f̃ (t) = SB(−ζ(t)) f (t) and g̃(t) = SB(−ζ(t))g(t) and Ã(t) = A(t) +
1
2 [B(t), B(t)] with

[B(t), B(t)] =
J∑

i, j=1

(bi (t), b j (t))H Bi B j , [B(t), g̃(t)] =
J∑

j=1

b j (t)Bj g̃(t) (3.27)

Usually [B(t), B(t)] is of “negative” type, whereas A(t) is of “positive” type.
Next we show that the problems (3.5) and (3.26) are equivalent under the above

commutation conditions.
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Theorem 3.18 Suppose Assumptions 3.1, 3.4 and 3.17 hold. Let Ũ : [0, T ] × � →
γ (H , X1) be progressively measurable and assume Ũ ∈ L2(0, T ; γ (H , X1) a.s. Let
U (t) = SB(ζ(t))Ũ (t), where SB and ζ are as in (3.25). Then U is a strong solution to
(3.5) if and only if Ũ is a strong solution to (3.26). Moreover, (A, B) ∈ SMR(p, α, T )

if and only if ( Ã, 0) ∈ SMR(p, α, T ).

Proof Fix ψ ∈ DA∗ and let φ : R
J → DA∗ be given by φ(a) = SB(a)∗ψ . First

assume Ũ is a strong solution to (3.26). The aim of this first step it to apply Itô
calculus to find a formula for 〈U , ψ〉 = 〈Ũ , φ(ζ )〉.

As a first step we apply Itô’s formula to φ(ζ ). For this note that the operators B∗
j

are commuting as well. Moreover, one can check that esB
∗
j leaves DA∗ invariant and

since DA∗ ⊂ D((B∗
j )

2), it follows that φ is twice continuously differentiable and

(∇φ(a)) j = B∗
j φ(a), (∇2φ(a))i, j = B∗

i B
∗
j φ(a).

By Itô’s formula (see [16]) a.s. for all t ∈ [0, T ],

φ(ζ(t)) − ψ =
∫ t

0
B(s)∗φ(ζ(s))dWH (s) + 1

2

∫ t

0
[B(s), B(s)]∗φ(ζ(s))ds,

where [B(s), B(s)]∗ stands for the adjoint of [B(s), B(s)] (see (3.27)).
Now applying Itô’s formula to the duality pairing on X × X∗ gives a.s. for all

t ∈ [0, T ]

〈U (t), ψ〉 − 〈u0, ψ〉 = 〈Ũ (t), φ(ζ(t))〉 − 〈u0, ψ〉
=

∫ t

0
−〈 Ã(s)Ũ (s), φ(ζ(s))〉 + 〈 f̃ (s) − [B(s), g̃(s)], φ(ζ(s))〉ds

+ 1

2

∫ t

0
〈Ũ (s), [B(s), B(s)]∗φ(ζ(s))〉ds

+
∫ t

0
g̃(s)∗φ(ζ(s))dWH (s) +

∫ t

0
〈Ũ (s), B(s)∗φ(ζ(s))〉dWH (s)

+
∫ t

0
〈[B(s), g̃(s)], φ(ζ(s))〉ds

=
∫ t

0
−〈A(s)U (s), ψ〉 + 〈 f (s), ψ〉ds

+
∫ t

0
g(s)∗ψdWH (s) +

∫ t

0
(B(s)U (s))∗ψdWH (s),

where we used Assumption (3.17) to commute SB(a) with Bj and A(s). By Hahn–
Banach it follows that U is strong solution of (3.1).

Similarly, if U is a strong solution to (3.1) one sees that Ũ is a strong solution to
(3.26) by applying Itô’s formula to 〈Ũ , φ(ζ )〉, where now φ : R

J → � is given by
φ(a) = SB(−a)∗ψ .

The final assertion is clear from the properties of SB(±ζ(t)). ��
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4 Parabolic systems of SPDEs of 2m-th order

In this section we develop an L p(Lq)-theory for systems of SPDEs of order 2m. The
casem = 1 (where more can be proven) will be considered in Sect. 5. A similar setting
was considered in [94, Section 6] but under a regularity assumption on the coefficients
of the operator A. At the same time it extends some of the results in [68]. For more
discussion on this we refer to Sect. 5. Finally we mention that the temporal weights
allow us to obtain an L p(Lq)-theory for a wider class of initial values than usually
considered.

The main novelty in the results below are that the coefficients aαβ are allowed to
be matrix-valued, random, and in the time-variable we do not assume any smoothness
of the coefficients. The precise assumptions are stated below.

In this section we consider the following system of stochastic PDEs on [0, T ]×R
d :

{
dU (t) + A(t)U (t)dt = f (t,U (t))dt + ∑

n≥1 gn(t,U (t))dwn(t),
U (0) = u0,

(4.1)

where wn is a sequence of independent standard Brownian motions. The function
U : [0, T ] × � → L p(Rd ; C

N ) is the unknown.
The operator A is given by

(A(t, ω)φ)(x)=(−1)m
∑

|α|,|β|=m

aαβ(t, ω, x)DαDβφ(x), x ∈ R
d , t ∈ [0, T ], ω ∈ �.

and there will be no need to consider lower order terms as they can be absorbed in the
function f .

Remark 4.1 We work in the non-divergence form case, but the divergence form case
can be treated in the same manner. Indeed, we decompose the problem into a time-
dependent deterministic part, and a time-independent stochastic part. We thus only
need to use [33, Theorem 6.3] instead of [33, Theorem 5.2] for the time-dependent
deterministic part.

Remark 4.2 In (4.1) we have left out the B-term which we did consider in (3.1) in the
abstract setting.However, any operator B(t) of (m−1)-th orderwith coefficientswhich
are W 1,∞ in the space variable could be included as well. Moreover, no stochastic
parabolicity is required as B is of lower order. We choose to leave this out as one can
insert this into the nonlinearities gn . If one wishes to include operators B which are
m-th order, then this either requires a smallness condition in terms of the maximal
regularity estimates, or in order to apply Sect. 3.5 the highest order terms needs to be
a group generator. It follows from [12, Theorem 0.1] (and from [49, Theorem 1.14] if
d = N = 1) that if B is a differential operator of order≥ 2 and B generates a strongly
continuous group then necessarily q = 2.
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In order to state the conditions on the coefficients aαβ : [0, T ] × R
d → C

N we
define the oscillation function at x of radius r . For φ ∈ L1

loc(R
d) let

oscr ,x (φ) = −
∫
Br (x)

∣∣∣φ(y) − −
∫
Br (x)

φ(z)dz
∣∣∣dy.

Note that if |φ(y) − φ(z)| ≤ ω(ε) for all y, z ∈ R
d satisfying |x − y| < ε, then

oscr ,x ≤ ω(r). For discussions on this definition and the connections with VMO and
BMO we refer to [72, Chapter 6].

Assumption 4.3 (1) The functions aαβ : [0, T ] × � × R
d → C

N×N are strongly
progressively measurable.

(2) There exist μ ∈ (0, 1) and K > 0 such that

Re
( ∑

|α|=|β|=m

ξαξβ(aαβ(t, ω, x)θ, θ)CN

)
≥ μ|ξ |2m |θ |2,

and |aαβ(t, ω, x)|CN×N ≤ K for all ξ ∈ R
d , θ ∈ C

N , x ∈ R
d , t ∈ [0, T ] and

ω ∈ �.
(3) Let γ ∈ (0, 1). Assume there exists an R ∈ (0,∞) such that for all |α|, |β| = m,

r ∈ (0, R], x ∈ R
d , t ∈ [0, T ] and ω ∈ �,

oscr ,x (aαβ(t, ω, ·)) ≤ γ.

Note that in (t, ω) only measurability is assumed.
For the �-independent setting, a slightly less restrictive condition appears in [33,

Theorem 5.2]. We choose the above formulation assumption in order to make the
assumptions easier to state. However, it is possible to extend the results of this section
to their setting.

Concerning f and gn we make the following assumptions:

Assumption 4.4 (1) The function f : [0, T ] ×�× H2m,q(Rd ; C
N ) → Lq(Rd ; C

N )

is strongly progressively measurable, f (·, ·, 0) ∈ L p(�; L p(I , wα; H2m,q(Rd ;
C

N ))), and there exist L f and L̃ f such that for all t ∈ [0, T ], ω ∈ �, and
u, v ∈ H2m,q(Rd ; C

N ),

‖ f (t, ω, u) − f (t, ω, v)‖Lq (Rd ,CN ) ≤ L f ‖D2mu − D2mv‖Lq (Rd ;CN )

+ L̃ f ‖u − v‖H2m−1,q (Rd ;CN ).

(2) The functions gn : [0, T ]×�× H2m,q(Rd ; C
N ) → Hm,q(Rd; C

N ) are strongly
progressivemeasurable, (gn)n≥1(·, ·, 0) ∈ L p(�; L p(I , wα; Hm,q(Rd; �2(CN )))

and there exist Lg , L̃g such that for all t ∈ [0, T ], ω ∈ �, and u, v ∈
H2m,q(Rd; C

N ),

‖(gn(t, ω, u) − gn(t, ω, v))n≥1‖Hm,q (Rd ;�2(CN )) ≤ Lg‖D2mu − D2mv‖Lq (Rd ;CN )

+ L̃g‖u − v‖H2m−1,q (Rd ;CN ).
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The nonlinearity f can depend on u, D1u, . . . , D2mu in a Lipschitz continuousway
as long as the dependence on D2mu has a small Lipschitz constant. One could allow
lower order terms in A, but one can just put them into the function f . Similarly, g can
depend on u, D1u, . . . , Dmu in a Lipschitz continuous way as long as the dependence
on Dmu has a small Lipschitz constant.

