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Summary

Soil moisture retrieval with the ASCAT scatterometer on top of the MetOp satellites requires proper correc-
tions of the effects of vegetation on the backscatter signal. The TU-Wien developed a soil moisture retrieval
algorithm that uses the incidence angle dependence of backscatter to obtain soil moisture estimates (Wagner
et al., 1999). The core of this algorithm is a second order Taylor expansion with which the backscatter is nor-
malized at a reference angle. Studies have shown that the first and second order derivative within this Taylor
expansion, known as slope and curvature, are somehow related to the wet biomass and structure of vege-
tation. The general approach to forward model satellite observations with land surface variables in a data
assimilation framework is through a radiative transfer model (Albergel et al., 2017). However, this requires
plenty of assumptions about the vegetation canopy (such as stem height, shape, size, orientation etc.) and
is therefore relatively inefficient for understanding the impact of soil moisture and vegetation dynamics on
backscatter on a large scale.

This study investigates the possibility of using support vector machines as a surrogate model instead of a
radiative transfer model to link the TU-Wien normalized backscatter and slope to land surface variables soil
moisture and leaf area index. The land surface variables are simulations from the CO2-responsive ISBA-A-
gs land surface model. Support vector machines have the advantage of providing implicit kernel functions,
which make them very useful for non-linear problems. The ISBA-A-gs data is provided by Météo-France
and its spatial resolution is set to 25 kilometers, so that it matches with the spatial resolution of the ASCAT
data. Each grid point consists of several land covers and the fractional cover is provided. The area that is
investigated is France and only grid points that consist of more than 30% of a land cover type considered.

For the optimization of the support vector machines, a grid search is done with an internal cross valida-
tion function with the Scikit-Learn package in the Python programming language. The Radial Basis Function
is chosen as kernel function. The parameters of the support vector machines that are optimized are C and
γ. For both parameters, 5 possible values with a difference on logarithmic scales were provided to the grid
search, which makes it 25 combinations in total. Each combination is then tested with a k-fold cross vali-
dation, which means that the training data is split into k equal intervals with k=9. In this way, the parameter
combinations with optimal results after cross validation are selected for the grid point. The performance met-
ric that is used during the whole study is the coefficient of determination because of the ability to compare
model performances on a map in a way that explains where the models are able to understand the variability
of backscatter and slope and where not.

The performances of the normalized backscatter and normalized slope simulations are calculated over
three different periods. The first period has a time span of one year. The other two periods have a time span
of 6 months in which one period represents the vegetation growing season and the other period contains
the winter months. By displaying the different performances on maps a clear indication was obtained that
performances do indeed depend on the type of land covers within the grid point and the time span over which
the performance is calculated.

For both simulations, the performance of different dominant land cover types is investigated. These are
C3 crops, Temperate Grassland, Temperate Broadleaf Deciduous and Bare Land. For the σ0(40) simulations,
an additional simulation is done by using the created models to simulate the climatology. This is done by
taking the average day of year value for soil moisture and LAI training data and in this way a climatology
estimate is obtained. Subtracting this estimate from the σ0(40) simulations gives an indication of what the
created models are able to simulate besides annual patterns.

After displaying the parameters of the models for each grid point on a map, it is concluded that there is a
spatial consistency with the optimization. Spatial consistency is also shown in terms of performance. Hence,
land cover types and fractional covers determine the type of support vector machine and performance that
comes with it. The focus of this study is not the in depth parameter justification, but rather exploring the
feasibility of an optimization procedure for ASCAT parameter simulations and the performance for different
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land cover types. As an initial approach to use support vector machines in forward simulation of ASCAT
backscatter σ0(40) and slope σ′(40), the conclusion is that this method is able to serve as a surrogate model.
However, the optimization should be done for specific periods throughout the year, while in this study the
same model is used for every period throughout the year.
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1
Introduction

This section serves as an introduction to the rest of the study. First, the concept of soil moisture retrieval using
microwave remote sensing is introduced together with its limitations in the presence of densely vegetated
areas. In this part it is justified why satellite remote sensing with microwave instruments are the chosen data
source for soil moisture retrieval. After that, an introduction is made to the retrieval of vegetation dynamics
through microwave remote sensing. This is followed by introducing the Advanced Scatterometer (ASCAT) on
top of the Metop-A and Metop-B satellites and the justification why this source of data is used in this study.
This is followed by the problem statement in which the objective of this study is presented, which is to create
a forward model for simulation of ASCAT derived products.

1.1. Microwave Remote Sensing for Soil Moisture
Soil moisture is a crucial parameter for a number of fields such as agriculture, forest management, meteorol-
ogy and climate related studies. It can be described as the amount of water in the empty spaces between soil
particles in the unsaturated soil zone (Liang et al., 2012). The distinction can be made between surface soil
moisture and root-zone soil moisture. The latter one describes the water availability to plants and is gener-
ally referred to the soil moisture in the upper 2 meters of soil. The surface soil moisture is known as the soil
moisture in the upper 5 centimeters of soil.

The temporal and spatial resolution of soil moisture observations determine the usefulness for the spe-
cific fields that require these observations. In-situ soil moisture measurements can be valuable for agricul-
tural activities on a local scale such as irrigation management for a farmer. The disadvantage of in-situ ob-
servations for regional or global scale applications is the inconsistent spatial coverage. With satellite remote
sensing, the demand of spatial- and temporally consistent observations could be fulfilled (Liang et al., 2012).
Figure 1.1 gives an illustration of the spatial and temporal resolutions of different microwave remote sensing
technologies. The demand for this study is a high temporal resolution with the potential of a global scale and
hence Synthetic Aperture Radar (SAR) and ScanSAR will not be considered.

Microwave remote sensing offers the advantage that it is capable of monitoring during day and night and
under all weather conditions. The two modes in which microwave remote sensing observations could be
obtained are the passive and active mode. With passive microwave remote sensing the microwave emission
of a soil is measured. With active microwave remote sensing, microwaves are transmitted to the earth surface
and the backscattered signal is measured. Both approaches are used for soil moisture retrieval.

Wagner et al. (2008) compared soil moisture products from the ERS scatterometer (active) with the AMSRE-
E (passive) instrument. The AMSRE-E is a radiometer that operates at six frequencies with dual-polarization.
The soil moisture dataset from the AMSRE-E were derived from C-band (λ = 5.7cm) passive microwave bright-
ness temperatures. The ERS scatterometer operated at C-band and the method to estimate soil moisture
was developed by the Vienna University of Technology (TU Wien) [see Wagner et al. (1999)]. A reasonable
agreement between both products was obtained for areas where vegetation density was sparse to moderate.
Densely vegetated areas showed poor similarity between both products. The explanation that was given for
this result is the limitations of retrieving soil moisture in areas where vegetation cover is dense.
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Figure 1.1: Illustration of spatial and temporal resolution of both active and passive microwave systems. On the vertical axis the temporal
resolution is displayed and the spatial resolution can be seen on the horizontal axis. (Wagner et al., 2007)

1.2. Microwave Remote Sensing for Vegetation
Naeimi and Wagner (2010) describe the major components that attenuate the backscatter signal over (vege-
tated) land. Their focus is on the application of the C-band scatterometers on top of the ERS-1, ERS-2 and
Metop-A satellites. The spatial resolution of the scatterometers on board of these satellites are equal or larger
than 25 kilometers. The factors attenuating the backscatter are soil moisture, roughness, vegetation structure
and vegetation water content. For this spatial resolution (≥ 25 kilometers) it is said that generally the surface
roughness parameter does not vary much over time. The vegetation water content and canopy vary on a time
scale of several days to weeks. Soil moisture has the highest frequency variations of the above mentioned
factors with variations on a time scale of hours to days. The reason for the difficulty of modelling backscat-
ter from vegetated surfaces is due to the impact of volume scattering. An illustration and description of the
different scattering mechanisms is provided in the figure below.

Figure 1.2: Illustration of scattering mechanisms on a vegetated surface. (a) represents backscattering from the surface. (b) is referred as
volume scattering and (c) is the effect of multi-bounce between the surface and the vegetation. [See Wagner et al. (2013)]

The wavelength of the microwave determines the amount of possible penetration of vegetation. A large
wavelength is more likely to penetrate vegetation than a low wavelength. Wagner et al. (2008) state that 3
bandwidths are typically used for soil moisture retrieval. These are the L-band ( fc = 1.4 GHz, λ = 24 cm),
C-band ( fc = 6 GHz, λ = 5.7 cm) and X-band ( fc = 10 GHz, λ = cm). The L-band is least sensitive to vegetation
cover of all mentioned bands and the X-band is most sensitive and its backscatter will likely contain just
information about the vegetation and not soil moisture as it does not necessarily reaches the soil surface.
The C-band backscatter contains information regarding both soil moisture and vegetation.
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1.3. Advanced Scatterometer
This study uses the Advanced Scatterometer (ASCAT) products on top of Meteological Operational satellites
(MetOp) A and B. This satellite is an active instrument, hence it transmits energy and measures the received
backscatter. The transmitted microwaves have a wavelength of 5.7 centimeters. Due to the dielectric prop-
erties of water, by transmitting energy with this wavelength on a soil that is not covered with vegetation,
backscatter data is obtained that contains information regarding the water content on the top surface layer.
If the water content in the soil is high, a high backscatter is obtained. For a low water content, its the opposite.
The presence of vegetation causes that the backscatter contains information about the soil and vegetation.
With the life span of the ASCAT missions, of which the operations started since 2007 and is still operating till
date, the data is a very valuable source of information for understanding the effect of both components (soil
and vegetation) on the backscatter (σ0).

1.4. Problem Statement
The ability to accurately monitor and understand land surface processes such as fluxes of carbon, water and
vegetation cycles depends on the quality of data provided to a land surface model. With data assimilation, an
optimal combination of data sources is created to reduce the uncertainty difference between the simulation
of a land surface model and (satellite) observations (Barbu et al.,2011). As mentioned earlier in this chapter,
the retrieval of soil moisture through satellite observations cannot be directly done as different type of land
covers impact the backscatter in different ways. Albergel et al. (2017) mention the need for different ways to
simulate, because if data sources and methods of modelling are too similar, the errors could be more corre-
lated and hence the data assimilation process will not be optimal. Consequently, the demand exists for new
methods that are able to serve as forward operators for ASCAT backscatter.

The current state of art is that radiative transfer (RT) models are used for backscatter σ0 simulations.
Quast et al. (2019) used a first-order radiative transfer modelling approach to retrieve soil and vegetation
related parameters from ASCAT σ0 observations. The obtained model is able to forward simulate σ0 using
auxiliary leaf area index (LAI) and soil moisture (WG2) provided by the Interactions between Soil, Biosphere
and Atmosphere land surface model (ISBA) or soil moisture inversion. The model has been successfully im-
plemented for 158 locations in France and the model can be easily adjusted according to soil and vegetation
types.

Even though RT models are widely used for simulations, the general problem with a RT model is that op-
timization requires a number of assumptions, such as specification of the vegetation geometry and dielectric
properties. This can make model optimization very complex for large scale applications or even global mod-
els. An alternative and addition to a RT model is an assimilation framework could be a surrogate model. An
advantage of such a model is that there is no need for a analytical function as basis for the simulation and
hence the number of complexities of is reduced (Mahmoodian et al., 2018).

In Forman and Reichle (2015) a support vector machine (SVM) and an Artificial Neural Network combined
with a land surface model are used to simulate passive microwave brightness temperatures. The motivation
behind this attempt is to reduce the computational expense of brightness temperature estimation so that in
can be used on a large scale without (only) using a snow emission model. Brightness temperature is relevant
for retrieval of Snow Water Equivalent retrievals within a data assimilation framework. This concept serves as
an inspiration for this thesis, in which the aim is to see if there is potential for using support vector machines
as a surrogate model that is able to simulate ASCAT backscatter parametersσ0(40) andσ′(40) using the ISBA-
A-gs land surface model variables. Variations in σ′(40) depend on vegetation dynamics and variations of
σ0(40) on a bare soil are primarily caused by variations in soil moisture (Vreugdenhil et al., 2017).

1.5. Area of Interest
The chosen study region is France. The area suffices the condition stated in the problem statement that it
should consist of several different vegetated land cover types. Figure 1.3 shows a map that is the result from
a clustering and classification from Inglada et al. (2017). With the amount of very specific land cover types
shown in the legend, it might be a hard task to specify the land cover type for grid points with a special
resolution of 25 kilometers (ASCAT resolution). Therefore, grid points are be assigned to a particular land
cover type if the fractional cover is larger than 30%. This will be explained in more depth in chapter 3.
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Figure 1.3: High resolution land cover map. Obtained from Inglada et al. [11] .

The land cover map used in this study is provided by Météo France. The data is from the ECOCLIMAP
database. More information regarding this database, including land cover types, is provided in Section 2.
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1.6. Research Objective & Questions
In the problem statement is mentioned that a surrogate model could solve many of the complexities of a
radiative transfer model for large scale problems. The aim of this study is to develop such a surrogate model
that is able to simulate ASCAT derived parameters σ0(40) (normalized backscatter) and σ′(40) (normalized
slope) using ISBA-A-gs land surface variables. These parameters are explained in Chapter 2. The land surface
variables are from the ISBA-A-gs model and are provided by Météo France. The choice for the surrogate model
is the support vector machine, as this machine learning method is able to deal with non-linear problems and
has shown to be very useful by Forman and Reichle (2015).

