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A novel dynamic aeroelastic framework for aeroelastic tailoring and

structural optimisation✩

N.P.M. Wertera,1,∗, R. De Breukera,2

aDelft University of Technology, Faculty of Aerospace Engineering, Aerospace Structures and Computational Mechanics,

Kluyverweg 1, 2629 HS, Delft, the Netherlands

Abstract

Driven by a need to improve the efficiency of aircraft and reduce the fuel consumption, composite materials

are applied extensively in the design of aircraft. A dynamic aeroelastic framework for the conceptual design

of a generic composite wing structure is presented. The wing is discretized in several spanwise sections,

where each section has a number of laminates throughout the cross-section, each having their own stiffness

and thickness. The model uses a geometrically nonlinear beam model linearized around the nonlinear static

aeroelastic equilibrium position coupled to a continuous-time state-space unsteady aerodynamic model to

obtain the dynamic aeroelastic response, making the model suitable for dynamic aeroelastic analysis of

generic aircraft wings under the assumption of small disturbances with respect to the static aeroelastic

equilibrium position. Two optimisations are run for a generic aircraft wing under manoeuvre load conditions

and aeroelastic, structural, and aerodynamic constraints: one, a quasi-isotropic wing to serve as a reference

solution and two, a fully tailored wing clearly showing the benefit of aeroelastic tailoring and the use of the

present framework for conceptual wing design.
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Nomenclature

a = Laminate in-plane compliance matrix (m2/N)

E = Young’s modulus (GPa)

E11 = Longitudinal modulus (GPa)

E22 = Transverse modulus (GPa)
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Fi = Force in direction i (N)

G = Shear modulus (GPa)

G12 = Shear modulus (GPa)

h = Plunge displacement (m)

I = Inertia tensor (kgm2)

K = Stiffness matrix

l = Length (m)

m = Mass (kg)

M = Mass matrix

Mi = Moment about axis i (Nm)

mA = Mass per unit length (kg/m)

mQ = First mass moment tensor per unit length (kgm/m)

mI = Mass inertia tensor per unit length (kgm2/m)

p = Structural degrees of freedom vector

r = Distance vector (m)

R = Rotation matrix (-)

tply = Ply thickness (mm)

T = Kinetic energy (Nm)

u = Displacement (m)

v = Velocity vector (m/s)

V∞ = Free stream velocity (m/s)

x = Position (m)

α = Angle of attack (deg)

γ = Shear strain (-)

Γ = Vortex strength (m2/s)

ǫ = Normal strain (-)

θ = Total rotation pseudovector(-)

ν12 = Poisson’s ratio (-)

ξi = Lamination parameter i (-)

ρ = Density (kg/m3)

1. Introduction

Driven by a need to improve the efficiency of aircraft and reduce the fuel consumption, composite

materials are applied extensively in the design of aircraft. In addition to a high specific strength and
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stiffness, they also offer the designer the freedom to tailor the stiffness in desirable directions. One of the

potential applications of this directional stiffness is aeroelastic tailoring, defined by Shirk et al.[1] as:

the embodiment of directional stiffness into an aircraft structural design to control aeroelastic

deformation, static or dynamic, in such a fashion as to affect the aerodynamic and structural

performance of that aircraft in a beneficial way.

An extensive summary of early research on aeroelastic tailoring of swept and unswept wings has been

written by Hertz et al.[2] Researchers have applied aeroelastic tailoring for different aspects of aircraft

performance, for example, weight reduction of aircraft[3–5], gust load alleviation[6], improvement of flutter

speed[7, 8] and drag reduction.[9] Furthermore, some research has been done on the effect of aeroelastic

tailoring on the stability of supersonic aircraft[10], wings with external stores[11] and also in applications

outside aerospace engineering.[12]

Early research performed by Librescu has focused on the aeroelastic tailoring of thin-walled beams,[13–

15] which has more recently been extended by Qin et al. [10, 16]. The effect of variable stiffness along

the span has been investigated by Dillinger et al.[17] using a shell model coupled to DLM in Nastran to

do the static aeroelastic optimization of the top and bottom skin using lamination parameters and the

laminate thickness. When looking at full wingbox tailoring including spars, Guo[5] investigates the effect of

ply angles on the flutter speed of an aerobatic aircraft wing. The effect of linearly varying fibre angles on

the aeroelastic response of a composite plate has been investigated by Stodieck et al.[18] and Stanford et

al.[19] More recently, the use of a varying fibre angle on the top and bottom skin of the wing structure for

aeroelastic tailoring has been investigated by several researchers.[20, 21] However, in order to comply with

certification requirements and reduce the number of design variables, the fibre angles at each location were

limited to 0 deg, 45 deg, −45 deg, and 90 deg and tailoring is achieved by varying the fraction of each of

the discrete ply angles in the stacking sequence and varying the 0 deg direction by means of fibre steering,

thus limiting the design space a priori.

When looking at aeroelastic optimization, several optimization procedures have been applied to find the

optimum layup for different objectives. Research has mainly focused on the use of a genetic algorithm for

the optimization.[19, 22–24] The main disadvantage of genetic algorithms is that they require a significant

amount of function evaluations to find the optimum, especially when a large design space is considered.

Guo[5] uses a gradient-based optimizer to optimize the wingbox fibre angles for a constant thickness, while

Dillinger et al.[17] combine stiffness and thickness optimization, but only considers the top and bottom skin

and do not include dynamic aeroelasticity. Recently, several researchers[20, 21, 25] have used a gradient-

based optimiser with adjoint sensitivities to optimise a combination of laminate thickness and the fraction

of 0 deg, 45 deg, −45 deg, and 90 deg plies in the stacking sequence. Stanford et al.[20] optimised the

wing structure for minimum weight under manoeuvre load conditions and a flutter constraint for balanced
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and unbalanced laminates, and straight and steered fibres clearly illustrating the potential of aeroelastic

tailoring for wing weight reduction. Similar results were obtained by Brooks et al.[21] for minimum fuel

burn under manoeuvre and gust load conditions for both straight and steered fibres. Finally, Kennedy et

al.[25] used only straight fibres to obtain a Pareto front of fuel burn versus wing weight under manoeuvre

load conditions, also clearly showing the benefits of aeroelastic tailoring. However, in each of these cases

the choice of discrete ply angles limits the composite design space a priori.

Within this field, the current paper describes the application of an aeroelastic analysis tool developed

at the Delft University of Technology for the conceptual design of the wing box structure by means of

aeroelastic tailoring. The model extends the current state-of-the-art by (i) combining stiffness and thickness

optimization of the complete wingbox, (ii) including (eccentric) non-structural masses (e.g. the engine

or main landing gear), and (iii) including dynamic aeroelastic constraints, while using a gradient-based

optimiser for computational efficiency and lamination parameters not to restrict the design space a priori to

a fixed set of ply angles. The framework also shows the implementation of a novel unsteady aerodynamic

model based on the unsteady vortex lattice method written in continuous-time state-space that allows

for a fast and efficient analysis of the unsteady aerodynamics around aircraft wings without requiring a

transformation to the frequency domain and back.[26]

The proposed paper demonstrates the implementation of this dynamic aeroelastic framework including

the implementation of external forces and non-structural masses, as is explained in sections 2 to 5. Finally the

framework is applied to the optimisation of the one engine reference model (OERM) under manoeuvre load

conditions, courtesy of DLR, showing the potential of the proposed framework for the structural optimisation

of composite wings, as explained in section 6.

2. Modelling approach

The goal of the dynamic aeroelastic analysis and optimisation framework is to improve the conceptual

design of aircraft wings by including aeroelasticity. Therefore, one of the key requirements of the framework

is computational efficiency. For this purpose, the three-dimensional wing geometry is split in several spanwise

sections, each having its own skin laminate distribution throughout the wing cross-section. These laminates

are described using lamination parameters and the laminate thickness, since these define any composite

laminate using a fixed number of continuous design variables, allowing for the use of more efficient, gradient-

based optimisers.

