
Using Newsletters to Analyze Curated Software Testing Content

Philip De Munck1

Supervisor(s): Andy Zaidman1, Baris Ardic1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Philip De Munck
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Baris Ardic, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
As software and systems continue to get more com-
plex, software testing is an important field to en-
sure that software functions properly. Every day
information about software testing is being dis-
cussed on the internet via blog posts, discussion
boards, and more. This information is scattered
among many different websites, making it hard to
access. To analyze software testing content pub-
lished on the internet, newsletters curated by mem-
bers of the field and reflective of industry trends
were used. This analysis provides a broad overview
of what software testing-related content is being
discussed on the internet. Common problems dis-
cussed in newsletters include properly maintaining
tests, working with and fixing flaky tests, and prop-
erly analyzing test results. Javascript and Type-
script are the most popular programming languages
discussed, while the web is also the most popular
platform. When looking at test types, automated
tests are frequently discussed, followed by end-to-
end tests and unit tests. Common techniques and
strategies discussed include API testing, the use of
continuous integration, and the use of continuous
deployment. Selenium, Cypress, and the Gherkin
syntax are the most frequently discussed tools and
technologies. Finally, opinionated articles tend to
be most common, followed by articles that intro-
duce a technology and articles that explain a con-
cept.

1 Introduction
Software Testing is a critical part of the software development
life cycle [1]. The consequences of not testing properly can
range from minor irritations to complex failures with signif-
icant effects [2]. One example of a major failure could be
the Ariane 5 rocket that failed less than a minute after launch
due to a software failure [3]. Due to many factors, software
bugs tend to become more expensive to fix the later they are
discovered [2]. Proper testing earlier in the development pro-
cess can therefore help to reduce the impact of these bugs.

Due to the importance of software testing in ensuring the
proper functioning of software, detailed research must be
conducted to understand the current state of the industry. Fur-
thermore, this research and the associated output can be used
to further our understanding of the direction that software
testing is taking.

Information about software testing is discussed frequently
in various formats, such as academic papers, online blogs,
physical conferences, and more. On the internet, informa-
tion is constantly being published, updated, and revised. This
begs the question: What software testing knowledge is cur-
rently being discussed on the internet? By identifying what
is being discussed, we can foster a better understanding of
current issues, trends, and common tools within the software
testing space.

Newsletters were chosen as the subset of the internet to be
analyzed since they are usually curated by a member of the

field in question. By using resources posted to software test-
ing newsletters, we know that the resource was seen as valu-
able since it was chosen to appear in an edition of a newsletter.
Although some newsletters are more popular and are pub-
lished more frequently than others, all newsletters selected
have been publishing editions for over a year and have a pub-
licly accessible website.

To answer the question set out in this introduction, the fol-
lowing four research questions (RQs) have been defined:

1. What platforms, languages, and test types are discussed
in newsletters?

2. What common problems related to software testing are
discussed in newsletters?

3. What software testing tools, techniques, and strategies
are discussed in newsletters?

4. What types of software testing resources are shared in
newsletters?

In Section 2, the related work will be discussed. Section
3 will discuss the methodology for the research. Section 4
will discuss the results of the research. A discussion about
the results will take place in Section 5 while the main con-
clusions will be drawn in Section 6. Section 7 will discuss
threats to the validity of this research. Finally, Section 8 will
discuss how the research was conducted responsibly and in
accordance with common principles.

2 Related Work
Limited research has been done on newsletters, especially
those in the software sector. However, general research
has been conducted on news aggregators (sites that aggre-
gate/distribute existing content, possibly after curating it),
which newsletters are a part of. Furthermore, software testing
knowledge present on the internet has been analyzed before
in different forms. This section serves to discuss the previ-
ous work that discusses software testing knowledge present
on the internet.

Similar to what is being analyzed in this thesis, Aniche
et al. also analyzed programming-related news aggregators
and investigated, among other aspects, the characteristics of
content posted to these aggregators [4]. A survey con-
ducted in the aforementioned paper indicated that the inter-
viewees found programming-related news aggregators to pro-
vide relevant content. Could it be possible for software test-
ing newsletters (a sort of content aggregator) to also provide
valuable insights on the state of the software testing indus-
try? The analysis in this thesis serves to answer this question,
among others.

Chowdhury and Landoni analyzed news aggregator ser-
vices and found that since news is published and distributed
through many channels, services that aggregate this content
can make it much simpler for a user to find relevant news [5].
Since software testing resources are published in many places
on the web, newsletters may be able to serve as the aggrega-
tor, providing easier access for software testing practitioners
to find relevant content.

Additionally, Florea and Stray gathered and coded in-
formation regarding the most in-demand skills for software



testers [6]. Using a similar coding approach to what is used
in this paper, Florea and Stray used job advertisements as a
basis for their analysis [6]. They concluded that employers
are looking for certain skills, including but not limited to, test
automation, functional testing, and performance testing [6].

Finally, Pagano and Maalej conducted a study that ex-
plored how developers blog [7]. They discovered, among
other things, that developers’ blogs tend to describe things
abstractly and at a higher level. Blog aggregators were also
used as a starting point from which they were able to find
blog posts, similar to how newsletters are used as the start-
ing point in this research. They also observed that blog posts
tend to consist of ”short documentations, tutorials, and how-
tos” [7]. Software testing newsletters contain many types of
resources, blog posts included.

