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A B S T R A C T   

To encourage appropriate use of driving automation, we need to understand and monitor driver’s 
trust and risk perception. We examined (1) how trust and perceived risk are affected by auto-
mation, driving conditions and experience and (2) how well perceived risk can be inferred from 
behaviour and physiology at three levels: over traffic conditions, aggregated risk events, and 
individual risk events. 

30 users with and without automation experience drove a Toyota Corolla with driving support. 
Safety attitude, subjective ratings, behaviour and physiology were examined. 

Driving support encouraged a positive safety attitude and active driver involvement. It reduced 
latent hazards while maintaining saliently perceived risks. Drivers frequently overruled lane 
centring (3.1 times/minute) and kept their feet on or above the pedals using ACC (65.8% of time). 
They comfortably used support on curvy motorways and monotonic and congested highways but 
less in unstable traffic and on roundabouts. They trusted the automation 65.4%, perceived 36.0% 
risk, acknowledged the need to monitor and would not engage in more secondary tasks than 
during manual driving. 

Trust-in situation reduced 2.0% when using automation. It was 8.2% higher than trust-in- 
automation, presumably due to driver self-confidence. Driving conditions or conflicts between 
driver and automation did not affect trust-in-automation. 

At the traffic condition level, physiology showed weak and partially counter-intuitive effects. 
For aggregated risk events, skin conductance had the clearest response but was discernible from 
baseline in  < 50%. Pupil dilation and heart rate only increased with strong braking and active 
lane departure assist. For individual risk events, a CNN classifier could not identify risk events 
from physiology. We conclude that GSR, heart rate and pupil dilation respond to perceived risk, 
but lack specificity to monitor it on individual events.   

1. Introduction 

Trust is a vital factor in the successful adoption of automated driving (Ghazizadeh et al., 2012). Trust is defined as ’the willingness of 
a party to be vulnerable to the actions of another party based on the expectation that the other party will perform a particular action important to 
the trustor, irrespective of the ability to monitor or control that other party’ (Mayer and Davis, 1995). If the automation is given too much 
trust, drivers may misuse it or become complacent which negatively affects monitoring and take over performance (Brookhuis and de 
Waard, 2001). Under-trust may conversely lead to disuse (van Huysduynen et al., 2018; Lee et al., 2021), reducing benefits in road 
safety, sustainability and comfort. Trust calibration can therefore be an effective strategy to encourage appropriate use (Cabrall et al., 
2019) and understanding a system’s trust propensity is essential to evaluate its overall safety implications. 

Trust calibration requires an appropriate understanding of how trust develops, what influences it and how it affects behaviour. 
Marsh and Dibben (2003) identified three layers of trust: dispositional, situational and learned trust. Hoff and Bashir (2015) extended 
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this to trust in automated vehicles and considered the influence of personal characteristics in the three layers. Empirical models have 
also been developed. Kraus et al. (2020) investigated trust development and recovery following system faults in two driving auto-
mation studies, demonstrating that trust increased along with knowledge accumulation. Hu and Wang (2021) propose a dynamic 
model of trust in adaptive cruise control (ACC) which integrates errors between desired and actual ACC behaviour. The driver is 
expected to engage or disengage ACC when certain trust thresholds are exceeded. Kolekar et al. (2020) presented the driving risk field 
capturing perceived risk induced by static and dynamic obstacles. The model was calibrated through driver’s verbal ratings and steer 
responses to obstacles in manual simulator driving. 

Active, closed-loop trust calibration requires momentary trust to be estimated or monitored. Several reliable trust measurement 
techniques exist. Subjective ratings have been regarded as the ground truth for trust measurement and can be queried through surveys, 
rated verbally or continuously through handset controls (Beggiato et al., 2019; Cleij et al., 2018). Driver state monitoring in consumer 
vehicles however requires less intrusive techniques. Behaviours such as monitoring, intervening or engaging in other activities can 
reflect automation reliance and compliance. Naturalistic braking profiles have also been used to cluster near-miss events to different 
risk levels (Xiong et al., 2019). Minimum time to collision (TTC) or maximum looming can show the driver’s acceptance threshold of 
perceived risk (Kiefer et al., 2005). 

