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Abstract 

Honeycomb structures have found numerous applications as structural and biomedical 

materials due to their favourable properties such as low weight, high stiffness, and porosity. 

Application of additive manufacturing and 3D printing techniques allows for manufacturing 

of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the 

mechanical and physical properties for specific applications. In this study, the mechanical 

properties of honeycomb structures with a new geometry, called octagonal honeycomb, were 

investigated using analytical, numerical, and experimental approaches. An additive 

manufacturing technique, namely fused deposition modelling, was used to fabricate the 

honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically 

tested under compression and the mechanical properties of the structures were determined. In 

addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving 

analytical relationships for elastic modulus, yield stress, Poisson’s ratio, and buckling stress 

of this new design of honeycomb structures. Finite element models were also created to 

analyse the mechanical behaviour of the honeycombs computationally. The analytical 

solutions obtained using Timoshenko beam theory were close to computational results in 

terms of elastic modulus, Poisson’s ratio and yield stress, especially for relative densities 

smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and 

the computational results were in good agreement with experimental observations. Finally, 

the elastic properties of the proposed honeycomb structure were compared to those of other 

honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. 

The octagonal honeycomb showed yield stress and elastic modulus values very close to those 

of regular hexagonal honeycombs and lower than the other considered honeycombs. 

Keywords: Octagonal honeycomb; Timoshenko beam theory; Analytical relationships; 

Porous structures. 
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1. INTRODUCTION 

Cellular solids have been widely studied as temporary or permanent scaffolds in tissue 

engineering [1, 2]. In general, cellular solids can be categorized into at least two main groups: 

foams and honeycombs. Foams have complex 3D micro-structural geometries with usually 

irregular unit cell shapes [3]. Honeycombs, on the other hand, possess in-plane tessellated 

and regular microstructures that form lightweight structures. The advent of additive 

manufacturing techniques made it possible to easily manufacture cellular solids with novel 

designs and precisely controlled micro-architectures. Several recent studies have investigated 

the mechanical and biological properties of additively manufactured 3D porous biomaterials 

with different unit cell types and densities [4-6]. To integrate well within the host tissue, 

tissue-substituting biomaterials should provide enough space for de novo tissue regeneration 

while exhibiting stiffness values close to the native tissue they replace. Having a micro-

architecture similar to that of the native tissue, e.g. bone, could help tissue-substituting 

biomaterials to better mimic the mechanical response of the native tissue they replace. The 

microstructure of trabecular bone is shown to be close to that of honeycombs with thick walls 

in certain high density areas [7]. Recently, additive manufacturing techniques have been used 

for fabrications of biomedical implants based on honeycomb structures [8, 9]. Moreover, 

collagen scaffold with honeycomb-like micro-structure have been used for in vitro cell 

culture and in vivo studies [10-12].  

In this study, we investigate the in-plane mechanical properties of a new design of 

honeycomb structures. Natural honeycombs constituting the cancellous bone, cork, or wood 

are usually loaded in in-plane [13]. Understanding the in-plane mechanical properties of 

honeycomb structures not only helps us better understand the form-function relationship in 

biological materials but could be also used for better design and (additive) manufacturing of 

tissue-substituting biomaterials. 
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Several experimental [14-21] and numerical [22-27] works have been published on the in-

plane deformation of honeycombs. Hexagonal shape is the most widely studied geometry 

among the honeycombs. However, other types of honeycombs have also been investigated by 

other researchers [28]. Torquato et al. [29] investigated the effective linear elastic properties 

of honeycombs with square, hexagonal, and triangular cell shapes using two different 

approaches, namely homogenization theory and discrete network analyses, in order to 

establish rigorous bounds on the effective elastic modulus of honeycombs in terms of the 

thermal conductivity and vice versa [28]. The effective Young’s modulus of triangular cell 

honeycombs was studied by Gulati [30] with reference to thermal shock resistance. 

In addition to numerical and experimental studies, several analytical relationships have also 

been obtained for honeycombs with different micro-architectures. Analytical relationships 

provide fast (and accurate) estimation of the mechanical properties of honeycombs. 

Moreover, analytical models allow for better understanding of the various geometric aspects 

and physical mechanisms behind the mechanical behaviour of rationally designed materials 

such as honeycombs. For example, using analytical relationships, the user could quickly find 

the optimal micro-architecture of a honeycomb structure using simple optimization 

algorithms. The first analytical work published on the in-plane mechanical properties of 

honeycombs was performed by El-Sayed et al. [31] in which the elastic properties of unfilled 

and filled hexagonal honeycomb sheets under in-plane loading and out-of-plane bending 

were studied. However, their work had “numerous small errors” [13]. In 1982, Gibson et al. 

[13] obtained analytical relationships for different mechanical properties of hexagonal 

honeycombs (ܧଵ, ܧଶ, ߭ଵଶ, ߭ଶଵ, ߪ௬ଵ, ߪ௬ଶ, ܩ, and ߪ௘௟). Their analytical results showed excellent 

agreement with their experimental results for both the rubber- and metal-made honeycombs 

but only for small values of relative density. A few other analytical studies [21, 32-34] were 

carried out to improve the Gibson et al.’s relationships for hexagonal honeycombs. Seven 
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other types of honeycomb cell shapes (square, triangular, hexagonal, Kagome, mixed, 

diamond, and rectangular) were investigated in a study by Wang and McDowell [28] using 

simple beam or column/truss elements, including linear and nonlinear theories to explore in-

plane effective elastic stiffness and initial yield strength. 

In this paper, a design for honeycomb-shaped pores referred to as octagonal, is introduced 

and its mechanical response is studied in the elastic range. An additive manufacturing 

technique, namely fused deposition modelling, was used to fabricate the honeycombs from 

polylactic acid (PLA). The honeycomb structures were then mechanically tested under 

compression and the mechanical properties of the structures were determined. The elastic 

modulus, Poisson’s ratio, yield stress, and buckling stress of this structure is obtained 

analytically. The Euler-Bernoulli and Timoshenko beam theories are used for deriving the 

analytical relationships. Two finite element (FE) models are also created, one consisting of ¼ 

of a unit cell with periodic boundary conditions and the other consisting of a large set of unit 

cells. The experimental, analytical, and computational results are compared with each other. 

