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We present a theoretical study of magnon-mediated heat transport in electrically insulating ferromagnetic

wires containing a domain wall (DW). In the regime of validity of continuum micromagnetism, a DW is

found to have no effect on the heat conductance. However, spin waves are found to be reflected by DWs with

widths of a few lattice spacings, which is associated with emergence of an additional spin wave bound state.

The resulting DW heat conductance should be significant for thin films of yttrium iron garnet with sharply

defined magnetic domains.
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Spin wave (SW) excitations in magnetic systems have
been studied for many decades, but due to recent progress
in the fabrication of magnetic nanostructures, novel detec-
tion techniques, and new discoveries such as current-
induced magnetization dynamics, the field is very much
alive [1]. SWs can be used to transmit information and
probe magnetic properties. SW logic device concepts have
been proposed [2,3]. Recent experiments show that three
crucial material parameters, namely, the spin polarization
P, the Gilbert damping �, and the dissipative correction
to adiabaticity �, can be simultaneously determined by
measuring the current-induced SW Doppler effect [4,5].
Nonvolatile data storage devices [6] and logic circuits [7]
make use of magnetic domain walls (DWs). The combina-
tion of both strategies is promising as well [8]. Phenomena
based on the interaction between SWs and DWs have been
found within the framework of continuum micromagnetic
theory, such as absence of reflection of SWs by a DW [9]
and associated scattering phase shifts [8,9], frequency
doubling [10], DW drift [11–13], and magnonic spin-
transfer torques [14–16]. A complication that has received
much less attention is the breakdown of the continuum
approximation of the magnetization in materials with high
anisotropies, in which the DW width � can be as small as a
few lattice constants a [17]. Atomic-scale DWs can display
very different static and dynamic properties than those
predicted by a continuum model [18]. For example, dis-
crete DW jumps that match the lattice periodicity have
been observed by Novoselov et al. [19] in thin films of
yttrium iron garnets (YIG) that support DWs as narrow as
�=a � 6=�. Only one attempt to formulate the theory of
SWs propagating through ultranarrow DWs is known to us
[20], predicting that a SW can pass through a DW with
little reflection if its wavelength is less than twice the
thickness of the wall [20], which does not agree with our
findings here.

In this Letter, we address DWs in wires of insulating
ferromagnets such as YIG with damping constants that can
be 3 orders of magnitude smaller than those in metallic

magnets, which makes them attractive for novel magnetic
device concepts. Charge current-induced DW motion is
ruled out, of course, but heat currents can serve identical
purposes by virtue of the thermal spin-transfer torque
[15,21]. Here, we study SW excitations in ferromagneti-
cally coupled spin chains in the presence of a DW, predict-
ing significant effects of the discrete lattice on the SW
transmission. While we confirm previous results that in a
continuum model for DWs the SW transmission probabil-
ity is unity, spin wave reflection in a discrete spin model is
found to be finite for DWs with widths approaching the
lattice parameter. The resulting DW heat conductance
should help to detect and manipulate DWs in insulating
ferromagnetic wires.
We consider a nanostructured wire or constriction that is

sufficiently thin such that the lateral degrees of freedom are
frozen out and a one-dimensional (1D) model is appropri-
ate. Our model is a classical Heisenberg spin chain with
local anisotropy and nearest-neighbor ferromagnetic ex-
change interaction, which is appropriate for materials such
as YIG which has a large effective spin (S � 14:3) per unit
cell [22]. In the Hamiltonian [23]

H ¼ �J
X
hn;mi

~Sn � ~Sm �D
X
n

ðSznÞ2; (1)

the first term describes the nearest-neighbor interaction with
ferromagnetic coupling J > 0, while the second term is a
local easy-axis anisotropy in the z direction withD> 0. The

local spin variable ~Sn is a three-component unit vector on
the nth lattice site. Our approach developed below can be
extended to thin films [24] with (in the absence of disorder)
essentially the same physics, although a transverse hard axis
(shape) anisotropy causes complicated spin wave disper-
sions. In our 1D system, the dipolar interaction can be
important as well but only leads to an increased easy-axis
anisotropy [23,25]. For materials with a large unit cell
such as YIG, our approximation to integrate the magnetic
moment distributions over the unit cell and replace them
with one classical spin is a good approximation at low
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temperatures (below 40 K) [26]. In insulating ferromagnets,
the heat current is associated with both phonon and magnon
channels. In YIG the magnons, responsible for interactions
with DW of interest here, contribute 2=3 of the total heat
current at low temperatures [27,28].