Physiological indicators have also been used to monitor trust and related constructs such as anxiety or activity in the para-
sympathetic nervous system. Morris et al. (2017) compared driver trust to galvanic skin responce (GSR) in different automation driving 
modes, finding lower skin conductance and higher trust when the automation drives safely compared to when taking risks. Ajena-
ghughrure et al. (2021) examined GSR, electrocardiogram (ECG), electroencefalogram (EEG) and electrooculogram (EOG) in simu-
lated driving and identified brain activity and gaze as the most robust indicators of trust in driving automation. Healey and Picard 
(2005) found that an increase in heart rate indicates stress (though Beggiato et al. (2019) found the opposite). Tang et al. (2018) 
showed that pupil diameter increases significantly faster in more severe crashes. For further information see a review by Lohani et al. 
(2019) on established relations between various physiological metrics and driver states. 

While physiology is promising for driver state monitoring, there are some concerns about its utility outside carefully controlled 
experiments (Jorna, 1992; Fairclough, 2009; Heikoop et al., 2015). Most literature that identified relations between trust and phys-
iology is performed in a controlled setting which minimises confounding factors through design and averaging across repeated events. 
Even though several effects are found reliably across studies (Panicker and Gayathri, 2019), similar responses to different constructs 
are also demonstrated (Khan and Lee, 2019). It therefore remains challenging to apply physiology in trust monitoring applications 
because of the lack of construct specificity of physiological signals (Byrne and Parasuraman, 1996). It also remains unclear if phys-
iology is best examined over longer periods, aggregated over repeated events or can be processed in real-time. 

In this study, we examine the safety attitude towards a driver support system of a commercially available vehicle, evaluate how 
automation use, driving conditions and prior automation experience affect trust and risk perception, and analyse the usefulness and 
limitations of physiology in on-road monitoring of risk perception. We explore how well perceived risk can be inferred from behaviour 
and physiology at three levels. At the first level, we compare physiological metrics averaged over periods of driving in conditions 
characterised by different levels of trust. At the second level we compare the average physiological response to aggregated risk events 
to periods without such events. At the third level, we examine the discriminative power of the same metrics for individual risk events. 

We investigate on-road trust and perceived risk in SAE Level 2 driver support, answering the following questions:  

1. How do trust and perceived risk depend on driving conditions, automation use and automation experience?  
2. How do behavioural indicators and physiological measures reflect trust and perceived risk during critical events and automation 

conflicts? 

The paper is structured as follows. The experimental procedure is described in Section 2 with further details in Appendix A to 
Appendix C on data pre-processing, questionnaires and forms. For the results in Section 3, we first describe the drivers’ safety attitude 
and perceived safety. We then examine how trust and perceived risk were affected by automation use, traffic conditions and auto-
mation experience in Section 3.3, and the physiological response to these conditions in Section 3.4. Section 3.5 provides results on the 
sensitivity of physiological indicators to aggregated and individual risk events with further details in Appendix E. The findings are 
discussed in Section 4 and we reflect on our research questions in Section 5. 

2. Methods 

2.1. Equipment 

Participants drove a 2020 Toyota Corolla hybrid with Toyota Safety Sense 2 (TSS2) driver support. TSS2 includes full-range 
adaptive cruise control (ACC) for speeds between 0 km/h and 180 km/h and steering support, featuring lane departure warning 
(LDW; alerting the driver when crossing or about to cross lane markings unintentionally), lane departure assist (LDA; applies 
momentary steer input to avoid unintended lane departure) and lane trace assist (LTA; applying continuous, limited steering forces to 
guide the driver towards the centre of the lane). LDW and LDA can be enabled when driving approximately 50 km/h or faster. LTA can 
be enabled whenever ACC is enabled. All steer support systems require the vehicle to detect lane markings, though LTA can also 
operate in car following mode. The steer assist features are not able to keep the vehicle inside the lanes without the driver’s continuous 
aid. LTA disengages temporarily when driver steering inputs disagree with the LTA reference. All steering support can be easily 
overruled by the driver and disengages while the turn indicator is operational. When the vehicle does not detect steering wheel inputs, 
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LTA will start to swerve and ultimately turns off. Once enabled, LDW, LDA and LTA function whenever conditions are met. ACC has to 
be explicitly re-activated whenever it turns off, for instance after driver braking. 

2.2. Instrumentation 

Physiological measures were selected based on personal curiosity, relevance in literature and the authors’ confidence in correct 
recording and interpretation within the scope of this study. Heart rate (chest; lead II) and GSR (left foot) were logged with a MindMedia 
NeXus 4 and disposable electrodes. Pupil dilation was observed using a Tobii Pro Glasses 2 head mounted eye tracker. 