3 Methodology
This section describes the methodology used during the var-
ious steps of the research process. Each step of the research
process is individually described and provides details about
how it can be replicated.

3.1 Source Discovery
During the beginning of the research process, various search
engines were used to discover which websites contained soft-
ware testing knowledge. An example of a Google search used
would be: “best websites for software testing discussion”.
The outcome of these searches provided a broad overview of
sites containing knowledge and discussion of software testing
and related fields.

After discovering the various types of websites where soft-
ware testing knowledge existed, the focus of newsletters was
chosen. Newsletters are similar to regular publications such
as newspapers and news websites but a curator is required
to select the content that will be used in the newsletter [8].
Newsletters can be general or specific to a certain topic and
are delivered to readers at certain intervals (weekly, etc.) [8].

Since newsletters contain a variety of information curated
by an author, they were selected as an optimal source of in-
formation about software testing. Since this research aims
to analyze software testing knowledge discussed on the inter-
net, curated newsletters provide an overview of what people
are reading within the community.

3.2 Source Selection
This research focuses on articles published online since they
frequently focus on explaining or discussing one particular
topic relevant to the field. Other media such as videos and
forum posts were in most cases discarded.

After newsletters were chosen as the source of informa-
tion, the selection of newsletters to analyze began. Since
all newsletters are different, certain sections were excluded
from the analysis in the research. Information about specific
sources has been gathered and is up to date as of May/June of
2023.

To select relevant newsletters, comparison articles 1 were
1https://www.lambdatest.com/blog/

latest-software-testing-newsletters

considered and search engines were used to find the most
commonly discussed newsletters. Five newsletters were se-
lected for further analysis. All of the newsletters selected
were either present on the first page of results or discussed in
comparison articles on the first page of results for the Google
query: “best software testing newsletters” 2.

LambdaTest is a platform that allows testers to orches-
trate and execute their tests online [9]. LambdaTest also cu-
rates and publishes the “Coding Jag” newsletter 3 weekly,
having so far published 137 issues with the first issue dating
back to September 4th, 2020. This newsletter contains the
sections: news, performance, automation, tools, others, and
events. The “others” section was excluded from the analysis
due to it mainly containing video content that was difficult to
process. In addition, content in the “events” section was ex-
cluded as it focused on advertising conferences/events which
did not directly discuss software testing information.

Ministry of Testing is a community of over 10,000 soft-
ware testers that contains a forum (“The Club”) and a learn-
ing environment (“The Dojo”) [10]. It also publishes the
“Your Weekly Testing News” newsletter 4, currently on is-
sue 422 with the first issue being published on June 11th,
2019. This newsletter has many sections that tend to change
each week. “Helpful business posts” was the only section
included since it contained articles related to software test-
ing. Most other sections in this newsletter were focused on
events, forum posts about learning, and job advertisements,
among other topics.

Software Testing Weekly is, as the name implies, a soft-
ware testing-related newsletter 5 published weekly with over
6,000 readers [11]. It has currently published 166 editions
and published its first edition on January 10th, 2020. This
newsletter also contains various sections that change from
week to week, but this analysis only included the sections:
news, automation, tools, and books. These sections, unlike
others, mostly published articles related to software testing in
different forms. Other sections were not included since they
focused on video or joke content.

Trending In Testing is a newsletter 6 aimed at fulfilling
the needs of software testers around the world [12]. It has
so far published 84 editions at irregular intervals with its first
issue dating back to July 6th, 2021. This newsletter contains
the sections: testing, automation, security, api, tools, software
bugs, and miscellaneous. All of these sections were included
since they discussed software testing content. The preamble,
however, was excluded since it mainly consisted of articles
that did not discuss software testing information.

Software Testing Notes is a newsletter 7 read by over
1,000 users consisting of various posts related to software
testing [13]. This newsletter is published weekly and has

2https://web.archive.org/web/20230624133434/https://www.
google.com/web/20230624133434/https://www.google.com/
search?client=firefox-b-d&q=best+software+testing+newsletters

3https://www.lambdatest.com/newsletter
4https://www.ministryoftesting.com/newsletter
5https://softwaretestingweekly.com
6https://trendingintesting.com/category/weekly-newsletter
7https://softwaretestingnotes.com

https://www.lambdatest.com/blog/latest-software-testing-newsletters
https://www.lambdatest.com/blog/latest-software-testing-newsletters
https://web.archive.org/web/20230624133434/https://www.google.com/web/20230624133434/https://www.google.com/search?client=firefox-b-d&q=best+software+testing+newsletters
https://web.archive.org/web/20230624133434/https://www.google.com/web/20230624133434/https://www.google.com/search?client=firefox-b-d&q=best+software+testing+newsletters
https://web.archive.org/web/20230624133434/https://www.google.com/web/20230624133434/https://www.google.com/search?client=firefox-b-d&q=best+software+testing+newsletters
https://www.lambdatest.com/newsletter
https://www.ministryoftesting.com/newsletter
https://softwaretestingweekly.com
https://trendingintesting.com/category/weekly-newsletter
https://softwaretestingnotes.com


so far published 85 editions, having started on March 15th,
2021. Various sections are used in this newsletter that change
depending on the edition. This analysis considered the sec-
tions: testing, automation, performance, security, and acces-
sibility. These sections were included since they all discussed
various aspects of the software testing industry. Other sec-
tions were not included since they contained jokes, unrelated
bonus content, and resources that did not discuss software
testing-related information.