The main result of this section is as follows.

Theorem 4.5 Let T ∈ (0,∞), p ∈ (2,∞), q ∈ [2,∞) and α ∈ [0, p
2 − 1) (or

q = r = 2 and α = 0). Set δ = 1 − 1+α
p and I = (0, T ). Assume there exist a

constant � = �(p, q, α, T ,m, N , d, R, K , μ) such that Assumptions 4.3 and 4.4 hold
with γ, L f , Lg ∈ (0, �). Then for any u0 ∈ L p(�,F0; B2mδ

q,p (Rd)), the problem (4.1)
has a unique strong solution U ∈ L p

F (�; L p(I , wα; H2m,q(Rd ; C
N ))). Moreover,

there exist constants C,Cε,Cε,θ depending on p, q, α, T ,m, N , d, R, K , μ and the
Lipschitz constants of F and G such that

‖U‖L p(�;C(I ;B2mδ
q,p (Rd ))) ≤ CKu0, f ,g,

‖U‖
L p(�;C([ε,T ];B2m(1− 1

p )

q,p (Rd )))

≤ CεKu0, f ,g, ε ∈ (0, T ].

‖U‖L p(�;H θ,p(I ,wα;H2m(1−θ),q (Rd ;CN ))) ≤ CθKu0, f ,g, θ ∈ [
0, 1

2

)
‖U‖

L p(�;Cθ− 1+α
p (I ;H2m(1−θ),q (Rd ;CN )))

≤ CθKu0, f ,g, θ ∈
(
1+α
p , 1

2

)
‖U‖

L p(�;Cθ− 1
p ([ε,T ];H2m(1−θ),q (Rd ;CN )))

≤ Cε,θKu0, f ,g, θ ∈
(
1
p ,

1
2

)
, ε ∈ (0, T ].

where

Ku0, f ,g = ‖u0‖L p(�;B2mδ
q,p (Rd )) + ‖ f (·, ·, 0)‖L p(�;L p(I ,wα,Lq (Rd ;CN )))

+ ‖g(·, ·, 0)‖L p(�;L p(I ,wα,Hm,q (Rd ;�2(CN )))).

Furthermore, if U 1,U 2 are the strong solution of (4.1) with initial value u10, u
2
0 ∈

L p(�,F0; B2mδ
q,p (Rd)) respectively, then each of the above estimates holds with U

replaced by U 1 −U 2, and Ku0, f ,g replaced by Ku10−u20, f ,g
on the right-hand side.

Proof Let X0 = Lq(Rd; C
N ) and X1 = W 2m,q(Rd; C

N ). Since the coefficients
aαβ are uniformly bounded, Assumption 3.4 holds (with B = 0). Let Xθ =
H2mθ,q(Rd ; C

N ) for θ ∈ (0, 1). Note that if θ ∈ [0, 1] and 2mθ ∈ N, then
Xθ = W 2mθ,q(Rd; C

N ) (see [115, Theorem 2.33]). Let Xθ,p := (X0, X1)θ,p =
B2mθ
q,p (Rd; C

N ). By [115, 2.4.2 (11) and (16)] Assumption 3.1 holds.
On X0 consider A0 = (1 − �)m IN with D(A0) = X1, where IN stands for the

N × N diagonal operator. Then by [52, Theorem 10.2.25] and [47, Corollary 5.5.5]
0 ∈ ρ(A0) and the operator A0 has a bounded H∞-calculus of angle 0. Now from
Proposition 3.8 we obtain that condition (1) of Theorem 3.9 holds. From [33, Theorem
5.2 and Section 8] we deduce that the condition (ii) of Theorem 3.9 holds. Therefore,
Theorem 3.9 shows that A ∈ SMR(p, α, T ).
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It remains to check the conditions of Theorem 3.15. From the above we see that
Assumption 3.11 holds. Furthermore we claim that for any ε > 0, the function F = f
satisfies Assumption 3.12 with constants

LF = L f + ε and L̃ F = Cε L̃ f .

Indeed, it suffices to note that for any k ∈ {1, . . . , 2m − 1} (see [72, Exercise 1.5.6])

‖u‖Hk,q (Rd ;CN ) ≤ ε‖D2mu‖Lq (Rd ;CN ) + Cε,q,m‖u‖Lq (Rd ;CN ). (4.2)

for all ε > 0.
Since γ (�2, X 1

2
) = Hm,q(Rd ; �2(CN )) isomorphically (use [52, Proposition 9.3.2]

and the isomorphism A1/2
0 ), in a similar way as above one sees that the functionG = g

satisfies Assumption 3.13 with LG = Lg + ε and L̃G = Cε L̃g .
Now all the statements follow from Theorem 3.15. ��

Remark 4.6 To obtain the regularity result of Theorem 4.5 in the whole scale of spaces
Hs,q(Rd; C

N ) with s ∈ R one needs to assume smoothness on the coefficients aαβ ,
and change the assumptions on f , g and u0 appropriately. Indeed, as in [68, Section
5] this follows by applying (1 − �)s/2 to both sides of the equation and introducing
V = (1 − �)s/2U , where s ∈ R. The details are left to the reader.

In [68, Theorem 7.2] another method to derive space-time regularity results is
described. In the latter result one loses an ε of regularity. The sharp identifications and
embeddings obtained in [95] and in the weighted case in [1], make it possible to avoid
this loss in regularity.

Remark 4.7 A version of Theorem 4.5 with A p
2
-weights in time and Aq -weights in

space holds as well. Here one can take any weight v ∈ A q
2
in time and w ∈ Ar in

space. For details we refer to [33, Theorem 5.2 and Section 8] and [42, Section 4.4].

As a consequence we obtain the following Hölder continuity result in space-time.

Corollary 4.8 Consider the setting of Theorem 4.5 and assumemq ≥ d and 2mδ− d
q /∈

N. Then for every λ ∈ (0, δ − 1
2 ), there exists a constant C such that

‖U‖
L p(�;Cλ,2mδ− d

q (I×Rd ;CN ))
≤ CKu0, f ,g,

where Ku0, f ,g is given by (4.5)

Proof By Sobolev embedding (see [115, Theorem 2.8.1(d) and (e)]) the spaces

Bs
q,p(R

d ; C
N ) and Hs,q(Rd ; C

N ) continuously embed into Cs− d
q (Rd ; C

N ) if s > d
q

and s − d
q /∈ N. Therefore, Theorem 4.5 yields

‖U‖
L p(�;C(I ;C2mδ− d

q (Rd )))
+ ‖U‖L p(�;Cλ(I ;C(Rd ))) ≤ CλKu0, f ,g,
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where the estimate for the second term follows by taking θ = λ + 1+α
p and noting

that H2m(1−θ),q(Rd ; C
N ) ↪→ C(Rd) which follows from θ < 1

2 and 2m(1− θ) > d
q .

Combining the estimates of both terms the space-time Hölder regularity follows. ��
Remark 4.9 In the space variable Corollary 4.8 yields an endpoint result. Moreover,
the best regularity result is obtained if α = 0 in which case δ = 1 − 1

p which leads
to the most restrictive condition on u0. If Assumptions 4.3 and 4.4 hold for arbitrary
large values of p, q ∈ (2,∞) and α = 0, then the above result implies that for any
ε > 0

U ∈ C
1
2−ε,2m−ε(I × R

d ; C
N ) a.s.

and corresponding L p(�)-estimates hold for any p ∈ (2,∞). Improved Hölder regu-
larity results of order s+2m in the space variable can be obtained if f and g map into
Hs,q (see Remark 4.6). It would be interesting to develop a Hölder theory for (4.1) as
it is done in [36] for m = 1.

5 Parabolic systems of SPDEs of second order

In this section we discuss L p(Lq)-theory for systems of second order SPDEs with
rough initial values. The setting is the same as in Sect. 4. However, this time we will
consider B 	= 0. Related problems have been discussed in [62] in an L p(L p)-setting
with smooth initial values and in [36] in an L p(�; L2((0, T ) × R

d))-setting and a
Hölder setting, with vanishing initial values.

In this section we consider the following system of stochastic PDEs on
[0, T ] × R

d :

{
dU (t) + A(t)U (t)dt = f (t,U (t))dt + ∑

n≥1(bn(t)U (t) + gn(t,U (t))dwn(t),
U (0) = u0,

(5.1)

where wn is a sequence of independent standard Brownian motions. The function
U : [0, T ] × � → L p(Rd ; C

N ) is the unknown.
The operators A and bn are given by

(A(t, ω)φ)(x) = −
d∑

i, j=1

ai j (t, ω, x)∂ j∂kφ(x), x ∈ R
d , t ∈ [0, T ], ω ∈ �.

(bn(t, ω)φ)(x) =
( d∑

j=1

σ jkn(t, ω, x)∂ jφk(x)
)N

k=1
, x ∈ R

d , t ∈ [0, T ], ω ∈ �.

There is no need to consider lower order terms in A or bn since they can be absorbed
in the functions f and gn , respectively.

Remark 5.1 Thedivergence formcase could be treated in a similarmanner. SeeRemark
4.1.
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We make the following assumptions on the coefficients.