The aeroelastic analysis and optimisation loop is depicted in Fig. B.1, and starts with the definition of

the wing geometry and load cases as inputs to the loop. Next, the composite laminate properties that are

used for the wing skins and spars are determined based on the material properties given as input and the

lamination parameters and thicknesses generated by the optimiser. In order to generate the beam model,
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these laminate properties, together with the cross-sectional geometry, are used to generate the Timoshenko

cross-sectional stiffness matrix with respect to the beam reference axis, using the cross-sectional modeller

developed by Ferede and Abdalla[27] For completeness, a brief overview of this procedure will be given in

section 3.

As a third step, a geometrically nonlinear static aeroelastic analysis is carried out to obtain the nonlinear

static displacement field of the aircraft for the various load cases. The static aeroelastic model is based on

the work of De Breuker et al.[28], who coupled a geometrically nonlinear Timoshenko beam model based

on the co-rotational formulation to the steady aerodynamic model developed by Weissinger[29] based on

the distribution of horseshoe vortices along the wing span. In order to make this model suitable for the

analysis of generic composite aircraft wings, the effect of external non-aerodynamic forces and wing camber

still needed to be incorporated. In order to account for the effects of gravity of both the structural and

non-structural masses and for the effect of engine thrust, the model is extended with the implementation of

eccentric follower and non-follower forces based on the same co-rotational formulation already used for the

structural model. Second, the effects of camber are accounted for by using an aerodynamic model based

on the vortex lattice method instead of the Weissinger method. A brief description of the original model,

followed by a description of the implementation of external, non-aerodynamic forces and the vortex lattice

aerodynamic model is given in section 4.

As a final analysis step, a linear dynamic aeroelastic analysis is carried out around the nonlinear static

equilibrium solution. The nonlinear structural stiffness matrix, obtained from the static analysis is linearised

and coupled to a linear mass matrix to obtain the dynamic structural model. This model is then coupled to

an unsteady aerodynamic model based on the unsteady vortex lattice method.[26] Using the linear dynamic

analysis, the flutter speed is calculated, and dynamic displacements can be obtained under e.g. gust loads.

A detailed description of the dynamic aeroelastic model is given in section 5.

The strains in the three-dimensional wing structure are retrieved in a post-processing step by using the

cross-sectional modeller to convert the beam strains and curvatures to the skin strains. A brief description

of this procedure is given in section 3.

Finally the static and dynamic responses, and the skin strains are then fed into the optimiser as objective

or constraint and a gradient based optimiser is used to update the set of lamination parameters and thickness

until a converged solution is found.

3. Cross-sectional modeller

The cross-sectional modeller, as mentioned in the modelling approach, has two functions in the optimi-

sation loop. First, the cross-sectional properties have to be determined from the three dimensional wing

model to obtain the equivalent one-dimensional properties. For this purpose a thin-walled cross-sectional
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modeller was developed by Ferede and Abdalla.[27] The cross-section is discretized using linear Hermitian

shell elements having constant properties and can be any arbritrary open or closed, thin-walled, composite

cross-section. Using a variational asymptotic approach, the Timoshenko cross-sectional stiffness matrix and

the cross-sectional mass properties can be determined.

Second, once the aeroelastic analysis has been completed, the cross-sectional modeller is used to recover

the skin strains throughout the cross-section from the one-dimensional beam strains, to be able to assess

potential skin failure and structural stability. These skin strains include both the Euler-Bernouilli strains

and the second-order free warping solution.

4. Static aeroelastic framework

Once the cross-sectional properties have been determined, the static aeroelastic model can be defined.

The static aeroelastic analysis module is based on the work of De Breuker et al.[28]

4.1. Structural model

The structural model is a finite element beam model using linear Timoshenko beam elements. The

elements are coupled in a co-rotational framework to obtain a geometrically nonlinear structural solution.

First, in order to verify the link between the cross-sectional modeller and the structural model, the present

nonlinear structural model is compared to experiments carried out by Chandra et al.[30] for the structural

response of anisotropic composite box beams. As an example, the beam with properties as given in Table

B.1 will be used, to validate the present approach. The resulting comparison of the present approach to the

experimental results and the different beam modelling approaches is shown in Fig. B.2. As can be seen,

the present approach shows satisfactory agreement with the experimental results, and performs excellent

compared to the other numerical approaches, thus validating the present approach.

In order to extend this model to account for the effects of gravity of both the structural and non-structural

masses and for the effect of engine thrust, both constant and follower eccentric forces and moments have

been implemented using a co-rotational formulation based on the work of Battini and Pacoste.[33]

Consider an eccentric node at location, xe, which is attached through a rigid link to xa, which is located

on element k, as shown in Fig. B.3a. In order to link xe to xa, an eccentricity vector v0 is defined, such

that:

xe = xa + v0 (1)

Using the principal of virtual work and considering that the work done by the eccentric force vector

should be equal to the work done by the equivalent nodal force vector, a relation can be derived between the
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eccentric force vector, Fe, and the equivalent nodal force vector, F, as derived in the appendix, resulting in:

F = HTBT
exFe (2)

The corresponding stiffness matrix is defined by:

δF = Keδp (3)

and can be derived by taking the variation of equation (2), resulting in three different contributions to

the total stiffness matrix. The first contribution comes from the variation of H and is commonly called the

geometric moment stiffness, the second contribution comes from the variation of Bex and is commonly the

geometric rotation stiffness, and the final contribution comes from the variation of the external force vector

and is commonly called the material stiffness. Note that the final contribution will only be non-zero in case

of follower forces and moments.

In order to verify the implementation of external non-aerodynamic forces, the structural response of

the present model is compared to a test case taken from Bathe and Bolourchi[34], as shown in Fig. B.4a.

The corresponding beam properties and loads are given in Table B.2. First, the resulting tip location after

deformation under a constant tip load is compared to results in literature and, as can be concluded from

Table B.3, shows excellent agreement. Next, in order to verify the implementation of eccentric external

forces and moments, the tip load is shifted, as indicated in Fig. B.4b, and the results are compared to

Abaqus, since to the best of the authors knowledge, no results are available in the literature. As can be

seen in Fig. B.5, the resulting out-of-plane displacement and rotation about the y−axis shows excellent

agreement with Abaqus for both a constant direction and follower force and moment.

4.2. Aerodynamic model

The aerodynamic model is a linear model based on potential flow theory implemented using the vortex

lattice method. The wing is modelled under a thin wing assumption, where the camber surface is discretised

in chordwise and spanwise direction by means of vortex ring elements. The aerodynamic mesh is composed

of rigid airfoils distributed spanwise, each represented by a camber line, of which the locations are updated

based on the local structural deformations. The flow is assumed to be inviscid and irrotational, and com-

pressibility is accounted for by means of the Prandtl-Glauert transformation. An excellent description of

the modelling of aircraft wings by means of vortex ring elements is given by Katz and Plotkin.[36] The

aerodynamic forces computed per panel are first transferred to the structural beam by means of a rigid link,

after which the forces are converted into statically equivalent nodal forces, as is illustrated in Fig. B.6.
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4.3. Aeroelastic model

The final wing discretisation, including both the structural and aerodynamic discretisation, is given

in Fig. B.7. The structural and aerodynamic model are closely coupled and the geometrically nonlinear

solution is obtained by using load control and the Newton-Raphson root finding method, where next to

the structural stiffness matrix and the stiffness matrix introduced by non-aerodynamic external forces,

the aerodynamic stiffness matrix required to find the geometrically nonlinear static aeroelastic solution is

obtained by analytical derivation. Each iteration the aerodynamic mesh is updated based on the latest

structural deformations, a new force vector introduced by the non-aerodynamic forces is determined, the

structural deformations are updated based on the latest aerodynamic and non-aerodynamic forces, and the

stiffness matrices are updated until a converged solution is found.