2. MATERIALS AND METHODS 

2.1. Experimental tests 

We used an additive manufacturing technique, namely fused deposition modeling, to create 

octagonal honeycomb structures. Three samples from each relative density were 

manufactured and were mechanically tested under compression (Figure 5). The wall 

thickness to length ratios of the samples were varied between ݐ/݈ = ݈/ݐ ,0.2727 = 0.4091, 

݈/ݐ = 0.5454, and ݐ/݈ = 0.6817 to create four different relative densities. The specimens 

were made of poly-lactic acid (PLA) using 5th generation Replicator Desktop Makerbot 3D 

printers. All the samples had heights and widths of 77.26 mm and depths of 25 mm. The 

mechanical tests were done using Instron ElectroPuls E10000 machine with a 10kN load cell. 
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The samples were compressed with a displacement rate of 6 mm/min. The test procedures 

followed the specifications laid out by the ISO standard 13314:2011 

To have a better impression of the elastic modulus and yield stress parameters, their 

normalized values (i.e., ratio of their value in the honeycomb structure to their corresponding 

value in the bulk material) are reported in the following. The mechanical properties of the 

bulk material are required when calculating the normalized values of elastic modulus and 

yield stress. Cylindrical specimens were created from the same PLA materials and were 

tested under compressive loading to determine their mechanical properties. The measured 

elastic modulus and yield stress of blue filaments were ܧ௦ = 1.962 ± ௬ೞߪ and ܽܲܩ 0.069
=

56.204 ±   .respectively ,ܽܲܯ 1.2127

2.2. Relative density 

Relative density is defined as the ratio of the density of a porous structure to the density of 

the material it is made of. Expressing the mechanical properties of a porous structure in terms 

of its relative density would be helpful in comparing its mechanical properties with those of 

other porous structures with different morphologies. In order to obtain the relative density, 

the volume of the bulk material present in one unit cell must be divided by the total volume 

occupied by the unit cell. Since the depth of the walls are constant throughout honeycomb 

structures, finding the filled and total areas of a unit cell in the cross-section of the lattice 

structure is sufficient (see2 Figure 1). If the cell walls are assumed to be thin enough, the area 

occupied by the materials constructing the walls of a unit cell is ሺ4݈ݐ + 2ሻ/ݐ4݈ =  The .ݐ6݈

total area of a unit cell is ݈ଶ൫√2 + 1൯
ଶ
. Consequently, the approximate relative density of an 

octagonal honeycomb is obtained as 

ߤ =
6

൫√2 + 1൯
ଶ ൬

ݐ
݈
൰  

(1) 

The exact area occupied by the material constructing the walls of a unit cell is (Figure 1) 
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௠ܣ = 8 ቊ
1
2

ቆ
݈
2

−
2√ݐ

2
+

݈
2

−
2√ݐ

2
+

ݐ
2

ቇ
ݐ
2

+
1
2

൬
݈
2

+
ݐ
2

+
݈
2

−
ݐ
2

൰  ቋݐ
(2) 

or 

௠ܣ = 2 ൜൬݈ − 2√ݐ +
ݐ
2

൰ ݐ + ൠݐ2݈ = ݐ2 ൜3݈ +
ݐ
2

−  2ൠ (3)√ݐ

and the area of a unit cell is again ݈ଶ൫√2 + 1൯
ଶ
. Therefore, the exact relative density of this 

structure is calculated as 

ߤ =
ݐ2 ቄ3݈ +

ݐ
2 − 2ቅ√ݐ

݈ଶ൫√2 + 1൯
ଶ =

ݐ2
݈ ቀ3 +

ݐ
2݈ −

ݐ
݈ √2ቁ

൫√2 + 1൯
ଶ  

(4) 

2.3. Euler-Bernoulli beam theory 

In this section, we use the Euler-Bernoulli beam theory to derive analytical relationships for 

the elastic modulus, Poisson’s ratio, and yield stress of an octagonal honeycomb structure as 

functions of the elastic modulus and yield stress of the matrix material (ܧ௦, ௬ೞߪ
) and the 

relative density (ߤ) of the honeycomb.  

Each of the unit cells constructing a 2D lattice structure (Figure 2) consists of two vertical, 

two horizontal, and four inclined edges. Due to the symmetry existent in the octagonal 

structure (Figure 2), considering ¼ of the structure (here the lower right portion) is sufficient 

for the analytical study (Figure 3a). If the total load applied to each unit cell is ܨ, then the 

axial load applied to each vertical edge is 2/ܨ. The load applied to edge CD is 2/ܨ, and since 

the lattice structure is free to move laterally, the horizontal loads are zero. Due to the 

symmetry existent between each of two adjacent cells, the vertical and horizontal edges have 

to remain vertical and horizontal during elastic deformation. That is, if one of the noted edges 

rotates by ߠ°, satisfying the symmetry conditions requires that it rotates −ߠ° in the adjacent 

cell. The rotation −ߠ° equals ߠ°, only if ߠ = 0. That holds only for the vertical and horizontal 

edges, because they are the only edges that are shared between adjacent cells. A concentrated 
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moment must have been applied to vertex C of edge CD by the adjacent cell located in the 

right side of the cell (Figure 3a) to keep the angle of vertex C unchanged. A moment with 

equal magnitude and reverse directions is applied by the cell to the noted edge of the right 

cell due to symmetry.  