Assumption 5.2 (1) The functions ai j : [0, T ] × � × R
d → C

N×N and σ jkn :
[0, T ] × � × R

d → R are strongly progressively measurable.
(2) There exist μ ∈ (0, 1) and K > 0 such that |ai j (t, ω, x)|CN×N ≤ K and

‖(σ jkn(t, ω, ·))n≥1‖W 1,∞(Rd ;�2) ≤ K .

Re
( d∑
i, j=1

ξiξ j ((ai j (t, ω, x) − 
i j (t, ω, x))θ, θ)CN

)
≥ μ|ξ |2|θ |2,

for all ξ ∈ R
d , θ ∈ C

N , x ∈ R
d , t ∈ [0, T ]. Here for each fixed numbers i, j ∈

{1, . . . , d}, 
i j (t, ω, x) is the N × N diagonal matrix with diagonal elements
( 12

∑
n≥1 σikn(t, ω, x)σ jkn(t, ω, x))Nk=1.

(3) Assume there exists an increasing continuous function ζ : [0,∞) → [0,∞)with
ζ(0) = 0 such that for all i, j , x, y ∈ R

d , t ∈ [0, T ] and ω ∈ �,

|ai, j (t, ω, x) − ai, j (t, ω, y)| +
∑
n≥1

|σ jkn(t, ω, x) − σ jkn(t, ω, y)|2 ≤ ζ(|x − y|).

We start with the x-independent case.

Theorem 5.3 Let T ∈ (0,∞), p ∈ (2,∞), q ∈ [2,∞) and α ∈ [0, p
2 − 1) (or

p = q = 2 and α = 0). Set δ = 1 − 1+α
p and I = (0, T ). Suppose Assumption 5.2

holds, Assumption 4.4 holds with m = 1, and suppose further that ai j and σ jkn

are x-independent. Then for any u0 ∈ L p(�,F0; B2δ
q,p(R

d)), the problem (5.1) has a
unique strong solutionU ∈ L p

F (�; L p(I , wα; H2,q(Rd; C
N ))). Moreover, there exist

constantsC,Cε,Cε,θ depending on p, q, α, T , N , d, K , μ and the Lipschitz constants
of f and g such that

‖U‖L p(�;C(I ;B2δ
q,p(R

d ))) ≤ CKu0, f ,g,

‖U‖
L p(�;C([ε,T ];B2(1− 1

p )

q,p (Rd )))

≤ CεKu0, f ,g, ε ∈ (0, T ].

‖U‖L p(�;H θ,p(I ,wα;H2(1−θ),q (Rd ;CN ))) ≤ CθKu0, f ,g, θ ∈ [0, 1
2 )

‖U‖
L p(�;Cθ− 1+α

p (I ;H2(1−θ),q (Rd ;CN )))
≤ CθKu0, f ,g, θ ∈ ( 1+α

p , 1
2 )

‖U‖
L p(�;Cθ− 1

p ([ε,T ];H2(1−θ),q (Rd ;CN )))
≤ Cε,θKu0, f ,g, θ ∈ ( 1p ,

1
2 ), ε ∈ (0, T ].

where

Ku0, f ,g = ‖u0‖L p(�;B2δ
q,p(R

d )) + ‖ f (·, ·, 0)‖L p(�;L p(I ,wα,Lq (Rd ;CN )))

+ ‖(gn(·, ·, 0))n∈N‖L p(�;L p(I ,wα,H1,q (Rd ;�2))).
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Furthermore, if U 1,U 2 are the strong solution of (5.1) with initial value u10, u
2
0 ∈

L p(�,F0; B2δ
q,p(R

d)) respectively, then each of the above estimates holds with U

replaced by U 1 −U 2, and Ku0, f ,g replaced by Ku10−u20, f ,g
on the right-hand side.

Proof Define the function spaces Xθ = H2θ,q and Xθ,p = (X0, X1)θ,p as in The-
orem 4.5 with m = 1. Clearly, Assumptions 3.1 and 3.4 hold. In order to prove the
result we will check the conditions of Theorem 3.15 again. The proof is the same as for
Theorem 4.5, but this time we need to check (A, B) ∈ SMR(p, α, T ) with a nonzero
B. Indeed, let B(t)u = ∑N

k=1
∑d

j=1 b jk(t)Bjk with

b jk(t)h =
∞∑
n=1

σ jkn(t)hn, and (Bjkφ)� = δk�∂ jφk,

where δk� is the Kronecker symbol. Then Bjk generates a translation group on
Lq(Rd ; C

N ) given by (et B jk u(x))� = u�(x + δk�te j ), where e j denotes the j-th unit
vector in R

d . Then Assumption 3.17 is fulfilled, thanks to the fact that the coefficients
are x-independent. Moreover,

([B(t), B(t)]u)� =
d∑

i, j=1

∑
n≥1

σi�n(t)σ j�n(t)∂i∂ j u�.

Letting Ã(t) = A(t)+ 1
2 [B(t), B(t)], Theorem3.18gives that (A, B) ∈ SMR(p, α, T )

if and only if ( Ã, 0) ∈ SMR(p, α, T ). However, by Assumption 5.2 the operator Ã
fulfils Assumption 4.3 (with m = 1), and therefore, as in the proof of Theorem 4.5,
we find that ( Ã, 0) ∈ SMR(p, α, T ). ��

In the x-dependent case we obtain the following, where unlike in Theorems 4.5 and
5.3 we have to take p = q.

Theorem 5.4 Let T ∈ (0,∞), p ∈ [2,∞) and α ∈ [0, p
2 − 1) (where α = 0 if

p = 2). Set δ = 1− 1+α
p and I = (0, T ). Suppose Assumption 5.2 holds and 4.4 holds

with m = 1. Then for any u0 ∈ L p(�,F0; B2δ
p,p(R

d)), the problem (5.1) has a

unique strong solutionU ∈ L p
F (�; L p(I , wα; H2,p(Rd; C

N ))). Moreover, there exist
constants C,Cε,Cε,θ depending on p, α, T , N , d, ζ, K , μ and the Lipschitz constants
of f and g such that

‖U‖L p(�;C(I ;B2δ
p,p(R

d ))) ≤ CKu0, f ,g,

‖U‖
L p(�;C([ε,T ];B2(1− 1

p )

p,p (Rd )))

≤ CεKu0, f ,g, ε ∈ (0, T ].

‖U‖L p(�;H θ,p(I ,wα;H2(1−θ),p(Rd ;CN ))) ≤ CθKu0, f ,g, θ ∈ [
0, 1

2

)
‖U‖

L p(�;Cθ− 1+α
p (I ;H2(1−θ),p(Rd ;CN )))

≤ CθKu0, f ,g, θ ∈
(
1+α
p , 1

2

)
‖U‖

L p(�;Cθ− 1
p ([ε,T ];H2(1−θ),p(Rd ;CN )))

≤ Cε,θKu0, f ,g, θ ∈
(
1
p ,

1
2

)
, ε ∈ (0, T ].
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where

Ku0, f ,g = ‖u0‖L p(�;B2δ
p,p(R

d )) + ‖ f (·, ·, 0)‖L p(�;L p(I ,wα,L p(Rd ;CN )))

+ ‖(gn(·, ·, 0))n∈N‖L p(�;L p(I ,wα,H1,p(Rd ;�2))).

Furthermore, if U 1,U 2 are the strong solution of (5.1) with initial value u10, u
2
0 ∈

L p(�,F0; B2δ
p,p(R

d)) respectively, then each of the above estimates holds with U

replaced by U 1 −U 2, and Ku0, f ,g replaced by Ku10−u20, f ,g
on the right-hand side.

To prove this, arguing as in Theorem 5.3 it follows from Theorem 3.15 that it
suffices to prove that (A, B) ∈ SMR(p, α, T ). Wewill use a variation of a localization
argument of [68, Section 6]. For this we start with the following lemma.

Lemma 5.5 (Freezing lemma) Let T ∈ (0,∞), p ∈ [2,∞) and α ∈ [0, p
2 −1) (where

α = 0 if p = 2). Set δ = 1− 1+α
p and I = (0, T ). Suppose Assumption 5.2 holds. Let

f ∈ L p
F (� × I , wα; L p(Rd; C

N )) and g ∈ L p
F (� × I , wα; H1,p(Rd ; �2)). Assume

U is a strong solution of

{
dU (t) + A(t)U (t)dt = f (t)dt + ∑

n≥1(bn(t)U (t) + gn(t))dwn(t),
U (0) = 0,

(5.2)

There exists an ε = ε(p, q, α, T , N , d, K , μ) such that if U has support in Bε(x0) =
{x ∈ R

d : |x − x0| < ε} for some x0, then for each θ ∈ [0, 1
2 ) there is a constant C

such that

‖U‖L p(�;H θ,p(I ,wα;H2(1−θ),p(Rd )))

≤ C‖ f ‖L p(�;L p(I ,wα;L p(Rd ;CN ))) + C‖(gn)n∈N‖L p(�;L p(I ,wα;H1,p(Rd ;�2))).
(5.3)

Proof Without loss of generality we can assume x0 = 0. In order to simplify the
notation let

Yθ,η,t = L p(�; H θ,p((0, t), wα; H2η,p(Rd; C
N )))

Yθ,η,t (�
2) = L p(�; H θ,p((0, t), wα; H2(1−η),p(Rd; �2(CN )))).