As a final verification of the geometrically nonlinear static aeroelastic model, the present approach is

compared to the results obtained by Murua et al.[37] for a HALE aircraft wing with properties given in

Table B.4. The geometrically nonlinear tip deflection at an angle of attack of 2 deg and 4 deg at a flight

speed of 25m/s with an air density of 0.0889kg/m3 is shown in Fig. B.8, showing excellent agreement, thus

verifying the static aeroelastic model.

5. Dynamic aeroelastic framework

The static aeroelastic model is extended with a dynamic aeroelastic model that allows for the analysis of

the dynamic aeroelastic response of the wing to, for example, a gust. A linear dynamic aeroelastic analysis

is carried out around the nonlinear static equilibrium solution to obtain the dynamic response of the wing

and to be able to assess the aeroelastic stability of the wing.

5.1. Structural model

The dynamic structural model is based on the same linear Timoshenko beam elements as used for

the static aeroelastic analysis. The nonlinear stiffness matrix obtained in the static aeroelastic analysis is

linearised around the static equilibrium position and combined with a linear mass matrix to obtain the

structural model. The mass matrix is derived from the kinetic energy of the Timoshenko beam elements,

given by:[38, 39]

T =
1

2

∫

V

ρvTvdV , (4)

where ρ is the mass density and v is the local velocity vector. The local velocity vector can be related

to the velocity and angular velocity of the beam reference axis, through:

v = u̇+ θ̇ × r (5)
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where r is the distance vector of the mass of the beam with respect to the beam reference axis. Introducing

the cross-sectional properties, equation (4) can now be rewritten in terms of the local degrees of freedom

and the cross-sectional properties as:

T =
lo
2

1∫

0

mAu̇ · u̇+ u̇tmQθ̇ + θ̇
T
mIθ̇dξ (6)

where mA is the mass per unit length, mQ contains the first mass moments per unit length with respect

to the beam reference axis, mI is the mass inertia tensor per unit length with respect to the beam reference

axis, and ξ is the normalised position along the beam, x/l0. The local element mass matrix is given by

the Hessian of the kinetic energy with respect to the local degrees of freedom. The global mass matrix can

be obtained by transforming the local mass matrices from local to global (deformed) coordinates and using

standard FEM approaches to assemble the global mass matrix from the local element matrices, resulting in

the following dynamic structural model:

Mp̈+Kp = F (7)

where p contains the structural degrees of freedom. In order to account for eccentric, non-structural

masses, similarly the kinetic energy of the external mass is derived. Consider an external mass at location

xe, similar to Fig. B.3a. Its kinetic energy is evaluated at the center of mass, such that no coupling exists

between the translational and angular velocity of the external mass, resulting in:

Te =
1

2
mev

T
e ve +

1

2
θ̇
T

e Ieθ̇e (8)

where me is the mass of the external mass, ve is the velocity vector of the center of mass of the external

mass, θ̇e is the angular velocity vector of the external mass, and Ie is the inertia tensor of the external mass

with respect to its center of gravity. In order to relate the degrees of freedom of the external mass to the

structural degrees of freedom, its location xe is projected orthogonally onto the closest structural element,

as already indicated in Fig. B.3a, resulting in the following relations:

ve = va + θ̇a × re (9)

θ̇e = θ̇a (10)

Similar to the implementation of the external forces, the degrees of freedom of point a can be related to

the local element degrees of freedom and the local external mass matrix is then given by the Hessian of the

kinetic energy with respect to the local degrees of freedom. The global external mass matrix can then be

assembled by standard FEM approaches.
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In order to verify the implementation of the linear mass matrix and the effect of the external masses,

the model as described by Bathe and Bolourchi[34], that was also used to verify eccentric loads, has been

extended with an eccentric tip mass, as specified in Table B.2 and Table B.5. The eccentric mass location

is defined by Fig. B.4b. First, three different eccentric loads are applied to simulate a (non)linear static

equilibrium solution, namely a force of 0N (Linear), 75N, and 150N. Next, a dynamic simulation is carried

out around the static equilibrium solution under a time dependent tip load, defined by:

Ftip (t) = 1000 · sin (2t)

The resulting time responses for different static equilibrium positions are given in Fig. B.9 and compared

to the results obtained from Abaqus. As can be expected, in case no tip loads are applied, both models

show good agreement, thus verifying the implementation of the linear mass matrix. However, as the level of

nonlinearity increases, the difference between the fully nonlinear implementation in Abaqus and the quasi

nonlinear implementation used in the present model increases. It should be noted, however, that for a tip

load of 75N, the tip deflection is already 16%, while the results still show good agreement. The corresponding

structural frequencies show a maximum error in the first 10 eigenfrequencies of 0.3% in case no tip load is

applied, 4.8% for a tip load of 75N, and 7.8% for a tip load of 150N, thus also showing good agreement

up to a tip load of 75N. Therefore, for general aircraft wings, the present model is expected to predict

the dynamic behaviour adequately; however, care should be taken for extremely flexible aircraft wings.

Furthermore, when considering the dynamic aeroelastic stability, the present model is expected to give a

conservative approximation of the stability boundaries, since geometric structural nonlinearity introduces

structural damping[40], which is not taken into account in the present model.

5.2. Aerodynamic model

The unsteady aerodynamic model that is coupled to the structural model is based on potential flow

theory implemented by means of the unsteady vortex lattice method. A detailed explanation of the unsteady

aerodynamic model used in the present approach is given in Werter et al.[26] A brief explanation will be

included here for completeness. The wing is modelled as a thin wing and represented by its deformed camber

surface. The wake is assumed to be flat and leaves the trailing edge in the free-stream direction. Since, in

case of unsteady aerodynamics, the wake vorticity is no longer constant, both the wing surface and the wake

surface are discretised, resulting in a discretisation as illustrated in Fig. B.10. Under the assumption of

small perturbations with respect to the steady state and by applying the flow-tangency condition, the Kutta

condition and Helmholtz theoreom for the transport of vorticity in the wake, the unsteady aerodynamic

model can be written as a continuous-time state-space model:
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


Γ̇w

α̇



 =




K1 K2

0 0








Γw

α



+




0

I



 α̇ (11)

Fa =
[

L1 L2

]




Γw

α



+ L3α̇ (12)

where Γw are the vortex strengths of the aerodynamic panels of the free wake panels and α are the

perturbation angles of attack of the aerodynamic panels on the wing surface. Once the vortex strength

distribution in the free wake is resolved, the vortex strength distribution on the wing surface and in the

trailing edge wake panels can be determined by inserting these in the equations for the flow tangency

condition and the Kutta condition. The input of the state-space model is given by the time derivative of

the perturbation angle of attack and is defined separately for each aerodynamic wing panel.

Compressibility has been accounted for by means of the Prandtl-Glauert transformation, which limits

the applicability of the unsteady aerodynamic model to low to moderate compressible reduced frequencies

and no shocks, so care should be taken in applying this model to a combination of high Mach number and

high reduced frequency. However, within these limitations, the present model is still expected to provide a

good approximation of the effect of compressibility on the unsteady aerodynamics. The effect of transonic

aerodynamic effects could be included in future work, for example, by means of a correction of the unsteady

aerodynamic loads by CFD simulations. The main advantage of the present model, however, is that it allows

for efficient discrete gust simulations in time domain.