To calculate the displacements and rotations of the inclined edge (edge BC in Figure 3a), its 

free body diagram is plotted (Figure 3b). Edge AB must remain horizontal and, thus, the 

angle of vertex B must remain unchanged. Edge BC can therefore be considered as a 

cantilever beam at the end of which an axial load 2/ܨ sin 2/ܨ a lateral load ,ߠ cos  and a ,ߠ

moment ܯ are applied, where ߠ = ߨ 4⁄ . As already stated, the loads 2/ܨ sin 2/ܨ and ߠ cos  ߠ

are imposed on edge BC by edge CD of the cell, while moment ܯ is applied by the adjacent 

cell located in the right side of the cell. Since the vertical edge remains vertical, and given 

that angle C must remain constant, the rotation of beam BC at its end C must be zero after 

deformation. The axial load 2/ܨ sin  does not rotate the end C. Therefore, the rotations ߠ

produced by the lateral load 2/ܨ cos  must be equal and in the reverse ܯ and the moment ߠ

directions from which the value of ܯ can be calculated as: 

ܨ
2

√2
2 ݈ଶ

ܫ௦ܧ2
=

݈ܯ
ܫ௦ܧ

           ⇒ ܯ                =
2√݈ܨ

8
 

(5) 

where ܫ =
ଵ

ଵଶ
 ଷ  is the area moment of inertia of the edges in which ܾ is the depth of theݐܾ

honeycomb structure in the out-of-plane direction. In order to obtain the vertical strain of the 

unit cell as a function of the applied load ܨ (which is necessary for obtaining the elastic 

modulus and Poisson’s ratio of the unit cell), first the vertical component of the structure 

displacement must be obtained. Decrease in the length of half of the vertical edge CD (i.e., 

CC`) is  

`஼஼ߜ =

ܨ
2

݈
2

ܣ
2 ௦ܧ

=
݈ܨ

௦ܧܣ2
      

(6) 
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where ܣ = 2/ܨ is the cross-sectional area of the edges. The lateral load ݐܾ cos  tends to ߠ

decrease the length GC (Figure 3b) by  

஻஼ி,௕௘௡ௗ௜௡௚ߜ =

ܨ
2

√2
2 ݈ଷ

ܫ௦ܧ3
√2
2

=
ଷ݈ܨ

ܫ௦ܧ12
      

(7) 

On the other hand, the moment ܯ tends to increase the length GC (Figure 3b) by  

஻஼ெߜ =
ଶ݈ܯ

ܫ௦ܧ2
√2
2

      
(8) 

Substituting ܯ from Eq. (5) into Eq. (8) gives 

஻஼ெߜ =
ଷ݈ܨ

ܫ௦ܧ16
      

(9) 

Finally, the axial load 2/ܨ ݊݅ݏ  tends to decrease the length GC (Figure 3b) by ߠ

஻஼ி,௔௫௜௔௟ߜ =

ܨ
2

√2
2 ݈

௦ܧܣ

√2
2

=
݈ܨ

௦ܧܣ4
      

(10) 

Therefore, the total vertical displacement of the unit cell is 

௨௖ߜ = 2 ቀߜ஼஼` + ஻஼ி,௔௫௜௔௟ߜ + ஻஼ி,௕௘௡ௗ௜௡௚ߜ − ஻஼ெቁߜ =  2 ቆ
݈ܨ

௦ܧܣ2
+

݈ܨ
௦ܧܣ4

+
ଷ݈ܨ

ܫ௦ܧ12
−

ଷ݈ܨ

ܫ௦ܧ16
ቇ 

(11) 

which after being simplified becomes 

௨௖ߜ  =
݈ܨ3

௦ܧܣ2
+

ଷ݈ܨ

ܫ௦ܧ24
 

(12) 

In order to find the elastic modulus of the octagonal honeycomb structure, the simple 

equation ܧ = ி ௅ೠ೎

஺ೠ೎ఋೠ೎
 can be used in which ܨ is the load applied to the unit cell, and ܮ௨௖ =

൫1 + √2൯݈ and ܣ௨௖ = ܾ݈൫1 + √2൯ are the length and the cross-section area of the unit cell, 

respectively. Substituting Eq. (12) in ܧ = ி ௅ೠ೎

஺ೠ೎ఋೠ೎
 gives the elastic modulus of the octagonal 

honeycomb structure  

ܧ =
ܨ

ܾ ൤ ݈ܨ3
௦ܧܣ2

+ ଷ݈ܨ

൨ܫ௦ܧ24
 (13) 

and the relative elastic modulus is 
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ఓܧ =
ܧ
௦ܧ

=
1

ܾ ൤ 3݈
ܣ2 + ݈ଷ

൨ܫ24
=

ݐ2

݈ ቈ3 + ቀ
݈
ቁݐ

ଶ
቉
 (14) 

For obtaining the Poisson’s ratio, it is first necessary to calculate the lateral displacement of 

the unit cell. The lateral displacement of the unit cell is twice the horizontal displacement of 

point C in Figure 3, which is given by 

௟௔௧௘௥௔௟ߜ = 2 ቀ−ߜ஻஼ி,௔௫௜௔௟ + ஻஼ி,௕௘௡ௗ௜௡௚ߜ −  ஻஼ெቁ (15)ߜ

Substituting Eqs. (7), (9) and (10) into Eq. (15) gives 

௟௔௧௘௥௔௟ߜ = 2 ቆ−
݈ܨ

௦ܧܣ4
+

ଷ݈ܨ

ܫ௦ܧ12
 −

ଷ݈ܨ

ܫ௦ܧ16
ቇ = −

݈ܨ
௦ܧܣ2

+
ଷ݈ܨ

ܫ௦ܧ24
 

(16) 

The Poisson’s ratio is therefore given by: 

ߥ =
௟௔௧௘௥௔௟ߜ

௨௖ߜ
=

−
݈ܨ

௦ܧܣ2
+

ଷ݈ܨ

ܫ௦ܧ24
݈ܨ3

௦ܧܣ2
+

ଷ݈ܨ

ܫ௦ܧ24

=
ܫ12− + ଶ݈ܣ

ܫ36 + ଶ݈ܣ =
ଶݐ− + ݈ଶ

ଶݐ3 + ݈ଶ  

(17) 

In order to find the yield stress in the structure, first the maximum stress in each cell wall 

must be calculated. If the load ܨ is applied to each unit cell, the normal compressive stress in 

edge CD is 

௠௔௫,஼஽ߪ = −

ܨ
2
ܣ
2

= −
ܨ
ܣ

 
(18) 

and the normal stress in edge BC is: 