3.3 Data Collection
The data collection process started by collecting the four most
recent editions from each of the five newsletters mentioned in
Section 3.1. 240 resources were downloaded from 20 total
newsletter editions.

During the data collection process, each resource men-
tioned in an included category of a newsletter edition was
downloaded as a PDF using the “Save to PDF” print desti-
nation in Firefox. Certain articles were downloaded in a sim-
plified format (stripping extra formatting, including manual
removal of HTML/CSS) to make the analysis process using
software more efficient.

An important consideration made during the data collec-
tion process was what to do with resources that appeared in
multiple newsletters. In this case, duplicate resources were
left in but they were all tagged identically. Since a resource
being present in multiple places implies that it is more popu-
lar, this was even more of a reason to include them in the data
set [14] with identical tags.

After downloading the PDF, each article was recorded in a
database that included the source, edition number, link, pub-
lish date, the section it was present in, and whether the re-
source had previously been used in another newsletter. This
database also includes links to all editions used, publish dates
of each edition, start dates of each newsletter, and more utility
information.

3.4 Data Analysis
To analyze the data present in each of the resources, grounded
theory was used. Grounded theory is a methodology using a
set of methods to code data and eventually create a theory
based on the data analyzed [15]. Open coding, one of the
methods part of grounded theory, was initially used to be-
gin coding the data. Open coding is the practice of break-
ing the data down into small parts which can then be given a
code that represents the main idea [15]. Axial coding, which
groups many codes into one overarching category, was then
conducted [15].

AtlasTI, a software used to ease the process of qualitative
data analysis, was the main piece of software used to analyze
the resources [16]. Using the grounded theory approach men-
tioned in the previous paragraph, each resource was analyzed
and codes were applied to corresponding topics. Using axial
coding, the codes were sorted into seven top-level categories.

A rule used during the analysis was that each tag was only
allowed to be applied at most once to each resource. This
is due to the fact that writers tend to mention certain words
more or less depending on their writing style, which would
bias the outcome. Only allowing one of each tag per resource

ensures that all mentions of a certain item are tracked fairly
and cannot be skewed by an article that mentions it many
times.

The article type category represents the type of each re-
source in the dataset. Based on how the resource presents its
information, how the author writes this information, whether
different technologies are compared, and more, a specific tag
is assigned. This tag category, unlike any of the others, is
mandatory. Therefore, exactly one article type tag must be
assigned to each resource. A special case with this tag is that
if a resource is classed as a tech comparison, technologies are
not tagged due to the large number of technologies usually
mentioned briefly in such resources.

The lang category represents resources that show an exam-
ple in a specific programming language or discuss a specific
programming language. For example, a code sample pro-
grammed in JavaScript would have the js tag applied. Re-
sources are allowed to have multiple different lang tags to
represent all languages discussed.

The platform category represents the platform that the ar-
ticle discusses. Examples of platforms include web, mobile,
iOS, and Android. An article that discusses mobile testing
would be tagged with the mobile tag while an article that dis-
cusses android testing would be tagged with the android tag.
This means that the sum of the iOS tags and Android tags
will not equal the number of mobile tags. Multiple different
platform tags can be applied to a single resource if that article
discusses multiple platforms.

The prob category represents common problems and so-
lutions discussed in a resource. For example, articles that
discuss test maintenance would have the maintain tests tag
assigned. Multiple problems can be discussed in an article,
therefore multiple different prob tags can be applied to a sin-
gle resource.

The tech category is the largest and contains all tags related
to specific technologies. For example, articles that discuss
web automation using Selenium would have the selenium tag
applied. Since multiple technologies can be discussed in a re-
source, multiple different tech tags can be applied to a single
resource.

The technique category contains all tags related to spe-
cific testing techniques and strategies. Articles that discuss
test-driven development, for example, would have the tdd tag
applied. Each resource can have multiple different technique
tags.

The test type category contains tags representing all types
of tests. For example, an article discussing the usage of unit
tests would be given the unit tag. Multiple different test type
tags can be assigned to a single resource.

Figure 1 provides a sample of a resource that has had some
tags applied. In this case, multiple technique and technology
tags were applied. In addition, a test type tag was applied to
show that automated tests were discussed. Not shown in this
snapshot is the required tag in the article type category

4 Results
After assigning tags to each of the resources downloaded, the
frequencies of each tag could be analyzed. This section will



Figure 1: An example of a resource with tags applied [17].

focus on presenting and visualizing the results gathered from
the research. Only tags that occurred 6 or more times (dou-
ble the maximum number of duplicate articles) will be shown
and discussed. This condition has been implemented to en-
sure that the popular tags discussed later come from a variety
of sources. The elements shown in the referenced figures will
be discussed in the next subsections based on their frequency
(highest to lowest). For more detail, a description of all the in-
dividual tags, their frequency, and their purpose can be found
in the data set [14] accompanying this thesis.