Following the same philosophy as Hartwich et al. (2015), risk ratings were recorded continuously, where they are expected to be 
less influenced by memory effects compared to post-drive ratings. The continuous rating was provided using a small force sensing 
resistor connected to the driver’s right thumb, allowing continuous operation while holding the steering wheel. Resistance was 
mapped to a risk scale from 0 to 10, with weak forces suppressed to zero to filter out forces naturally occurring while holding the 
steering wheel. Squeezing the pressure sensor signified a higher perceived risk, in accordance to the natural tendency in uncomfortable 
situations (Hartwich et al., 2015). Visual feedback on this scale was provided to the participant with an LED bar consisting of 10 levels 
(Fig. 1). We have used this setup successfully in a prior driving simulator study (He et al., 2022). 

A 360 action camera mounted on the roof of the vehicle recorded the vehicle surroundings at 0.3 Hz. A webcam observed right foot 
placement in the pedal bay. The webcam was connected to the experimenter’s laptop which also logged vehicle speed using an OBD-II 
logger, physiological data and ratings of trust and perceived risk. 

Vehicle CAN bus data was logged and decoded by a proprietary CAN logger provided by Toyota. 
Further details on signal pre-processing can be found in Appendix A. 

2.3. Questionnaires 

Participants filled an informed consent form (Appendix C). A pre-drive questionnaire collected participant demographics, prior 
experience with driver-support features, 10-item big 5 personality (Rammstedt and John, 2007), ADSES self-efficiency (George et al., 
2007), a-priory willingness to use (Payre et al., 2014) driving automation and a priori trust in automation (Jian et al., yyyy). 

A post-drive questionnaire collected trust in automation (as above), reliance and reliability (Choi and Ji, 2015; Nordhoff et al., 
2021), perceived risk (Nordhoff et al., 2021), willingness to use ACC and steer support for various conditions, understanding of the 
instrument panel (Nordhoff et al., 2021) and continuous risk rating device. The full questionnaires are in Appendix B. Five or seven- 
point Likert scales anchored between strongly disagree and strongly agree were converted to a percentage of agreement for analysis 
and presentation. 

2.4. Experimental procedure 

The experiment was approved by the TU Delft Human Research Ethics Committee.30 participants (7 female; age 33 (std. 14); 
mileage past 12 months 6000 km (std. 6000 km)) took part in this experiment. 18 had prior experience using ACC and will be further 
regarded as automation experienced. Within this group, 14 had prior experience using steer support. 

Before the drive, participants filled out the pre-drive questionnaire and were equipped with the physiological sensors and 
continuous rating device. 

A short motorway section was used to familiarize the participants with operating the automation. Participants were instructed to 
drive manually or automated, with ACC heading set to 1.8s. An experimenter verbally asked for ratings on trust-in-automation (when 
used) and trust-in situation (always) every 40 s. The distinction was made to explore how trust is attributed to the automation and 
other factors. Because of Covid19, the experimenter was seated in the rear-right seat to maximise distance with the participant and 

Fig. 1. Overview of physiological sensors, eye tracker, pressure sensor for continuous subjective rating and LED bar for visual feedback of pres-
sure sensor. 
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both were wearing face masks at all times. 
The experimental route consisted of 37 min of highway driving and 20 min on a curved 80 km/h two-lane motorway illustrated in 

Fig. 2. On the highway, 17 min classified as monotonic, with low to moderate traffic intensity, two lanes per size and only few on/off 
ramps; and 15 min classified as engaging, with high traffic intensity, 3–5 lanes per side and several on/off ramps and interchanges). 
The curvy motorway provided low traffic complexity but imposed stricter margins on steering performance with one narrow lane per 
direction (2.6 m wide), and with several curves and roundabouts (on which participants were encouraged not to use the automation). 
Environments were always visited in the order monotonic - engaging - curvy motorway, and the order for driving manual and 
automated was randomised. One participant drove the route in reverse order to avoid severe congestion, and two inexperienced drivers 
were conditionally placed in the manual-first condition because of elevated anxiety while entering the highway. 