஻஼ ߪ = ஻஼,௔௫௜௔௟ ߪ ± ஻஼,௕௘௡ௗ௜௡௚ ߪ = −
ܨ

ܣ2
√2
2

±

ۏ
ێ
ێ
ێ
ۍ
ܿܯ

ܫ
−

ቆ
ܨ
2

√2
2 ቇ ݈ܿ

ܫ

ے
ۑ
ۑ
ۑ
ې

 

(19) 

where ܿ is the distance between the neutral plane and the farthest portion of the beam cross-

section. Substituting ܯ from Eq. (5) gives: 

஻஼,௠௔௫ ߪ = −
ܨ

ܣ2
√2
2

±

ۏ
ێ
ێ
ێ
2√݈ܨۍ

8 ܿ

ܫ
−

ቆ
ܨ
2

√2
2 ቇ ݈ܿ

ܫ

ے
ۑ
ۑ
ۑ
ې

= −
2√ܨ
ܣ4

−
2ܿ√݈ܨ

ܫ8
 

(20) 
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Considering Eq. (18) and Eq. (20), the maximum compressive stress in the structure is found 

by: 

௠௔௫ ߪ = ݔܽ݉ ቊ
ܨ
ܣ

,
2√ܨ
ܣ4

+
2ܿ√݈ܨ

ܫ8
 ቋ 

(21) 

Our calculations showed that the second term is larger than the first term in all the relative 

densities. If an applied external stress ி

൫ଵା√ଶ൯௟௕
 on the unit cell creates the maximum local 

stress of ி√ଶ

ସ஺
+

ி௟√ଶ௖

଼ூ
 in the structure, the external stress ߪ ௬ which causes the maximum local 

stress in the structure reach ߪ ௬ೞ
 can be found by a simple cross multiplication. By dividing 

the resulted relationship by ߪ ௬ೞ
, the relative yield stress of the structure can be found as 

௬ ߪ ௥௘௟
=

1

൫1 + √2൯݈ܾ
ቈ
√2
ܣ4

+
݈√2ܿ

ܫ8
቉

ିଵ

=
ଶݐ 2√2

൫1 + √2൯ሺݐ + 3݈ሻ݈
 

(22) 

2.4. Timoshenko beam theory 

The Timoshenko beam theory takes into account shear deformation and rotational inertia 

effects, making it suitable for describing the behaviour of thick beams. For a homogenous 

beam of constant cross-section, the Timoshenko beam governing equations are: 

݀ଶ

ଶݔ݀ ൬ܧ௦ܫ
݀߮
ݔ݀

൰ = ,ݔሺݍ  ሻݐ

ݓ݀
ݔ݀

= ߮ −
1

ܩܣߢ
݀

ݔ݀
൬ܧ௦ܫ

݀߮
ݔ݀

൰ 

(23) 

where ߮ is the angle of rotation of the normal to the mid-surface of the beam, ݓ is the lateral 

displacement of the mid-surface, and ߢ is the shear coefficient factor. The shear coefficient 

factor is 10ሺ1 + ሻ/ሺ12ߥ +  ሻ for a beam with rectangular cross-section (which is the caseߥ11

in this study). In a linear elastic Timoshenko beam, the bending moment ܯ௫௫ and the shear 

force ܳ௫ are related to the angle of rotation, ߮, and the displacement, ݓ, by 

௫௫ܯ = ܫܧ−
߲߮
ݔ߲

 
(24) 
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ܳ௫ = ܩܣߢ ൬−߮ +
ݓ߲
ݔ߲

൰ 

For a cantilever Timoshenko beam with a point load ܲ at its free end, Eqs. (24) lead to 

ߜ =
݈ܲଷ

ܫ௦ܧ3
+

݈ܲ
௦ܩܣߢ

ߠ        ݀݊ܽ          =
݈ܲଶ

ܫ௦ܧ2
+

ܲ
௦ܩܣߢ

  
(25) 

which have additional terms compared to those in the Euler-Bernoulli beam. However, for 

the beam with a concentrated moment ܯ at its end, the displacement and rotation are 

identical to those of Euler-Bernoulli beam. As in the case of the Euler-Bernoulli beam theory, 

the rotations produced by the lateral load ܲ = 2/ܨ cos  must be equal and ܯ and moment ߠ

opposite from which the value of ܯ for a structure based on the Timoshenko beam theory can 

be determined: 

݈ܲଶ

ܫ௦ܧ2
+

ܲ
௦ܩܣߢ

= ܨ
√2
4

ቈ
݈ଶ

ܫ௦ܧ2
+

1
௦ܩܣߢ

቉ =
݈ܯ
ܫ௦ܧ

           ⇒ ܯ          = ܨ
√2
4

൬
݈
2

+
ܫ௦ܧ

௦݈ܩܣߢ
൰ 

(26) 

The moment ܯ tends to increase the length GC (Figure 3b) by  

஻஼ெߜ =
ܨ √2

4 ቀ
݈
2 +

ܫ௦ܧ
ቁ݈ܩܣߢ ݈ଶ

ܫ௦ܧ2
√2
2

=  
ܨ
8

ቆ
݈ଷ

ܫ௦ܧ2
+

݈
௦ܩܣߢ

ቇ     

(27) 

On the other hand, the lateral load 2/ܨ cos   tends to decrease the length GC (Figure 3b) by ߠ

஻஼ி,௕௘௡ௗ௜௡௚ߜ = ܨ
√2
4

ቆ
݈ଷ

ܫ௦ܧ3
+

݈
௦ܩܣߢ

ቇ 
√2
2

=
ܨ
4

ቆ
݈ଷ

ܫ௦ܧ3
+

݈
௦ܩܣߢ

ቇ 
(28) 