5.3. Aeroelastic model

In order to couple the structural and aerodynamic models, the aerodynamic forces need to be transferred

to the structural nodes as input to the structural model and the time derivative of the perturbation angle of

attack induced by the structural deformations on the aerodynamic panels needs to be determined as input

to the unsteady aerodynamic model. Similar to the steady aerodynamic model, the aerodynamic forces are

first transferred to the structural beam by means of a rigid link, and then converted into statically equivalent

nodal forces, as is illustrated in Fig. B.6, resulting in the following transformation equation:

Fs = TASFa (13)

The perturbation angle of attack on each aerodynamic panel is composed of four components:

α = αair + θ −
ḣ

V∞

+
θ̇ (x− xb)

V∞

(14)

where αair is the perturbance angle of attack induced by the free stream flow, θ is the structural wing

twist, − ḣ
V∞

is the perturbance angle of attack introduced by the local plunge motion of the wing, and θ̇(x−xb)
V∞
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is the perturbance angle of attack introduced by the local pitch rate of the wing, where x defines the location

of the aerodynamic panel and xb defines the location of the beam axis. The local structural deformations are

found by a linear interpolation of the nodal structural deformations to the spanwise aerodynamic stations,

resulting in the following transformation equation for each of the structural translations, rotations, and

velocities:

xa = TSAxs (15)

where xs contains translations, rotations or velocities at the structural nodes, and xa contains the

corresponding degrees of freedom at the aerodynamic spanwise stations.

Starting from the aerodynamic state-space system, as defined by equation (11) and equation (12), using

equation (14), the aerodynamic state equation can be linked to the different components of the perturbation

angle of attack. Similarly, using equation (13), the structural state-space system can be linked to the

aerodynamic forces. Combining both relations the aeroelastic state equation, as derived in the appendix, is

obtained as:

ẋ = Assx+Bssα̇air (16)

where the state vector x is defined as:

x =
[

Γw αair ṗ p

]T

(17)

In order to complete the dynamic aeroelastic state-space system, the aerodynamic forces and moments

and the structural degrees of freedom are selected as outputs, resulting in the following output equations,

as derived in the appendix:




F

p



 = Cssx+Dssα̇air (18)

In order to verify the dynamic aeroelastic model, first the flutter speed for the Goland wing[41], as given

in Table B.6, and the HALE aircraft wing, as given in Table B.4, are compared to the literature. The flutter

speed is determined by increasing the velocity until the eigenvalues of the state matrix Ass become unstable,

i.e. until the real part of one of the eigenvalues becomes positive. As can be seen in Table B.7, the results

show excellent agreement.

Second, in order to validate the implementation of the eccentric masses, the aeroelastic stability as

predicted by the present model is compared to the experimental results of Runyan and Sewall.[44] The wing

properties are given in Table B.8 and the comparison is shown in Fig. B.11. When looking at the results,

several things can be observed. First of all, the predicted flutter and divergence speeds show excellent
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agreement with the experiments, however, both the present model and Fazelzadeh et al.[45] overpredict the

flutter frequency by 10 − 15%, which can probably be explained by inaccuracies between the modelling of

the experiment and the actual experiment. Second, the present model predicts transition from flutter to

divergence already at 0.406m, while in the experiment the wing was close to divergence, but still fluttering.

In general, however, the present results show good agreement with the experiments, thus validating the

implementation of eccentric masses in the present model.

Finally, to verify the implementation of gust in the present model, the results obtained for a gust analysis

of the Goland wing, as already given in Table B.6, under a 1-cosine gust are compared to results obtained

by Wang et al.[46] The air density is 1.229kg/m3 and the mean free-stream flow velocity is 100m/s. The

discrete gust has an amplitude of VG/V = 0.001 and a length of LG = 4 chords. The resulting tip deflection

and tip twist are shown in Fig. B.12. As can be expected, both results show excellent agreement, since both

models are based on a beam model coupled to a UVLM-based model.

In conclusion, the present model shows excellent agreement with results found in the literature, thus

verifying and validating the present dynamic aeroelastic model. Note that, for optimisation purposes, the

framework not only produces the aeroelastic responses, but also the sensitivities of the responses with

respect to the lamination parameters and laminate thicknesses. All sensitivities are computed analytically

for computational efficiency.

6. Aeroelastic tailoring of the OERM

In order to assess the use of the present model for conceptual design and assess the potential of aeroelastic

tailoring, the present model is applied to the stiffness and thickness optimisation of a wing designed for large

civilian aircraft, courtesy of DLR, the German Aerospace Research Center, that is referred to as the One

Engine Reference Model (OERM). The aircraft has a wing span of 58.0m, leading edge sweep of 31.8deg,

and a wing surface area of 380m2. The wing planform and wing box dimensions are given in Fig. B.13a

and Table B.9. The beam reference axis is placed at the wing quarter chord line, as indicated in Fig. B.13a.

The corresponding spanwise twist distribution is given in Fig. B.13b. The aircraft mass excluding the wing,

and any nonstructural masses on the wing, is 90 000kg.

The wing has 41 equally spaced ribs that are taken into account as concentrated masses to account for

their effect on the wing mass distribution. The stiffening effect of the ribs on the cross-section is inherently

taken into account in the beam model under the assumption of a rigid cross-section. The stiffening effect

caused by the warping restraint introduced by the ribs, however, has been neglected in the present model.

The properties of the engine, pylon and main landing gear are given in Table B.10 and they are also accounted

for as concentrated masses. Finally, the wing fuel distribution is taken into account by including 5 fuel tanks

as specified by Table B.11 and Fig. B.13d. The fuel level in the different tanks is accounted for by changing
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the mass of the fuel accordingly. The corresponding location of the different fuel masses is given in Fig.

B.13c.

6.1. Optimisation approach

In order to assess the potential of aeroelastic tailoring, two optimisations are run: one, a thickness

optimisation of a quasi-isotropic composite wing which will serve as a reference solution and, two, a complete

thickness and stiffness optimisation of a composite wing to show the effect of stiffness optimisation on wing

design. Table B.12 shows the material properties used throughout the optimisation. A brief overview of the

optimisation setup is given in Table B.13.

The objective of the optimisations is to minimise structural weight. The wing is split in 16 spanwise

sections: one section covering the area between the wing root and the first kink, three equally spaced sections

covering the area between the first and the second kink, and 12 equally spaced sections covering the area

between the second kink and the wing tip. Each section consists of four material sections, top and bottom

skin, and the leading edge and trailing edge spar, or in case of the presence of a mid spar, five material

sections.

In case of the quasi-isotropic wing, the design variables are the thicknesses of different material patches

along the wing. In case of the aeroelastically tailored wing, the design variables consist of eight lamination

parameters, describing the in-plane and out-of-plane behaviour of the composite laminates, and the thick-

ness per material section. For manufacturing reasons, the laminates are assumed to be symmetric, thus

no coupling exists between the in-plane behaviour and the out-of-plane behaviour of the laminates. The

laminates are described using lamination parameters, since these have several advantages over the use of

ply angles when used in an optimisation process. First of all, any laminate, independent of the number

of plies, can be described by a fixed number of parameters, in this case eight to describe the thickness

normalized stiffness and one to include thickness, thus reducing the number of design variables required in

the optimisation. Secondly, lamination parameters are continuous variables, thus allowing for the use of a

gradient-based optimiser to speed up convergence of the optimisation process. In order to ensure that the

combination of lamination parameters corresponds to an actual laminate, the following constraints are set

on the lamination parameters:[47]

2 (ξ1)
2
(1− ξ2) + 2 (ξ3)

2
(1 + ξ2) + (ξ2)

2
+ (ξ4)

2
− 4ξ1ξ3ξ4 ≤ 1 (19)

(ξ1)
2
+ (ξ3)

2
≤ 1 (20)

−1 ≤ ξi ≤ 1 (21)

where the same constraints apply for both the in-plane and out-of-plane lamination parameters. Note

that, in reality the in-plane and out-of-plane stiffness components cannot be varied independently, and
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additional constraints are required to fully define the lamination parameter domain. In order to approximate

the full feasibility region of lamination parameters, two approaches exist in the literature. Bloomfield et

al.[48] obtained a set of constraints describing the convex hull of the lamination parameter design space

by considering a set of predefined ply angles and Setoodeh et al.[49] obtained a set of linear constraints

by approximating the convex hull of the lamination parameter design space by generating feasible design

points until the total volume of the convex hull has converged. Both approaches have not been considered

in the present paper, since the approach by Bloomfield et al.[48] constrains the design space a priori to a

set of fixed ply angles, negating one of the benefits of the use of lamination parameters and the approach

by Setoodeh et al.[49] results in a large amount of constraints (i.e. 37126 for the combination of ξ1A, ξ3A,

ξ1D, and ξ3D) slowing down the optimisation process.