The authors also planned to investigate the relation between driver trust and compliance behaviour by examining how trust 
changes when drivers are encouraged to comply to the automation’s steering inputs as much as safely possible. We hypothesised that 
natural compliance is higher than would be required for complete trust in situation, and that there is an interaction where trust reduces 
and more risk is perceived only when drivers comply more than what they are naturally inclined to. A condition with instructed 
compliance was included on the curved motorway. However, the hypotheses could not be tested because the automation is designed to 
reduce steering performance when steering complacency is detected. The condition was hence excluded from analysis. 

2.4.1. Statistics 
ANOVAs were performed applying Mauchly’s test for the sphericity assumption of within-subject effects. If sphericity was sig-

nificant, we corrected the degrees of freedom with Greenhouse-Geisser when ε < 0.75 and with Huynh-Feldt otherwise; following 
Girden’s guidelines (Girden, 1992). For significant effects and interactions, we also report the relevant differences in estimated 
marginal means (diff. EEM) as effect size. 

3. Results 

CAN data was successfully recorded for 17 automation experienced and 11 automation inexperienced participants. All drivers 
successfully followed the instructions on when to use and not use driver support. The eye tracker was not used for 10 participants who 
indicated they required their own glasses to drive safely. Pedal bay video was lost for 5 participants. 11 participants experienced traffic 
congestion, which was analysed as a separate condition. 

Many participants reported difficulties with providing the continuous risk. 5 participants reported unintentional presses, 15 oc-
casionally forgot to press and 15 occasionally pressed late, 6 found the rating task distractive and only 8 indicated they had no dif-
ficulty performing this task. 

We describe the participant’s safety attitude towards the automation in Section 3.1 and provide descriptives their trust and the 
occurrence risk events and driver-automation conflict in Section 3.2. We then describe these descriptives and their statistical effects 
based on conditions in Section 3.3, aggregated event-related potential in Section 3.4 and detection performance of individual events 
based on physiological recordings in 3.5. Verbal and questionnaire ratings (as well as their differences and measures of variance) are 
expressed as a percentage on the item’s range. 

3.1. Safety attitude towards automation 

After the experiment, participants indicated whether they want to use driving automation. Many disagreed with the statement ”I 

Fig. 2. Overview of the route (83 km near Delft and Rotterdam) and driving conditions. Images and map adopted from google maps and Streetview.  
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would prefer manual over automated driving in every occasion” (E 39%, P25 17%, P75 67%). Many were willing to use automation 
while tired (E 71%, P25 67%, P75 83%) or bored (E 67%, P25 50%, P75 83%). When asked to rate their willingness to use the 
automation while intoxicated, 9 said they would never use it and 8 would always use it, all with the remark they would never take the 
wheel while intoxicated. The remaining 12 participants were 68% willing to use the automation while intoxicated. 

Participants also felt that the automation was not without fault as they only marginally agreed that ”automated driving improves 
safety” (E 59%, P25 50%, P75 67%). They disagreed that ”the automation always acted appropriately” (E 34%, P25 17%, P75 33%) 
and neither agreed nor disagreed with the statements ”the automation worked reliably” (E 54%, P25 33%, P75 67%) and ”the 
automation perceived the environment correctly” (E 49%, P25 33%, P75 67%). 

Participants indicated they would monitor the road equally or slightly more compared to manual driving (E 56%, P25 50%, P75 
67%; where 50% was anchored as ”Same as manual driving”). The automation did not change the willingness to engage in mentally 
distracting secondary tasks such as a phone call (E 47%, P25 50%, P75 50%) and slightly reduced the willingness to engage in visually 
distracting tasks such as texting (E 44%, P25 46%, P75 50%). 

After the experiment, participants indicated their comfort using automation in various conditions. As shown in Fig. 3, drivers were 
(6.95%) less comfortable using LTA compared to ACC (F(1,26)=6.604, p=.016). They were generally comfortable using both systems 
in monotonic and congested highways as well as on curvy motorways, and less comfortable using the systems in unstable traffic and on 
roundabouts. 

3.2. Trust and perceived risk ratings 

Table 1 shows pre- and post-drive ratings of trust and perceived risk. Verbal real-time trust ratings are summarized in Fig. 4. 
Fig. 5 shows the occurrence rate of conflicts between driver and automation. Occurrence rate of indicated risk and potentially risky 

events are shown in Fig. 6. The procedures for annotating risk events and behaviours are described in Appendix A. The intensity and 
duration of risk events as indicated by participants through the pressure sensor are shown in Fig. 7. There were only few moments 
where participants indicated risk through the pressure sensor. Fig. 8 shows the driver’s right foot placement in the pedal bay. 