The displacements resulted from the axial loads, i.e. ߜ஻஼ி,௔௫௜௔௟ and ߜ஼஼` are identical to those 

for the Euler-Bernoulli beam theory. The total vertical displacement of the unit cell is 

therefore 

௨௖ߜ = 2 ቀߜ஼஼` + ஻஼ி,௔௫௜௔௟ߜ + ஻஼ி,௕௘௡ௗ௜௡௚ߜ − ஻஼ெቁߜ

= 2 ቊ
݈ܨ

௦ܧܣ2
+

݈ܨ
௦ܧܣ4

+
ܨ
4

ቆ
݈ଷ

ܫ௦ܧ3
+

݈
௦ܩܣߢ

ቇ −
ܨ
8

ቆ
݈ଷ

ܫ௦ܧ2
+

݈
ܣߢ ௦

ቇቋ

=
݈ܨ3

௦ܧܣ2
+

݈ܨ
௦ܩܣߢ4

+
ଷ݈ܨ

ܫ௦ܧ24
 

(29) 
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Like before, the simple equation ܧ =
ி ௅ೠ೎

஺ೠ೎ఋೠ೎
 can be used to find the elastic modulus of the 

octagonal honeycomb structure. Substituting Eq. (29), the elastic modulus of the octagonal 

honeycomb structure is 

ܧ =
ܨ

ܾ ൤
݈ܨ3

௦ܧܣ2
+

݈ܨ
௦ܩܣߢ4

+
ଷ݈ܨ

൨ܫ௦ܧ24
 (30) 

and the relative elastic modulus is 

ఓܧ =
ܧ
௦ܧ

=
1

ܾ ൤
3݈
ܣ2 +

݈ሺ1 + ௦ሻߥ
ܣߢ2 +

݈ଷ

൨ܫ24
=

2 ቀ
ݐ
݈ቁ

3 +
1 + ௦ߥ

ߢ + ቀ
݈
ቁݐ

ଶ 
(31) 

To obtain the Poisson’s ratio of the structure, it is first necessary to calculate its lateral 

displacement. The lateral displacement of the structure is twice the horizontal displacement 

of point C in Figure 3b, which is given by 

௟௔௧௘௥௔௟ߜ = 2 ቀ−ߜ஻஼ி,௔௫௜௔௟ + ஻஼ி,௕௘௡ௗ௜௡௚ߜ −  ஻஼ெቁ (32)ߜ

Substituting Eqs. (10), (27), and (28) into Eq. (32) gives 

௟௔௧௘௥௔௟ߜ = 2 ቈ
݈ܨ−

௦ܧܣ4
+

ܨ
4

ቆ
݈ଷ

ܫ௦ܧ3
+

݈
ܩܣߢ

ቇ  −
ܨ
8

ቆ
݈ଷ

ܫ௦ܧ2
+

݈
ܩܣߢ

ቇ቉

=
݈ܨ−

௦ܧܣ2
+

ሺ1݈ܨ + ௦ሻߥ

௦ܧܣߢ2
+

ଷ݈ܨ

ܫ௦ܧ24
 

(33) 

The Poisson’s ratio is then easily found by: 

ߥ =
௟௔௧௘௥௔௟ߜ

ߜ
=

݈ܨ−
௦ܧܣ2

+
ሺ1݈ܨ + ௦ሻߥ

௦ܧܣߢ2
+

ଷ݈ܨ

ܫ௦ܧ24
݈ܨ3

௦ܧܣ2
+

݈ܨ
௦ܩܣߢ4

+
ଷ݈ܨ

ܫ௦ܧ24

=
ߢܫ− + ሺ1ܫ + ௦ሻߥ + ଶ݈ߢܣ

12

ߢܫ3 + ሺ1ܫ + ௦ሻߥ +
ଶ݈ߢܣ

12

=
ଶݐ− + ݈ଶ + ଶݐ ቀ

1 + ௦ߥ
ߢ ቁ

ଶݐ3 + ݈ଶ + ଶݐ ቀ
1 + ௦ߥ

ߢ ቁ
 

(34) 

Now, we find the yield stress for the structure based on the Timoshenko beam theory. The 

normal stress in edge CD is  

௠௔௫,஼஽ߪ = −
ܨ
ܣ

 (35) 



14 
 

and the normal stress in edge BC is: 

஻஼ ߪ = ஻஼,௔௫௜௔௟ ߪ ± ஻஼,௕௘௡ௗ௜௡௚ ߪ = −
ܨ

ܣ2
√2
2

±

ۏ
ێ
ێ
ێ
ۍ
ܿܯ

ܫ
−

ቆ
ܨ
2

√2
2 ቇ ݈ܿ

ܫ

ے
ۑ
ۑ
ۑ
ې

= −
ܨ

ܣ2
√2
2

±

ۏ
ێ
ێ
ێ
ܨۍ √2

4 ൬
݈
2 + 2ሺ1 + ܫ௦ሻߥ

݈ܣߢ ൰ ܿ

ܫ
−

ቆ
ܨ
2

√2
2 ቇ ݈ܿ

ܫ

ے
ۑ
ۑ
ۑ
ې

 

(36) 

The maximum compressive stress in the cell wall is therefore 

஻஼,௠௔௫ ߪ =
2√ܨ
ܣ4

ቈ1 −
2ሺ1 + ௦ሻܿߥ

݈ߢ
቉ +

2݈ܿ√ܨ
ܫ8

 
(37) 

Consequently, the maximum stress in the structure is found by: 

௠௔௫ ߪ = ݔܽ݉ ቊ
ܨ
ܣ

,
2√ܨ
ܣ4

ቈ1 −
2ሺ1 + ௦ሻܿߥ

݈ߢ
቉ +

2݈ܿ√ܨ
ܫ8

 ቋ 
(38) 

The calculations showed that the second term is larger than the first term in all the relative 

densities. A simple cross multiplication could be used to determine the relative yield stress in 

an octagonal unit cell based on the Timoshenko beam theory: 

௬௥௘௟ ߪ
=

1

൫1 + √2൯݈ܾ
ቈ
√2
ܣ4

ቈ1 −
2ሺ1 + ௦ሻܿߥ

݈ߢ
቉ +

√2݈ܿ
ܫ8

቉

ିଵ

=
1

൫1 + √2൯

ݐ
݈

ቈ√2
4 ൤1 −

2ሺ1 + ݐ௦ሻߥ
݈ߢ2 ൨ +

3√2݈
ݐ4 ቉

 

(39) 

2.5. Buckling load 

Since the honeycomb structures are usually used in compression, buckling instability can also 

cause sudden structural deformations which can lead to catastrophic failure of the 

honeycomb. The elastic buckling limit of the octagonal honeycomb can be obtained using the 

classical Euler’s buckling theory. Since the Timoshenko and Euler-Bernoulli theories predict 
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similar deformations under axial loading, one buckling relationship will be obtained for both 

theories. The Euler’s formula for buckling load of columns under compressive loading is: 

௖ܲ௥,௖௢௟௨௠௡ =
ܫ௦ܧଶߨ
ሺܮܭሻଶ 

(40) 

where ܮܭ is the effective length of the column and is 0.5ܮ when both ends are fixed. In the 

octagonal honeycomb unit cell, the vertical edges are the most susceptible edges to buckling. 