Research Question:
Is an optimized support vector machine with the ISBA-A-gs land surface model able to serve as a surrogate
model to simulate σ0(40) and σ′(40)?

In order to answer the main research question as complete as possible, the following sub-questions serve
as focus questions during the research and are answered in the final chapter of this study.

Sub-questions:

• What are the limitations of the procedure of hyper-parameter optimization?

• What are the advantages and disadvantages of the support vector machines?

• What impact does land cover have on the performance of the simulation?





2
Background Theory

This chapter gives all the background theory behind the relevant concepts for this study. First, a technical
description of the ASCAT satellite is given. This includes the system characteristics and the processing of the
radar signal. In addition to that, operational information is given about the ASCAT mission. At the core of this
study is the TU-Wien Soil moisture retrieval algorithm. This algorithm describes the incidence angle depen-
dence of the backscatter with a second order Taylor expansion. The first order derivative is called the slope
and the second order is the curvature. These parameters depend on vegetation states and thus are important
parameters to understand for better soil moisture retrieval on vegetative areas. The final part of this chapter
is about the ISBA-A-gs land surface variables that will be used for simulation of the ASCAT parameters.

2.1. Microwave Remote Sensing
Microwaves are part of the electromagnetic spectrum and are within the frequency range of 300 MHz and
300 GHz. This translates into wavelengths of 1 meter and 1 millimeter respectively. The bands often used for
applications regarding soil moisture and/or vegetation are the L-band (λ = 24cm) and C-band (λ = 5.7cm).
Microwave remote sensing can be done an active or passive mode. Active remote sensing means that en-
ergy is transmitted and received while in passive mode energy is measured from the Earth’s surface. This
study focuses on backscatter obtained from an active remote sensing instrument known as the Advanced
Scatterometer (ASCAT).

The measured backscatter from an active microwave is affected by a variety of factors. These factors can
be distinguished in two categories: Radar parameters and target parameters (Ulaby, 1975). The factors that
belong to the first category are the frequency, polarization and incidence angle. The factors that belong to
the target parameters can be further separated into two groups: vegetation cover and underlying soil. For
the vegetation cover, the factors are the geometry, roughness, density, pattern, height, dielectric properties
and plant moisture content distribution. For the underlying soil, the factors are the surface roughness and
dielectric properties.

The incidence angle is the angle between the radar beam and the normal of the target. Ulaby (1975)
demonstrated that backscatter sensitivity of crops is higher with high incidence angles and high frequencies
(thus low wavelengths) with VV polarization. In contrast, backscatter sensitiviy to soil moisture was found to
be high with low incidence angles and low frequencies (hence large wavelengths) using HH polarization.

2.2. ASCAT
2.2.1. System Characteristics
The Advanced Scatterometer (ASCAT) is a real aperture radar on top of the MetOp-A and B sattelites. The de-
sign of the ASCAT is based on its predecessors which are the European Space Agency’s Earth Remote Sensing
(ERS) 1 and 2 satellites. Both the ASCAT and ERS satellites operate(d) at C-band (5.255 GHz) using verti-
cally polarized waves. Vertical polarization means that the electromagnetic waves are perpendicular to the
Earth’s surface. The transmission of energy is done by a long pulse with linear frequency modulation (chirp).
The radar contains three antennas on both the left and right side of the instrument. These antennas are the
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fore-,mid- and aft-beam. Figure 2.1 illustrates the geometric view of ASCAT. It can be noticed that the range
incidence angle is in between 25◦ and 64◦.

Figure 2.1: The geometric view of the ASCAT on board of Metop-A. Image source: Wagner et al. [35].

The relevant ASCAT and Metop-A and Metop-B properties are shown in the table below.

Satellite Metop C-band Scatterometer ASCAT

Launch Year
A: 2006
B: 2012

Wavelength λ = 5.7cm

Altitude Spacecraft 817 km Polarization VV
Ground Track Repeat Cycle 29 Days Swath Width (Double) 550 km
Orbit Period 101 minutes Spatial Resolution 50 km, 25 km
Orbit Sun-synchronious Sampling Interval 25 km, 12.5 km

Table 2.1: Metop and ASCAT characteristics. Info retrieved from Imperatore and Riccio [10]

As previously mentioned, the backscattered signal depends on the system characteristics and the target
(or object). In case of a vegetated surface the factors attenuating the signal are the geometry, roughness,
density, pattern, height, dielectric properties and plant moisture content distribution. The spatial resolution
of the ASCAT is 25 kilometers. On this scale roughness is therefore considered to be temporally invariant. The
most variant of all previously mentioned factors is the plant moisture content distribution. The time scale for
this variation is a few days. The surface soil moisture however varies within hours. The density (or vegetation
canopy) also varies within a time scale from several days to weeks.

The main factor from the system characteristics that impacts the strength of the backscattered signal is the
incidence angle. This variable is different for every acquisition. One way to compare backscatter σ0 variables
is to average measurements over a certain period of time. The limit of this procedure is that vegetation cannot
be distinguished from soil moisture. Instead, Wagner et al. (1999) proposed a different method to describe the
backscatter based on incidence angle dependency. The first derivative of the backscatter σ0(θ) with respect
to the incidence angle θ is shown in equation 2.1.

σ′(θ) =
dσ0(θ)

dθ
(2.1)

If this relationship between backscatter σ0 and incidence angle θ is known, a σ0 can be obtained at a
particular reference angle θr . Figure 2.2 gives an illustration of decreasing backscatter due to increasing in-
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cidence angle under four different circumstances: dry soil without vegetation, dry soil with vegetation, wet
soil without vegetation and finally wet soil with vegetation. Dry soil gives a lower σ0 than wet soil at the same
incidence angle, due to the lack of liquid water. The σ0 increases for an increase in water content due to the
dielectric properties of water.

Figure 2.2: Incidence angle dependence of the backscattering coefficient σ0. Source: Wagner et al. [35]

The second observation from Figure 2.2 is that the slopes depend upon the presence of vegetation. For
the lines that represent soil scattering, the absolute value of the slope is larger than for the soil with vegetation
scattering lines. Hence, the effect of vegetation on the backscattered signal can be found in the slope of the
backscatter signal σ0.

The last relevant observation from Figure 2.2 is that the relationship between σ0 and incidence angle
θ is non-linear [27]. These three observations are the principles used to describe the TU-Wien soil moisture
retrieval algorithm. The approach described in [32] the slopeσ′ is obtained per triplet, as the ASCAT measures
σ0 from the fore-, mid- and aft beam. The equation is shown below:

σ′(
θm −θa/ f

2
) =

σ0
m(θm)−σ0

a/ f (θa/ f )

θm −θa/ f
(2.2)

The m, a and f indices in the equation of the local slope σ′ stand for the mid-, fore- and aft beam. The
amount of noise within the local slope values are determined by the amound of azimuthal effects, intrument
noise and speckle inσθ [8]. By averaging both the local slope values (combination of forebeam with midbeam
and aftbeam with midbeam) the noise can be reduced. This gives the following expression for the local slope:

σ′
l =

σ′
f m +σ′

am

2
(2.3)

2.3. TU-Wien Soil Moisture Retrieval
2.3.1. Mathematical Approach
The TU-Wien soil moisture retrieval (TUW SMR) is a change detection method to obtain soil moisture from
scatterometer observations. This method was initially developed by Wagner et al. (1999) for the ERS scat-
terometers. The incidence angle dependence of the backscatter forms the basis for this retrieval algorithm.
The dependence is a second order Taylor expansion with the first (slopeσ′) and second order derivative (cur-
vature σ′′) normalized at a reference angle. This reference angle is set to 40◦. The relation between the σ′ and
σ′′ is linear. Hence, the equation for the slope at angle θ can be described as follows:
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σ′(θ) =σ′(40) +σ′′(40)(θ−40) (2.4)

Theσ′ andσ′′ are values at the reference angle. These values are obtained by a linear regression of the local
slope values which are obtained from equation 2.2. Daily values are obtained for bothσ′(40) andσ′′(40) using
a kernel smoother with a temporal window of 42 days. After obtaining the σ′(40) and σ′′(40) the normalized
backscatter σ(40) can be obtained through extrapolation:

σ0(40) =σ0(θ)−σ′(θ−40)− 1

2
σ′′(θ−40) (2.5)

2.3.2. ASCAT Soil Moisture Formulation
The historically highest (normalized) backscatter observation of a particular grid point is referred to as the
wet reference and is denoted as σ0

wet . Hence, the wet reference is independent from time. The dry reference
(σ0

dr y ) however, is the lowest value of the backscattering coefficient for a given date of a particular grid point.

Soil moisture can be expressed as a function of time by scaling normalized backscatter observations using
the wet and dry references. This gives the following expression for soil moisture:

Θ(t ) =
σ0(40, t )−σ0

d (40, t )

σ0
w (40, t )−σ0

d (40, t )
(2.6)

The concepts of dry and wet reference are shown in the illustration in Figure 2.3.

Figure 2.3: An illustration of the concepts within the TUW SMR method. The upper part of this figure shows ASCAT data from a grid
point in Nebraska in a study of Steele-Dunne et al. (2019). The legend shows the relation of wet and dry reference with the backscatter.
The bottom parts show the illustrate the incidence angle dependence for changes in soil moisture and vegetation.
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2.3.3. ASCAT Data

The mean and standard deviation of normalized backscatter σ0(40) and normalized slope σ′(40) time series
for grid points spread over Europe are displayed in the maps in Figures 2.4 and 2.5. The grid points are
computed on a 0.25◦ grid by Météo-France. The computed slope values have a temporal resolution of 1 day
and the normalized backscatter has a temporal resolution of a few days. Only the morning measurements
(descending orbit for Europe) from backscatter are used to keep a certain consistency over time.

Figure 2.4 (a) shows the mean normalized backscatter from 2007 to 2018. It can be seen that the backscat-
ter values are high in urban areas such as Paris and the West-Coast of the Netherlands. This is because urban
areas consist many smooth surfaces. If roughness increases, backscatter will be less because the energy is
moving into different directions (keeping all other conditions the same). The Alps, which can be seen on the
Southern-East side of France, consist of rocks and even layers of ice and hence there is less smoothness than
in an urban area. Low backscatter values can be seen on the main land for grasslands, forests and agricultur-
ally active areas. The two primary factors that influence the backscatter on areas that contain vegetation are
surface and volume scattering (Wagner et al., 1999).

The standard deviations of the normalized backscatter are displayed in Figure 2.4 (b). It can be seen that in
urban areas and the Alps are low compared to areas where there is agricultural activity (region around Paris)
and grassland (Western part of France) (See Figure 1.3). This can be explained with the illustration in Figure
2.3 (a). During the growing season the amount of vegetation increases. Do to this increase in vegetation the
backscatter behaviour for that specific area changes completely, as now the backscatter is a sum of scattering
due to the surface and due to vegetation cover.

(a) Mean σ0(40) (b) Standard deviation σ0(40)

Figure 2.4: The mean (a) and standard deviation (b) of the ASCAT normalized backscatter parameter σ0(40) over grid points in Europe.

Figure 2.5 (a) shows the mean slope σ′(40) values in and around France for a period of 11 years. It can be
seen that Paris and the urban areas in the west of the Netherlands and Belgium have a relatively high slope.
This means that according to Figure 2.1, the line would be very steep. A land that contains vegetation, has a
smaller slope which can be seen in the region around Paris for example. The standard deviation of the slope
however (see Figure 2.5 (b), is very large in those areas for the simple reason that there is the presence of
vegetation during winter time is much less than during summer.
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(a) Mean σ′(40) (b) Standard deviation σ′(40)

Figure 2.5: The mean (a) and standard deviation (b) of the ASCAT normalized slope parameter σ′(40) over grid points in Europe.

2.4. Land Surface Model
This section serves as the theoretical background behind the ISBA-A-gs land surface model. This model is
used for the simulation of the independent variables Soil Moisture and LAI, which are used as input for the
Support Vector Regression.

2.4.1. ISBA
The Interactions between Soil Biosphere and Atmosphere (ISBA) model was developed at Meteo France with
the aim of accurately describing surface processes for weather forecasting and climate models. The ISBA can
be understood as a Soil Vegetation and Atmosphere Transfer (SVAT) model (Noilhan and Planton, 1989). The
most important components of land surface processes are taken into consideration and several important
coefficients are calibrated with sophisticated models and observational data.

The purpose of any SVAT scheme is to simulate energy and matter exchanges between land surface and
atmosphere. These simulations could then be useful for improving the understanding of observations and
hypothesis testing. ISBA is modelled within the SURFEX platform and each grid cell can be represented as a
1 dimensional layer consisting of three layers in total (Leroux et al., 2018). Transferring information from the
top to bottom layer is done by force restore dynamics. Each grid cell consists of different vegetation tiles and
the model is then run for each tile.

2.4.2. A-gs
The ISBA-A-gs is the modified model of the ISBA and is developed to account for effect of the atmospheric
carbon dioxide (CO2) on the stomatal aperture (Calvet et al.,1998). The A-gs appended on the original ISBA
is known as the Jacobs’ model (Jacobs et al., 1996) and this model takes the relation between the stomatal
conductance gs and the net assimilation An of CO2 into account.