More recently Wu et al.[50] used the Schwarz inequality to derive an expression linking ξ1A, ξ2A and

ξ1D, resulting in a necessary, but not sufficient constraint equation linking the A- and D-matrix:

5 (ξ1A − ξ1D)
2
− 2

(

1 + ξ2A − 2 (ξ1A)
2
)

≤ 0 (22)

In the present optimisations strain is the main design driver, and, hence, the designs are dominated by the

A-matrix, making this constraint inactive. For future problems, when, for example, buckling is accounted for

and the D-matrix becomes important, this constraint could, however, become active and should be accounted

for to improve the match between the optimised lamination parameter results and actual stacking sequence

results.

In general, a slightly reduced performance is expected when converting the lamination parameters to an

actual stacking sequence; however, most panels will only be critical in either in-plane behaviour (A-matrix)

or out-of-plane behaviour (D-matrix), allowing for a sacrifice in performance of the non-critical response in

favour of the critical response.

Other manufacturing considerations, such as the 10% rule, ply drop rate, or maximum number of plies

of the same orientation next to each other, have not been considered in the present paper. The focus of this

paper is on the potential increase in performance by using composites for aeroelastic tailoring and will only

address the continuous stiffness optimisation leaving the conversion of the continuous optimum to a discrete

stacking sequence including manufacturing constraints for future work. For all optimisations, the thickness

is limited between 1mm and 50mm.

In order to ensure a feasible final design, constraints are set on the aeroelastic stability, the local angle

of attack and the strains. As explained in section 5, the aeroelastic stability is governed by the eigenvalues

of the state matrix, resulting in the following constraint on the real part of the eigenvalues for aeroelastic
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stability of the wing:

ℜ (λ) ≤ 0 (23)

The local angle of attack is defined by the aircraft angle of attack, the local wing twist, and the twist induced

by the structure, and is limited to ±12deg to ensure attached aerodynamic flow, while still leaving design

freedom to the optimiser. Finally, a constraint is set on the maximum principal strain, minimum principal

strain, and maximum shear strain in the cross-section, as computed by the cross-sectional modeller, based

on the material limits, as given in Table B.12.

Six load cases were selected based on the EASA CS25 regulations covering different parts of the flight

envelope, as specified in Table B.14. Note that especially load case 4 is at the limit of applicability of the

aerodynamic model, so care should be taken in interpreting the results. However, the model is still expected

to provide a good approximation of the aeroelastic response of the wing and show the potential of aeroelastic

tailoring for wing weight reduction. All analyses were done at a trimmed flight condition with the effects of

gravity included.

The globally convergent method of moving asymptotes (GCMMA) developed by Svanberg[51] is used

as a gradient-based optimiser. Direct sensitivities have been used and all sensitivities of the objective and

constraints with respect to the design variables are obtained analytically.

In order to start the optimisation, a thickness distribution of 15mm at the root increasing linearly to

25mm at the engine location and then decreasing linearly to 8mm at the tip is used as an initial design for

both the skin and the spars, resulting in an initial weight of 6275kg for both composite wings. All initial

laminates are quasi-isotropic. Note that the initial design is a very heavy design and not representative

of an actual wing design. Therefore, the initial design should not be used as a reference to evaluate the

potential of aeroelastic tailoring. The potential of aeroelastic tailoring is assessed by directly comparing the

optimisation results of the quasi-isotropic wing to the optimisation results of the tailored wing.

6.2. Quasi-isotropic wing

The final quasi-isotropic wing design is obtained after 50 iterations, resulting in an optimised weight of

2440kg. The corresponding trim angles of attack at the start and end of the cruise are given in Table B.15.

The evolution of weight and root bending moment as the optimisation progressed is given in Fig. B.14. As

can be seen and expected, a reduction in weight is linked to a reduction in root bending moment, clearly

indicating the importance of the root bending moment in wing design.

The optimised thickness distribution is given in Fig. B.15, showing an increase in skin thickness towards

the engine location and then a reduction in skin thickness towards the tip. The design does not include

stiffeners and, therefore, the final thickness distribution should be interpreted as the smeared thickness of

an equivalent stiffened panel. It is interesting to note that the leading edge spar is significantly thicker than
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the trailing edge spar around midspan, indicating a form of aeroelastic tailoring through thickness tailoring.

As a result, the shear center shifts forward, resulting in an wash-out bend-twist coupling, as can be seen in

Fig. B.16a. Finally this results in a lift distribution where lift is shifted inboard, as can be concluded from

Fig. B.16b, thus reducing the root bending moment and resulting in a reduction in weight. It is interesting

to note that at the root of the wing, the trailing edge spar is thicker than the leading edge spar and midspar

because of the location of the main landing gear and the loads this introduces on the structure.

The final design is dominated by the normal strain constraints, as can be concluded from the strain

results in Fig. B.17, Fig. B.18, and Fig. B.19. Results are presented for load case 3 (−1g) and load case

5 (2.5g), since these are the dominant load cases for the wing design. As can be expected, load case 5

is dominant for the minimal principal strain and shear strain in the top skin, for the maximum principal

strain and shear strain in the bottom skin and the strains in the spars, while load case 3 is dominant for the

maximum principal strain in the top skin and the minimal principal strain in the bottom skin. For each of

the wing sections, the thickness is optimised such that the strain limit is reached.

In conclusion, although, for example, control reversal and panel buckling have not been accounted for,

which might reduce the actual load alleviation that is obtained, the results clearly show the potential of

aeroelastic tailoring and the load alleviation that can be achieved.

6.3. Tailored wing

Similar to the quasi-isotropic wing, the final fully tailored wing design is obtained after 50 iterations,

resulting in an optimised weight of 1164kg. The corresponding trim angles of attack at the start and end of

the cruise are given in Table B.15 and the evolution of weight and root bending moment as the optimisation

progressed is given in Fig. B.14. When comparing the fully tailored wing design to the quasi-isotropic wing

design, a weight reduction of 52.3% is obtained. Note that the current optimisation setup does not include

any buckling constraint, so care should be taken in interpreting this reduction in weight, since for very thin

laminates buckling becomes critical instead of strength, however, this result clearly shows the potential of

aeroelastic tailoring.

The optimised stiffness and thickness distribution is given in Fig. B.20, where the wing stiffness distribu-

tion is represented by a polar plot of the thickness-normalized modulus of elasticity for each laminate section.