These vertical edges can be considered as columns with both ends fixed, due to their purely 

transitional lateral movement in pre-buckling deformation. By substituting ܮܭ = 0.5݈ in Eq. 

(40), the critical load of a unit cell under the compressive load ܨ is given by 

௖ܲ௥,௨௡௜௧ ௖௘௟௟ =
ܫ௦ܧଶߨ4

݈ଶ  
(41) 

from which the critical stress is readily obtained 

௖௥ߪ =
ܫ௦ܧଶߨ4

݈ଶ

1

൫1 + √2൯݈ܾ
=

ଶߨ4

൫1 + √2൯

ܫ௦ܧ
ܾ݈ଷ =

௦ܧଶߨ

3൫1 + √2൯
൬

ݐ
݈
൰

ଷ

 
(42) 

2.6. FE modelling 

The main mechanism of deformation in the microstructure of a honeycomb structure is 

bending of the cell walls making the beam elements the natural choice for modelling them. 

They are computationally inexpensive and can be used to construct models with many cells 

[35]. The cell edges were discretized using the standard Timoshenko beam elements (element 

type 189 in ANSYS) that uses linear interpolation (two-node linear beam). Beams that were 

rigidly connected at the vertices mechanically represented all the edges in the honeycomb 

structure. In all the calculations, the cell edge material was assumed to be linear elastic with 

mechanical properties similar to the mechanical properties of the bulk PLA material 

determined in the experiments of cylindrical specimens.  

The static nonlinear implicit solver available in ANSYS FE code was used for the 

calculations. Two types of models were created for the numerical modelling. The first model 
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was a small model consisting of three edges corresponding to 1/4 of a unit cell (Figure 4a). In 

this structure, all the degrees of freedom of the bottom edge were fixed and the right edge 

was only allowed to move transitionally. A concentred force ܨ was applied at the top right 

side of the structure (Figure 4a).  

The other model was a large lattice structure with several unit cells. The number of elements 

per cell wall was changed and no considerable difference was observed. However, the 

predicted results were affected by the number of unit cells in each direction of the FE model. 

The results of the lattice structure converged for lattice sizes larger than 9×9×9. A lattice 

structure size of 14×14×14 unit cells was chosenm. The lowermost part of the lattice structure 

was not allowed to move in the Y direction, while the uppermost part of the lattice structure 

was displaced downward in such a way that the structure underwent 0.2% strain (Figure 4b). 

The lowermost and the uppermost nodes were allowed to move in the X direction, to better 

capture the lateral behaviour of the structure (for example for obtaining the Poisson’s ratio 

parameter). One of the lowermost nodes of the lattice structure was fixed in all the directions 

to prevent the rigid body motions of the structure. The effective elastic modulus was 

calculated using the simple equation ܧ =
௉೗ೌ೟೟೔೎೐௅೗ೌ೟೟೔೎೐

஺ಽೌ೟೟೔೎೐ఋ೗ೌ೟೟೔೎೐
=

௉೗ೌ೟೟೔೎೐

௕ ఋ೗ೌ೟೟೔೎೐
. To obtain the Poisson’s 

ratio, the lateral displacement was divided by the axial displacement of the structure. For the 

yield stress, similar to the analytical solution, first the maximum stress in the structure was 

found and then inserted into a simple relationship for cross multiplication. 

3. RESULTS 

There were few variations in the load-displacement curves obtained for various samples with 

the same relative density (Figure 6). The stress levels and failure loads were several times 

higher for specimens with higher values of relative density as compared to those with the 

lowest values of relative density (Figure 6). All of the octagonal test samples showed 45º 
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failure patterns (Figure 7). Comparison of the analytical solutions and the computational 

results showed that the FE models and both the analytical models give close results in terms 

elastic modulus Poisson’s ratio, and yield stress, especially for relative densities smaller than 

20% (Figure 8a-c). The presence of porosity in the honeycomb structure decreases the 

relative elastic modulus and relative yield stress severely, in such a way that even at relative 

densities as large as 50%, the relative elastic modulus and relative yield stress did not exceed 

15% of those in the bulk material (Figure 8a,c). 

At relative densities larger than 25%, the numerical and analytical values of elastic modulus 

started to deviate from each other (Figure 8a). However, even at large relative densities, each 

set of analytical (Euler-Bernoulli and Timoshenko) and numerical (lattice structure and single 

unit cell) elastic moduli showed very close predictions. The experimental values of the elastic 

modulus were very close to the numerical predictions for three out of four relative densities 

(Figure 8a). There was a better agreement between computational results and the analytical 

solutions based on the Timoshenko beam theory (Figure 8a). 

Both analytical models and the computational models predicted Poisson’s ratios that started 

from 1 for very low values of relative density and gradually decreased (Figure 8b). Similar to 

case of elastic modulus, the analytical values of Poisson’s ratio based on the Timoshenko 

beam theory were closer to the numerical results for all values of relative density (as 

compared to those based on the Euler-Bernoulli beam theory). At a relative density of 60%, 

the Poisson’s ratio of the octagonal structure decreased to ≈0.4 (Figure 8b). 

Similar to the case of elastic modulus and Poisson’s ratio, the predicted values of yield stress 

are very close for both FE models (Figure 8c). The experimental values of the yield stress are 

always lower than the yield stress values predicted by both analytical solutions and 

computational models (Figure 8c). Reviewing Figure 8a-c shows that the elastic modulus, 
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Poisson’s ratio, and yield stresses predicted by the Timoshenko analytical solution is lower, 

higher, and higher, respectively, than those calculated by the Euler-Bernoulli analytical 

solution. 