We consider a magnetic wire of length L that connects
two large heat reservoirs held at two temperatures TL, TR,
with constant difference �T ¼ ðTL � TRÞ> 0. The
magnon-mediated heat current carried by the spin chain
is given by the Landauer-Büttiker formula [29]

_Q ¼ 1

L

Z
dk�k�k"!kjtkj2½nBð!k; TLÞ � nBð!k; TRÞ�

¼ 1

2�

Z
d!"!jtkð!Þj2½nBð!; TLÞ � nBð!; TRÞ�: (2)

Here, �k ¼ L=2� is the magnon density of states,
�k ¼ @!=@k is the SW group velocity, "!k ¼ 2Dþ 2J
½1� cosðkaÞ� is the SW spectrum, tk is the SW trans-

mission coefficient, and nBð!;TL;RÞ¼1=ðe"!=ðkBTL;RÞ �1Þ
is the Bose–Einstein distribution. In the absence of DWs,
tk ¼ 1 and for a small temperature bias

_Q ¼ �T

2�

Z
d!"!

@nBð!; TÞ
@T

; (3)

where T ¼ ðTL þ TRÞ=2.
The heat current in the presence of a DW depends on

the magnetization profile, which is obtained by minimizing

the energy with respect to the polar angle �n of ~Sn with the
easy axis, which leads to

sinð�n��n�1Þ� sinð�nþ1��nÞþD

J
sinð2�nÞ ¼ 0; (4)

where we chose the boundary conditions that spins are
oriented in the �z directions at the ends of the wire.
The ground-state DW configuration can be computed iter-
atively [30]. To second order in the small parameter
D=J � 1, this procedure yields the Walker solution

lntanð�=2Þ ¼ z=� with DW width � ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ð2DÞp

[31].
In a typical (metastable) Walker DW, labeled A in Fig. 1,
the spin of the central lattice site is oriented normal to the
easy axis. However, numerical calculations find that type B
walls (Fig. 1) have always lower energies [18]. Clearly, this
difference is immaterial in the continuum limit for the
magnetization (micromagnetics), but it is relevant for
atomically sharp DWs. We will discuss below that the
atomic-scale magnetization texture is observable in the
heat and spin transport properties.

Proceeding from the ground-state DW configuration we
can construct, linearize, and solve the equations of motion

d ~Sn=dt ¼ � ~Sn � ð��H =� ~SnÞ for the spins at a site n in
order to determine the frequencies and amplitudes of
the allowed SW modes. This can be done conveniently in
a coordinate system rotated about the x axis such that
the transformed spins at equilibrium point to the new Z

axis [32]. The spins in the two coordinate systems are
related as

Sxn

Syn

Szn

0
BB@

1
CCA ¼

1 0 0

0 cos�n sin�n

0 � sin�n cos�n

0
BB@

1
CCA

SXn

SYn

SZn

0
BB@

1
CCA: (5)

The low-energy excitations correspond now to a small-
angle precession around the Z axis with SZn � 1 [16,33].
The equations of motion for the SWamplitude at site n and
frequency ! in the rotated frame read

�i
!

J
SXn ¼ cn�1S

Y
n�1 þ cnS

Y
nþ1

� ½cn�1 þ cn � 2D

J
ðsin2�n � cos2�nÞ�SYn ;

�i
!

J
SYn ¼ �SXn�1 � SXnþ1 þ ðcn�1 þ cn þ 2D

J
cos2�nÞSXn ;

(6)

where cn ¼ cosð�n � �nþ1Þ. We obtain the eigenfrequen-
cies ! and amplitudes SXn , S

Y
n numerically.

D=J ¼ 0:001 leads to a broad DW profile [solid line in
Fig. 2(a)] that cannot be distinguished from the Walker
solution. The SW mode profile SYn is also plotted (circles),
with a frequency indicated in the plot. For a broad DW, the
SW profile agrees very well with the analytical solution of
the continuum model [dashed line in Fig. 2(a)], i.e., the
Schrödinger equation [15].