Let Ã(t) and b̃n(t) be given by

Ã(t)φ = −
d∑

i, j=1

ai j (t, ω, 0)∂ j∂kφ(x),

(̃bn(t, ω)φ)(x) =
( d∑

j=1

σ jkn(t, ω, 0)∂ jφk(x)
)N

k=1
.

Furthermore, let

f̃ (·,U ) := f (·,U ) + ( Ã − A)U , and g̃n(·,U ) := gn(·,U ) + (̃bn − bn)U .

123



Stoch PDE: Anal Comp

Clearly, U satisfies

dU (t) + Ã(t)U (t)dt = f̃ (t,U (t)))dt +
∑
n≥1

(̃bn(t)U (t) + g̃n(t,U (t)))dwn(t).

Therefore, by Theorem 5.3

‖U‖Yθ,(1−θ),T ≤ CθK0, f̃ ,̃g

≤ CθK0, f ,g + C‖( Ã − A)U‖Y0,0,T + C‖((̃bn − bn)U )n≥1‖Y0,1,T .

To estimate the latter note that by Assumption 5.2 and the support condition onU , we
have

‖( Ã − A)U‖Y0,0,T ≤ ζ(ε)‖U‖Y0,1,T .

Similarly, for the bn-term, by the product rule and Assumption 5.2, we obtain (with
K as in Assumption 5.2) that for all t ∈ [0, T ],

‖((̃bn − bn)U (t))n≥1‖W 1,p(Rd ;�2(CN ))) ≤ K‖U (t)‖W 1,p(Rd ;CN )

+ ζ(ε)‖U (t)‖W 2,p(Rd ;CN )

≤ Cε‖U (t)‖L p(Rd ;CN ) + (ζ(ε)

+ ε)‖U (t)‖W 2,p(Rd ;CN ),

where in the last step we used [72, Corollary 1.5.2]. We can conclude that

‖U‖Yθ,(1−θ),T ≤ CθK0, f ,g + C(2ζ(ε) + ε)‖U‖Y0,1,T + Cε‖U‖Y0,0,T . (5.4)

Now let θ = 0 and choose ε > 0 such that C(2ζ(ε) + ε) ≤ 1
2 . Then we obtain

‖U‖Y0,1,T ≤ CK0, f ,g + C‖U‖Y0,0,T . (5.5)

The same estimate holds with T replaced by t .
Since U is a strong solution of (5.2), Lemma 2.7, the properties of A and bn , and

(5.5) give that, for all t ∈ [0, T ],

‖U (t)‖L p(�;L p(Rd ;CN )) ≤ C‖ f ‖Y0,0,t + C‖g‖Y
0, 12 ,t

(�2) + C‖U‖Y0,1,t
≤ C‖ f ‖Y0,0,t + C‖g‖Y

0, 12 ,t
(�2) + C‖U‖Y0,0,t .

Therefore, Gronwall’s lemma gives that for all t ∈ [0, T ],

‖U (t)‖L p(�;L p(Rd ;CN )) ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2).
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and thus

‖U‖Y0,0,T ≤ 2CK0, f ,g.

Substituting the latter estimate in (5.4) and (5.5) we find that for all θ ∈ [0, 1
2 ),

‖U‖Yθ,(1−θ),T ≤ CθK0, f ,g.

��
To be able to apply the freezing lemma, one also needs the following elementary

Fubini result, which is trivial if I = R, but for bounded intervals can still be deduced
from an interpolation argument.

Lemma 5.6 Let θ ∈ [0, 1], p ∈ (1,∞) and w ∈ Ap. Let I = (0, T ) for some
T ∈ (0,∞]. Let φ ∈ L p(Rd) be such that ‖φ‖L p(Rd ) = 1. We have that

‖ f ‖H θ,p(I ,w;L p(Rd ;CN )) �

( ∫
Rd

‖(t, x) 
→ φ(x − ξ) f (t, x)‖p
H θ,p(I ,w;L p(Rd ;CN ))

dξ
) 1
p ,

for all f ∈ H θ,p(I , w; L p(Rd)).

Proof Let ψ ∈ L p′
(Rd) of norm one be such that 〈φ,ψ〉 = 1. Consider the operators

defined by

P f (t, x, ξ) = φ(x − ξ) f (t, x) t ∈ I , x, ξ ∈ R
d ,

QF(t, x) =
∫
Rd

ψ(x − ξ)F(t, x, ξ)dξ t ∈ I , x ∈ R
d ,

for f ∈ L p(I , w; L p(Rd ; C
N )) and F ∈ L p(Rd ; L p(I , w; L p(Rd; C

N ))). Note that
QP f = f . By complex interpolation (see Proposition 2.4), it is thus enough to show
that

P : W θ,p(I , w; L p(Rd; C
N )) → L p(Rd;W θ,p(I , w; L p(Rd ; C

N ))),

Q : L p(Rd ;W θ,p(I , w; L p(Rd; C
N ))) → W θ,p(I , w; L p(Rd ; C

N )),

for θ = 0, 1. Let us consider θ = 0 first. For Q, by Hölder’s inequality we have that

‖QF‖L p(I ,w;L p(Rd ;CN ))) =
( ∫
I×Rd

|
∫
Rd

ψ(x − ξ)F(t, x, ξ)dξ |pw(t)dtdx
) 1

p

≤ ‖F‖L p(Rd ;L p(I ,w;L p(Rd ;CN ))).

and hence ‖Q‖ ≤ 1 for θ = 0. The above inequalities with f replaced by ∂t f , and
F replaced by ∂t F , then gives ‖Q‖ ≤ 1 for θ = 1. By Fubini it is straightforward to
check that P is an isometry for θ = 0, 1, and thus the result follows. ��
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We also need the following simple commutator formula.

Lemma 5.7 Let φ ∈ C1
c (R

d) and ψ ∈ W 1,p(Rd). Then for all s ∈ (0, 1)

(−�)s/2(φψ)(x) − φ(x)(−�)s/2(ψ)(x) = cd,s

∫
Rd

(φ(x + h)

− φ(x))|h|−s−dψ(x + h)dh

Proof The identity immediately follows from the following well-known identity (see
[77, Theorem 1.1(e)])

(−�)s/2ψ(x) = cd,s

∫
Rd

ψ(x + h) − ψ(x)

|h|d+s
dh.

��
Proof of Theorem 5.4 As already mentioned it suffices to prove that (A, B) ∈
SMR(p, α, T ) (in particular, one only has to treat the problem with u0 = 0). To
prove this we will use Proposition 3.10 and Lemma 5.5.

Step 1: Let θ ∈ (0, 1
2 ) and U ∈ Y0,1,T ∩ Yθ,1−θ,T be a solution to (5.1). We first

prove an a priori estimate in the Y0,1,T norm. Let ε > 0 be as in Lemma 5.5. Let
φ ∈ C∞

c (Rd) be such that supp (φ) ⊆ Bε(0) and ‖φ‖L p(Rd ) = 1. Fix ξ ∈ R
d and let

V ξ (t)(x) = U (t)(x)φ(x − ξ). Then suppV ξ ⊆ [0, T ] × Bε(ξ), V ξ (t)(0) = 0 and
V ξ satisfies

dV ξ (t) + A(t)V ξ (t)dt = f̃ (t)dt +
∑
n≥1

(bn(t)V
ξ (t) + g̃n(t))dwn(t),

where

f̃ = φ(· − ξ) f + AV ξ − φ(· − ξ)AU = φ(· − ξ) f

+
∑

|β|≤2,|γ |≤1

cβ,γ (∂
βφ(· − ξ))∂γU ,

g̃n = φ(· − ξ)gn + φ(· − ξ)bnU − bnV
ξ = φ(· − ξ)gn

+
( d∑

j=1

σ jkn(t, ω, x)∂ jφ(x − ξ)Uk

)N

k=1

for some coefficients cβ,γ ∈ L∞((0, T ) × � × R
d ; C

N×N ). Now Lemma 5.5 (in the
notation of its proof) implies that for any θ ′ ∈ [0, 1

2 ) there exists a C such that

‖V ξ‖Yθ ′,1−θ ′,T ≤ C‖ f̃ ‖Y0,0,T + C‖g̃‖Y
0, 12 ,T

(�2)

≤ C‖φ(· − ξ) f ‖Y0,0,T + C‖φ(· − ξ)g‖Y
0, 12 ,T

(�2)

+ C
∑
|β|≤2

‖∂β(φ(· − ξ))U‖Y
0, 12 ,T

,

(5.6)
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First let θ ′ = 0. For |α| = 2 we have (by the product rule)

‖φ(· − ξ)∂αU (t)‖L p(Rd ) ≤ ‖V ξ (t)‖W 2,p(Rd )

+ C
∑

|β|≤2,|γ |≤1

‖∂βφ(· − ξ)∂γU (t)‖L p(Rd ).

Therefore, after an integration over ξ ∈ R
d using Lemma 5.6, and using the classical

identity Wk,p(Rd ; C
N ) = Hk,p(Rd; C

N ) for k ∈ N we can conclude

‖U‖Y0,1,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2) + C‖U‖Y
0, 12 ,T

.

By using interpolation inequality (4.2) for k = m = 1 we find

‖U‖Y0,1,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2) + C‖U‖Y0,0,T .