4.1 What platforms, languages, and test types are
discussed in newsletters?

Resources shared in software testing newsletters discuss
many different types of platforms, languages, and test types.
Understanding the common platforms, programming lan-
guages, and test types discussed in these resources may allow
researchers to better understand the direction the industry is
going in. This section will individually discuss each of these
factors and how they are discussed in resources.

Figure 2 showcases the various platforms discussed in re-
sources shared in newsletters. Most resources tend to focus
on web testing. However, mobile testing was also a minor
focus, with Android more than twice as popular as iOS.

Figure 2: Frequency of different platforms.

Figure 3 shows common programming languages dis-

cussed in resources. JavaScript/TypeScript were the most
commonly discussed, almost twice as much as the next most
popular language, Java. Python was also commonly dis-
cussed.

Figure 3: Frequency of different programming languages.

Figure 4 showcases common types of tests discussed in
software testing-related content. By far the most commonly
discussed test type was automated tests. Following this, end-
to-end tests, unit tests, integration tests, and functional tests
were discussed. Manual testing, which is only reliant on
the tester, was also commonly discussed. In addition, per-
formance testing, regression testing, exploratory testing, ac-
ceptance testing, penetration testing, and system testing were
discussed.

Figure 4: Frequency of different test types.

4.2 What common problems related to software
testing are discussed in newsletters?

The graph shown in Figure 5 showcases common problems
and their frequency. Understanding common problems en-
countered in the industry may allow others to create solutions
that address these issues. This section will focus on these
common problems discussed in newsletter resources.

Properly maintaining tests is the most common issue dis-
cussed in resources. As a project expands, tests can be-
come redundant and difficult to maintain. Especially in larger



companies, multiple testing environments and procedures can
make maintaining testing suites difficult.

The next most common problem is flaky tests and figur-
ing out how to properly fix them. One common cause of
flaky tests can come from using web automation frameworks
such as Selenium, where a frequently changing web page may
cause false test results. Since flaky tests can have many under-
lying causes, multiple solutions exist. For example, using a
different test framework or adding explicit wait periods for UI
tests can help avoid flaky tests. Scientific research was also
not discussed in newsletter resources, which may have pro-
vided more complex approaches for dealing with flaky tests.

Furthermore, another common problem discussed is how
to properly analyze test results. Test results can often be hard
to interpret if they only contain information about pass/failure
rates. Many resources presented in newsletters discuss meth-
ods to make test reports easier to understand for other testers
and clients alike [18]. Customizing the framework used for
testing can allow for better reports to be generated. In ad-
dition, data visualization can create reports that are easier to
comprehend.

Another common problem discussed in resources was
proper system observability. If a system does not have proper
logging or metrics available, it can be more difficult to de-
bug a failing test or analyze failures that should have been
tested in the first place. By ensuring that a system is observ-
able, tests can be easily added when failures are detected, and
failing tests can more easily be fixed by analyzing logs and
metrics.

Next, preventing over-automation is also a commonly dis-
cussed issue. For certain applications where the user inter-
face frequently changes, creating an automated UI test may
be a waste due to all of the maintenance required when the
UI changes [19]. Some tests are more unstable than others
or may require human judgment which makes automated test-
ing not applicable [19]. Due to these and other reasons, many
resources discussed facing this issue.

Ensuring that an application can perform well is a critical
part of testing. Many resources discussed using testing (espe-
cially performance/load testing) to ensure that the application
could hold up under load.

In addition, properly sourcing data to use during testing is
another common issue. Creating a data set similar to produc-
tion can be quite challenging in a complex system. It is crit-
ical to use data that reflects the real world in order to ensure
that problems users encounter will be detected during testing.

Finally, choosing the right testing framework is another
common problem that testers face. Testing frameworks can
often make writing tests much easier with quality-of-life im-
provements. Testing frameworks can also be focused on a
certain domain, making it critical to select the proper one for
the use case presented.

4.3 What software testing tools, techniques, and
strategies are discussed in newsletters?

The graph shown in Figure 6 shows common techniques,
strategies, and their frequency. The graph shown in Figure
7 showcases technologies and their frequency. Understand-
ing common techniques and strategies that are discussed may

Figure 5: Frequency of different problem types.

allow testing practitioners to find new ideas that will help
them test more effectively. In addition, understanding com-
mon technologies used can help researchers better gauge the
state of the industry. This section will discuss the tools, tech-
niques, and strategies shown in the figures.

Techniques and Strategies
API testing is the most common technique discussed in re-
sources presented in newsletters. Companies are rapidly
adopting APIs since software in today’s age often utilizes
APIs [20]. Because of this, properly testing APIs and en-
suring that they function properly is a key technique.

Continuous Integration (CI) is the next most common tech-
nique used during the testing process. Integrating the testing
process into a pipeline when committing code to a repository
is essential to automate and speed up the testing process.

Continuous Delivery (CD), oftentimes grouped with con-
tinuous integration, is another common technique used dur-
ing the testing process. Integrating tests into the continuous
delivery pipeline can ensure that released software will be as
bug-free as possible.