�
� d2

d�2
þ Vð�Þ

�
’ð�Þ ¼ q2’ð�Þ; (7)

with � ¼ z=�, ’ ¼ SX � iSY , q ¼ k� with spin wave
vector k. The scalar potential Vð�Þ ¼ �2sech2� originates
from the noncommutativity of the local gauge transforma-
tion with the momentum operator [16], similar to electron
transport in magnetic textures [34]. However, in contrast to
electrons, the transformation does not generate a vector
potential for the SWs. The solutions of Eq. (7) are a single
bound state and a continuum of propagating SWs that are
not reflected by the DW but pick up a wave number
k-dependent phase shift 	ðkÞ ¼ 2tan�1f1=ðk�Þg [15] that

FIG. 1 (color online). Principle ground-state spin configura-
tions for a symmetric DW: its center either coincides with one of
the lattice sites (type A) or lies between them (type B). � is the
DW width, and a is the lattice constant.
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modifies the frequency dispersion [35] and causes interfer-
ence effects in rings [8]. Since the DW transmission coef-

ficient is tk ¼ ei	ðkÞ and the transmission probability is
jtkj2 ¼ 1, there is no DW limited heat transport. This
conclusion is not modified by a transverse hard-axis an-
isotropy D?

P
nðSxnÞ2, since propagating SWs are elliptical

but still reflectionless. This conclusion holds despite the
bound magnon state at the DWand in contrast to the results
for conducting ferromagnets, where the bound state leads
to an increase of the electric resistivity even in the con-
tinuum model [24]. In order to detect such a DW bound
state in insulating ferromagnets, one has to resort to spec-
troscopic or other techniques [36].

The continuum approach breaks down for atomic scale
DWs such as in Fig. 1. The profiles of a relatively narrow
DW for both exact numerical (triangles) and Walker
(squares) solution are shown in Fig. 2(b) for an anisotropy
D=J ¼ 0:5. We see that now spin waves do get reflected.
Figure 2(c) shows the configuration of an abrupt DW
(triangles) with D=J ¼ 1. The Walker profile is also plot-
ted for comparison (squares). Interestingly, we now find
that all SWs (circles) are totally reflected. The physics is
explained below.

As pointed out before, the DW supports bound SW
states. Figure 3(a) shows the numerical results for the
bound state frequencies as a function of D=J below the
continuum SW region, where the dotted line delineates
the SW gap ("!g ¼ 2D) and the dash-dotted line indicates

the top of the SW band ("!t ¼ 2Dþ 4J). We confirm the
existence of a transition point at D=J ¼ 2=3 that separates
smooth and sharp DW configurations [37] but without
assuming j�n�1 � �nj � 1, which is clearly not the case
for these narrow DWs. The transition point obtained here
differs from the value D=J ¼ 5=9 calculated in Ref. [38].
Below the critical point, bound state 1 (solid curve)
is caused by the axial symmetry of the Hamiltonian about
the z axis. Bound state one can be interpreted as the
symmetry restoring Goldstone mode in the presence of a
domain wall with !b1 ¼ 0. For wide DWs, i.e., D=J �
2=3, bound state 2 (dashed curve) merges with the contin-
uum states. As the DW becomes narrower (increasing
D=J), !b2 splits from the SW continuum, which is due
to the broken translational invariance of the DW when
shrunk to the lattice scale, and displays a nonmonotonic
dependence on D=J, with a maximum at "!b2 � 0:47D
and dropping to zero when D=J ! 2=3. Above the critical
point, the DWwidth coincides with the lattice constant and
bound states 1 and 2 are degenerate, which can be traced to
the disappearance of the DW chirality; the DW becomes
axially symmetric and a zero frequency Goldstone mode
cannot exist. By substituting an abruptly sharp DW profile
into Eq. (6), we arrive directly at the conclusion that
the wall completely reflect all SWs. We can also obtain
the expression of the frequency of the degenerate bound
states

"!b1 ¼ "!b2

¼ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð24d2 � 8d� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16d2 þ 16dþ 1

p
Þ=6

q

with d ¼ D=J, which coincides with the numerical data.
The critical value D=J ¼ 2=3 is recovered for zero
frequency.
We can now understand why the SW is reflected at

ultranarrow DWs. Let us consider a confining potential
Vð�Þ ! 0 as j�j ! 1 for which the eigenvalue problem
Eq. (7) has N bound states with q ¼ i
n, n ¼ 1; 2; . . . ; N,

FIG. 3 (color online). (a) Frequencies of DW bound states and
SW continuum (shaded area between dotted and dash-dotted
lines). The solid curve represents the lowest mode, whereas the
dashed curve shows the second bound state. (b) k dependence of
SW transmission for different values of D=J.