The same is true with T replaced by t . Therefore, the term ‖U‖Y0,0,T can be estimated
by Gronwall’s lemma in the same way as in the proof of Lemma 5.5. Therefore, we
obtain

‖U‖Y0,1,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2). (5.7)

This is the required a priori estimate.
Step 2: Let θ ∈ (0, 1

2 ) and U ∈ Y0,1,T ∩ Yθ,1−θ,T be a solution to (5.1). We now
prove an a priori estimate in the Yθ,1−θ,T norm. For this we use (5.6) again. Observe
that

φ(· − ξ)∂ jU = ∂ j V
ξ + ∂ j (φ(· − ξ))U .

Therefore, by Lemma 5.7 we can write

φ(· − ξ)(−�)
1
2−θ ∂ jU = (−�)

1
2−θ (φ(· − ξ)∂ jU )

− Cd,θ

∫
Rd

(φ(· + h − ξ)

− φ(· − ξ))|h|−1+2θ−d∂ jU (· + h)dh

= (−�)
1
2−θ ∂ j V

ξ + (−�)
1
2−θ (∂ j (φ(· − ξ))U )

− Cd,θ

∫
Rd

(φ(· + h − ξ)

− φ(· − ξ))|h|−1+2θ−d∂ jU (· + h)dh
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It thus follows from (5.6) that

‖φ(· − ξ)(−�)
1
2−θ ∂ jU‖Yθ,0,T ≤ C‖φ(· − ξ) f ‖Y0,0,T + C‖φ(· − ξ)g‖Y

0, 12 ,T
(�2)

+ C
∑
|β|≤2

‖∂β(φ(· − ξ))U‖Y
0, 12 ,T

+ C‖(−�)
1
2−θ (∂ j (φ(· − ξ))U )‖Yθ,0,T

+ C
∫
Rd

∥∥∥(φ(· + h − ξ)

− φ(· − ξ))|h|−1+2θ−d∂ jU (·)(· + h)
∥∥∥
Yθ,0,T

dh

By Lemma 2.1 and Proposition 2.4 we have

‖(−�)
1
2−θ (∂ j (φ(· − ξ))U )‖Yθ,0,T ≤ C‖∂ j (φ(· − ξ))U‖Y

θ, 12−θ,T

≤ C‖∂ j (φ(· − ξ))U‖Y
θ, 12 ,T

+ C‖(∂ j (φ(· − ξ))U‖Yθ,0,T

Therefore, substituting this in the penultimate estimate and using Lemma 5.6, we
obtain (noting that 1 − θ > 1

2 so U ∈ Yθ, 12 ,T
):

‖(−�)
1
2−θ ∂ jU‖Yθ,0,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y

0, 12 ,T
(�2) + C‖U‖Y

θ, 12 ,T
+ R. (5.8)

where R is given by

R :=
∫
Rd

∥∥∥(φ(· + h − ξ) − φ(· − ξ))|h|−1+2θ−d∂ jU (·)(· + h)
∥∥∥
L p(Rd ,dξ ;Yθ,0,T )

dh.

Now write R = R1 + R2, where R1 is the part of the integral for |h| < 1 and R2 is the
part of the integral for |h| ≥ 1. Using the fundamental theorem of calculus, Fubini,
the triangle inequality and the translation invariance of Yθ,0,T in the space variable,
we obtain

R1 ≤
∫ 1

0

∫
|h|<1

∥∥∥|∇φ(· + sh − ξ)||h|2θ−d∂ jU (·)(· + h)
∥∥∥
L p(Rd ,dξ ;Yθ,0,T )

dhds

= C‖∂ jU‖Yθ,0,T ,

where C = Cφ

∫
|h|<1 |h|2θ−ddh. Similarly,

R2 ≤
∫

|h|≥1

∥∥∥(φ(· + h − ξ) − φ(· − ξ))|h|−1+2θ−d∂ jU (·)(· + h)
∥∥∥
L p(Rd ,dξ ;Yθ,0,T )

dh

= C‖∂ jU‖Yθ,0,T ,
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where C = Cφ

∫
|h|≥1 |h|−1+2θ−ddh. Combining this with (5.8), summing over j and

using Lemma 2.2 we obtain

‖U‖Yθ,1−θ,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2) + C‖U‖Y
θ, 12 ,T

Now using the interpolation estimate of Proposition 2.4 once more (which is possible
because 1 − θ > 1

2 ), we can conclude that

‖U‖Yθ,1−θ,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2) + C‖U‖Yθ,0,T .

In order to estimate ‖U‖Yθ,0,T note that by Lemma 2.7, (2.3) and (5.7),

‖U‖Yθ,0,T ≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2) + C‖AU‖Y0,0,T
≤ C‖ f ‖Y0,0,T + C‖g‖Y

0, 12 ,T
(�2) + C‖U‖Y0,1,T

≤ C‖ f ‖Y0,0,T + C‖g‖Y
0, 12 ,T

(�2).

We thus have the a priori estimate:

‖U‖Yθ,1−θ,T � ‖ f ‖Y0,0,T + ‖g‖Y
0, 12 ,T

(�2).

Step 3: Now to prove the existence of a solution in Y0,1,T ∩ Yθ,1−θ,T let Ã = −�.
Then by Proposition 3.8 the problem (5.1) with A replaced by Ã has a unique strong
solution in Y0,1,T ∩Yθ,1−θ,T . Moreover, letting Aλ and Bλ be as in Proposition 3.10 it
follows from the previous steps that the a priori bounds hold uniformly in λ ∈ [0, 1].
Therefore, Proposition 3.10 and the text below it gives the existence of a solution
U ∈ Y0,1,T ∩ Yθ,1−θ,T to (5.1). ��
Remark 5.8 To obtain regularity in the scale Hs,p(Rd ; C

N ) for s ∈ R in Theorem 5.4,
Remark 4.6 applies again.

Remark 5.9 (1) It would be natural to ask for an L p(Lq)-theory in Theorem 5.4. In
[42] Ap-weights in time, in combination with Rubio de Francia extrapolation
techniques, have been used to derive the case p 	= q from p = q, in the case of
continuous coefficients in time. This was later extended to VMO coefficients in
space in [33]. The extrapolation technique would be applicable here as well, but
it only gives regularity in L p(0, T , Lq(�; Lq(Rd; C

N ))) and not in L p((0, T ) ×
�; Lq(Rd; C

N ))) as one would like.
(2) Another natural question is whether Theorem 5.4 holds if the coefficients are only

VMO in the space variable. Some results in this direction have been found for
equations in divergence form in [73].

Remark 5.10 Let us motivate that in the commuting case the assumption that the oper-
ators bn as defined below (5.1) is not far from the general case. Indeed, assume that
B1, . . . , BJ , are differential operators of order one which generate commuting groups
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on Lq(Rd; C
N×N ) for allq ∈ (1,∞). Thenwecanwrite Bju = ∑d

k=1 Mjk∂ku+N ju,
where Mjk, N j are N × N matrices. Then the Mjk have real eigenvalues since oth-
erwise the Fourier symbol would be unbounded (use [44, Theorem 2.5.16] to reduce
to one fixed direction k). Now by [12, Theorem 0.1] the matrices (Mjk)

d
k=1 commute

and are diagonalizable. Moreover, if the groups (e·Bj )Jj=1 are commuting, then the

operators (Mjk)
J ,d
j=1,k=1 are commuting as well. Therefore, a standard result from lin-

ear algebra implies that (Mjk)
J ,d
j=1,k=1 are simultaneously diagonalizable. Hence by

a coordinate transformation we could have assumed that Mjk are diagonal matrices
with real entries.

Of course to reduce to this setting in a general set-up the coordinate transformations
would become (t, ω)-dependent and then the reduction breaks down. Even in the
(t, ω)-independent case the coefficients of A change after a coordinate transformation,
and more importantly the ellipticity conditions changes (unless all matrices Mjk are
hermitian, in which case the transformation is orthogonal). On the other hand, if one
does not assume the Bj ’s generate commuting groups, then the above fails, and one
needs to consider the case of general matrices. In general this leads to a p-dependent
stochastic parabolicity condition. See [36,62] for results in this direction.

6 Divergence form equations of second order withmeasurable
coefficients

In this section, we consider the problem:{
dU (t) + L(t)U (t)dt = f (t)dt + g(t)dWH (t), ∀t > 0
U (0) = 0,

where L(t) = −div a(t, .)∇, and a ∈ L∞(�×R+; L∞(Rd ;L(Cd))) is progressively
measurable and satisfies the uniform ellipticity condition:

Re〈a(ω, t, x)ξ, ξ 〉 ≥ C |ξ |2 ∀ξ ∈ C
d ,

for almost every (ω, t, x) ∈ �×R+ ×R
d , and f , g belong to appropriate tent spaces

defined below.
The idea of using tent spaces as solution spaces for stochastic PDE goes back to [9]. It
can be seen as part of the trend to use harmonic analysis “beyond Calderón–Zygmund
theory” in PDE problems with rough coefficients (see e.g. [5,48] and the references
therein). The results given here demonstrate how tent spaces can be used to treat prob-
lems with L∞(R+ × R

d) coefficients, extending the time-independent results of [9].
They include a deterministic result (under no extra assumption on the coefficients) that
can be seen as the first (to the best of our knowledge) extension of Lions’s maximal
regularity result from [82] to a non Hilbertian setting. For the stochastic problem, we
impose that

‖L(t)u‖L2(Rd ) � ‖u‖W 2,2(Rd ) ∀u ∈ W 2,2(Rd) ∀t ≥ 0.
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This holds when a is divergence free, i.e. when
d∑

i=1
ai, j∂i = 0 (almost surely) in the

sense of distributions for all j = 1, .., d. See Remark 6.12 for a discussion of this
condition.