Behavior Driven Development (BDD) is another common
technique discussed in resources. BDD is a collaborative ap-
proach where members of an agile team work together to cre-
ate testing scenarios [21]. This approach is mentioned in
many resources as being a great way to define new test sce-
narios.

Next, the usage of the agile methodology during develop-
ment and testing is also a common technique. Using this tech-
nique during testing can allow testers to incrementally design
and create test cases.

The Page Object Model (POM) is also a popular technique
used when creating automated web tests using a framework
like Selenium. Using the POM pattern entails creating sep-
arate classes for each web page, allowing for easier mainte-
nance of tests as the application changes [22].

The usage of low-code tools is another common technique
seen in resources. Low-code tools can allow those less fa-
miliar with programming to design test cases. This can make
testing more accessible for systems with many collaborators
of different experience levels.

Testing in parallel is another key technique that can make
the testing process much more efficient. When parallel runs



are feasible, they can significantly increase the speed at which
tests complete. However, the feasibility of running tests in
parallel depends on many external factors such as databases,
the test framework used, and more.

Shift-left testing involves moving testing to an earlier part
of the development process [23]. By doing so, issues can be
caught quicker, saving the team resources and time [23].

Cross Browser Testing (CBT) is a key technique that works
by testing a web application in many different browsers since
every browser may behave slightly differently when render-
ing a website [24].

The use of mocks is another common technique that works
by creating a fake version of something to use during a test.
Using mocks can often help when testing a complex service
that is hard to replicate in a test environment.

Test Driven Development (TDD) is a technique used in
testing where tests are implemented before the actual soft-
ware is programmed [25]. Using TDD may cause developers
to focus more on tests since they are being coded before the
actual software. This may in turn make testing more effective.

Finally, the use of the testing pyramid is another common
technique discussed. This technique is used in test automa-
tion and consists primarily of three layers: unit, service, and
user interface [26]. Creating tests across all three of these
layers helps to ensure that an application is properly tested.

Figure 6: Frequency of different techniques and strategies.

Tools and Technologies
Selenium, Cypress, and Playwright are the first, second, and
fourth technologies respectively discussed in the resources.
Selenium used to be the main contender for web automated
testing but Cypress and Playwright (other web automation
testing frameworks) have emerged [27]. These frameworks
have been used as web applications have evolved due to tech-
nological advancements [27].

Gherkin is another common technology discussed in var-
ious resources. According to Jones, “A Gherkin (Given-
When-Then-And) scenario is non-technical, clear to read, and
applied to describe test cases” [21]. The gherkin syntax, also
used in combination with BDD, can be used to better create
tests with many stakeholders involved [21].

Next, NodeJS is also a commonly discussed technology.
NodeJS is frequently used as a backend for web servers. In

addition, many testing tools, for example Selenium, can be
installed via NodeJS.

Cucumber allows testers to define tests using BDD and
human-readable language [28]. Using this technology can
also allow non-technical users to understand what behaviors
a test might cover [28].

Jira is a tool that is extremely common for managing tests
and allows users to track bugs [6]. In addition, Jira was the
second most requested tool when looking at job advertise-
ments for software testers [6].

Appium is a platform used to automate the testing of user
interfaces [29]. As UIs become more complex, automated
tools can help testers more effectively design tests.

Grafana is an analytics platform frequently used to analyze
performance. Analytics are key to making system metrics and
performance observable.

JUnit is a Java-based unit testing framework.
Postman is a commonly used tool in the development space

for testing API endpoints. Testers may be able to use this tool
to quickly test endpoints and various other features of an API
they are testing.

Chai is a BDD-focused assertion library used in combina-
tion with many JS-based testing frameworks [30].

Mocha is a Javascript testing framework.
TestNG is a Java-based testing framework.

Figure 7: Frequency of different tools and technologies.

4.4 What types of software testing resources are
shared in newsletters?

The graph shown in Figure 8 showcases article types and
their frequency. Understanding the ways content is shared
with newsletter readers may help future researchers when
looking further into online software testing discussions. This
section will discuss the common article types shown in this
figure.

Opinion (opinion) articles are the most common in the data
set. An opinion article is categorized as a resource that sig-
nificantly discusses the author’s opinion on a certain aspect of
software testing. Therefore, these articles are not as objective
as can be. An example of this category would be an article
explaining why testing is important, according to the author.

Tech introduction (tech intro) articles are the second most
common in the data set. These articles serve to introduce a



specific technology to the reader. An example of this cate-
gory would be an article introducing a reader to Cypress and
instructing them on how to set up a basic test.

Concept explanation (concept explain) articles follow tech
introduction articles in popularity. These articles focus on
explaining a concept to the reader without necessarily using a
specific technology. An article explaining the different types
of tests (unit vs. end-to-end) without focusing on specific
technologies would be considered a concept explanation.

Following concept explanations, tech comparison
(tech compare) articles are next in terms of popularity. These
articles focus on comparing and contrasting various tech-
nologies within a specific sub-field of software testing. An
article comparing various automated web testing frameworks
(Selenium, Cypress, Playwright, etc) would be considered a
tech comparison.