3.3. Condition effects 

We examined if the experimental conditions elicited a change in trust and perceived risk. 

3.3.1. Effects of automation 
Verbal real-time ratings of trust in situation were higher during manual (85.4%) compared to automated conditions (83.7%) (F(1, 

26)=5.845, p=.023; diff. EMM = 2.0%, SE  = 0.7%, p=.023) – see Fig. 4. 
Participants did not indicate perceived risk to differ between automation use compared to manual driving (F(1, 21)=1.171, 

p=.291). However, automation did affect the occurrence of short time headway (THW < 0.8s) (F(1,21)=19.421, p<.001), which 
interacted with road type (F(1.42, 29.75)=10.152, p=.001). Automation reduced short THW from 80.6 to 11.4 times/hour (diff. EMM 
= 58.3, SE = 12. 8, p<.001) on monotonic highways and from 66.3 to 42.2 times/hour (diff. EMM = 24.0, SE = 9.1, p=.016) on 

Fig. 3. Post-drive comfort using ACC and LTA in various conditions. Scale ranges from 1 (strongly disagree) to 7 (strongly agree) with being 
comfortable. Boxes indicate the 1st and 3rd quartiles, x marks averages and whiskers indicate the extrema, excluding the outliers marked as dots 
(ratings outside the box by 1.5 times the interquartile range). Outliers were not excluded from analysis. 
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engaging highways. The reduction was not statistically significant on curvy motorways (diff. EMM = 7.9; SE = 4.9; p=.118). 
Occurrence rate of TTC < 3s was not affected by automation (F(1,21)=0.341, p=.566). 

The occurrence of strong braking was also significantly affected by automation (F(1,21)=13.067, p=.002) and interacted with road 

Table 1 
Overall trust and perceived risk ratings from the pre-drive and post-drive questionnaires expressed as a percentage on the 7-point scale ranging from 1 
(strongly disagree) to 7 (strongly agree). Standard deviation between brackets.   

Trust in automation Perceived risk  
Pre drive Post drive Pre drive Post drive 

Experienced 61.7% (13.4%) 60.7% (17.7%) 38.5% (14.2%) 35.4% (14.5%) 
Inexperienced 66.3% (7.4%) 71.8% (16.8%) 37.8% (11.7%) 32.5% (11.2%)  

Fig. 4. Verbal real-time ratings for trust in situation and trust in automation indicated on a scale from 1 to 10. Whiskers indicate standard deviation 
across all ratings. 

Fig. 5. Occurrence of conflicts between driver and automation. LDA active indicates how often lane departure assist overruled the driver to keep the 
vehicle in its lane. LTA override indicates how often the reference steer input of lane trace assist differed from driver steering inputs. ACC overrides 
occur by using gas pedal, disengage by braking and disengage by button. 
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type (F(2,42)=15.129, p<.001). Automation increased the occurrence of strong braking by from 44.3 to 68.6 events/hour (diff. EMM 
= 24.3, SE = 3.176, p<.001) on curvy motorways, because automation was disengaged through braking while approaching round-
abouts. No automation effect occurred on the monotonic (increased 6.0/h, SE = 4.0, p=.145) or engaging (decreases 5.7/h, SE = 4.5, 
p=.216) highway. 

3.3.2. Effects of environment 
Road type significantly affected trust in situation (F(1.93,50.2)=5.597, p=.007) but not trust in automation (F(1.48, 38.47)=0.838 

p=.408). Trust in situation was significantly higher in the monotonic condition (84.9%) compared to the engaging condition (82.1%) 
(diff. EMM = 2.8%, SE  = 1.2%, p=.031) and was not significantly larger for curvy motorways compared to monotonic highways (diff. 
= 1.8%, SE  = 1.4%, p=.239). 