The polar plot of the thickness-normalised modulus of elasticity is obtained by computing the thickness-

normalised laminate compliance matrix, â, at an angle θ from 0 to 360 deg and plotting the modulus of

elasticity defined as:

Ê11 (θ) =
1

â11 (θ)
(24)

Two spanwise sections can be identified when looking at the skin stiffness distribution: (i) from the root

up to the engine location, and (ii) from the engine location up to the wing tip. The first section is dominated
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by stiffness along the wing axis to provide sufficient stiffness to sustain all loads. Most classic aeroelastic

tailoring can be seen in the second section, where the laminates introduce a bend-twist coupling to produce

wing wash-out and thus shift the lift inboard, as can also be concluded when looking at the tailored twist

distribution in Fig. B.16a and the lift distribution in Fig. B.16b. When looking at the wing spars, the effect

of the main landing gear can clearly be observed at the wing root, resulting in increased torsional stiffness of

the midspar and trailing edge spar. The remainder of the first section up to the engine is clearly dominated

by ±45deg tailoring to increase shear stiffness and carry the loads introduced by the engine. In the second

section, the leading edge spar is mainly dominated by ±45 deg tailoring to increase shear stiffness, while

the trailing edge spar is more flexible, thus inducing wash-out bend-twist coupling by shifting the shear

center forward. In conclusion, the stiffness results clearly illustrate the importance of taking into account

all important non-structural wing components (e.g. the engine or the main landing gear) and taking into

account the wing spars to use aeroelastic tailoring to influence wing performance.

When looking at the wing thickness distribution, similar to the quasi-isotropic wing the skin thickness in-

creases up to the engine location and then decreases to the wing tip, and the leading edge spar is significantly

thicker than the trailing edge spar around the midspan, indicating a form of aeroelastic tailoring through

thickness tailoring. In contrast to the quasi-isotropic wing, the final design is no longer only dominated by

the normal strain constraints, but also by the shear strain constraints, as can be seen in Fig. B.17c, Fig.

B.18c, and Fig. B.19c.

In conclusion, although care should be taken when interpreting the results, since control reversal and

buckling are not included as a constraint and aerodynamic performance might impose a constraint on the

wing lift distribution, the final optimised tailored wing, clearly shows the potential of aeroelastic tailoring

and the power of the framework described in the present paper.

7. Conclusions

A dynamic aeroelastic framework for the conceptual design of a generic composite wing structure is

presented. The wing is discretized in several spanwise sections, where each section has a number of laminates

throughout the cross-section, each having their own stiffness and thickness. The laminates are described

using lamination parameters to allow for the use of a gradient-based optimiser. The geometrically nonlinear

static aeroelastic solution is obtained by coupling a geometrically nonlinear Timoshenko beam model to a

vortex lattice aerodynamic model. Dynamic aeroelastic stability is assessed by a linear dynamic aeroelastic

analysis around the geometrically nonlinear static equilibrium solution. Verification has shown good accuracy

for tip deflection up to 15% and small gust angles, making the model suitable for general aircraft wings,

however care should be taken when modelling highly flexible wings under large amplitude gusts. All relevant

non-structural masses (e.g. the engine or the main landing gear) are accounted for in both the static and
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dynamic aeroelastic analyses.

The framework has been applied to the optimization of a generic wing designed for large civilian aircraft

under manoeuvre load conditions. Two optimizations were run: one, a quasi-isotropic wing where only

thickness is optimized to act as a reference solution, and two, a fully tailored wing. Aeroelastic stability

and principal strain limits were applied as constraints. The results clearly show the importance of taking

into account all important non-structural wing components (e.g. the engine or the main landing gear) and

taking into account the wing spars in the aeroelastic tailoring design process.

The optimised results show a potential reduction in weight of 52.3% of the tailored wing with respect to

the quasi-isotropic wing. Although care should be taken when interpreting the results, since control reversal

and buckling are not included as a constraint and aerodynamic performance might impose a constraint

on the wing lift distribution, the final optimised tailored wing, clearly shows the potential of aeroelastic

tailoring and the power of the framework described in the present paper.

Future work will focus on the introduction of a control reversal constraint and a buckling constraint,

the investigation of aeroelastic tailoring under gust loads, and the investigation of the effect of transonic

aerodynamic effects on the aeroelastic response. In conclusion, although further research is required, the final

optimized tailored wing clearly shows the potential of aeroelastic tailoring and the power of the framework

described in the present paper.
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Appendix A. Derivation of the nodal force vector and stiffness matrix due to eccentric forces

Consider a eccentric node at location, xe, which is attached through a rigid link to xa, which is located

on element k, as shown in Fig. B.3a. In order to link xe to xa, an eccentricity vector v0 is defined, such

that:

xe = xa + v0 (A.1)

Since xe is attached to xa through a rigid link, v0 is constant in the local element coordinate system.

Therefore, if the rotation of the local element from its local coordinate system to the co-rotated coordinate

system is defined through a rotation matrix, Ra, the co-rotated eccentricity vector is given by:

v = Rav0 (A.2)
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Using Fig. B.3b, the deformation of the eccentric node, xe, can now be related to the deformation of

location, xa, resulting in:

ua + v = v0 + ue (A.3)

ue = ua + (Ra − I)v0 (A.4)

In order to obtain the nodal force vector and stiffness contribution introduced by the eccentric forces and

moments, the principle of virtual work is used. A transformation between the eccentric force and moment

vector and the nodal force vector can be obtained by considering that both forces should perform the same

external virtual work:

δpT
e Fe = δpTF (A.5)

with

δpT
e = [ue, θe] (A.6)

δpT = [u1, θ1,u2, θ2] (A.7)

where θe is the total rotational pseudovector of the eccentric node, u1 and u2 are the displacement vectors

of node 1 and node 2, and θ1 and θ2 are the total rotational pseudovectors of node 1 and node 2 respectively.

Therefore, in order to find the nodal force vector corresponding to the eccentric force and moment vector,

the variation of the deformation of the eccentric node has to be related to the variation of the nodal

deformations of the corresponding beam element. Taking the variation of equation (A.4), and recognizing

that v0 is constant, the following relation is obtained for the variation of the displacements at the eccentric

node:

δue = δua + δRav0 (A.8)

The variation of a rotation matrix is related to its spatial angular variations, δϑ, through:

δRa = δϑ̃aRa (A.9)

where the tilde indicates the skew symmetric representation of a pseudo vector and the spatial angular

variations represent an infinitesimal rotation superimposed on Ra. Using ab̃ = −bã and introducing

equation (A.2), the variation of the displacements at the eccentric node can be related to the variation of

the deformations of point a through:

δue = δua − ṽδϑa (A.10)
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Recognizing that the rotations of the eccentric node are equal to the rotations of point a, the deformation

vector of the eccentric node can be related to the deformations at point a through:

δpe =




I −ṽ

0 I








δua

δϑa



 (A.11)

In order to relate the deformations of point a to the deformations of node 1 and node 2, a linear

interpolation is used, resulting in the following relation for the eccentric deformations as a function of the

global deformations of node 1 and node 2:

δpe =




(1− ξ) I − (1− ξ) ṽ ξI −ξṽ

0 (1− ξ) I 0 ξI





︸ ︷︷ ︸

Bex











δu1

δϑ1

δu2

δϑ2











︸ ︷︷ ︸

δpg

(A.12)

where ξ is the normalised location of the rigid link along the beam element. Note that the spatial angular

variation and the total rotational pseudovector are not additive. In order to make the rotational vectors

additive, the spatial angular variation needs to be transformed to the variation of the total rotational

pseudovector, through:

δθ = Ts (θ) δϑ (A.13)

as derived by Battini and Pacoste.[33] Introducing equation (A.13) in equation (A.12), the variations of the

deformations of the eccentric node can be related to the variations of the nodal displacements, resulting in:

δpe = Bex (pg)H (p)δp (A.14)

where H (p) is defined by:

H (p) =











I 0

Ts (θ1)

I

0 Ts (θ2)











(A.15)

Inserting equation (A.14) in equation (A.5), the following equation for the nodal force vector as a function

of the eccentric force vector can now be found:

F = HTBT
exFe
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The corresponding stiffness matrix is defined by:

δF = Keδp (A.16)

and can be derived by taking the variation of equation (2), resulting in three different contributions to

the total stiffness matrix. The first contribution comes from the variation of H and is commonly called

the geometric moment stiffness, the second contribution comes from the variation of Bex and is commonly

called the geometric rotation stiffness, and the final contribution comes from the variation of the external

force vector and is commonly called the material stiffness. Note that the final contribution will only be

non-zero in case of follower forces or moments.