FIG. 2 (color online). (a) Magnetization profile of a wide head-
to-head DW (solid line). The numerical SW solution (circles) for
frequency ! in a linear ferromagnetic chain cannot be distin-
guished from the solution for the continuum model (dashed line).
(b) A computed narrow DW profile (triangles) compared with
the Walker model (squares). The SW amplitude for the indicated
frequency is shown by circles. (c) The ground-state profile of an
abrupt DW (triangles) compared with the Walker profile
(squares). The SW amplitude for the indicated frequency is
shown by circles.
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where 
n is real. Through the inverse scattering formalism,
one can construct a general 2N-parameter formula for a
reflectionless potential with N bound states [39],

Vð�Þ ¼ �2
d2

d�2
ln detAð�Þ; (8)

where the matrix Amnð�Þ ¼ �mn þ �m�n=ð
m þ 
nÞ, with
Kronecker function �mn and �nð�Þ ¼ fne

�
n�, is symmet-
ric. For N ¼ 1, we recover the previous result of the
continuum model [15]. In the discrete model, the inverse
scattering formalism is still valid since the Schrödinger
differential equation becomes a difference equation [40]
with, however, N ¼ 2. Figure 3(a) clearly shows that the
bound state 2 vanishes into the SW continuum only for
wide DWs (D=J � 2=3). Only in this limit, there is just
one bound state (mode 1) and the DW profile is perfectly
described by the reflectionless Walker model. To model the
profile of a relatively narrow DW, we expand Eq. (4) to the
fourth order and obtain the DW configuration lntanð�=2Þ ¼
ðz=�Þ þ ð1=24Þða=�Þ2½6 tanhðz=�Þ � z=�� leading to the
confining potential ~Vð�Þ ¼ �2sech2½yð�Þ� with yð�Þ ¼
�þ ð1=24Þða=�Þ2ð6 tanh�� �Þ. According to Thacker
et al. [39], a reflectionless potential with two bound states
must obey Eq. (8). However, the confining potential in-
duced by a narrow DW as derived above cannot be de-
scribed by a four-parameter reflectionless potential Eq. (8),
and indeed necessarily induces reflections. An expansion
up to higher order will not change this conclusion.
Therefore, the SW cannot be totally transmitted anymore,
confirming the numerical results.

The k-dependent SW transmissions for different
parameters D=J are shown in Fig. 3(b), where the k values
are obtained by fast Fourier transformation of the com-
puted SW mode amplitudes [25]. The wave vectors k of
interest range here from zero up to 0:8�=a, corresponding
to a very short wavelength (2:5a) beyond which a classical
spin model might become unreliable [41]. In agreement
with previous results, there is no detectable reflection in the
calculations withD=J < 0:01. However, for a large anisot-
ropy, the SW will be only partially transmitted through the
DW, with transmission probability monotonically decreas-
ing with increasing wave vector k. These results are very
different from those obtained with a local spin-spiral ap-
proximation, i.e., a constant pitch within the DW width
[42], which leads to perfect transmission for SWs with
large k but hindered propagation at long wavelengths
[20]. This artifact is caused by the unphysical kinks in
the magnetization texture of the spin-spiral model. We also
have a message for micromagnetic simulations in which
the continuum Hamiltonian H ¼ J0ð@m=@zÞ2=2�Dm2

z

is discretized into block spins J0@2mn=@z
2 ¼ J0ðmn�1 �

2mn þmnþ1Þ=ð�zÞ2. The mesh size�z is found here to be
critical, since SW reflections that are artifacts in a contin-

uum model occur unless �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
J0=2D

p 	 22�z.