Finally, explainer (explainer) articles were not able to fit
into any of the previously defined categories. These articles
may be vague, not completely related to software testing, or
have other distinguishing features that make them hard to cat-
egorize.

Figure 8: Frequency of different article types.

5 Discussion
Based on the results gathered, the research questions can be
re-analyzed and connections can be discovered.

With regard to tools and technologies mentioned in RQ3,
frameworks used to automate web testing (Selenium, Cy-
press, and Playwright) topped the frequency list (1st, 2nd,
and 4th place, respectively). Many of the resources in the se-
lected newsletters focus on automation testing, more specif-
ically web automation testing, which is why these specific
frameworks were commonly discussed.

In addition to this, the results from RQ1 also show that
JavaScript and TypeScript emerged as the most popular lan-
guages. Automated and end-to-end tests were also the two
most popular test types. This, combined with the fact that
the web platform was the most popular, suggests that web au-
tomation testing is a common type of testing used in practice
today.

Looking further into RQ3, some of the popular techniques
are also related to web testing. API testing and POM usage

were both frequently mentioned in the selected resources and
are used when conducting web tests. However, many of the
popular techniques are platform-agnostic. The use of CI/CD,
BDD, agile, low code programs, and more can be used in
many types of tests, and not just with web testing. This sug-
gests that in most cases, the techniques discussed in the se-
lected resources tend to focus on those that can be applied to
many different fields and approaches. However, it may also
be the case that techniques in general tend to be more abstract
and therefore can apply to more domains.

When looking at RQ2 and problems that were often dis-
cussed, all of those discussed were quite abstract and not re-
lated to a specific type of test or platform. Properly analyzing
test results and fixing flaky tests can be applied to almost any
domain in software testing, for example. This may suggest
that oftentimes, the problems faced by testing practitioners in
a certain context can be extrapolated to a more abstract plat-
form that would also affect them in another context.

In terms of the resource categories discovered in RQ4,
opinion resources were the most prevalent, followed by tech
introduction, concept explanations, tech comparisons, and
explainer resources. The frequency of opinion resources
implies that much of the testing content presented through
newsletters is based on personal experience. Many resources
published in newsletters shared opinions based on using tech-
niques and technologies in practice while testing real applica-
tions.

6 Conclusions and Future Work
Curated software testing content presented in newsletters pro-
vided a broad basis from which information could be ex-
tracted. By utilizing grounded theory, tags and categories
were created to organize the information presented in the re-
sources in line with the four research questions proposed at
the beginning of this thesis.

After utilizing grounded theory to analyze the data, the
frequencies of popular items were noted. In terms of plat-
forms discussed, testing on the web was most common, fol-
lowed by mobile (with Android being twice as common as
iOS). JavaScript/TypeScript were the most common program-
ming languages discussed, followed by Java and Python.
In addition, many test types were discussed in newsletter
resources, including automated, end-to-end, unit, integra-
tion, functional, manual, performance, regression, and more.
When referring to resource types, opinion pieces tended
to be most frequent, followed by tech introduction, con-
cept explanation, tech comparison, and finally, explainer re-
sources. Various common problems were also found, which
included: maintaining tests, fixing flaky tests, properly an-
alyzing test results, ensuring that the system is observable,
preventing over-automation, ensuring quality performance,
finding proper data to use for tests, and choosing the proper
framework for testing. Various common technologies were
also found to appear in these resources, such as web automa-
tion frameworks (Selenium, Cypress, Playwright, Appium),
utility applications (Postman, Grafana, Jira), testing frame-
works (JUnit, Chai, Mocha, TestNG), Gherkin, NodeJS, and
Cucumber. Finally, various techniques and strategies such



as API testing, the use of continuous integration and deploy-
ment, behavior-driven development, agile development, page
object model, low-code tools, testing in parallel, and more
were commonly discussed in the analyzed resources.

This thesis provides a detailed look into what is commonly
discussed in online resources. Analyzing newsletters specif-
ically allowed for the analysis of curated content that was
directly delivered to software testers. This research and its
associated data set [14] can serve as a jumping-off point for
future research into software testing trends discussed among
testing practitioners on the internet.

This work focused on analyzing resources within software
testing-related newsletters. Future work can expand on this
research by using more resources from the newsletters al-
ready identified, using a different analysis method, or using
a similar analysis technique but finding new newsletters. In
addition, this work used grounded theory to manually tag and
organize the data. Using more automated or data-driven ap-
proaches may help to more effectively analyze a large amount
of data. This could enable a more comprehensive analysis of
resources present in software testing newsletters.

7 Limitations and Threats to Validity
Although this research was conducted with the utmost care,
there are still elements that may threaten the validity of the
research. This section will discuss the limitations that may
affect the validity of this research.

Regarding external validity, the resources analyzed in this
research may not be available in the future. Although the
links were saved in the data set [14], authors may delete, al-
ter, or remove the content at a later point in time. This may
make it difficult to replicate certain parts of the research pro-
cess.

The manual inspection and tagging of resources is also an
external threat to validity since it is subjective. A researcher
attempting to replicate this research may have difficulty ob-
taining the same data set or similar conclusions depending
on how they tag information. This manual inspection and
tagging may also be a threat to the internal validity of the
research due to the subjectivity.