4. DISCUSSION 

In this study, two types of FE models were used. A simple model similar to the one 

considered for obtaining the analytical relationships and a large 2D tessellated structure with 

a high number of cell walls (1204 cell walls). The elastic moduli obtained from both 

computational models were very close with a maximum difference below 4% even for a 

relative density as large as 60%.  

It is customary to present the analytical relationships used for prediction of mechanical 

properties in terms of the relative density, ߤ, rather than ݐ/݈ ratio. Since the exact relative 

density formula (Eq. (4)) obtained here is a quadratic polynomial, it cannot be readily 

inserted into the relationships obtained for the elastic modulus, yield stress, and Poisson’s 

ratio. However, the approximate relative density formula (i.e. Eq. (1)) may be inserted into 

the elastic property equations to derive those equations as a function of (approximate) relative 

density, ߤ. The problem is that in the approximate formula for relative density, the material 

located in the vertices of the cells are counted multiple times, which can lead to inaccurate 

results [36] . Therefore, before doing that, it is necessary to find the influence of multiple 

counting of material located in the cell vertices on the obtained relative density. In one of our 

previous studies [36], the effect of multiple counting on the elastic properties of 3D open-cell 

porous structures with different unit cell types was investigated. As it can be seen in Figure 

10, as the ratio of t/l increases, the difference between the calculated relative densities 

increases. However, the relative densities do not deviate from each other more than 20% even 

for a large ݐ/݈ ratio such as 0.5. 
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The main reason for the 45º failure band can be the fact that inclined walls are the critical 

edges in the octagonal structure. The computational results as well as the analytical results 

(Equation (38) and (39)) both show the fact that the inclined edges are the parts with the most 

vulnerability. 

All the experimental data points for both the elastic modulus and yield stress correlate well 

with the numerical and analytical values (Figure 8). The only exception is the experimental 

results corresponding to the weakest sample (i.e. the sample with ݐ/݈ = 0.2727). Compared 

to the numerical and analytical results, the experimentally determined values of elastic 

properties are very small for the samples with this relative density. The additively 

manufactured porous structures usually have relatively rough external surfaces. The 

roughness of the samples with different relative densities is not essentially different because 

the roughness of the product is mostly determined by the manufacturing parameters of the 

manufacturing device rather than the geometry of the product. Therefore, the larger the 

thickness of the cell walls, the lower the effect of surface roughness. This is because the 

proportion of completely filled central parts to the weaker external parts in the cross-section 

of the cell walls increases by increasing the thickness of the cell walls. This fact is verified by 

our experimental results: the experimental/analytical correlation is much improved for higher 

relative densities. The reason behind the very small mechanical properties of the most porous 

structure (i.e. the sample with ݐ/݈ = 0.2727) might be the fact that in this structure, the cell 

walls are much thinner than the weaker external parts of the cell as compared to the thickness 

of the completely filled central parts. Therefore, a large fraction of the cross-section of the 

cell walls is composed of external weak parts that cannot bear load. 

Deformations of open-cell porous materials are usually dominated by mechanisms such as 

linear elastic deformation, buckling of the edges, plasticity of the edges, interaction of 

neighbour cell edges, etc. In the elastic regime, the two mechanisms of local yielding of the 
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edges and buckling of the edges parallel to the loading direction are the mechanisms 

dominating the start of plateau region in the stress-strain curve of the porous structure. It is 

necessary to determine which of the two failure mechanisms occur first. Plotting the yield 

stress (Eq. (39)) against the buckling stress (Eq. (42)) demonstrated that the buckling stress of 

this structure (if it is made of steel) is much smaller than its yield stress (Figure 9).  

After the advent of additive manufacturing techniques, they have been mostly used in 

production of 3D complex geometries that could not be otherwise manufactured. Among the 

different 3D foams, structures such as diamond [37], rhombic dodecahedron [36], truncated 

cuboctahedron [38, 39], truncated cube [40], octahedral [41], and rhombicuboctahedron [42] 

have been previously studied by our group as candidates for biomedical implants used in 

orthopedics. Conventional manufacturing techniques for the production of honeycombs have 

several limitations. First, honeycombs with very small cell sizes cannot be produced. Second, 

since honeycomb cell walls are usually shaped using metal forming methods, their thickness 

to cell size ratio cannot be larger than a specific value. Third, for each unit cell type, a 

different production method is necessary and production of honeycombs with arbitrary 

geometry is not always possible. Additive manufacturing (AM) techniques overcome all the 

noted limitations to a great extent. In recent years, selective laser melting (SLM) has been 

used to create hexagonal honeycombs [43, 44]. The octagonal honeycomb studied in this 

paper is one of the many types of honeycombs that can be produced using additive 

manufacturing. 

In this study, the elastic modulus, yield strength, and buckling stress of the in-plane 

deformation of the octagonal honeycomb were expressed in terms of relative density to 

enable direct comparison of the obtained results with other types of honeycombs. In a study 

carried out by Wang and McDowell [28], several geometries such as square, triangular, 
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hexagonal, Kagome, diamond, and mixed were considered for honeycomb structures and 

were investigated analytically using Euler-Bernoulli beam theory. Comparison of the elastic 

properties of the octagonal honeycomb with other types of honeycombs provides good insight 

on the potential use of this honeycomb to the designer. Considering Figure 11, it is obvious 

that the octagonal honeycomb has a relatively smaller yield stress and elastic modulus 

compared to most of the above-mentioned geometries. In fact, the response of an octagonal 

honeycomb is very close to that of a hexagonal honeycomb which is the most prevalent 

geometry for honeycombs. Although the elastic modulus and yield stress of an octagonal 

honeycomb is very similar to hexagonal honeycomb, the symmetry of the microstructure of 

octagonal honeycomb in its two main directions can lead to more similar post-yielding 

deformation in its two main directions than is the case for the post yielding deformation of 

the two main directions of hexagonal honeycomb. Figure 12 shows the different post-yielding 

deformation modes of a hexagonal honeycomb in its two main in-plane directions. The 

square honeycombs have the highest elastic properties among all the geometries. It must be 

stated that the low elastic properties of the octagonal honeycomb is not necessarily a 

weakness for this type of structures. In fact, depending on the application of this structure, 

such as energy absorption in in-plane or out-of-plane loading, the low elastic properties of the 

honeycomb can be insignificant or even desirable. In most cellular structures, the energy 

absorption capacity ability of the structure is the main criteria for selection of a specific 

design. Therefore, investigation of the response of octagonal honeycombs in the post-elastic 

region is necessary for implementing this geometry in practice. 