We plan to develop the theory presented in this section in future work. We thus only
include here the simplest situation that showcases how the method of proof used in
this paper (particularly in Theorem 3.9), as well as the idea of using the time weights
wα to vary regularity, can be combined with the tent space approach of [9]. For this
reason, we choose to take zero initial data (although we could add data in appropriate
fractional domains, see Remark 6.10 below), and keep the equation linear (although
semilinearities could be treated through fixed point arguments).

Our starting point is the L2 theory of J.L. Lions (see [102], [75], [83]), where
solution spaces are the energy spaces L2(R+;W 1,2(Rd)), forcing terms are taken in
L2(R+;W−1,2(Rd)), and data are in L2(Rd). Lions’s theory includes the existence
of an evolution family {�(t, s) ; t > s} (see e.g. [27, Chap.XVIII]). In the determin-
istic setting, Lions’s theory has been extended in [10] to allow data in L p(Rd). The
appropriate solution spaces then turn out to be tent spaces T p,2

0 , in the sense that there
is a norm equivalence

‖u0‖L p(Rd ) � ‖(t, x) 
→ √
t∇�(t, 0)u0(x)‖T p,2

0
;

see [10, Corollary 7.5]. Let us recall the definition of these tent spaces, and more
generally of their Sobolev counterparts.

Definition 6.1 Let p ∈ [1,∞) and σ ≥ 0. Let K be a Hilbert space. The tent space
T p,2
σ (K ) is defined as the completion of C∞

c (R+ × R
d; K ) with respect to the norm

‖g‖
T p,2
σ (K )

:=
( ∫

Rd

( ∫ ∞

0
−
∫
B(x,t

1
2 )

‖g(y, t)‖2K dy
dt

t1+σ

) p
2
dx

) 1
p
.

When K = C, we just write T p,2
σ instead of T p,2

σ (C).

Note that, by Fubini’s theorem, T 2,2,σ = L2(R+ × R
d , dtdx

t1+σ ).

As proven in [4], the aperture can be changed in the definition of T p,2
σ in the

following way. There exists C > 0 such that for α ≥ 1 and all g ∈ T p,2
σ (K ):

( ∫
Rn

( ∫ ∞

0
−
∫
B(x,αt

1
2 )

‖g(y, t)‖2K dy
dt

t1+σ

) p
2
dx

) 1
p ≤ Cα

d
min(p,2) ‖g‖

T p,2
σ (K )

.

(6.1)

We think of T p,2
σ has being to T p,2

0 what W σ,p is to L p. This is motivated by the
following classical fact from Littlewood–Paley theory: for all p > 1 and all u0 ∈
L p(Rd), we have that
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‖u0‖L p(Rd ) � ‖(t, x) 
→ (−t�)
1
2 exp(t�)u0(x)‖T p,2

0
.

This follows from the Hardy space theory introduced in [40] and interpolation. There-
fore, for σ ≥ 0 and f ∈ Hσ,p, we have that

‖(−�)
σ
2 f ‖L p(Rd ) � ‖(t, x) 
→ (−t�)

1
2 exp(t�)(−�)σ f (x)‖

T p,2
0

= ‖(t, x) 
→ (−t�)
1+σ
2 exp(t�) f (x)‖

T p,2
σ

� ‖(t, x) 
→ (−t�)
1
2 exp(t�) f (x)‖

T p,2
σ

,

where the last equivalence comes from a change of square function argument involving
Schur’s Lemma (see e.g. [50, Theorem 7.10]). Note that, in the time dependent setting,
[10, Corollary 7.5] gives that there exists pc < 2 such that for all p > pc,

‖ f ‖L p(Rd ) � ‖(t, x) 
→ √
t∇�(t, 0) f (x)‖

T p,2
0

.

At this stage, we do not know if, more generally for σ ≥ 0,

‖(−�)
σ
2 f ‖L p(Rd ) � ‖(t, x) 
→ √

t∇�(t, 0) f (x)‖
T p,2
σ

.

In this section we thus use well chosen combinations of powers of div a∇ and the
parameter σ to measure regularity. This is in the spirit of Amenta–Auscher’s tent space
approach to elliptic boundary value problems with fractional regularity [5] (where the
link between σ and powers of the relevant Dirac operator is completely understood).

Our main result is the following theorem, proven at the end of the section.

Theorem 6.2 Let σ ≥ 0 and p > min(1, 2d
d+2σ+2 ). Let f ∈ L p(�; T p,2

σ ), and g ∈
L p(�; T p,2

σ+1(H)) be an adapted process such that ∇g ∈ L p(�; T p,2
σ (Hd)). Under

Assumption (6.11), we have that the solution process defined by

U (t, .) =
t∫

0

�(t, s) f (s)ds +
t∫

0

(�(t, s) ⊗ IH )g(s)dWH (s) ∀t > 0,

satisfies

E‖U‖p

T p,2
σ+2

� E‖ f ‖p

T p,2
σ

+ E‖g‖p

T p,2
σ+1(H)

+ E‖∇g‖p

T p,2
σ (Hd )

.

Remark 6.3 (1) To compare such tent space estimates to L p(Lq) regularity, one should
note that, by [7, Proposition 2.1], we have that, for all σ ≥ 0 and all p ≥ 2, there
exists C > 0 such that for all F ∈ L p(Rd; L2(R+, dt

t1+σ )):

‖F‖
T p,2
σ

≤ C‖F‖L p(Rd ;L2(R+, dt
t1+σ ))

.
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The reverse inequality holds for p ≤ 2. This means that for p ≥ 2 the tent space
theory allows more forcing terms than its L p(L2) analogue. For p < 2, the class of
forcing terms T p,2 is smaller than its L p(L2) counterpart, which it has to be, given
that maximal regularity in L p(L2) does not hold for p < 2 (see [68]).
(2) On the other hand, we estimate ‖U‖

T p,2
σ+2

in terms of ‖∇g‖
T p,2
σ (Hd )

. A more natural

generalisation of Lions’smaximal regularity resultwould be to estimate ‖∇U‖
T p,2
σ (Hd )

in terms of ‖g‖
T p,2
σ

or ‖U‖
T p,2
σ

in terms of ‖G‖
T p,2
σ (Hd )

for g = divG. At this stage,

we would need to know that {(t − s)
1
2 ∇�(t, s) ; t > s} is uniformly bounded in

L(L2(Rd), L2(Rd ; C
d)) to study suchmaximal regularity. The fact that we only know

uniform boundedness of {�(t, s) ; t > s} is what led us to the notion of maximal
regularity used here. Note, however, that this uniform boundedness of the evolution
family is, in Lions’s theory, a consequence of the energy estimates that also give the
L2(W−1,2) − L2(W 1,2) maximal regularity. So, while L2( dttσ ; L2) − L2( dt

t2+σ ; L2)

maximal regularity is trivial in the time independent case, it is not so in the time
dependent case, where generation of a bounded evolution family is not a substantially
easier question thanmaximal regularity. Nevertheless, we plan to return to the question
of estimating ‖∇U‖

T p,2
σ (Hd )

in future work.

To prove Theorem 6.2, we proceed as in Theorem 3.9, and decompose the problem
into a time-independent stochastic part, and a time-dependent deterministic part. Our
key technical tool to estimate both parts is extrapolation in tent spaces, as developed
in [8] and [9]. In particular, we need some simple variations of [9, Proposition 5.1],
proven below (we include the details for the convenience of the reader). These results
make extensive use of the notion of L2 − L2 off-diagonal decay.

Definition 6.4 A family of bounded linear operators {K (t, s) ; t > s} ⊂ L(L2(Rd))

is said to have L2− L2 off-diagonal decay of any order if, for eachm ∈ N, there exists
Cm > 0 such that, for every Borel sets E, F ⊂ R

d , every u ∈ L2(Rd), every t > s,
we have that

‖1E K (t, s)(1Fu)‖2 ≤ Cm
(
1 + d(E, F)2

t − s

)−m‖1Fu‖2,

where d(E, F) = inf{d(x, y) ; x ∈ E, y ∈ F}. A one parameter family {K (t) ; t >
0} ⊂ L(L2(Rd)) is said to have L2 − L2 off-diagonal decay of any order if the two
parameter family {K (t − s) ; t > s} does.

Proposition 6.5 Let {K (t, s) ; t > s} ⊂ L(L2(Rd)) be uniformly bounded with
L2 − L2 off-diagonal decay of any order. Assume that

MK f (t, .) =
t∫

0

K (t, s) f (s)ds,
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defines a bounded linear operator from T 2,2
σ to T 2,2

σ+2 for all σ ≥ 0. Then, for all σ ≥ 0

and all p > min(1, 2d
d+2σ+4 ), MK extends to a bounded linear operator from T p,2

σ

to T p,2
σ+2.

Proof We introduce the sets

C j (x, t) =
{
B(x, t) j = 0
B(x, 2 j t)\B(x, 2 j−1t) j = 1, 2, . . .

Let t > 0 and f ∈ T 2,2
σ ∩ T p,2

σ .