2.4.3. Leaf Area Index
LAI can be defined as the ratio between the are of the leaf surface versus the area of the ground surface (Qiao
et al.,2019). This variable is useful for a variety of reasons such as describing the geometry of the vegetation
canopy, light interception within a certain area and seasonal dynamics of vegetation. Also, LAI can serve as a
measure of vegetation density and is therefore a useful variable to relate to the ASCAT slopeσ′(40) parameter.
There are several ways in which an estimate of LAI can be obtained. The most commonly known are:

• In situ measurements through destructive sampling.

• Model simulations.
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• Retrievals with (optical) remote sensing.

The first given option requires a large network of in-situ measurements to get useful insights on a regional
scale. LAI obtained with optical remote sensing are done with vegetation indices. These indices use the Near
Infrared (NIR) and red band of the optical spectrum.

2.4.4. Soil moisture
Within this study, the soil moisture in the upper layers of soil (not root zone) is considered. This is important
due to the fact that the wavelength of the ASCAT is only 5.7 centimeters, thus the signal is more related to
surface soil moisture than to soil moisture at depths of 5 centimeters. The soil moisture used as input variable
for the Support Vector Regressions is the simulation between 1-4 centimeters depth. In-situ observations of
soil moisture are not dense enough for the region of this study. The importance of this variable is given in the
chapter 1.

2.4.5. Validation of Land Surface Model Variables
Gibelin et al. (2006) showed that the simulated LAI by the ISBA-A-gs is able to capture the patterns of satel-
lite derived LAI. The study area was not a specific place but rather a global study. They also found spatial
consistency during the growing seasons of vegetation. Brut et al. [3] compared satellite derived LAI with the
simulated LAI of ISBA-A-gs to determine if the ISBA-A-gs is able reproduce the seasonal and interannual
variability of LAI on regional scale. The satellite derived LAI came from three sources: Estimation of LAI with
MODIS Bidirectional Reflection Distribution Function product, LAI estimation through MODIS collection
4 dataset and the CYCLOPES V3 LAI. An absolute true value for LAI as both observations and simulations
contain uncertainties. For the satellite products, these are the following:

• Saturation effect; Which occurs when there is a large amount of vegetation within a certain area. The
energy that is reflected in the red and near infra red (NIR) does not increase beyond a certain threshold.
Hence, the Normalized Vegetation Difference Index (NDVI), which is used as an indicator of LAI, is
therefore limited in the estimation.

• All vegetation elements (including dead leaves) affect the derived LAI with the optical sensors.

For the LAI simulated by the ISBA-A-gs , the following sources of uncertainties are mentioned in Brut et al.
(2009):

• Highly uncertain parameters in the model are the maximum water capacity for plants and plant rooting
depth. Consequently, there is an offset in the date at which the maximum simulated LAI is obtained.

• The spatial heterogeneity of the land cover, with the focus here on agriculturally active areas are quite
challenging to account for. C3 crops for example can be wheat, rapeseed and barley within France. But
C3 crops could also represent a Summer crop such as sunflower. These crops differ in growing cycles
which makes the model uncertain.

• The other complexity regarding agriculturally active areas is that land management practices are not
accounted for.

• The last potential source of uncertainty mentioned by Brut et al. (2009) is the response to temperature
of photosynthesis.

2.4.6. ECOCLIMAP Database
The initialization of the used Soil, Vegetation and Atmosphere Transfer model (SVAT) requires proper alloca-
tion of land water masks and soil-vegetation characteristics [18]. The dataset that serves this purpose is the
Ecoclimap. This is a global surface parameter dataset with a spatial resolution of 1 km. Each grid point con-
sists of different vegetation patches and the spatial heterogeneity is therefore maintained. The possible land
cover types within Ecoclimap are: Bare land, bare rock, permanent snow, boreal broadleaf deciduous, tem-
perate broadleaf deciduous, tropical broadleaf deciduous, temperate broadleaf evergreen, boreal needleleaf
evergreen, temperate needleleaf evergreen, boreal needleleaf deciduous, shrubs, boreal grassland, temperate
grassland, tropical grassland, Winter C3 crops, Summer C3 crops, C4 crops, flooded trees, flooded grassland.
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2.5. Support Vector Machines
The constraint for a support vector regressor is to minimize the error between the output of a function given
a set of independent variables and the true value of the dependent variable (Smola and Schölkopf, 2004).
The estimation function of a support vector regressor can take the form as is given in equation 2.7. Y is
the dependent variable which is estimated with the sum of the dot product of the weight vector W and the
Support Vector X and the estimated bias b .

Y = f (x) = W ·X + b (2.7)

With
X ,W ∈Rd

With support vector regression (SVR), feature engineering can be done within an equation itself. This im-
plies that instead of transforming the (non-linear) data explicitly into a high dimensional feature space, the
transformation is done though an inner dot product. This is known as the Kernel Function. This method
allows for simulating non linear regression problems. A model ŷ = f (x) is created based on trainingset
D tr ai n = {(x1, y1), ..., (xi , yi ), ..., (xn , yn)} so that xi ∈ Rd and yi ∈ R. The linear support vector regression is
given in equation 2.8.

f (x, w) =
N∑

i =1
〈wi ,φ(xi )〉+ b (2.8)

• w denotes the weight vector

• b is a constant and referred to as the bias.

• φ(x) is the mapping function.

The weight vector w and bias b are estimated with the training data. x is the set of independent variables
or features vector. φ(x) is a function that can transform the feature space of the independent variables so
that a linear fit in. The aim is to construct an estimation function f (x, w) that is build on training data and
is able to estimate data not used during training. To optimize the SVR, a cost- or loss function needs to be
minimized. The optimum of the cost function is the hyperplane that is the best fit for the data.

Figure 2.6: ε -intensive loss function. The filled circles represent the support vectors. It can be seen that some support vectors are outside
of the ε-margin. Source: Rojas et al. (2017)

Figure 2.6 introduces the Vapnik ε-intensive loss function. On the left hand side can be seen that a predic-
tion model f (x, w) is set with a tolerance margin ε. It is shown in the right part of the figure that only points
which are outside of the ε region are contributing to the loss function. The penalty for these points increase
linearly with the deviations.
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The aim is to get an optimized solution so that the error is minimized while prevent overfitting at the
same time. To do this, a Langrange function needs to be constructed from the primal form using a set of
conditions. The Karush-Kuhn-Tucker (KKT) conditions allow for obtaining an optimal solution by taking
inequality constraints into account. The primal form of the constraint optimization problem of the support
vector regression is given in equation 2.9

minimize
1

2
wT w +C

n∑
i =1

(ξi +ξ∗i ), w ∈Rd ,ξ & ξ∗ ∈ [0,∞]n (2.9)

Such that

• yi −wT xi −b ≤ ε+ξ∗i ∀i

• wT xi + b − yi ≤ ε+ξi ∀i

• ξi ,ξ∗ ≥ 0 ∀i

The C in equation 2.9 is a constant and determines to which amount deviations larger that ε are tolerated.
The ’slack’ variables are necessary to obtain feasible constraints of the optimization problem, making it a soft
margin regressor. The complete derivation can be seen in Smola and Schölkopf (2004). The result of the
derivation is the optimization problem with constraints:

maximize−1

2

N∑
i , j =1

(αi −α∗
i )(α j −α∗

j )〈xi , x j 〉−ε
N∑

i =1
(αi +α∗

i ) +
N∑

i =1
yi (αi −α∗

i ) (2.10)

Such that:

•
∑N

i =1(αi −α∗
i ) = 0

• αi ,α∗
i ∈ [0,C ]

The Representer theorem states that the solution of weight vector w can be described as a linear combi-
nation of the training data. Hence, w =

∑N
i =1αi yi xi where N is the number of support vectors. Substituting

this in the primal form f (x) = wT x + b gives equation.

f (x) =
N∑

i =1
(αi −α∗

i )xT
i x + b (2.11)

Equation 2.11 is the linear representation of the SVR.

f (x) =
n∑

i =1
(αi −α∗

i )K (xi , x) + b (2.12)

The linear kernel function is similar to a linear regression. From Figure 3.3 and Figure 3.4 can directly
be observed that the problems are non-linear. Hence, a kernel must be chosen that will be able to linearly
fits a model in the data in a higher dimensional space. Both Linear and Polynomial kernel have the advan-
tage of being less time consuming then the Gaussian Radial Basis and the Sigmoid. The objective of using
support vector machines for this is to investigate whether an optimized kernel is able to simulate the ASCAT
parameters σ0(40) and σ′(40) and this should be done for many grid points and thus different type of data
distributions. Therefore, the Radial Basis kernel is chosen as initial approach towards a set of optimized mod-
els for grid points in and around France. This kernel method was also chosen by Forman and Reichle (2015).
The expression of the radial basis function is given in 2.13.

K (xi , x j ) = exp

(
−||xi −x j ||2

2σ2

)
= exp

(−γ||xi −x j ||2
)

(2.13)
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Methodology

The objective is to create an optimization routine to simulate ASCAT σ0(40) and σ′(40). This chapter briefly
discusses every step in this process. First, the general approach of the methodology will be explained, which
includes the requirements of the machine learning model and the choice for the machine learning model.
After that, the workflow is explained which serves as an general overview of the whole procedure. This is
followed by a more in depth understanding of the Support Vector Regression, primarily the role of hyper-
parameters during the optimization process and the grid search optimization with cross validation is briefly
discussed as well.

3.1. General
3.1.1. Requirements of machine learning model
The choice of the machine learning model is based on the requirements for the simulation of the normalized
backscatterσ0(40) and slopeσ′(40). The key drivers of the backscatter signal and slope do not linearly depend
on land surface variables. Hence, a non-linear model has to be obtained in order to validate this driving
mechanisms behind the backscatter and its slope.

Generally, regression for non-linear data is done with either Neural Networks or Support Vector Machines.
Other functions such as linear regression can be used as well, however the big disadvantage is that features
need to be transformed explicitly. The model should allow for the optimization of parameters, as the aim is
to understand if specific land cover types contain similar parameters and how the quality of simulations can
be interpreted.

3.1.2. Workflow
Support vector regression is chosen as the estimation method. The three main steps taken to train the SVM
kernel regressor are similar to the description of standard kernel classifiers in Huang and Lin (2016 and are
enumerated below:

1. Scale the input features to the interval [-1,1]

2. Obtain the optimal model parameters C and γ. This entails that for the chosen kernel function the
highest accuracy is obtained with cross validation.

3. Create the model w with the optimized hyperparameters C and γ

The main principles are the same for regression and thus are used for this study. Figure 3.1 gives a com-
plete overview from data to model validation. The period from Januari 2008 till September 2017 is time period
of which the data is used for training and optimizing the support vector machines. The final year spans from
September 2017 till September 2018 is kept for the final simulation and validation of the model. Each grid
point (GPI) has its own optimized support vector machine.

17
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Figure 3.1: Workflow of simulations for each individual grid points (GPI).

Each step of the simulation procedure is briefly described in this chapter. In the next section, data prepa-
ration is described followed by the theory behind support vector machines in the case of regression.
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3.2. Data Preparation
3.2.1. Standardization
The Support Vector Machine tries to optimize margins using input variables that initially have their own
scale and units. As the distance between vectors becomes relevant, an optimized margin cannot be obtained.
Therefore, prior to training the model the data should be rescaled so that there are no issues of different units
and scales. Standardization means that the data is rescaled so that the data has the properties of a Gaussian
distribution with the mean µ = 0 and σ = 1. The equation for standardization is shown in 3.1.

z =
x −µ
σ

(3.1)

3.2.2. Grid points
The grid points are primarily located in France and only grid points are considered that have a dominant land
cover type. For this study, this implies that a grid point should contain at least 30% of a particular land cover
type. The map with the dominant land cover types is displayed in Figure 3.2 (a) and on the right hand side of
the Figure (b) the dominant land cover fraction is displayed.

(a) Dominant land cover types (b) Percentage of land cover in grid cell

Figure 3.2: On the left hand side of the figure (a) the dominant land cover types are displayed on the map. It can be seen that there are
5 main land cover types. On the right hand side of the figure, the fractional coverage of these land cover types is displayed. Only grid
points that contain a land cover with a fraction equal to or larger than 30 % are displayed and processed.

3.2.3. Data GPI for Day of Year
Each gridpoint in the the ASCAT backscatter and ASCAT slope data is labeled with a unique point id. The
backscatter is a dependent variable and its independent variables are the LAI and WG2. All data are within a
time span from January 2008 till September 2018. Figure 3.3 displays the two feature variables WG2 and LAI
and the ASCAT backscatter observations for a particular grid point, with a unique identity of 782653. This
grid point consists of at least 30 % temperate grassland.