Our results should be relevant for systems with close to
atomically sharp DWs such as YIG thin films. In the
case of a narrow atomic-scale DW, SWs are reflected,
which modifies the heat transport as _QDW ¼ _Qþ� _QDW,
where

� _QDW ¼ �T

2�

Z
d!ðjt!j2 � 1Þ"!@nBð!; TÞ

@T
: (9)

Since � _QDW < 0, the DW decreases the heat conductance.
We can estimate the reduction of the heat current by SW
reflection at low temperatures where magnons exist
only at the bottom of SW band (k ¼ 0) and jtðk ¼ 0Þj2
can be used to estimate the total transmission probability
such that � _QDW= _Q � jtðk ¼ 0Þj2 � 1. When D=J¼0:4,
� _QDW= _Q��35%. At room temperature, kBT is larger
than the exchange energy J � 40 K in YIG [22,26] and
magnons with large wave numbers become important
for the heat transport. The spin wave reflection becomes
significant when � & ð10=�Þa, where a ¼ 1:24 nm in
YIG [19,22,26]. However, at room temperature a multi-
sublattice model should be used for YIG, leading to mul-
tiple bands and complex SW transport properties [26],
which is beyond the scope of this work.
Ultranarrow DWs are sensitive to crystal lattice pinning:

the A- and B-type walls in the 1D model (Fig. 1) have differ-
ent ground-state energies [18]. In such a ‘‘Peierls’’ potential, a
DW has to overcome an energy barrier when moving from
one atomic plane to another and a threshold external force is
necessary to assist the DWmotion [18]. Novoselov et al. [19]
indeed observed a critical magnetic field for field-driven
atomic-scale DW dynamics. Consequently, to propagate
DWs even in perfect wires, an intrinsic critical heat/spin
current exists. According to Ref. [14], a temperature gra-
dient of 1 K=nm creates a pressure corresponding to a field
H ¼ 5 mT for a magnetic insulator with a saturation
magnetizationMs ¼ 2� 106 A=m. We estimate the critical
temperature gradient to overcome the atomic pinning as
0:1 K=�m for the critical magnetic field value Hc ¼ 0:7 G
andMs ¼ 1:6� 104 A=m reported in Ref. [19].
In conclusion, we studied the heat transport by SWs

through magnetic DWs. When the DW width becomes of
the order of a few lattice constants, a second bound state
emerges that is absent in the continuum approximation and
causes strong SW reflection and a significant DW heat con-
ductance. Our results are relevant for ultrahigh-density DW-
based storage devices [43] made from insulating ferromag-
nets. The generalization of the present model to higher
dimensions in which dipolar interactions become important
as well as to antiferromagnets and multiferroic nanostruc-
tures with strong uniaxial anisotropies should be the subject
of future research.
We thank Xiang Rong Wang and Akashdeep Kamra for

helpful discussions. This work is supported by the FOM
foundation, DFG Priority Program 1538 SpinCat, and
EG-STREP MACALO.

PRL 109, 087202 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 AUGUST 2012

087202-4



[1] V. V. Kruglyak, S. O. Demokritov, and D. Grundler,
J. Phys. D 43, 260301 (2010); B. Lenk, H. Ulrichs, F.
Garbs, and M. Münzenberg, Phys. Rep. 507, 107 (2011).

[2] T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R. L.
Stamps, and M. P. Kostylev, Appl. Phys. Lett. 92, 022505
(2008).

[3] A. Khitun, M.Q. Bao, and K. L. Wang, IEEE Trans. Magn.
44, 2141 (2008).

[4] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).
[5] K. Sekiguchi, K. Yamada, S.M. Seo, K. J. Lee, D. Chiba,

K. Kobayashi, and T. Ono, Phys. Rev. Lett. 108, 017203
(2012).

[6] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

[7] D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D.
Petit, and R. P. Cowburn, Science 309, 1688 (2005).

[8] R. Hertel, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett.
93, 257202 (2004).

[9] C. Bayer, H. Schultheiss, B. Hillebrands, and R. L.
Stamps, IEEE Trans. Magn. 41, 3094 (2005).

[10] S. J. Hermsdoerfer, H. Schultheiss, C. Rausch, S. Schäfer,
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