8 Responsible Research
Following the principles of responsible research is critical
when conducting any sort of research. In this thesis, a large
amount of data was collected, analyzed, and discussed. To
ensure that this has been done properly, this section will dis-
cuss measures taken to ensure that research was conducted
responsibly.

The concept of replication is critical in ensuring that the
research was conducted responsibly. This entails that another
researcher should be able to replicate this study and obtain
similar results. To ensure that this experiment can be repli-
cated effectively, Section 3 clearly outlines the methodology
and all steps taken to collect and analyze the data. However,
since the resources are tagged based on personal opinion, ex-
act replication of the results in this thesis may not be possible.

In addition to the concept of replication, publicly acces-
sible data is also critical to allow for further research to be

conducted. A data set [14] has been published alongside this
thesis which provides detailed information about the tags, re-
sources, and other key portions of the research. This public
data set has been shared to allow others to validate the work
presented here and build upon it in future research.

Due to the many newsletters and resources used, some data
was left out due to it not being applicable. In cases where
data was left out, this is clearly explained in the requisite sec-
tion with a proper reason. Excluding data to come to a better
conclusion is not acceptable and therefore all exclusions are
detailed clearly in this thesis. For example, the newsletter
sections that were included/excluded for each newsletter are
detailed in Section 3.2.

References
[1] M. E. Khan and F. Khan, “Importance of software test-

ing in software development life cycle,” International
Journal of Computer Science Issues (IJCSI), vol. 11,
no. 2, p. 120, 2014.

[2] G. Fraser and J. M. Rojas, Software Test-
ing. Cham: Springer International Publish-
ing, 2019, pp. 123–192. [Online]. Available:
https://doi.org/10.1007/978-3-030-00262-6 4

[3] M. Dowson, “The ariane 5 software failure,” SIGSOFT
Softw. Eng. Notes, vol. 22, no. 2, p. 84, mar 1997.
[Online]. Available: https://doi.org/10.1145/251880.
251992

[4] M. Aniche, C. Treude, I. Steinmacher, I. Wiese,
G. Pinto, M.-A. Storey, and M. A. Gerosa, “How mod-
ern news aggregators help development communities
shape and share knowledge,” in Proceedings of the 40th
International Conference on Software Engineering, ser.
ICSE ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 499–510. [Online].
Available: https://doi.org/10.1145/3180155.3180180

[5] S. Chowdhury and M. Landoni, “News aggregator ser-
vices: user expectations and experience,” Online Infor-
mation Review, vol. 30, no. 2, pp. 100–115, 2006.

[6] R. Florea and V. Stray, “The skills that em-
ployers look for in software testers,” Software
Quality Journal, vol. 27, no. 4, pp. 1449–
1479, Dec 2019. [Online]. Available: https:
//doi.org/10.1007/s11219-019-09462-5

[7] D. Pagano and W. Maalej, “How do developers blog?
an exploratory study,” in Proceedings of the 8th
Working Conference on Mining Software Repositories,
ser. MSR ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 123–132. [Online].
Available: https://doi.org/10.1145/1985441.1985461

[8] N. Seely and M. Spillman, “Email newsletters: An
analysis of content from nine top news organizations,”
Electronic News, vol. 15, no. 3-4, pp. 123–138,
2021. [Online]. Available: https://doi.org/10.1177/
19312431211037681

[9] [Online]. Available: https://www.lambdatest.com/about

https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/3180155.3180180
https://doi.org/10.1007/s11219-019-09462-5
https://doi.org/10.1007/s11219-019-09462-5
https://doi.org/10.1145/1985441.1985461
https://doi.org/10.1177/19312431211037681
https://doi.org/10.1177/19312431211037681
https://www.lambdatest.com/about


[10] [Online]. Available: https://www.ministryoftesting.
com/about-us

[11] D. Dylowicz, “The best software testing news.”
[Online]. Available: https://softwaretestingweekly.com/

[12] May 2021. [Online]. Available: https://
trendingintesting.com/about-trending-in-testing/

[13] [Online]. Available: https://softwaretestingnotes.com/
[14] P. De Munck, “Data underlying the bachelor thesis:

Using newsletters to analyze curated software testing
content,” 2023. [Online]. Available: https://doi.org/10.
4121/9e59a43d-474b-46c2-9e29-c7c0b21bd6b4

[15] M. Vollstedt and S. Rezat, An Introduction to Grounded
Theory with a Special Focus on Axial Coding and
the Coding Paradigm. Cham: Springer International
Publishing, 2019, pp. 81–100. [Online]. Available:
https://doi.org/10.1007/978-3-030-15636-7 4

[16] May 2023. [Online]. Available: https://atlasti.com/
[17] B. Akkaya, “Api testing with karate

framework,” Apr 2023. [Online]. Avail-
able: https://medium.com/insiderengineering/
api-testing-with-karate-framework-d62d4135447b

[18] J. Hodehou, “How to generate xml reports in
pytest?” Apr 2023. [Online]. Available: https:
//www.lambdatest.com/blog/xml-reports-in-pytest/