It can be observed om Figure 3.3 that that for the first 50 days of the year the backscatter σ0(40) shows
similarities with the soil moisture. After that period, vegetation starts to come and the backscatter looks
much less similar to the soil moisture values. In Figure 3.4 can be seen that the slope σ′(40) seems to follow
the main pattern of the leaf area index. However, the seasonal variations are not very explainable by just the
leaf area index.
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Figure 3.3: Climatology of Soil Moisture, LAI and slope σ0(40) for grid point 782653

Figure 3.4: Climatology of Soil Moisture, LAI and slope σ′(40) for grid point 782653
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3.3. Hyperparameter optimization

3.3.1. Grid Search and Cross Validation

A set of possible parameter combination is given to the optimization model. This is the grid search space.
Each combination in this space is tested and the performances of all combinations is compared. To make the
parameter selection a reliable process, a k-fold cross validation is done to select the model parameters with
on average the best regression score. An illustration of this process is given in Figure 3.5. The metric that is
used for making the decision which parameter set is best is the R2 coefficient of determination. This metric
is a measure for the proportion of variance of an estimated variable y that is explained by the independent
variables. Hence, it is a good indication for the goodness of fit. This metric is also chosen for the final valida-
tion of the model as it makes performances between different grid points comparable. The equation of the
coefficient of determination is shown in 3.2.

Figure 3.5: Iteration scheme of the k-fold cross validation. The green boxes represent the test fold and the grey boxes are the train folds.
The value of k for the cross validation of training data is set 9. This means that the 9 years of training data is equally split in 9 pieces and
for each iteration 8 pieces are used for training and one for testing.

3.3.2. Software

The package that is used to create and optimize the model is Scikit-Learn in Python.The Scikit-Learn pack-
ages offer many tools for machine learning (classification, regression and clustering). This includes the grid
search with internal cross validation.

3.3.3. Bias-Variance Trade-off

The importance of a bias-variance trade of can be explained by the illustration in Figure 3.6. On the left hand
side can be seen if the model under-fits and is too simpel to understand the problem. Hence, the bias of this
model is high and the variance very low. On the right hand side its the opposite. The model overestimates
and has a high variance while the bias is very low. If a model performs too well on a training set, it means that
the model not only learns the training data, but the noise in the training data as well. Even if theoretically the
training data does not have any noise, errors will occur due to the complexity of the model.
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Figure 3.6: The two models on the left hand side under-fit the training sample while the two models on the right hand side are clearly
over fitting. Source image: Maimon and Rokach [17]

The scikit-learn software package provides a cross validation tool in which optimization can be done with
a given set of desired hyperparameters. This is called a grid search. Another way of tuning the hyperparame-
ters is randomized searching. A big advantage of randomized searching over grid searching is that the number
of iterations can be exactly specified by the user, which make it very applicable for applications with a high
number of hyperparameter combinations. The disadvantage of using this way of tuning over grid search is
that it is more difficult to check for spatial consistency as parameter values vary on a log scale.

The advantage of using this given set of desired hyperparameters is because 1324 regression models are
created and this process of optimization is computationally less expensive than randomized searching. Dif-
ferent land cover types with different land cover characteristics require different orders of magnitude for the
machine learning algorithm parameters.

3.3.4. SVM Parameters
The hyperparameters that are optimized are C and γ. The selection of values for each of these variables is
shown below. The way these values are obtained is by an iterative approach.

C ∈ {0.1,1.0,10,100,1000}

γ ∈ {1.0 ·10−4,1.0 ·10−3,1.0 ·10−2,0.1,1.0}

The aim of regularization parameter C is to penalize the parameters in the model so that the model will
much less vulnerable to noise and hence does better at generalization. A high C means that the model likely
estimates the training data more accurately and hence has a higher probability of overfitting. Consequently,
a lower C simplifies the SVR which means that the training accuracy is lower as well.

The γ is the parameter within the Kernel function (see eq. 2.13). It serves as a similarity measure and
determines to what extend Support Vectors are used in the function. A very low γ overgeneralizes while a
very high γ causes the model to overfit. It is worth mentioning that the focus of this study is not to justify the
obtained values for C and γ, but rather explore the possibility of optimizing simulations and discover whether
there is spatial consistency with parameters.

3.4. Performance Evaluation
The performance metric that is used is the coefficient of determination (R2). The expression is given by the
SciKit-learn software package and is as follows:
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R2 = 1−
∑n

i =1(yi − ŷi )2∑n
i =1(yi − ȳi )2 (3.2)

With ȳ = 1
n

∑n
i =1 yi and

∑n
i =1(yi − ŷi )2 =

∑n
i =1 ε

2
i

A negative value of R2 means that the mathematical mean of the observations is a better estimate than
the simulations. The intuitive reasoning for using the R2 over the root mean square error is because the aim is
to see to what extend the created support vector machines are able to capture the variability of the σ0(40) or
σ′(40), rather than depending on the signal to noise ratio of different grid points. However, the RMSE is also
calculated for each grid point and in Section 4.1 is shown that the RMSE displayed on a map is an indicator
of the standard deviation. Therefore, this performance metric is less useful.

In order to assess the model performance for high frequency observations in the backscatter σ0(40), a
climatology fit is created and subtracted from the initial backscatter regression for each grid point. This is
done by averaging all LAI and soil moisture values for a particular day of the year for 10 years of data for each
grid point, which are then used as input in the created SVRs and thus a climatology estimation is obtained. In
this way, a fair comparison of high frequency signal performance can be made between different grid points.
Figure 3.7 gives an illustration of this procedure.

Figure 3.7: Procedure for simulating climatology with standardization of the climatological fit.
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Results

In this chapter, the performances of the simulations of grid points that contain at least 30% of a specific land
cover type are shown and evaluated. For both backscatter and slope, the performances are displayed on
maps. Performances are calculated over three different time periods: One full year and two separate periods
of 6 months. The first period of 6 months is during the winter months and the second period of 6 months is
during the growing season. The simulations, as described in section 3, are done with SVR models created with
9 years of training data and these models are then used to simulate backscatter σ0(40) or slope σ′(40) on one
year of unseen data, which is from September 2017 till September 2018. Simulations of individual grid points
are shown together with the corresponding interannual variability of the land surface variables by which the
model is trained. After that, statistics of land cover fractions of grid points with a certain dominant land cover
type are shown and evaluated. In the end of this chapter, the spatial consistency of SVM parameters is shown.

4.1. Backscatter Simulations

4.1.1. Overall Performance

The overall performance of the simulation in this study is the value of the coefficient of determination (R2)
for a time period of one year. This time period includes all seasons. The performances of the backscatter
simulations are shown on the map in Figure 4.1. The left side of the figure (a) shows the R2 performance of the
complete simulation and on the right side (b) the R2 performance is shown where climatology is simulated
and subtracted from the complete simulation. It can be seen that in both maps a spatial consistency exists.
Looking at the land cover type map and fractional cover map in Figure 3.2 (a) and (b) it can be suggested that
the dominant land cover type and land cover fraction are significant factors for the σ0(40) performance. It
can also be observed that the R2 performances of the grid points shown in (b) are generally lower than in (a).
This suggests that for the points where this is the case that the model is able to capture the seasonal cycles,
but not able to capture the high frequency variations not caused by the seasonal cycles.

25
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(a) Climatology included (b) Climatology removed

Figure 4.1: Map of backscatter σ0(40) performances. The left hand side of the figure (a) shows the R2 performance with the climatology
included. The right hand side (b) shows the performance of the regression

As mentioned in chapter 3, the coefficient of determination (denoted as R2 in this study) is the chosen
performance metric for the evaluation of created support vector machines. The reason for this is to get a
measure of how well variability of the ASCAT σ0(40) and σ′(40) can be captured with the support vector ma-
chines and the land surface variables soil moisture and leaf area index from the ISBA-A-gs . In addition to that,
it makes the grid points displayed on a map more comparable, because the performances will otherwise (In
case of using a RMSE or MSE as performance metric) only be linked to the standard deviation of theσ0(40) or
σ′(40). This is demonstrated in Figure 4.2. The left part (a) of the figure is a map with the standard deviation
of the backscatter. The high standard deviations can be observed in the area left-beneath and right-above
Paris. These are agriculturally active areas and the RMSE map (b) on the right hand side of the figure mirrors
the standard deviation of the RMSE. It therefore lacks in providing information about which grid points have
a model that works successfully and which ones not.

(a) (b)

Figure 4.2: On the left hand side of the figure (a) the standard deviation of the backscatter σ0(40) is shown over a part of Europe. On the
right hand side the RMSE performances are displayed for the selected grid points.
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The spatial consistency that can be noticed in Figure 4.1 show that the type of land cover does indeed
determine whether a simulation is possible or not. Each grid point displayed on the maps in Figure 4.1 (a)
and (b) have a dominant land cover type. The requirement as stated in the methodology (see Section 3) is that
a land cover is considered to be dominant if the fractional land cover is larger or equal to 30%. The dominant
land cover types that at least ten times are Temperate Grassland (522), C3 Crops (351), Temperate Broadleaf
Deciduous (73), Boreal Grassland (15) and Bare Land (11). Boreal Grassland is left out for further analysis as
the locations of its grid points are near the Alps and during winter months the SVM will not be trained for the
right reason, which is to simulate backscatter with soil moisture and vegetation density.

To have a general idea of how a dominant land cover type can be linked to the performance of the sup-
port vector machines, scatterplots have been created in which the coefficient of determination (R2) is plotted
against the fractional coverage of the dominant land cover type. These can be seen in Figures 4.3 and 4.4
where the R2 performances of dominant land covers are shown for the total simulation and simulation with
climatology removed. Both Figures show very similar results in terms of their distribution. As could be no-
ticed in Figure 4.1 as well, a bunch of grid points have a high R2 for the total simulation but perform worse
after climatology is removed. This implies that these grid points do reasonably well with low frequency vari-
ations such as seasonal variations, but besides these low frequency variations the support vector machine
does not seem to understand much.

On the top left of Figures 4.3 and 4.4 can be seen that R2 values tend to be lower for a high fractional
cover of C3 Crops than for a low fraction of C3 Crops. Grid points with C3 Crops as dominant land cover
type are agriculturally active areas and land management practices are not understood well by the ISBA-A-gs

land surface model (Canal et al.,2014). Therefore, it is suggested that an increase of presence of C3 Crops
diminishes the performance of the simulation. However, the scatterplots show that this does not always have
to be the case as individual grid points with a fractional cover of around 70% can still achieve an R2 of 0.4.
On the top right scatterplot in Figures 4.3 and 4.4 can be observed that a high fractional cover of Temperate
Grassland seems to give a minimum achievable performance. Fractional covers of Temperate Grassland of
around 70% achieve a minimum R2 of 0.4 and a fractional cover of 50% ensures at least a R2 of 0.25 for the
case of total simulation. The bottom scatter plots represent the performances of grid points with Temperate
Broadleaf Deciduous and Bare Land as dominant land cover type. There is not enough data to indicate from
these figures whether they enhance or diminish R2 performance.

Figure 4.3: Scatterplots for the four main dominant land cover types. The performances are shown against the fractional coverages.
Climatology is not removed.
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Figure 4.4: Scatterplots for the four main dominant land cover types. The performances are shown against the fractional coverages.
Climatology is removed.

The R2 values displayed in Figures 4.1, 4.3 and 4.4 represent the performance for a time period during the
whole year. In the next section, the performance of the simulations during the vegetation growing season,
which is from March till September and the ’winter’ season from September to March, is evaluated.

4.1.2. Performance During Vegetation Growing Season
The presence of vegetation during summer might have a completely different impact on this performance
than during winter. During winter, vegetation density is generally less than during summer and precipitation
values are higher. In the absence of vegetation the backscatter is primarily driven by soil moisture. It is
therefore expected that backscatter simulations are more successful during winter than during summer. It is
shown in Figure 4.5 that this expectation is true for most grid points. On the left hand side of the figure (a) the
R2 values for the autumn and winter season are shown on a map and on the right hand side (b) for the spring
and summer season. It can be seen that from the centre North to centre Middle of France most grid points
have a worse performance during the vegetation growing period than during winter months. However, it can
also be seen that for the North-Western and South-Eastern part of France this is the opposite. So on these
locations performance is worse in winter than during summer. The South-Eastern part of France contains
grid points near or within the Alps which is covered with snow during winter and therefore the model is not
trained for the reason to understand soil moisture and LAI impact on backscatter.

µ R2 σ R2 µ R2 SS σ R2 SS µ R2 AW σ R2 AW GP

C3 Crops 0.30 0.17 -0.14 0.33 0.44 0.17 351
Bare Land -0.29 0.93 -0.42 1.02 -0.57 1.25 11
Temperate Grassland 0.42 0.16 0.24 0.21 0.46 0.22 522
Temperate Broadleaf Deciduous 0.49 0.11 0.32 0.17 0.50 0.17 73
Boreal Grassland 0.03 0.14 -0.04 0.19 -0.11 0.30 15

Table 4.1: µ is the mathematical mean. σ is the mathematical standard deviation. R2 is the coefficient of determination. SS represents
Spring + Summer and AW represents Autumn + Winter.
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A statistical perspective on the performances of dominant land cover types during the vegetation growing
season and winter months is shown in Table 4.1. The statistical properties that are considered in the table are
the mean µ and standard deviation σ.

• Grid points with dominant land cover type C3 Crops on average perform bad during the vegetation
growing season with an coefficient of determination below 0. This means that during this period the
statistical mean of the observed σ0(40) is a better estimate than the SVM model simulated σ0(40).

• Grid points with Bare Land as dominant land cover type perform generally worse than other dominant
land cover types. However, there is a huge variance in the performances. Presence of Bare Land does
therefore not necessarily mean a high or low R2 value. There are insufficient amount of grid points with
Bare Land as dominant land cover type to make an accurate statement.