∥∥∥(t, x) 
→
∫ t

0
K (t, s) f (s, ·)(x) ds

∥∥∥
T p,2
σ+2

≤
∞∑
j=0

∞∑
k=1

I j,k +
∞∑
j=0

J j ,

where

I pj,k=2− kp
2

∫
Rn

( ∫ ∞

0
−
∫
B(x,t

1
2 )

∫ 2−k t

2−k−1t
|K (t, s)[1

C j (x,4t
1
2 )

f (s, ·)](y)|2 ds dy
dt

tσ+2

) p
2
dx

and

J p
j =

∫
Rn

( ∫ ∞

0
−
∫
B(x,t

1
2 )

( ∫ t

t
2

K (t, s)[1
C j (x,4s

1
2 )

f (s, ·)](y)ds
)2

dy
dt

tσ+3

) p
2
dx .

Let us start with the estimate for I j,k for j ≥ 0 and k ≥ 1. Using the off-diagonal
decay, we have the following, for all x ∈ R

d :

∫ ∞

0
−
∫
B(x,t

1
2 )

∫ 2−k t

2−k−1t
|K (t, s)[1

C j (x,4t
1
2 )

f (s, ·)](y)|2 ds dy
dt

tσ+2

�
∫ ∞

0

∫ 2−k t

2−k−1t

∥∥1
B(x,t

1
2 )
K (t, s)[1

C j (x,4t
1
2 )

f (s, ·)]∥∥2L2 ds
dt

t
d
2 +σ+2

�
∫ ∞

0

∫ 2−k t

2−k−1t
(
4 j t

t − s
)−d

∥∥1
C j (x,4t

1
2 )

f (s, ·)∥∥2L2 ds
dt

t
d
2 +σ+2

� 4− jd
∫ ∞

0

( ∫ 2k+1s

2k s

dt

t
d
2 +σ+2

)∥∥1
B(x,2 j+ k

2+3s
1
2 )

f (s, ·)∥∥2L2 ds

� 4− jd2−k( d2 +σ+1)
∫ ∞

0

∥∥1
B(x,2 j+ k

2+3s
1
2 )

f (s, ·)∥∥2L2

ds

s
d
2 +σ+1

.

We then use the change of aperture formula in tent spaces (6.1) to get that

I j,k � 2− jd2− 1
2 k(

d
2 +σ+2)2( j+

k
2+3) d

p∧2 ‖ f ‖
T p,2
σ

.

123



Stoch PDE: Anal Comp

The sum
∑

j,k I j,k thus converges since we assumed that p > 2d
d+2σ+4 .

Turning to J0, and using the fact the M is bounded from T 2,2
σ+ d

2
to T 2,2

σ+2+ d
2
, we have

that

∫ ∞

0
−
∫
B(x,t

1
2 )

|
∫ t

t
2

K (t, s)[1
B(x,4s

1
2 )

f (s, ·)](y)ds|2 dy dt

tσ+3

�
∫ ∞

0
−
∫
B(x,t

1
2 )

|
∫ t

0
K (t, s)[1

B(x,4s
1
2 )

f (s, ·)](y)ds|2 dy dt

tσ+3 +
∞∑
k=0

I0,k

� ‖MK

(
(s, y) 
→ 1

B(x,4s
1
2 )
(y) f (s, y)

)
‖T 2,2

σ+2+ d
2

+
∞∑
k=0

I0,k

�
∫ ∞

0
−
∫
B(x,s

1
2 )

| f (s, y)|2dy ds

sσ+1 +
∞∑
k=0

I0,k .

It remains to estimate J j for j ≥ 1. We have

∫ ∞

0
−
∫
B(x,t

1
2 )

|
∫ t

t
2

K (t, s)[1
C j (x,4s

1
2 )

f (s, ·)](y)ds|2 dy dt

tσ+3

�
∫ ∞

0
−
∫
B(x,t

1
2 )

∫ t

t
2

|K (t, s)[1
C j (x,4s

1
2 )

f (s, ·)](y)|2 ds dy dt

tσ+2

�
∫ ∞

0

∫ t

t
2

(
4 j s

t − s
)−d‖1

B(x,2 j+2s
1
2 )

f (s, ·)‖2L2 ds
dt

t
d
2 +σ+2

≤ 4− jd
∫ ∞

0

∫ t

t
2

‖1
B(x,2 j+2s

1
2 )

f (s, ·)‖2L2

ds

s
d
2 +σ+2

dt

= 4− jd
∫ ∞

0

( ∫ 2s

s
dt

)
‖1

B(x,2 j+2s
1
2 )

f (s, ·)‖2L2

ds

s
d
2 +σ+2

� 4− jd
∫ ∞

0
‖1

B(x,2 j+2s
1
2 )

f (s, ·)‖2L2

ds

s
d
2 +σ+1

.

Using the change of aperture formula (6.1) one more time, we have that

J j � 2− jd2( j+2) d
p∧2 ‖ f ‖

T p,2
σ

,

which concludes the proof. ��
In a very similar way, we have the following stochastic version:

Proposition 6.6 Let {K (t, s) ; t > s} be a two-parameter progressively measurable
process with values in L(L2(Rd)). Assume that, almost surely, {K (t, s) ; t > s} is
uniformly bounded with L2 − L2 off-diagonal decay of any order. Assume further
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that

SK g(t, .) =
t∫

0

(K (t, s) ⊗ IH )g(s)dWH (s),

defines abounded linear operator from L2(�; T 2,2
σ+1(H)) to L2(�; T 2,2

σ+2) for allσ ≥ 0.
Then, for allσ ≥ 0 and p > min(1, 2d

d+2σ+2 ),SK extends to a bounded linear operator

from L p(�; T p,2
σ+1(H)) to L p(�; T p,2

σ+2).

Proof Reasoning as in [9, Proposition 5.1], and using the Itô isomorphism for stochas-
tic integrals (Theorem 2.6) as well as a square function estimate [92, Proposition 6.1],
we obtain

E

∥∥∥(t, x) 
→
∫ t

0
(K (t, s) ⊗ IH )g(s, ·)(x) dWH (s)

∥∥∥p

T p,2
σ+2

� E

∫
Rd

( ∫ ∞

0
−
∫
B(x,t

1
2 )

∫ t

0
‖(K (t, s) ⊗ IH )[g(s, ·)](y)‖2H ds dy

dt

tσ+3

) p
2
dx .

One can then copy the proof of Proposition 6.5 with σ replaced by σ + 1, undoing
the Itô isometry when handling the J0 term. The only difference is that there is no

factor 2− kp
2 in front of the I j,k term (as we use Itô’s isomorphism instead of Cauchy–

Schwarz inequality). This is the reason why one needs p > min(1, 2d
d+2σ+2 ) rather

than p > min(1, 2d
d+2σ+4 ). ��

6.1 Deterministic time-dependent maximal regularity in Tp,2� .

We consider the problem

{
∂t u(t, x) − div a(t, .)∇u(t, x) = f (t, x), t ≥ 0, x ∈ R

d ,

u(0) = 0,
(6.2)

for f ∈ T 2,2
s ∩ T p,2

s . Our goal is to derive a priori maximal regularity estimates for
the solution given by

u(t, .) =
t∫

0

�(t, s) f (s, .)ds,

where {�(t, s) ; t > s} ⊂ L(L2(Rd)) is Lions’s evolution family.
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To do so, we consider the maximal regularity operator defined, for f ∈ T 2,2
−1 =

L2(R+ × R
d) by

M f (t, .). =
t∫

0

�(t, s) f (s, .)ds

Thanks to the uniform boundedness of �(t, s) ∈ L(L2(Rd)) (see e.g. [10, Lemma
3.14]), we have the following mapping properties in the T 2,2

σ scale. See Remark 6.3
for a discussion of the meaning of this notion of maximal regularity.

Proposition 6.7 The operator M, initially defined on L2(R+ × R
d), extends to a

bounded linear operator from T 2,2
σ to T 2,2

σ+2 for all σ ≥ 0.

Proof Let f ∈ T 2,2
σ . We have that M f = M1( f ) + M2( f ), where, for all t > 0,

M1( f )(t, .) =
t
2∫

0

�(t, s) f (s)ds, M2( f )(t, .) =
t∫

t
2

�(t, s) f (s)ds.

For M1( f ), we have the following

‖M1( f )‖2T 2,2
σ+2

=
∞∫
0

‖
t
2∫

0

�(t, s) f (s)ds‖22
dt

tσ+3 �
∞∫
0

t
2∫

0

‖�(t, s) f (s)‖22ds
dt

tσ+2

�
∞∫
0

‖ f (s)‖22
⎛
⎝ ∞∫
2s

dt

tσ+2

⎞
⎠ ds �

∞∫
0

‖ f (s)‖22
ds

sσ+1 .

To estimateM2( f ), we use Hardy inequality and the uniform boundedness of �(t, s)
as follows:

‖M2( f )‖2T 2,2
σ+2

=
∞∫
0

‖
t∫

t
2

�(t, s) f (s)ds‖22
dt

tσ+3

�
∞∫
0

⎛
⎜⎝1

t

t∫
t
2

‖�(t, s)( f (s)s− σ+1
2 )‖2ds

⎞
⎟⎠

2

dt

�
∞∫
0

⎛
⎜⎝1

t

t∫
t
2

‖ f (s)s− σ+1
2 ‖2ds

⎞
⎟⎠

2

dt �
∞∫
0

‖ f (s)‖22
ds

sσ+1 .

��
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Theorem 6.8 Let σ ≥ 0 and p > min(1, 2d
d+2σ+4 ) The deterministic maximal regu-

larity operator M extends to a bounded linear operator from T p,2
σ to T p,2

σ+2.