In the earliest phases of tissue regeneration, when blood vessels are not yet regenerated, 

nutrition and oxygenation of the cells must occur through diffusion. If honeycomb structures 

are used for tissue regeneration applications, the entire plane of their two-dimensional 

structure should be in contact with the culture media from both sides to ensure diffusion can 
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effectively perform the required mass transport. Even then, the thickness of the honeycombs 

cannot exceed what can be effectively nurtured and oxygenated through diffusion. Additive 

manufacturing techniques similar to the ones used in the current study could be employed to 

introduce holes in the walls of the honeycomb structure with very large thicknesses. 

However, the analytical formulas derived here should be then modified to take the presence 

of those holes into account. 

5. CONCLUSIONS 

In this study, analytical relationships were obtained for the mechanical properties (i.e. elastic 

modulus, Poisson’s ratio, yield stress, and buckling stress) of octagonal honeycomb 

structures. Both the Euler-Bernoulli and Timoshenko beam theories were considered for 

deriving the analytical relationships. Two FE models were also created, one consisting of 

only ¼ of a unit cell and the other consisting of a large set of unit cells. The simulation results 

obtained from the two FE models revealed that their results were very close and the 

difference between the results was less than 4% for elastic modulus. Comparison of the 

Euler-Bernoulli and Timoshenko analytical results in one hand and the numerical results in 

the other hand showed that the FE models and the analytical Timoshenko results were close 

to each other in terms of all the properties of elastic modulus, Poisson’s ratio and yield stress, 

especially at relative densities smaller than 25%. Plotting the yield stress against the buckling 

stress demonstrated that the buckling stress of this structure made of steel is much smaller 

than its yield stress. The results of the Timoshenko analytical solution as well as the two 

finite element models also showed good correlation with the experimental results. Finally, the 

elastic properties of the octagonal honeycomb structure was compared to those of honeycomb 

structures having square, triangular, hexagonal, mixed, diamond, and Kagome unit cell 

shapes. The octagonal honeycomb showed yield stress and elastic modulus values close to 

those of hexagonal honeycomb and lower than the other above-mentioned honeycombs. 
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Figure captions 

Figure 1- Dimensions of an octagonal unit cell 
Figure 2- A 2D cut showing an octagonal unit cell before and after deformation under compressive 

loading 
Figure 3- The free body diagram and deformation of (a) 1/4 portion of a unit cell, and (b) the inclined 

edge under compressive loading 
Figure 4- The geometries, applied loads, and applied boundary conditions used in the (a) single unit cell, 

and (b) lattice FE octagonal structure 
Figure 5- Octagonal honeycomb samples with (a) t/l=0.2727, (b) t/l=0.4091, (c) t/l=0.5454, and (d) 

t/l=0.6817 
Figure 6- Load-displacement curves of octagonal honeycombs with different t/l ratios 
Figure 7- 45º failure bands formed in honeycomb samples with (a) t/l=0.2727 and (b) t/l=0.5454 
Figure 8- Variation of (a) relative elastic modulus, (b) Poisson’s ratio, and (c) relative yield stress vs. 

relative density for octagonal honeycomb 
Figure 9- Variation of yield and buckling stresses vs. relative density for octagonal honeycomb 
Figure 10- Comparison of exact and approximate formulas for relative density versus the t/l ratio 
Figure 11- Comparison of (a) elastic modulus, and (b) yield stress of the octagonal honeycomb with other 

types of honeycombs 
Figure 12- Different post-yielding deformation modes of the two main directions of a hexagonal 

honeycomb: (a) an undeformed aluminium honeycomb, (b) the post-yielding deformation of the 
honeycomb in the ࢄ૚ direction, and (c) the post-yielding deformation of the honeycomb in the ࢄ૛ 
direction [2]. 
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Figure 1- Dimensions of an octagonal unit cell 
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Figure 2- A 2D cut showing an octagonal unit cell before and after deformation under compressive 

loading 
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Figure 3- The free body diagram and deformation of (a) 1/4 portion of a unit cell, and (b) the inclined 

edge under compressive loading 
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(a) (b) 
Figure 4- The geometries, applied loads, and applied boundary conditions used in the (a) single unit 

cell, and (b) lattice FE octagonal structure 
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Figure 5- Octagonal honeycomb samples with (a) t/l=0.2727, (b) t/l=0.4091, (c) t/l=0.5454, and (d) 
t/l=0.6817 
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Figure 6- Load-displacement curves of octagonal honeycombs with different t/l ratios 
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(a) 

 
(b) 

Figure 7- 45º failure bands formed in honeycomb samples with (a) t/l=0.2727 and (b) t/l=0.5454 
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(a) 

 
(b) 

 
(c) 

Figure 8- Variation of (a) relative elastic modulus, (b) Poisson’s ratio, and (c) relative yield stress vs. 
relative density for octagonal honeycomb 
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Figure 9- Variation of yield and buckling stresses vs. relative density for octagonal honeycomb 
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Figure 10- Comparison of exact and approximate formulas for relative density versus the t/l ratio  
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(a) 

 
(b) 

Figure 11- Comparison of (a) elastic modulus, and (b) yield stress of the octagonal honeycomb with 
other types of honeycombs 
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Figure 12- Different post-yielding deformation modes of the two main directions of a hexagonal 
honeycomb: (a) an undeformed aluminium honeycomb, (b) the post-yielding deformation of the 

honeycomb in the ଵܺ direction, and (c) the post-yielding deformation of the honeycomb in the ܺଶ 
direction [3]. 

 

 

 

 