• Grid points with Temperate Grassland as dominant land cover type show on average show poorer per-
formance during summer than during winter. This is in line with the theoretical reasoning that during
vegetation growing periods σ0(40) is harder to simulate than during periods where vegetation density
is minimal. It can also be noted that compared to C3 crops, the performance during summer is very
good.

• Grid points with Temperate Broadleaf Deciduous can arguably be considered most consistent in terms
of the having the lowest standard deviations during all considered periods. The performance during
winter months is higher than during the vegetation growing period. Hence, this example also supports
the theoretical arguing that performance during vegetation growing season for backscatter simulations
is worse than during winter months.

(a) (b)

Figure 4.5: On the left hand side of the figure (a) the coefficient of determination R2 from σ0(40) simulations is displayed during the
period from September to March which is during the Fall and Winter season. On the right hand side (b) the R2 is displayed from the
period from March till September during the vegetation growing season.

4.1.3. Performances and Land Surface Variables
In this part, the actual simulations of individual grid points are shown. In addition to that, the interannual
variations of the land surface variables are displayed, to obtain insight in the driving factors behind the sim-
ulation and performance. Two types of simulations are shown for:

(I) Grid point with best performance during winter months

(II) Grid point with best performance during vegetation growing season
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This is done for the C3 Crops and Temperate Grassland dominant land cover types as these land cover
types are most present in the data. For the remaining land cover types, a few simulations can be seen in the
Appendix. The reason for distinguishing these two particular cases is to obtain a better understanding of why
performances are high or low during a specific time period. It was shown in the performance maps in Figure
4.5 (a) and (b) that for backscatter simulations performances are better during winter months than during
summer months, due to the absence of vegetation. This subsection demonstrates the role of the ISBA-A-gs

variables in the performance of the simulation.

C3 Crops (I)

The simulation of the grid point with dominant land cover type C3 crops that has the best performance
during the winter period can be seen in Figure 4.6. It can be observed that from September 2017 till March
2018 the simulated σ0(40) is quite able to capture the high frequency variations of the σ0(40) observations.
But after March 2018, the simulation is absolutely not able to understand the patterns.

Figure 4.6: Simulation for σ0(40) with C3 Crops as dominant land cover type. This grid point has the highest R2 value for the winter
period. Climatology is simulated and removed from the total simulation.

Figure 4.7: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.
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An explanation for the low performance during the vegetation growing season and high performance dur-
ing the winter period can be obtained from looking at the variability of the ISBA-A-gs variables soil moisture
(WG2) and leaf area index (LAI) for each day of the year. This is given in Figure 4.7. It can be noticed that
the variability of LAI during the months from May will September is very high and during this same period
the WG2 is at its lowest. The basic assumption of the TUW SMR approach is that σ0 is more or less linearly
relatable to surface soil moisture (Vreugdenhil et al., 2016). It therefore makes sense that the presence of veg-
etation is a hindrance for the simulation. Also, there is a high deviation during the summer months and this is
a difficulty for the support vector machine, because the model is trained by past data and this data is different
from year to year.

C3 Crops (II)

The simulation for the second case (Best performance during vegetation growing season) for C3 Crops
can be seen in Figure 4.8. It can be seen that the variability is captured relatively well during the whole year,
even though the performance during the vegetation growing season is not as high as during the winter period.

Figure 4.8: Simulation for σ0(40) with C3 Crops as dominant land cover type. This grid point has the highest R2 value for the vegetation
growing season. Climatology is simulated and removed from the total simulation.

Figure 4.9: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.
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The reason for the reasonably good performance of this grid point can again be found in the variability of
the ISBA-A-gs variables WG2 and LAI. These are shown in Figure 4.9. The WG2 fluctuates much less than the
WG2 in the previous case (See Figure 4.7) and is consistently high compared to the grid point in the previous
case. The LAI values are much more consistent for each day of the year during summer months than in the
previous case, where there more irregularities can be observed. The SVM is able to simulate σ0(40) well if the
amount of irregularities are minimal.

Temperate Grassland (I)

For case (I) with Temperate Grassland as dominant land cover type, the simulation with the best perfor-
mance during winter months is shown in Figure 4.10. The performance during the winter period is relatively
high and during the vegetation growing season it is lower but arguably not as bad as the case considered with
C3 crops (See simulation in Figure 4.6).

Figure 4.10: Simulation for σ0(40) with Temperate Grassland as dominant land cover type. This grid point has the highest R2 value
during the winter months. Climatology is simulated and removed from the total simulation.

Figure 4.11: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.
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Figure 4.11 shows the interannual variations of the ISBA-A-gs and gives more insight into the possible
reason for the poor performance during the vegetation growing season and good performance during the
winter months. It can be said that the variability of the LAI and the low soil moisture values result in poorer
performance during growing season than during winter months.

Temperate Grassland (II)

Figure 4.12 shows the simulation for the grid point with the highest performance during the vegetation
growing season. Again, the performance during this period does not come near the performance during
the winter months. The reason for this can be found in Figure 4.13 where the interannual variations for
the ISBA-A-gs land surface variables soil moisture and LAI are shown. Again, soil moisture values decrease
during summer months and LAI values are highly variable for each year, which consequently gives lower
performances during growing season.

Figure 4.12: Simulation for σ0(40) with Temperate Grassland as dominant land cover type. This grid point has the highest R2 value
during the winter months. Climatology is simulated and removed from the total simulation.

Figure 4.13: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.
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4.1.4. Fractional Land Cover Good and Bad Performances
It has been shown in the previous subsection that performances for backscatter simulations generally depend
on the time period over which the R2 is calculated. The theoretical reasoning behind the backscatter simu-
lations being higher during winter months than during the growing season is that the presence of vegetation
still forms a hindrance for forward modelling of backscatter and soil moisture values are higher.

The purpose of this subsection is to look at the statistics of land cover fractions of grid points of which
the σ0(40) simulation are successful and unsuccessful. In this study, a simulation of σ0(40) is considered
successful (or good) if the coefficient of determination (R2) during winter months is larger than 0.6 (60%).
The simulation is considered unsuccessful (or bad) if the R2 is smaller than 0.3 (30%). The reason for doing
this is to see whether presence of certain land cover types significantly impact the performance. This should
then be taken into account if future simulations are done. The statistical overview is presented in tables.
Each table gives the amount of grid points that are considered either good or bad and the mean and stan-
dard deviations of the land cover fractions within these grid points. In total there are 5 tables, one for each
dominant land cover type (C3 Crops, Temperate Grassland, Temperate Broadleaf Deciduous, Bare Land and
Boreal Grassland).

The first table that is shown give the statistics of land cover fractions for grid points with C3 Crops as
dominant land cover type and can be seen in Table 4.2. One of the major differences between grid points
that are good versus those that are bad according to this table is the mean fraction of C3 crops itself. For grid
points with a successful simulation, the fractional coverage of C3 Crops is almost 42% while for grid points
with unsuccessful simulations, the fractional coverage is almost 52%. This difference of around 10% suggests
that the presence of C3 Crops diminishes the performance of the simulation. This might be because the used
land surface model is not fully optimized with land management practices.

Another difference that can be seen is the presence of Temperate Grassland which on average is almost
4% higher for grid points with a good simulation than for grid points with a bad simulation. Also, Temperate
Needleleaf Evergreen has 2 % more presence on average in grid points with a good simulation. However, the
deviation is high relative to the mean value, so the certainty for the statement that presence of Temperate
Needleleaf Evergreen enhances performance is not high. The same can be said for the presence of Bare Land,
Bare Rock and Shrubs.

Fractional Cover Statistics
σ0(40)

Good: R2 (Winter Months) >0.6 | Bad: R2 (Winter Months) <0.3

Dominant Land Cover Type:
C3 Crops

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.091 0.039 96 0.066 0.015 98
Bare Rock 0.032 0.026 96 0.024 0.012 98
Permanent Snow 0.000 0.000 96 0.000 0.000 98
Temperate Broadleaf Deciduous 0.141 0.080 96 0.147 0.070 98
C3 Crops 0.416 0.082 96 0.518 0.089 98
C4 Crops 0.031 0.018 96 0.034 0.009 98
Summer C3 Crops 0.009 0.013 96 0.001 0.005 98
Temperate Grassland 0.202 0.057 96 0.164 0.079 98
Temperate Needleleaf Evergreen 0.048 0.031 96 0.028 0.021 98
Boreal Grassland 0.000 0.000 96 0.000 0.000 98
Boreal Broadleaf Deciduous 0.000 0.000 96 0.000 0.000 98
Shrubs 0.022 0.025 96 0.015 0.022 98

Table 4.2: Fractional Cover Statistics for σ0(40) simulations with C3 Crops as dominant land cover type. Grid points are distinguished in
good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid points. σ is the
mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered as either good
or bad grid points over which the µ and σ are calculated.

For grid points with Temperate Grassland as the dominant land cover type, Table 4.3 gives the statistical
overview of land cover fractions for successful and unsuccessful grid points. This time, the fraction of C3
Crops is higher on average for the grid points with good simulations than for those with bad simulations. Also,
the deviation is higher so according to this table, it cannot be confessed that C3 Crops necessarily diminishes
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performance. A big difference in land cover fraction is the fraction of Temperate Broadleaf Deciduous in the
’good’ and ’bad’ grid points. Grid points with successful simulations on average seem to have around 10%
more presence of Temperate Broadleaf Deciduous and Temperate Needleleaf Evergreen than grid points with
unsuccessful simulations. Note that the deviation is very high relative to the mean and hence there is less
certainty for a conclusion. The rest of the land cover types do not seem do differ very significantly either due
to the low fractional presence, or the high deviation in possible outcomes.

Fractional Cover Statistics
σ0(40)

Good: R2 (Winter Months) >0.6 | Bad: R2 (Winter Months) <0.3

Dominant Land Cover Type:
Temperate Grassland

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.051 0.014 149 0.070 0.023 145
Bare Rock 0.016 0.008 149 0.027 0.019 145
Permanent Snow 0.000 0.000 149 0.000 0.000 145
Temperate Broadleaf Deciduous 0.207 0.072 149 0.098 0.105 145
C3 Crops 0.135 0.074 149 0.198 0.115 145
C4 Crops 0.021 0.015 149 0.032 0.017 145
Summer C3 Crops 0.000 0.002 149 0.001 0.003 145
Temperate Grassland 0.438 0.123 149 0.407 0.074 145
Temperate Needleleaf Evergreen 0.112 0.075 149 0.076 0.070 145
Boreal Grassland 0.000 0.000 149 0.006 0.018 145
Boreal Broadleaf Deciduous 0.000 0.000 149 0.002 0.007 145
Shrubs 0.007 0.010 149 0.032 0.031 145

Table 4.3: Fractional Cover Statistics for σ0(40) simulations with Temperate Grassland as dominant land cover type. Grid points are
distinguished in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid
points. σ is the mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered
as either good or bad grid points over which the µ and σ are calculated.

Table 4.4 shows the land cover statistics for grid points with Temperate Broadleaf Deciduous as dominant
land cover type. The amount of grid points labeled as ’good’ and ’bad’ performing grid points is much less
then the previously considered cases. This gives lower uncertainty in the conclusions that can be drawn from
the data. The only significant difference that is observed from this table, is the higher presence of C3 Crops in
grid points with successful simulations. However, the high standard deviation adds up to the uncertainty for
a statement on the presence of this land cover type.

Fractional Cover Statistics
σ0(40)

Good: R2 (Winter Months) >0.6 | Bad: R2 (Winter Months) <0.3

Dominant Land Cover Type:
Temperate Broadleaf Deciduous

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.048 0.014 9 0.047 0.012 14
Bare Rock 0.020 0.011 9 0.016 0.008 14
Permanent Snow 0.000 0.000 9 0.000 0.000 14
Temperate Broadleaf Deciduous 0.337 0.025 9 0.334 0.025 14
C3 Crops 0.132 0.094 9 0.064 0.025 14
C4 Crops 0.023 0.011 9 0.017 0.008 14
Summer C3 Crops 0.001 0.001 9 0.000 0.001 14
Temperate Grassland 0.280 0.039 9 0.298 0.018 14
Temperate Needleleaf Evergreen 0.130 0.038 9 0.171 0.032 14
Boreal Grassland 0.000 0.000 9 0.000 0.000 14
Boreal Broadleaf Deciduous 0.000 0.000 9 0.000 0.000 14
Shrubs 0.000 0.001 9 0.005 0.011 14

Table 4.4: Fractional Cover Statistics for σ0(40) simulations with Temperate Broadleaf Deciduous as dominant land cover type. Grid
points are distinguished in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corre-
sponding grid points. σ is the mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that
are considered as either good or bad grid points over which the µ and σ are calculated.
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For grid points with Bare Land as dominant land cover type, the land cover fractional statistics are dis-
played in Table 4.5. No grid points were found that have a successful simulation according to the criteria that
the R2 must be larger than 0.6 during winter months. This itself suggests that presence Bare Land is undesir-
able for backscatter simulations. Also the high presence of Bare Rock and Boreal Grassland and presence of
Permanent Snow indicate that grid points with Bare Land as dominant land cover type should be avoided for
simulations.