Appendix B. Derivation of the dynamic aeroelastic state-space system

Starting from the aerodynamic state-space system, as defined by equation (11) and equation (12), using

equation (14), the aerodynamic state equation can be linked to the different components of the perturbation

angle of attack, resulting in:




Γ̇w

α̇air



 =




K1 K2 −K2Bα

1
V∞

K2Bα K2Bpitch

0 0 0 0 0


















Γw

αair

ḣa

θa

θ̇a














+




0

I



 α̇air (B.1)

where Bα links the spanwise pitch angle distribution, θa, and plunge distribution, ḣa, to the correct aero-

dynamic panels, and Bpitch transform the spanwise pitch rate, θ̇a to the local induced angle of attack. α̇air

is selected as only external input to the state equation, since all other components are directly related to

the structural degrees of freedom. Note that ḣa is defined in the aerodynamic coordinate system, which

is aligned with the free stream velocity vector, while the structural degrees of freedom are defined in a

body-fixed coordinate system. Therefore, the plunge motion is related to the structural degrees of freedom,

through:

ḣa = δ̇za = − sinα0 · δ̇
∗

xs
+ cosα0 · δ̇

∗

zs (B.2)

where α0 is the free-stream angle of attack, δ is a vector containing structural deformations and the ∗

denotes the structural degrees of freedom interpolated at the spanwise aerodynamic stations. Inserting

equation (B.2) into equation (B.1), and using equation (15), the final aerodynamic state equation as a

function of the external input and structural deformations becomes:
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


Γ̇w

α̇air



 =




K1 K2

sinα0

V∞

K2BαTSA − cosα0

V∞

K2BαTSA K2BαTSA K2BpitchTSA

0 0 0 0 0
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H1


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

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Γw

αair
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δ̇zs
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
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












+




0

I




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H2

α̇air (B.3)

Similarly the aerodynamic output vector can be related to the free stream perturbation angle of attack

and the structural degrees of freedom, resulting in:

Fa =
[

L1 L2
sinα0

V∞

L2BαTSA − cosα0

V∞

L2BαTSA L2BαTSA (L2Bpitch + L3Bα)TSA

]

︸ ︷︷ ︸

H3


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
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


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
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αair
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





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


+
[

sinα0

V∞

L3BαTSA − cosα0

V∞

L3BαTSA L3BpitchTSA

]

︸ ︷︷ ︸

H4








δ̈zs

δ̈xs

θ̈ys







+ L3Bαα̇air (B.4)

(B.5)

Introducing the aeroelastic state vector, defined by x =
[

Γw αair ṗ p

]T

, the aerodynamic part

of the aeroelastic state-space system is given by:




Γw

αair



 = H1T1x+H2α̇air (B.6)

Fa = H3T1x+H4T2ẋs + L3Bαα̇air (B.7)

where xs is the structural state vector, T1 selects
[

Γw αair δ̇xs
δ̇zs θys

θ̇ys

]T

from the state

vector, x, and T2 selects
[

δ̈zs δ̈xs
θ̈ys

]T

from the time derivative of structural state vector, ẋs.
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Next, considering the structural system of equations given by equation (7), using equation (13), the

structural state-space system becomes:




p̈

ṗ



 =




0 −M−1K

I 0





︸ ︷︷ ︸

As




ṗ

p





︸ ︷︷ ︸

xs

+




−M−1

0





︸ ︷︷ ︸

Bs

TASRASFa (B.8)

whereRAS rotates the aerodynamic forces to the structural coordinate system. Introducing the aerodynamic

output equation, given by equation (B.7), the structural state-space system can be rewritten as:

(I−BsTASRASH4T2)
︸ ︷︷ ︸

H5

ẋs = (AsT3 +BsTASRASH3T1)
︸ ︷︷ ︸

H6

x+BsTASRASL3Bα
︸ ︷︷ ︸

H7

α̇air (B.9)

ẋs = H5
−1H6x+H5

−1H7α̇air (B.10)

Finally, combining equation (B.6) and equation (B.10), the aeroelastic state equation is obtained as:

ẋ =




H1T1

H5
−1H6





︸ ︷︷ ︸

Ass

x+




H4

H5
−1H7





︸ ︷︷ ︸

Bss

α̇air (B.11)

In order to complete the dynamic aeroelastic state-space system, equation (B.10) is introduced in equation

(B.7), to obtain the aerodynamic forces as a function of the aeroelastic states, resulting in:

Fa =
(
H3T1 +H3T2H5

−1H6

)

︸ ︷︷ ︸

H8

x+H4T2H5
−1H7 + L3Bα

︸ ︷︷ ︸

H9

α̇air (B.12)

Including the structural degrees of freedoms as extra outputs, and rotating the aerodynamic forces to

the structural coordinate system for consistency, the aeroelastic output equation becomes:




F

p



 =




RASH8

T4





︸ ︷︷ ︸

Css

x+




RASH9

0





︸ ︷︷ ︸

Dss

α̇air (B.13)

where T4 selects the structural degrees of freedom from the state vector.
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[17] J. K. S. Dillinger, T. Klimmek, M. M. Abdalla, Z. Gürdal, Stiffness Optimization of Composite Wings with Aeroelastic

Constraints, Journal of Aircraft 50 (4) (2013) 1159–1168. doi:10.2514/1.C032084.

[18] O. Stodieck, J. E. Cooper, P. M. Weaver, P. Kealy, Improved aeroelastic tailoring using tow-steered composites, Composite

Structures 106 (2013) 703–715. doi:10.1016/J.Compstruct.2013.07.023.

[19] B. K. Stanford, C. V. Jutte, K. Chauncey Wu, Aeroelastic benefits of tow steering for composite plates, Composite

Structures 118 (2014) 416–422. doi:10.1016/j.compstruct.2014.08.007.

[20] B. K. Stanford, C. V. Jutte, C. D. Wieseman, Trim and Structural Optimization of Subsonic Transport Wings Using

Nonconventional Aeroelastic Tailoring, AIAA Journal 54 (1) (2016) 293–309. doi:10.2514/1.J054244.

[21] T. R. Brooks, G. Kennedy, J. Martins, High-fidelity Aerostructural Optimization of a High Aspect Ratio Tow-steered

Wing, in: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute

of Aeronautics and Astronautics, San Diego, CA, USA, 2016.

[22] H. Arizono, K. Isogai, Application of genetic algorithm for aeroelastic tailoring of a cranked-arrow wing, Journal of Aircraft

42 (2) (2005) 493–499. doi:10.2514/1.392.

[23] S. J. Guo, W. Y. Cheng, D. G. Cui, Aeroelastic tailoring of composite wing structures by laminate layup optimization,

25

http://dx.doi.org/10.2514/2.2546
http://dx.doi.org/10.1016/J.Compstruc.2006.08.051
http://dx.doi.org/10.1016/J.Ast.2007.01.003
http://dx.doi.org/10.1016/J.Compstruc.2005.02.002
http://dx.doi.org/10.2514/3.47078
http://dx.doi.org/10.1243/095441003322297225
http://dx.doi.org/10.2514/1.12040
http://dx.doi.org/10.2514/2.3950
http://dx.doi.org/10.2514/2.2718
http://dx.doi.org/10.1007/s00158-009-0437-6
http://dx.doi.org/10.2514/1.C032084
http://dx.doi.org/10.1016/J.Compstruct.2013.07.023
http://dx.doi.org/10.1016/j.compstruct.2014.08.007
http://dx.doi.org/10.2514/1.J054244
http://dx.doi.org/10.2514/1.392


Aiaa Journal 44 (12) (2006) 3146–3150. doi:10.2514/1.20166.