Proof The family {�(t, s) ; t > s} has L2 − L2 off-diagonal decay of any order by
[10, Proposition 3.19]. The result thus follows from Propositions 6.7 and 6.5. ��
Remark 6.9 As in [8–10], we could also exploit L p − L2 off-diagonal decay for p < 2
(and even p = 1 if the coefficients are real valued). This would give a wider range of
p (and the full range (1,∞) if the coefficients are real valued). We leave this technical
improvement for future work.

6.2 Stochastic time-independent maximal regularity in T p,2
�

In this subsection we consider the problem

{
dU (t) − �U (t)dt = g(t)dWH (t),
U (0) = 0,

where σ ≥ 0, and g is an adapted process in L p(�; T p,2
σ (H)) such that ∇g ∈

L p(�; T p,2
σ (Hd)). Propositions 4.1 and 5.1(applied with the kernel K (t, s) =

exp((t − s)�)div)) from [9] give that the mild solution defined by

U (t) =
t∫

0

exp((t − s)�)g(s)dWH (s)

satisfies

E‖�U‖p

T p,2
σ

� E‖∇g‖p

T p,2
σ (Hd )

, (6.3)

Remark 6.10 As in [9, Lemma 6.3], we could add initial data u0 ∈ L
β
2 for appropriate

values of β. To do so, one needs to modify the proof of [9, Lemma 6.3] to control

L
1
2 exp(−t L)u0 instead of ∇ exp(−t L)u0.

6.3 Stochastic time-dependent maximal regularity in Tp,2� .

We now combine the previous results to treat our main problem

{
dU (t) + L(t)U (t)dt = f (t)dt + g(t)dWH (t),
U (0) = 0,

We choose not to include initial data, but could do so as indicated in the above remark.
To allow the approach used inTheorem3.9 towork here,we need tomake the following
assumption on our L(t, ω) = −diva(t, ω, .)∇ operators:
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Assumption 6.11 There exists C > 0 such that for all t ≥ 0, all ω ∈ �, and all
u ∈ W 2,2(Rd),

‖L(t, ω)u‖L2(Rd ) ≤ C‖u‖W 2,2(Rd ).

Remark 6.12 Assumption 6.11 can be satisfied by coefficients that do not have any
regularity in space or time. Indeed, it holds for all divergence free coefficients, i.e.

coefficients such that
d∑

i=1
ai, j∂i = 0 (almost surely) in the sense of distributions for all

j = 1, .., d. This was first remarked (to the best of our knowledge) in [39, Lemma 4.4].
Example of divergence free coefficients include, ford = 3,matrices forwhich columns
are of the form curlF for some Lipschitz vector field F . Since Assumption 6.11
is also satisfied when the coefficients a are Lipschitz continuous in space (by the
product rule and Riesz transform boundedness), we have that Assumption 6.11 holds
for all coefficients of the form b + c where b ∈ L∞(� × R+;W 1,∞(Rd)) and c ∈
L∞(� × R+ × R

d) is divergence free.

Lemma 6.13 Under Assumption (6.11), we have that {t L(t, ω)(I − t�)−1 , t > 0}
has L2 − L2 off-diagonal decay of any order, uniformly in ω ∈ �.

Proof Let E, F ⊂ R
d be two Borel sets such that d(E, F) > 0. Let η ∈ C∞(Rd) be

such that η(x) = 1 for all x ∈ E , η(x) = 0 for all x /∈ Ẽ = {y ∈ R
d ; d(y, E) ≤

d(E,F)
2 }, and ‖∇η‖∞ ≤ 1

d(E,F)
. Note that Assumption 6.11 implies that

sup
t∈R+,ω∈�

‖t L(t, ω)(I − t�)−1‖L(L2(Rd ) < ∞.

For u ∈ L2(Rd), t > 0, and ω ∈ �, we thus have that

‖1E t L(t, ω)(I − t�)−1(1Fu)‖2 = ‖1E t L(t, ω)η(I − t�)−1(1Fu)‖2
≤ ‖t L(t, ω)(I − t�)−1(I − t�)(η(I − t�)−1(1Fu))‖2
� ‖(I − t�)(η(I − t�)−1(1Fu))‖2
= ‖1Ẽ (I − t�)(η(I − t�)−1(1Fu))‖2
≤ ‖1Ẽ (I − t�)−1(1Fu)‖2 + ‖1Ẽ t�(η(I − t�)−1(1Fu))‖2

Since {(I − t�)−1 ; t > 0} has L2− L2 off-diagonal decay of any order (see e.g. [11]
or just use standard heat kernel bounds), we only need to consider the second term.
From Leibnitz rule, we have that, for all v ∈ D(L),

�(ηv) = η� + 2∇η.∇v + div(v∇η).
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Therefore

‖1Ẽ t�(η(I − t�)−1(1Fu))‖2
� ‖1Ẽ t�(I − t�)−1(1Fu)‖2 + ‖∇η‖∞‖t∇(I − t�)−1(1Fu)‖2

+ ‖1Ẽ tdiv((∇η)(I − t�)−1(1Fu))‖2
� ‖1Ẽ t�(I − t�)−1(1Fu)‖2 +

√
t

d(E, F)
‖√t∇(I − t�)−1(1Fu)‖2

+ ‖1Ẽ tdiv((∇η)(I − t�)−1(1Fu))‖2

Since {t�(I − t�)−1 ; t > 0} and √
t∇(I − t�)−1 have L2 − L2 off-diagonal decay

of any order by [11, Proposition 5.2] (or just heat kernel estimates), and since one

can assume that
√
t

d(E,F)
≤ 1 without loss of generality (if

√
t

d(E,F)
> 1, the estimates

follow directly from Assumption 6.11), we only need to consider the last term. Using
Leibnitz rule again, we have that

‖1Ẽ tdiv(∇η(I − t�)−1(1Fu))‖2
≤ max

i, j=1,...,d

(‖t(∂i∂ jη)‖∞‖1Ẽ (I − t�)−1(1Fu)‖2
+ ‖√t∂ jη‖∞‖1Ẽ

√
t∇(I − t�)−1(1Fu)‖2

)
,

which concludes the proof since {(I − t�)−1 ; t > 0} and √
t∇(I − t�)−1 have

L2 − L2 off-diagonal decay of any order by [11, Proposition 5.2] (or just standard
heat kernel bounds). ��

We can now prove Theorem 6.2, which statement we recall here.

Theorem 6.14 Let σ ≥ 0 and p > min(1, 2d
d+2σ+2 ). Let f ∈ L p(�; T p,2

σ ), and

g ∈ L p(�; T p,2
σ+1(H)) be an adapted process such that ∇g ∈ L p(�; T p,2

σ (Hd)).
Under Assumption (6.11), we have that the solution process defined by

U (t, .) =
t∫

0

�(t, s) f (s)ds +
t∫

0

(�(t, s) ⊗ IH )g(s)dWH (s) ∀t > 0,

satisfies

E‖U‖p

T p,2
σ+2

� E‖ f ‖p

T p,2
σ

+ E‖g‖p

T p,2
σ+1(H)

+ E‖∇g‖p

T p,2
σ (Hd )

.

Proof As in the proof of Theorem 3.9, we decompose U as U = V1 + V2, where

V1(t, .) =
t∫

0

exp((t − s)�)g(s)dWH (s) ∀t > 0,
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V2(t, .) =
t∫

0

�(t, s) f (s)ds +
t∫

0

(L(s) − �)V1(s)ds ∀t > 0.

Applying the deterministic estimate (Theorem 6.8) pathwise, along with the stochastic
time-independent estimate from [9] (6.3), we have that

E‖V2‖p

T p,2
σ+2

� E‖ f ‖p

T p,2
σ

+ E‖�V1‖p

T p,2
σ

+ E‖L(.)V1‖p

T p,2
σ

� E‖ f ‖p

T p,2
σ

+ E‖∇g‖p

T p,2
σ (Hd )

+ E‖L(.)V1‖p

T p,2
σ

.

To estimate the last term, we use Lemma 6.13 and [50, Theorem 5.2] (where the case
σ = 0 is treated but the proof extends verbatim to σ > 0) to obtain

E‖L(.)V1‖p

T p,2
σ

� E‖(t, x) 
→ t L(t)(I − t�)−1(t−1 − �)V1(t, x)‖p

T p,2
σ

� E‖(t, x) 
→ t−1V1(t, x)‖p

T p,2
σ

+ E‖�V1‖p

T p,2
σ

.

To conclude the proof, we use (6.3) again to evaluate the last term, and treat the
remaining term through an application of Propositions 6.5 and 6.6. This is possible
because {exp((t − s)�) ; t > s} has L2 − L2 off-diagonal decay of any order, and
because, by Itô isometry,

E‖(t, x) 
→ t−1

t∫
0

exp((t − s)�)g(s, .)(x)dWH (s)‖2
T 2,2
σ

� E

∞∫
0

t∫
0

‖ exp((t − s)�)g(s, .)‖2L2(Rd ;H)
ds

dt

tσ+3

≤ E

∞∫
0

(

∞∫
s

dt

tσ+3 )‖g(s, .)‖2L2(Rd ;H)
ds � ‖g‖2

T 2,2
σ+1(H)

.

We thus have that

E‖L(.)V1‖p

T p,2
σ

� E‖g‖p

T p,2
σ+1(H)

+ E‖∇g‖p

T p,2
σ (Hd )

,

which concludes the proof. ��
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