Fractional Cover Statistics
σ0(40)

Good: R2 (Winter Months) >0.6 | Bad: R2 (Winter Months) <0.3

Dominant Land Cover Type:
Bare Land

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land - - 0 0.381 0.062 6
Bare Rock - - 0 0.121 0.053 6
Permanent Snow - - 0 0.004 0.005 6
Temperate Broadleaf Deciduous - - 0 0.035 0.040 6
C3 Crops - - 0 0.018 0.036 6
C4 Crops - - 0 0.006 0.013 6
Summer C3 Crops - - 0 0.005 0.011 6
Temperate Grassland - - 0 0.045 0.039 6
Temperate Needleleaf Evergreen - - 0 0.010 0.025 6
Boreal Grassland - - 0 0.196 0.112 6
Boreal Broadleaf Deciduous - - 0 0.019 0.014 6
Shrubs - - 0 0.048 0.075 6

Table 4.5: Fractional Cover Statistics for σ0(40) simulations with Bare Land as dominant land cover type. Grid points are distinguished
in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid points. σ is the
mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered as either good
or bad grid points over which the µ and σ are calculated.

To summarize, this part of the Chapter ’Results’ investigated the performances of ASCAT backscatter
σ0(40) for grid points with a dominant land cover type. First, an overall performance was shown on a map
and it could be seen that even though the climatology is simulated and removed from the total simulation, the
performances were in general still reasonably well. After that, it was shown that performances differ depend-
ing on the time scale over which it is calculated. Forσ0(40) simulations, vegetation growth forms a hindrance
for linking soil moisture to σ0(40) observations through the support vector machines. In cases where LAI
showed relatively stable results during different days of the year and the soil moisture is not too low during
summer months, the σ0(40) performances were shown to be better as well during growing season.
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4.2. Slope Simulations
In this part the chapter ’Results’, the performances of the slope σ′(40) simulations are evaluated in a similar
manner to the first part, in which backscatter σ0(40) simulations were evaluated. The overall performances
of the σ′(40) simulations are displayed on a map first. Again, only grid points are considered that have a
dominant land cover type (land cover fraction ≥ 30%). After that, the performances during the vegetation
growing season and during the winter period are considered.

4.2.1. Overall Performance
The overall performances of the slope σ′(40) simulations expressed as the coefficient of determination (R2)
can be seen in Figure 4.14. On the left hand side of the figure (a) the performances are shown where simulated
climatology is not removed from the total simulations. The map on the right hand side of the figure (b) shows
the performance where simulated climatology is removed from the total simulation. It can be immediately
concluded that the support vector machines are not able to simulate high frequency signal. What it is able
to simulate are seasonal variations. In Chapter 2 was mentioned that variations in slope σ′(40) depend on
vegetation dynamics. The mean and standard deviation of theσ′(40) shown in Figure 2.5 in Chapter 2 showed
that variation is relatively high in agriculturally active areas and moderate to in areas with dominant presence
of Temperate Grassland or Temperate Broadleaf Deciduous.

(a) Climatology included (b) Climatology removed

Figure 4.14: Map of slope σ′(40) performances. The left hand side of the figure (a) shows the R2 performance with the climatology
included. The right hand side (b) shows the performance of the regression

A more complete perspective on the performance of the σ′(40) for the main land cover types is given in
Figure 4.15. On the top left the performance of the C3 Crops land cover type is shown against the fractional
coverage. It can be seen that there is a wide variety of performance outcomes for fraction of land cover up
to 55%. Fractional coverage of C3 Crops larger than 55% seems to enhance the overall performance. For the
performances with Temperate Grassland as dominant land cover type, which can be seen on the top right
of the figure, a similar pattern as the performance of C3 Crops can be observed. There is a wide spread of
possible performance values for cases where the fractional coverage is less than approximately 50%. For a
fractional coverage higher than 50%, a certain minimum can be ensured based on this scatter plot. Also,
there seems to develop an upper boundary as well which narrows the range of possible R2 values for high
fractions of Temperate Grassland. However, this cannot be ensures as the amount of grid points decreases
for increasing fractional cover. For the Temperate Broadleaf Deciduous and Bar Land land cover type, the
range of possible performance outcomes is large and there are insufficient amount of grid points to make a
statement on the performance outcomes if the fraction of land cover increases.
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Figure 4.15: Scatterplots for the four main dominant land cover types. The performances are shown against the fractional coverages.

The performances are calculated over a time period of one full year. The performance within a shorter
time span might or might not give a different result, as was shown in the previous section where backscatter
simulations were evaluated. According to the hypothesis that variations of σ′(40) is primarily driven by veg-
etation dynamics, it is expected that simulations during winter months will be worse compared to summer
months. The results are shown and discussed in the next subsection.

4.2.2. Performance During Vegetation Growing Season

The maps in Figure 4.16 (a) and (b) display the performances of the slope σ′(40) simulations. The left hand
side of the figure (a), represent R2 values calculated for the winter months. R2 values seem to be very low
compared to the R2 values calculated over a whole year. It can be seen at the locations near the Alps, the grid
points have very high R2 performances (R2 ≥ 0.6). For these points it can be seen in Figures 2.5 (a) and (b) in
Chapter 2 that the mean values of the slope is relatively very low and standard deviations are moderate. The
main land cover types of these grid points are Bare Land, Temperate Grassland and Boreal Grassland, though
the percentages of land cover fraction are very low as can be seen in Figures 3.2 (a) and (b). Thus, other land
cover types within these grid points can determine the amount of predictability in the slope.

The right hand side (b) of Figure 4.16 shows the performances during the vegetation growing season.
Compared to the performances on the left hand side (b) during winter months, simulations are much better.
However, a number of grid points around the (imaginary) horizontal middle line through France still give a
poor performance, while these grid points do not seem to perform as worse as is displayed in this map if it
compared to the overall performance shown in Figure 4.14 (a). A possible reason for this might be the low
value for the mean slope σ′(40) and low standard deviation for the slope (See Figure 2.5) in combination with
land cover type and the different behaviour in different time scales. A better understanding could be obtained
if the performances of shorter time scales are studied. However, this is not within the scope of this study, as
the performances are only evaluated during the vegetation growing season and winter months, each having
a time period of 6 months.
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(a) (b)

Figure 4.16: On the left hand side of the figure (a) the coefficient of determination R2 for σ′(40) is displayed during the period from
September to March which is during the Fall and Winter season. On the right hand side (b) the R2 is displayed from the period from
March till September during the vegetation growing season.

A statistical overview of R2 performances can be seen in Table 4.6. In this table, the mean and standard
deviation of performances during the the three time frames are considered for each dominant land cover
class.

µ R2 σ R2 µ R2 SS σ R2 SS µ R2 AW σ R2 AW GP

C3 Crops 0.55 0.21 0.48 0.34 -3.64 5.79 351
Bare Land 0.48 0.48 0.60 0.42 0.08 0.88 11
Temperate Grassland 0.55 0.19 0.36 0.56 -1.13 2.51 522
Temperate Broadleaf Deciduous 0.50 0.22 0.40 0.42 0.05 0.89 73
Boreal Grassland 0.74 0.21 0.80 0.19 0.59 0.33 15

Table 4.6: µ is the mathematical mean. σ is the mathematical standard deviation. R2 is the coefficient of determination. SS represents
Spring + Summer and AW represents Autumn + Winter.

From the statistical overview given in Table 4.6 the following points can be noticed:

• Grid points with C3 Crops as dominant land cover type on average perform best for a time frame of
a whole year. The performances during vegetation growing season are slightly worse than the overall
performances, but not bad. During winter months, the performance of the simulation is extremely
worse as the average R2 value is far below zero.

• Grid points with Bare Land as dominant land cover type have the highest standard deviation in the
overall performance. Performance is better during winter than during summer, which suggests that the
model does not work for the proper reason as variability in vegetation is more driven by the variability
of the leaf area index, which very likely is not the case during this period of the year.

• Grid points with Temperate Grassland as dominant land cover type show an average overall perfor-
mance that is higher than the performances for vegetation growing season and winter months. During
winter months, the performance on average is very bad as the R2 is below 0 and the deviation is very
high. This confirms the theory that simulations are more successful during vegetation growing season
than during winter months.

• Grid points with Temperate Broadleaf Deciduous as dominant land cover type also on average have a
high overall performance and low standard deviation compared to the the mean and standard deviation
during the vegetation growing season and winter months. This again confirms the hypothesis that
during winter months the slope is very unlikely to give a good performance.
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• Grid points with Boreal Grassland as dominant land cover type show an mean overall R2 value which
is highest of all dominant land cover types. As mentioned earlier in this section, the grid points are
primarily located in the Alps region and it is therefore very unlikely that the results are obtained for the
right reason.

4.2.3. Performances and Land Surface Variables
In this part, the simulation is shown of individual grid points to see whether the performances makes sense
by looking at the variability of the land surface variables. The variations of the slope σ′(40) are driven by
dynamics of vegetation. During winter months, soil moisture (WG2) values are generally high and leaf area
index (LAI) values low. During this period, it is expected that the variations of theσ′(40) are harder to simulate
due to the low LAI values. Consequently, it is expected that σ′(40) simulations are more successful during the
growing season. The following three cases are considered for grid points with dominant land cover types C3
Crops and Temperate Grassland:

(I) Grid point with best performance during winter months

(II) Grid point with best performance during vegetation growing season

(III) Grid point with good performance during winter months but bad performance during growing season.

C3 Crops (I)

The first considered case for σ′(40) simulations is one with C3 Crops as dominant land cover type and a
high performance during the winter months. The simulation can be seen in Figure 4.17. The black line in
the figure represents the σ′(40) observation and the blue line represents the simulation by the support vector
machine. Even though the calculated coefficient of determination during the three different time spans are
high, it can be seen that the simulation contain noticeable noise.

Figure 4.17: Simulation for σ′(40) with C3 Crops as dominant land cover type. This grid point has the highest R2 value during the winter
months.

Looking at the variability of the corresponding land surface variables, which can be seen in Figure 4.18,
it can directly be seen that during July, August and September the deviation of LAI values is very high. With
supervised machine learning in general, models are trained with the purpose to understand patterns from the
past so that if an event occurs in the future, the model has some idea what the outcome should be. It therefore
becomes difficult to train a model with data that has a high variability and this might be an important reason
for the amount of noise in the simulation.
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Figure 4.18: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.

C3 Crops (II)

The second case that is considered for grid points with C3 Crops as dominant land cover type is about the
situation of the grid points with the best performance during the vegetation growing season. The simulation
of this grid point is shown in Figure 4.19. The performance during the growing season is 93%, which can be
considered as a very successful simulation period. During the winter, this performance is significantly worse
with R2 = 63%. Looking at the winter months in the figure, it can be noticed that the large movements of the
σ′(40) are captured well, but the simulation looks very noisy compared to the simulation starting from March
2018.

Figure 4.19: Simulation for σ′(40) with C3 Crops as dominant land cover type. This grid point has the highest R2 value during the
vegetation growing season.

The variability of the land surface variables by which it is trained and simulated can be seen in Figure
4.20. Again, during periods in which LAI values are high and soil moisture values low, the σ′(40) is simulated
relatively well. The low values of soil moisture during the growing season might contribute to the decrease of
noise in the simulation, even though the variability of the LAI is high.
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Figure 4.20: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.

Temperate Grassland (III)

For the third case a grid point is considered that has Temperate Grassland as dominant land cover type.
The simulation is shown in Figure 4.21. It should be noted that the range ofσ′(40) values ranges from approx-
imately -0.125 to -0.09 dB/deg while the range for the previously mentioned case in Figure 4.19 had a range
of slope values from approximately -0.145 to -0.08 dB/deg. The point of mentioning this is that slope values
seem to be smaller for this grid point. This suggests that there might be land covers present within this grid
point that do not contain any vegetation. Therefore, for this particular grid point the land cover fractions are
displayed in Table 4.7. It can be seen that Bare Land is present for about 7% and even Bare Rock for almost 2%.
Also, there is presence of Temperate Needleleaf Evergreen for about 9%. For this land cover type, variations
of vegetation dynamics are usually low.

Figure 4.21: Simulation forσ′(40) with Temperate Grassland as dominant land cover type. This grid point has the highest R2 value during
the winter months.
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Fraction [x 100 %]

Bare Land 0.071
Bare Rock 0.019
Permanent Snow 0.000
Temperate Broadleaf Deciduous 0.237
C3 Crops 0.181
C4 Crops 0.017
Summer C3 Crops 0.004
Temperate Grassland 0.371
Temperate Needleleaf Evergreen 0.090
Boreal Grassland 0.000
Boreal Broadleaf Deciduous 0.000
Shrubs 0.008

Table 4.7: Fractional land cover for grid point 766805 with dominant land cover type Temperate Grassland.

The variability of the land surface variables is shown in Figure 4.22. The noise in the simulation seems
again to be a consequence of the high frequency movements in both land surface variables.

Figure 4.22: Interannual variability of the ISBA-A-gs variables from 2008 till 2019 plotted against the day of year. The black line represents
the mean value for each day of the year. Also, the standard deviation for each month is shown.

In the next subsection, the statistics of fractional covers of grid points with a particular dominant land
cover type is looked at. The purpose of this is to spot differences in land cover types for grid points with
successful simulations are unsuccessful simulations.
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4.2.4. Fractional Land Cover Good and Bad Performances

The purpose of this subsection is to see whether the presence of certain land cover types impact the perfor-
mances for the slope σ′(40) simulations. The dominant land cover types that are considered are C3 Crops,
Temperate Grassland, Temperate Broadleaf Deciduous, Bare Land and Boreal Grassland. The criteria for a
grid point to be called successful (or good) is that the coefficient of determination (R2) must be larger than
60% during the growing season. For a simulation to be considered unsuccessful the performance during the
growing season must be below 30%.