[24] A. Manan, G. A. Vio, M. Y. Harmin, J. E. Cooper, Optimization of aeroelastic composite structures using evolutionary

algorithms, Engineering Optimization 42 (2) (2010) 171–184. doi:10.1080/03052150903104358.

[25] G. J. Kennedy, G. K. W. Kenway, J. R. R. Martins, A Comparison of Metallic, Composite and Nanocomposite Optimal

Transonic Transport Wings, Tech. Rep. NASA CR-2014-0218185 (2014).

[26] N. Werter, R. De Breuker, M. M. Abdalla, Continuous-time state-space unsteady aerodynamic modelling for efficient

aeroelastic load analysis, in: International Forum on Structural Dynamics and Aeroelasticity, St. Petersburg, Russia,

2015.

[27] E. Ferede, M. Abdalla, Cross-sectional modelling of thin-walled composite beams, in: Proceedings of 55th

AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, American Institute of Aero-

nautics and Astronautics, 2014. doi:10.2514/6.2014-0163.
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Table B.1: Composite beam properties used for validation

Dimensions Layup∗ Material properties Loading

Length 0.762m Upper wall [45]6 E11 141.96GPa Tip load 4.45N

Width 0.0242m Lower wall [−45]6 E22 9.79GPa

Height 0.0136m Right wall [45/−45]3 G12 6.00GPa

Left wall [45/−45]3 ν12 0.42

tply 0.127mm

∗Layup is defined with respect to the beam axis and positive with respect to the outward normal

Table B.2: Beam properties

Cross-sectional Material Loading

properties properties

Width 1m E 10MPa Tip Fz = 600N Mx = 0Nm

Height 1m G 5MPa Constant eccentric Fz = 600N Mx = −4000Nm

ρ 1000kg/m3 Follower eccentric Fz = 300N Mx = −2500Nm

Table B.3: Comparison of the tip location (x,y,z) under various load levels

Load level 300 450 600

Present 22.12, 58.54, 40.48 18.37, 51.97, 48.70 15.56, 46.90, 53.60

Bathe and Bolourchi[34] 22.5, 59.2, 39.5 − 15.9, 47.2, 53.4

Crisfield[35] 22.16, 58.53, 40.53 18.43, 51.93, 48.79 15.61, 46.84, 53.71

28



Table B.4: HALE wing properties

Semispan 16m

Chord 1m

Elastic axis 50% chord

Center of gravity 50% chord

Mass per unit length 0.75 kg/m

Moment of inertia (around e.a.) 0.1 kgm

Torsional stiffness 1 · 104 Nm2

Bending stiffness 2 · 104 Nm2

Chordwise bending stiffness 5 · 106 Nm2

Table B.5: Eccentric mass properties

Mass 10 000kg

Ixx 30 000kgm2

Iyy 50 000kgm2

Izz 100 000kgm2

Table B.6: Goland wing properties

Semispan 6.096m

Chord 1.8288m

Elastic axis 33% chord

Center of gravity 43% chord

Mass per unit length 35.72kg/m

Moment of inertia (around e.a.) 8.64 kgm

Torsional stiffness 9.88 · 105 Nm2

Bending stiffness 9.77 · 106 Nm2
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Table B.7: Flutter speed of the Goland wing and a HALE aircraft wing

Goland HALE

Vf ωf Vf ωf

Wang et al.[42] 163.8m/s - Patil et al.[43] 31.75m/s 23.60 rad/s

ZAERO[42] 174.3m/s - Murua et al.[37] 33m/s 22 rad/s

Murua et al.[37] 165m/s 69 rad/s Present 32.12m/s 23.21 rad/s

Present 168.4m/s 69.4 rad/s

Table B.8: Experimental wing properties[44]

Semispan 12.192m

Chord 0.2032m

Elastic axis 43.7% chord

Center of gravity 45.4% chord

Mass per unit length 1.2943kg/m

Moment of inertia (around e.a.) 3.56 · 10−3 kgm

Torsional stiffness 198.6 Nm2

Bending stiffness 403.8 Nm2

Eccentric mass 1.44 kg

Chordwise location of the mass w.r.t. e.a. −0.083 m

Moment of inertia (around mass c.g.) 8.50 · 10−3 kgm2

Table B.9: Wing box properties

Spar locations

Spanwise location LE Mid TE

0m 16.5%chord 40.0%chord 63.4%chord

2.79m 16.5%chord 40.0%chord 63.4%chord

9.37m 14.4%chord 40.9%chord 67.5%chord

20.06m 18.5%chord - 55.1%chord

29.00m 28.6%chord - 68.8%chord
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Table B.10: Non-structural mass

Mass x-location y-location z-location

Engine 8694.9kg −0.57m 9.29m −1.50m

Pylon 1688.5kg 0.35m 9.31m −0.44m

Main landing gear 4463kg 6.36m 2.86m 0.76m

Table B.11: Fuel mass distribution

Fuel tanks

Tank ID Max. fuel mass Spanwise location

1 17 000kg 2.79 - 9.37m

2 7500kg 9.37 - 15.46m

3 3000kg 15.46 - 20.69m

4 1500kg 20.69 - 25.87m

5 500kg 25.87 - 29.00m

Table B.12: Material properties

UD Carbon fibre

E11 83.0GPa

E22 8.5GPa

G12 4.2GPa

ν12 0.35

ρ 1452kg/m3

ǫmax 4500µstrain

γmax 7000µstrain
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Table B.13: Optimisation setup

Objective Minimum weight

Design variables Lamination parameters

Laminate thickness

Constraints Laminate feasibility

Aeroelastic stability

Maximum local angle of attack

Maximum principal strains

Optimiser GCMMA

Table B.14: Load cases

ID Description EAS (m/s) Altitude (m) Mach nz Fuel level (Tank 1-5)

1 Begin Cruise 117.5 11900 0.78 1.0 0.5 1 1 1 0

2 End Cruise 117.5 11900 0.78 1.0 0 0 0.5 1 0

3 Symm. push down 162.4 7620 0.78 −1.0 0 0 0 0 0

4 Symm. pull up 178.1 7620 0.80 2.5 0 0 0 0 0

5 Symm. pull up 180.8 6096 0.69 2.5 0 0 0 0 0

6 Stability 222.0 −2300 0.57 1.0 0 0 0 0 0

Table B.15: Optimisation wing structural weight and corresponding cruise trim angle of attack

Case Weight Trim angle

Loadcase 1a Loadcase 1b

Quasi-isotropic 2440kg 4.42deg 3.13deg

Tailored 1164kg 4.81deg 3.50deg
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Figure B.1: Schematic representation of the aeroelastic analysis and optimisation loop.
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Figure B.2: Validation of the composite beam model with experiments and other numerical solutions.
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Figure B.3: Schematic illustration of the implementation of eccentric forces and moments.
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Figure B.6: Schematic illustration of the transfer of the aerodynamic forces, indicated with the open circles,
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wing outline, the thin solid lines indicate the panel distribution, the dashed lines indicate the vortex ring

elements, and the thick gray line indicates the structural beam.
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Figure B.11: Aeroelastic stability speed and frequency of a wing with an eccentric mass at different spanwise

locations.
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(b) Tip twist

Figure B.12: Gust response of the Goland wing under a 1-cosine gust.
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Figure B.13: Wing properties
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Figure B.14: Optimisation results
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Figure B.15: Quasi-isotropic wing thickness distribution.
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Figure B.16: Optimised twist and lift distribution
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(c) γ of the quasi-isotropic wing (left) and the tailored wing

(right) for load case 5.

Figure B.17: Strains on the top skin.
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(right) for load case 5.

Figure B.18: Strains on the bottom skin.
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Figure B.19: Strains on the spars
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(b) Bottom skin (left: thickness, right: stiffness)
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Figure B.20: Tailored wing stiffness and thickness distribution.
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