[19] O. Cepeda, “When you should not auto-
mate your tests,” Apr 2023. [Online].
Available: https://medium.com/@ocepeda34/
when-you-should-not-automate-your-tests-cae66c52ea4d

[20] I. Gino, “Council post: Why almost ev-
ery company is now an api company,”
Sep 2021. [Online]. Available: https:
//www.forbes.com/sites/forbestechcouncil/2021/09/16/
why-almost-every-company-is-now-an-api-company/

[21] R. Jones, “Tips for building an effective test au-
tomation framework from scratch,” Nov 2022.
[Online]. Available: https://www.accelq.com/blog/
tips-to-build-effective-test-automation-framework/

[22] E. Red, “5 must-know cypress testing strate-
gies for software engineers,” May 2023.
[Online]. Available: https://blog.devops.dev/
5-must-know-cypress-testing-strategies-for-software-engineers-1477938669b

[23] A. Bhasin, “Introduction to shift left testing,” Mar
2023. [Online]. Available: https://dzone.com/articles/
introduction-to-shift-left-testing

[24] A. Mesbah and M. R. Prasad, “Automated cross-
browser compatibility testing,” in Proceedings of the
33rd International Conference on Software Engineer-
ing, ser. ICSE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 561–570. [Online].
Available: https://doi.org/10.1145/1985793.1985870

[25] E. Guerra and M. Aniche, “Chapter 9 - achieving quality
on software design through test-driven development,”
in Software Quality Assurance, I. Mistrik, R. Soley,
N. Ali, J. Grundy, and B. Tekinerdogan, Eds.

Boston: Morgan Kaufmann, 2016, pp. 201–220.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780128023013000090

[26] A. Contan, C. Dehelean, and L. Miclea, “Test automa-
tion pyramid from theory to practice,” in 2018 IEEE
International Conference on Automation, Quality and
Testing, Robotics (AQTR), May 2018, pp. 1–5.

[27] C. Cunha, “Testing applications with cypress,” Apr
2023. [Online]. Available: https://www.getxray.app/
blog/testing-applications-with-cypress-xray

[28] N. Li, A. Escalona, and T. Kamal, “Skyfire: Model-
based testing with cucumber,” in 2016 IEEE Interna-
tional Conference on Software Testing, Verification and
Validation (ICST), 2016, pp. 393–400.

[29] [Online]. Available: https://appium.io/docs/en/2.0/
[30] [Online]. Available: https://www.chaijs.com/

https://www.ministryoftesting.com/about-us
https://www.ministryoftesting.com/about-us
https://softwaretestingweekly.com/
https://trendingintesting.com/about-trending-in-testing/
https://trendingintesting.com/about-trending-in-testing/
https://softwaretestingnotes.com/
https://doi.org/10.4121/9e59a43d-474b-46c2-9e29-c7c0b21bd6b4
https://doi.org/10.4121/9e59a43d-474b-46c2-9e29-c7c0b21bd6b4
https://doi.org/10.1007/978-3-030-15636-7_4
https://atlasti.com/
https://medium.com/insiderengineering/api-testing-with-karate-framework-d62d4135447b
https://medium.com/insiderengineering/api-testing-with-karate-framework-d62d4135447b
https://www.lambdatest.com/blog/xml-reports-in-pytest/
https://www.lambdatest.com/blog/xml-reports-in-pytest/
https://medium.com/@ocepeda34/when-you-should-not-automate-your-tests-cae66c52ea4d
https://medium.com/@ocepeda34/when-you-should-not-automate-your-tests-cae66c52ea4d
https://www.forbes.com/sites/forbestechcouncil/2021/09/16/why-almost-every-company-is-now-an-api-company/
https://www.forbes.com/sites/forbestechcouncil/2021/09/16/why-almost-every-company-is-now-an-api-company/
https://www.forbes.com/sites/forbestechcouncil/2021/09/16/why-almost-every-company-is-now-an-api-company/
https://www.accelq.com/blog/tips-to-build-effective-test-automation-framework/
https://www.accelq.com/blog/tips-to-build-effective-test-automation-framework/
https://blog.devops.dev/5-must-know-cypress-testing-strategies-for-software-engineers-1477938669b
https://blog.devops.dev/5-must-know-cypress-testing-strategies-for-software-engineers-1477938669b
https://dzone.com/articles/introduction-to-shift-left-testing
https://dzone.com/articles/introduction-to-shift-left-testing
https://doi.org/10.1145/1985793.1985870
https://www.sciencedirect.com/science/article/pii/B9780128023013000090
https://www.sciencedirect.com/science/article/pii/B9780128023013000090
https://www.getxray.app/blog/testing-applications-with-cypress-xray
https://www.getxray.app/blog/testing-applications-with-cypress-xray
https://appium.io/docs/en/2.0/
https://www.chaijs.com/

	Introduction
	Related Work
	Methodology
	Source Discovery
	Source Selection
	Data Collection
	Data Analysis

	Results
	What platforms, languages, and test types are discussed in newsletters?
	What common problems related to software testing are discussed in newsletters?
	What software testing tools, techniques, and strategies are discussed in newsletters?
	What types of software testing resources are shared in newsletters?

	Discussion
	Conclusions and Future Work
	Limitations and Threats to Validity
	Responsible Research