For successful and unsuccessful grid points with dominant land cover type C3 Crops, the land cover frac-
tional statistics can be seen in Table 4.8. It can be seen that successful grid points on average contain more
Bare Land and Bare Rock. This does not necessarily mean that presence of these land cover types enhances
or diminishes the performance, because the deviation values next to the mean values are in the same order
of magnitude. Hence, it is very uncertain to conclude this. A major difference between good performing grid
points and bad performing grid points is that on average Temperate Broadleaf Deciduous is more than 10%
present in bad performing grid points than in good performing grid points. The deviations are low relative to
the mean values so a suggestion can be made that presence of Temperate Broadleaf Deciduous seems to di-
minish performance. Presence of C3 Crops seems to be good for grid points with high performance. Though
it should be noted that due to the high deviation of C3 Crops for good performing grid points, it cannot really
be a suggestion yet. The rest of the land cover types are either to small in presence or the deviation is too high
relative to the mean fraction to make useful suggestions.

Fractional Cover Statistics
σ′(40)

Good: R2 (Growing Season) >0.6 | Bad: R2 (Growing Season) <0.3

Dominant Land Cover Type:
C3 Crops

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.094 0.040 158 0.056 0.013 81
Bare Rock 0.032 0.026 158 0.024 0.017 81
Permanent Snow 0.000 0.000 158 0.000 0.000 81
Temperate Broadleaf Deciduous 0.119 0.061 158 0.221 0.066 81
C3 Crops 0.486 0.110 158 0.422 0.078 81
C4 Crops 0.035 0.016 158 0.024 0.009 81
Summer C3 Crops 0.010 0.015 158 0.001 0.002 81
Temperate Grassland 0.166 0.066 158 0.188 0.067 81
Temperate Needleleaf Evergreen 0.031 0.024 158 0.054 0.026 81
Boreal Grassland 0.000 0.000 158 0.000 0.000 81
Boreal Broadleaf Deciduous 0.000 0.000 158 0.000 0.000 81
Shrubs 0.021 0.025 158 0.007 0.018 81

Table 4.8: Fractional Cover Statistics for σ′(40) simulations with C3 Crops as dominant land cover type. Grid points are distinguished in
good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid points. σ is the
mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered as either good
or bad grid points over which the µ and σ are calculated.

Table 4.9 contains the land cover fractional statistics for grid points with Temperate Grassland as domi-
nant land cover type with successful and unsuccessful simulations. In the previous case, the dominant land
cover type was C3 Crops and it was said that it might be that presence of Bare Land and Bare Rock enhance
performances of slope simulations. This table shows that this does not necessarily have to be the case, as the
bad performing grid points have more presence of these two land cover types than the good performing grid
points. Also, in the previously considered case with C3 Crops as dominant land cover type, it was mentioned
that presence of C3 Crops might be good for the simulation. However, this table again says the opposite. What
both tables have in common though is the higher presence of Temperate Broadleaf Deciduous in the good
performing grid points.
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Fractional Cover Statistics
σ′(40)

Good: R2 (Growing Season) >0.6 | Bad: R2 (Growing Season) <0.3

Dominant Land Cover Type:
Temperate Grassland

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.058 0.022 201 0.061 0.021 152
Bare Rock 0.022 0.015 201 0.025 0.020 152
Permanent Snow 0.000 0.000 201 0.000 0.000 152
Temperate Broadleaf Deciduous 0.178 0.087 201 0.143 0.119 152
C3 Crops 0.125 0.090 201 0.187 0.105 152
C4 Crops 0.024 0.018 201 0.025 0.016 152
Summer C3 Crops 0.001 0.004 201 0.000 0.001 152
Temperate Grassland 0.398 0.103 201 0.431 0.092 152
Temperate Needleleaf Evergreen 0.118 0.086 201 0.083 0.069 152
Boreal Grassland 0.006 0.018 201 0.000 0.000 152
Boreal Broadleaf Deciduous 0.003 0.009 201 0.000 0.000 152
Shrubs 0.014 0.023 201 0.017 0.023 152

Table 4.9: Fractional Cover Statistics for σ′(40) simulations with Temperate Grassland as dominant land cover type. Grid points are
distinguished in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid
points. σ is the mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered
as either good or bad grid points over which the µ and σ are calculated.

The fractional statistics for grid points with Temperate Broadleaf Deciduous as dominant land cover type
can be seen in Table 4.10. It can be seen that the differences between the land cover fractions for good per-
forming grid points and bad performing grid points do not differ very significantly. The number of grid points
is much lower for this dominant land cover type than for the dominant land cover types C3 Crops and Tem-
perate Grassland. Therefore, this is the last considered dominant land cover type. The tables for Bare Land
and Boreal Grassland can be seen in the Appendix.

Fractional Cover Statistics
σ′(40)

Good: R2 (Growing Season) >0.6 | Bad: R2 (Growing Season) <0.3

Dominant Land Cover Type:
Temperate Broadleaf Deciduous

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.049 0.013 26 0.046 0.006 19
Bare Rock 0.022 0.013 26 0.013 0.003 19
Permanent Snow 0.000 0.000 26 0.000 0.000 19
Temperate Broadleaf Deciduous 0.324 0.023 26 0.368 0.037 19
C3 Crops 0.086 0.036 26 0.094 0.076 19
C4 Crops 0.025 0.016 26 0.027 0.013 19
Summer C3 Crops 0.001 0.002 26 0.000 0.000 19
Temperate Grassland 0.295 0.019 26 0.295 0.026 19
Temperate Needleleaf Evergreen 0.155 0.047 26 0.141 0.028 19
Boreal Grassland 0.003 0.013 26 0.000 0.000 19
Boreal Broadleaf Deciduous 0.003 0.014 26 0.000 0.000 19
Shrubs 0.002 0.006 26 0.001 0.003 19

Table 4.10: Fractional Cover Statistics for σ′(40) simulations with Temperate Broadleaf Deciduous as dominant land cover type. Grid
points are distinguished in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corre-
sponding grid points. σ is the mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that
are considered as either good or bad grid points over which the µ and σ are calculated.

To summarize, this section shows that ASCAT σ′(40) simulations are generally far more successful during
the vegetation growing season than during the winter months. Even though the scatter plots in Figure 4.15
indicates that high presence of C3 Crops and Temperate Grassland is beneficial for the overall performance,
it could not be justified with the tables of land cover fraction statistics. The simulations of σ′(40) were shown
to contain much noise, which can be explained by the high frequency variations of the land surface variables
by which the model is trained.
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4.3. Spatial Consistency SVR Parameters
This section shows that the created Support Vector Machines for each grid point have spatial consistency.
This study excludes the link of parameters and parameter combinations to land cover types and perfor-
mances. However, this is definitely a recommendation for future studies of the application of Support Vector
Machines to simulate ASCAT backscatter σ0(40) or slope σ′(40). Tables of parameter combinations for dom-
inant land cover types can be seen in the Appendix. The map of grid points with their corresponding SVR
parameters for backscatter σ0(40) simulations and slope σ′(40) simulations can be seen in Figures 4.23 and
4.24 respectively.

(a) (b)

Figure 4.23: σ0(40) map of grid points of which the optimized SVR model has a certain value of C on the left hand side (a) and γ on the
right hand side (b)

(a) (b)

Figure 4.24: σ′(40) map of grid points of which the optimized SVR model has a certain value of C on the left hand side (a) and γ on the
right hand side (b)

The map of grid points with their corresponding SVR parameters for σ′(40) simulations can be seen in
Figure 4.24. With the optimization procedure, the aim was to prevent over- and under fitting. The fact that
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spatial consistency can be observed suggests that land cover types and therefore also performances, means
that land covers and/or a combination of land cover types can be linked to the hyper parameters of the sup-
port vector machines.

Remember from the Methodology chapter that the models were optimized in a way so that it can simulate
σ0(40) orσ′(40) during each period of a year. The main reason for using a grid search during optimization was
to see whether spatial consistency exists. Now that it is the case, the following possibilities can be explored.

• Optimize in the same way, but for each grid point make two models. One for the winter months (au-
tumn + winter season) and one for the summer months. In this way, the support vector machines can
be optimized for completely different conditions during the year and will probably give better simula-
tions during each period of the year.

• Once the general pattern between land cover type and hyper parameters is found, a more accurate
combination of hyper parameters can be used to optimize. Suppose that for a particular grid point the
C parameter equals to 100, but ideally it should be 50. Just because the options were 1, 100 or 1000 the
optimization was not allowed to take a value of 50. Thus, this ensures that optimization can be done in
a more precise way.

• The obtained hyper parameters can be seen as a first approach in minimizing the error of the objective
function (The optimization problem). Improved optimization can be done by using the upper and
lower limits of the hyper parameters for randomized or Bayesian optimization.
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Discussion & Conclusions

This chapter discusses several outcomes of the results and ends with the conclusion in which the research
question(s) are answered and recommendations are given.

5.1. Discussion
5.1.1. Support Vector Machine Optimization Overview
The objective of this work was to find out if support vector machines (SVMs) could serve as a surrogate model
to simulate ASCAT parameters σ0(40) and σ′(40) with the ISBA-A-gs land surface variables soil moisture and
leaf area index. The advantage of SVMs is its ability to internally do the feature engineering, by making use
of the Kernel function. The Gaussian Kernel function has been successfully implemented in studies that
simulate brightness temperatures derived from passive microwave observations with land surface variables
(See Forman and Reichle (2015)) and is therefore chosen as the kernel function.

Prior to this study, it was not known what domain space is sufficient for the SVM hyper parameters C
and γ for all grid points in France. Therefore, a set of parameter combinations with values logarithmically
spaced are used as an initial approach. This parameter combinations grid that will be used for minimizing
the objective function. To ensure that models are created that are able to understand and act upon unseen
data, a k-fold cross validation is applied with k=9 for 9 years of training data. In this way, over-fitting and/or
under-fitting is taken into account and the bias for choosing a certain set of parameters is reduced.

The performance metric that was used to decide whether the best results are obtained for a parameter set
is the coefficient of determination (R2). This metric serves as an indicator for how much of the variability the
model is able to understand. The final evaluation of the models is done on one year of unseen data. The R2
is also used as the main performance metric of the final simulation. The main reason for this is to compare
the success of simulations of different grid points on a map according to the models ability to capture the
variability of the σ0(40) and σ′(40), rather than comparing the mean squared errors or root mean squared
errors, which are more related to the standard deviation of the σ0(40) and σ′(40) if displayed on a map.

For 1324 grid points in and around France, support vector machines have been created. This study only
investigates grid points with a dominant land cover fraction larger than 30%. Spatial consistency was found
for the hyper parameters and this is useful for further optimization studies.

5.1.2. Results Overview
This study gives four perspectives on the obtained σ0(40) and σ′(40) simulations:

(I) Maps with performances. The aim of this is to show that the performance of the simulations depend on
land cover types. Scatter plots are created for the main dominant land cover types to see if an increase
in fractional cover generally enhances or diminishes performance.

(II) Performance is calculated over three spans of time. The period is a full year. The other two periods
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are the Autumn + Winter seasons and Spring + Summer seasons. In the Chapter 4 (Results), they are
referred to as winter months and (vegetation) growing season respectively.

(III) Individual simulations are displayed together with the ISBA-A-gs land surface variables soil moisture
and leaf area index.

(IV) Grid points are distinguished between performances above 60%, which are considered as good per-
forming grid points, and below 30%, which are considered as bad performing grid points, to look at the
land cover fractional statistics of grid points with successful and unsuccessful simulations.

For the simulations of the backscatter and slope, these three cases are separately discussed.

Backscatter σ0(40)

(I) The backscatter σ0(40) simulations generally gave reasonable results as for many points even the high
frequency fluctuations could be understood by the SVR model. This is demonstrated by simulating the clima-
tology with the same model and subtracting this from the total backscatter simulation. The main dominant
land cover types are C3 Crops, Temperate Grassland, Temperate Broadleaf Deciduous and Bare Land. Ac-
cording to the scatter plots where overall performance is shown against land cover fraction, it could be seen
that in the presence of C3 Crops increases, the performance tends to decrease. For Temperate Grassland, it
could be seen that an increase in land cover fraction seems to enhance performance. The amount of grid
points for the remaining land cover types is very low and hence the scatter plots do not reveal much about
the performance due to an increase or decrease of their presence.

(II) Performances are calculated during the growing season and winter season separately as well. It was ex-
pected that backscatter simulation would be more successful during winter months than during the growing
season, due to the hindrance that vegetation dynamics can form and the low values of soil moisture during
dry months, because backscatter variations are primarily driven by soil moisture. Table 4.1 shows that the
performance during winter months is indeed better than during the growing season.

(III) Backscatter simulations of individual grid points show that the high interannual variability of leaf area
index values in combination with the low soil moisture values seem to significantly impact the performance
during the growing season. This is relevant information as this suggests that models in general should be
constructed with more focus on the specific periods during a year.

(IV) The statistics of the fraction of different land cover types for successful and unsuccessful grid points
revealed that bad performing grid points seem to have more C3 crops than good performing grid points.
However, this is not the case for every situation so this cannot be concluded. For presence of Temperate
Needleleaf Evergreen and Temperate Broadleaf Deciduous the presence seems to enhance performance. But
again, there are cases where this is not the case and so this can again not be concluded. The grid points is
considered successful if the coefficient of determination (R2) during the winter months is larger than 60%
and unsuccessful if R2 is smaller than 30%.

Slope σ′(40)

(I) From the maps of the performances of slope σ′(40) simulations (See Figure 4.14) was demonstrated
that the SVMs are generally able to simulate the seasonal effects very well, but if climatology is removed like
was done with the backscatter, the performances are very bad. This is because the slope is very smooth
compared to the backscatter. The performance scatter plots for the main land cover types show that increase
of the fraction of C3 Crops within a grid point seems to improve performance. The same can be said for an
increase of the fractional cover of Temperate Grassland. For Temperate Broadleaf Deciduous and Bare Land,
there are not enough data points to support any statement on their presence.

(II) The performances were expected to be good during the growing season, as variations in slope are
primarily driven by vegetation dynamics (Vreugdenhil et al., 2017). This assumption was indeed confirmed
with the maps that showed the performances calculated during the winter months and growing season (See
Figure 4.16).

(III) The simulations of individual grid points revealed that the simulations in general contain much more
noise than the smooth slope σ′(40). The possible reason for this are the high annually varying soil moisture
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and leaf area index.

(IV) No suggestions or conclusions were obtained from the fractional cover statistics for the considered
dominant land cover types. For both grid points with good performances and points with bad performances,
no real reason is found why presence of certain land cover types is beneficial or not for slope simulations.

5.1.3. Sources of uncertainty
• The ISBA-A-gs land surface model is able to simulate global land surface variable time series. However,

further improvements of the model were recommended by Gibelin et al. (2006) for the treatment of
vegetation in cultivated areas.

• Seasonal biases in the performance maps. It was shown that performances calculated over different
time spans give different interpretations of the level of success of the created models. These differences
were found to be very significant. It is therefore expected that high differences can be expected as well
for performance calculated over a specific season.

• Inaccurate assignment of land cover types. The land cover type classifications are based on the ECO-
CLIMAP classes with a spatial resolution of 1 kilometer. Whether the grid points give an accurate rep-
resentation of reality or not, with the time span of 10 years land cover succession might occur.

• Importance of input parameters soil moisture and leaf area during the optimization is not known.
Hence, it is not known if the results are obtained for the right reasons.

5.2. Conclusions
5.2.1. Research Questions

• What are the limitations of the optimization procedure?

A limitation of the methodology is that actually the grid points are not completely optimized by the
Grid Search. If during cross validation there is just a bit more probability that C will be 10 instead of
100, it could mean that actually the performance would be much higher if for example C is optimal at
a value of 50. The limited set of grid search parameters was based on efficiency as optimizing SVMs
generally is computationally expensive.

The methodology itself could be used to obtain SVR parameters worldwide for simulations of backscat-
ter σ0. For the slope σ′(40) however, obtaining the right set of parameter combinations is more chal-
lenging because besides seasonal effects, higher frequency fluctuations are not captured by the SVR
model. In both cases the seasonal cycles of the σ0(40) and σ′(40) were simulated well.

• What are the advantages and disadvantages of the used method?

The foremost advantage is the ability to create a bunch of models with the SVR and select the best set
of parameter combinations with the best cross validation. It was shown in chapter 4 that there is a
spatial consistency with SVR parameters and hence a new relationships between the method and land
cover types can be established. No real disadvantage of the method is experienced, besides the time
and computational expenses it takes to train a model.

• What impact does land cover have on the performance of the simulation?

Land cover has shown to be a very relevant factor for the performance of the simulations. For the
backscatter σ0(40), it was found that presence of agriculturally active areas within a grid cell of 25 kilo-
meters results in a poor performance while forested areas are understood relatively well by the SVR.
Even with the σ′(40) simulations land cover plays a role, though it is less clear than for σ0(40). Besides
seasonal fluctuations, higher frequency fluctuations are not captured with the SVRs.
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Main research question:

Is an optimized support vector machine with the ISBA-A-gs land surface model able to serve as a surrogate
model to simulate σ0(40) and σ′(40)?

This study shows that the method of optimizing support vector machines is very promising for simulating
backscatter σ0(40) and slope σ′(40). The models are optimized giving it a set of parameter combinations
without priory taking land covers into account. The performance (coefficient of determination) maps show
that reasonable results can be obtained for models that are not even optimized per season but for a time
period of a whole year.

5.2.2. Recommendations
The following recommendations are given based on the results of this study:

• Shamambo et al. (2019) simulated normalized ASCAT backscatter with a semi-empirical water cloud
model and they focused more on performances during spring and summer. In this study both seasons
are taken together as the growing season. But both seasons have different characteristics in terms of
vegetation growth and soil/vegetation wetness.

• Optimize models separately for each specific season. This is especially important for agriculturally
active areas as these areas change a lot per season compared to a forest for example. In this study,
SVMs are optimized for a whole year and hence the best possible parameter combination is taken for a
whole year, which is not optimal for seasonal differences.

• A limit of this study is the relation between the soil moisture and leaf area index (which are the variables
used to forward model σ0(40) and σ′(40)) with performances of simulations. The advantage of includ-
ing the statistics of this relation is to correlate wet and dry soil conditions and/or sparse and dense
vegetation conditions with performances of the simulations during different periods throughout the
year.

• Test the stability of the created SVRs by performing a sensitivity analysis. With sensitivity analysis, the
importance of the model input variables (soil moisture and leaf area index) can be determined for the
simulation (Iooss and Saltelli, 2015). In total, 1324 support vector machines have been optimized. It is
not known whether the right results are obtained for the right reasons.

• Understand parameter combinations in relation to land cover types and performances to enhance the
optimization procedure. This could be useful after optimizing per season or optimizing for a period of
two seasons.

• The reason for providing a parameter grid for optimization, was to find if initial values of SVM pa-
rameters are spatially consistent. After optimization, a spatial consistency was found and hence the
assigning of parameters to grid points is not random. A disadvantage of doing this in the future is that
all parameter combinations are tested, which is computationally expensive and time consuming. An
alternative strategy is (Sequential Model based) Bayesian optimization (See Shahriari et al., 2016). This
would be a good improvement of the methodology because results can be improved as not only hy-
perparameter spaces are predicted but also the uncertainty of the prediction is given. So this method
improves itself as it improves previous results
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A.1. Backscatter SVR parameter Combinations

Figure A.1: Map of land cover grid points with SVR parameter combination C = 10 and γ = 0.1 for σ0(40) simulations.
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58 A. Figures

Figure A.2: Map of land cover grid points with SVR parameter combination C = 1000 and γ = 0.001 for σ0(40) simulations.

A.2. Slope SVR Parameter Combinations

Figure A.3: Map of land cover grid points with SVR parameter combination C = 10 and γ = 0.1 for σ0(40) simulations
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Figure A.4: Map of land cover grid points with SVR parameter combination C = 0.1 and γ = 1 for σ0(40) simulations

A.3. Histogram Parameter Occurrences

(a) label 1 (b) label 2

Figure A.5: σ0(40) amount of occurrences of SVR parameter C on the left hand side (a) and γ on the right hand side (b)

(a) label 1 (b) label 2

Figure A.6: σ′(40) amount of occurrences of SVR parameter C on the left hand side (a) and γ on the right hand side (b)
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A.4. R2 Performances Parameter Combinations

(a)

(b)

(c)

(d)

Figure A.7: σ0(40) R2 performances for simulations with removed climatology for the most occurring parameter combinations for the
four most dominant land cover types in France.
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(a)

(b)

(c)

(d)

Figure A.8: σ′(40) R2 performances for simulations for the most occurring parameter combinations for the four most dominant land
cover types in France.
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B.1. Slope Land Cover Fractions

Fractional Cover Statistics
σ′(40)

Good: R2 (Growing Season) >0.6 | Bad: R2 (Growing Season) <0.3

Dominant Land Cover Type:
Bare Land

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.363 0.070 7 0.404 0.084 2
Bare Rock 0.072 0.061 7 0.126 0.018 2
Permanent Snow 0.008 0.016 7 0.004 0.002 2
Temperate Broadleaf Deciduous 0.044 0.042 7 0.029 0.032 2
C3 Crops 0.109 0.121 7 0.004 0.002 2
C4 Crops 0.014 0.015 7 0.001 0.002 2
Summer C3 Crops 0.019 0.020 7 0.000 0.000 2
Temperate Grassland 0.099 0.070 7 0.033 0.044 2
Temperate Needleleaf Evergreen 0.025 0.026 7 0.000 0.000 2
Boreal Grassland 0.107 0.143 7 0.231 0.031 2
Boreal Broadleaf Deciduous 0.008 0.010 7 0.027 0.017 2
Shrubs 0.072 0.084 7 0.018 0.001 2

Table B.1: Fractional Cover Statistics for σ′(40) simulations with Bare Land as dominant land cover type. Grid points are distinguished
in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid points. σ is the
mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered as either good
or bad grid points over which the µ and σ are calculated.
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Fractional Cover Statistics
σ′(40)

Good: R2 (Growing Season) >0.6 | Bad: R2 (Growing Season) <0.3

Dominant Land Cover Type:
Boreal Grassland

µ Good
[x 100%]

σ Good
[x 100%]

# Points
µ Bad

[x 100%]
σ Bad

[x 100%]
# Points

Bare Land 0.173 0.059 13 - - 0
Bare Rock 0.127 0.037 13 - - 0
Permanent Snow 0.003 0.003 13 - - 0
Temperate Broadleaf Deciduous 0.025 0.021 13 - - 0
C3 Crops 0.005 0.002 13 - - 0
C4 Crops 0.001 0.001 13 - - 0
Summer C3 Crops 0.000 0.000 13 - - 0
Temperate Grassland 0.063 0.058 13 - - 0
Temperate Needleleaf Evergreen 0.003 0.005 13 - - 0
Boreal Grassland 0.346 0.030 13 - - 0
Boreal Broadleaf Deciduous 0.043 0.018 13 - - 0
Shrubs 0.028 0.006 13 - - 0

Table B.2: Fractional Cover Statistics for σ′(40) simulations with Boreal Grassland as dominant land cover type. Grid points are distin-
guished in good and bad performing grid points. µ is the mathematical mean of the land cover fraction of the corresponding grid points.
σ is the mathematical standard deviation of the land cover fraction. # Points means the amount of grid points that are considered as
either good or bad grid points over which the µ and σ are calculated.

B.2. Parameter Occurrences Backscatter

Winter C3 Crops
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 0 5 51
1.0 0 0 6 24 8
10.0 0 0 22 101 0
100.0 0 2 10 37 0
1000.0 0 87 52 21 0

Table B.3: Amount of occurrence for SVR parameter combinations for σ0(40) regressions for the C3 crops land cover.

Temperate Grassland
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 0 6 16
1.0 0 0 2 40 75
10.0 0 0 19 142 17
100.0 0 1 23 55 0
1000.0 0 39 67 70 0

Table B.4: Amount of occurrence for SVR parameter combinations for σ0(40) regressions for the temperate grassland land cover.

Temperate Broadleaf Deciduous
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 0 0 3
1.0 0 0 0 2 25
10.0 0 0 3 22 1
100.0 0 0 5 16 0
1000.0 0 1 17 18 0

Table B.5: Amount of occurrence for SVR parameter combinations for σ0(40) regressions for the Temperate Broadleaf Deciduous land
cover.
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Bare Land
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 0 0 1
1.0 0 0 0 1 2
10.0 0 0 0 1 3
100.0 0 0 0 1 1
1000.0 0 0 1 0 2

Table B.6: Amount of occurrence for SVR parameter combinations for σ0(40) regressions for the Bareland land cover.

B.3. Parameter Occurrences Slope

Winter C3 Crops
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 8 14 36
1.0 0 0 21 8 11
10.0 5 0 7 53 11
100.0 3 10 29 100 1
1000.0 1 53 35 20 0

Table B.7: Amount of occurrence for SVR parameter combinations for σ′(40) regressions for the winter c3 crops land cover.

Temperate Grassland
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 11 20 101
1.0 0 3 10 18 26
10.0 7 1 14 90 13
100.0 0 11 34 57 8
1000.0 0 69 54 24 1

Table B.8: Amount of occurrence for SVR parameter combinations for σ′(40) regressions for the Temperate Grassland land cover.

Temperate Broadleaf Deciduous
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 2 11 35
1.0 0 0 2 6 9
10.0 0 0 2 12 4
100.0 0 1 8 3 2
1000.0 0 10 4 2 0

Table B.9: Amount of occurrence for SVR parameter combinations for σ′(40) regressions for the Temperate Broadleaf Deciduous land
cover.

Bare Land
C | γ 0.0001 0.0010 0.0100 0.1000 1.0000

0.1 0 0 0 2 1
1.0 0 0 0 1 1
10.0 0 0 0 2 2
100.0 0 0 0 0 2
1000.0 0 0 1 0 1

Table B.10: Amount of occurrence for SVR parameter combinations for σ′(40) regressions for the Bareland land cover.
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