Perceived risk did not depend on road type (F(2,42)=0.386, p=.682). However, risky situations were encountered at different rates 
between road types (merging vehicle: F(1.69, 35.44)=41.547, p<.001; THW < 0.8s: F(1.33, 27.94)=28.261; p<.001; strong brake 
(>2.5 m/s2): F(2,42)=115.685, p<.001). Merges occurred more often in the engaging compared to the monotonic highway condition 
(diff. EMM = 13.3 per hour, SE = 2.85, p<.001). Short time headways did not occur significantly less on the monotonic than engaging 
highways (diff. EMM 2.9, SE 9.0, p=.749) but occurred less on curvy motorways (diff. EMM = 44.0, SE 4.5, p<.001). Strong braking 
occurred more often on curvy motorways compared to monotonic highways (diff. EMM = 48.0, SE 2.9, p<.001) and more often in 
engaging compared to monotonic highways (diff. EMM = 8.9, SE 3.5, p=.020). Event rate of TTC < 3s was not affected (F(2,42)=

Fig. 6. Risk related event rates for various event types per condition and experience, perceived risk is measured through the pressure sensor, other 
events are annotated as described in Appendix A. 

Fig. 7. Participant-averaged peak perceived risk as indicated through pressure sensor peak (left) and duration (right). Boxes indicate the 1st and 3rd 
quartiles, x marks averages and whiskers indicate the extrema, excluding the outliers marked as dots (ratings outside the box by 1.5 times the 
interquartile range). Outliers were not excluded from analysis. 
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0.762, p=.473). 
Participants encountered a high conflict rate (3.1/minute) between their own steering inputs and LTA, but road type did not affect 

the occurrence rate (F(2, 42)=1.389, p=.261), nor that of LDA activation (F(1.19, 25.06)=0.137, p=.735) or ACC intervention through 
gas override (F(2,42)=0.591, p=.559). ACC deactivation rate was significantly higher on the curvy motorway compared to the 
monotonic highway, both through button (F(2, 42)=4.321, p=.021; diff. EMM = 4.2 per hour, SE  = 1.59, p=.015) and through 
braking (F(2,42)=73.270, p<.001; diff. EMM = 36.4, SE  = 4.5, p<.001), but this is explained by the need to slow down for round-
abouts on this road. Deactivation did not differ between monotonic and engaging highway. 

While using ACC, drivers often preferred to keep their feet on or above the gas pedal (65.8% of the time; Fig. 8), where feet were 
above the pedals the most during monotonic highway driving (76.6%) and least during congestion (50.5%). Full-range ACC did not 
significantly reduce brake pedal use (F(1,21)=1.738, p=.202) but reduced gas pedal use by 76.9% (F(1,21)=2845, p<.001). 

Drivers kept their feet closer to the pedals during the (automated) monotonic condition compared to the engaging highway 
condition (F(2, 42)=9.326, p<.001; diff. EMM 12.4%, SE = 4.8%, p=.018). Since the monotonic conditions always preceded the 
engaging conditions, this can indicate an increased reliance, or a stronger desire to adopt a comfortable posture later in the drive. 

3.3.3. Effects of automation experience 
No significant effects of prior automation experience on trust and perceived risk were found throughout this study. 
Prior experience did not affect questionnaire trust ratings (F(1,28)=0.199, p=.659), nor was there an interaction between pre-post 

experiment and prior experience (F(1,28)=1.280, p=.267). For the real-time verbal trust ratings, there also were no significant 
experience effects for trust in automation (F(1,26)=3.735, p=.064) or trust in situation (F(1, 26)=3.027, p=.094) where the experi-
enced group tended to give higher ratings especially for trust in automation. 

The experiment also did not change participants’ perceived risk between pre-drive and post-drive questionnaire (F(1, 28)=2.176; 
p=.151), and questionnaire perceived risk was not affected by prior experience (F(1, 28)=0.199; p=.659), interaction between pre- 
post and prior experience (F(1,28)=0.139, p=.712), or real-time ratings (F(1,21)<0.001, p=.991). 

The inexperienced group encountered 6.3 merges/h more (SE = 1.950, p=.004) compared to the experienced group (F(1,21)=
10.592, p=.004), but there was no difference in short headway (F(1,21)=0.290, p=.596), short TTC (F(1,21)=0.092, p=.765) or strong 
braking rate (F(1,21)=0.727, p=.404). Experience also had no significant effects on conflicts with LDA (F(1,21)=2.675, p=.117), 

Fig. 8. Foot placement in the pedal bay for each condition. On-brake and on-gas correspond to pedal activity registered on the CAN bus. Over-brake 
and over-gas correspond to foot observed on or hovering above the pedal while not registered on CAN bus. Away corresponds to foot observed to be 
away from or below a pedal. Unknown corresponds to periods where foot placement could not be ascertained from footage. Annotation error 
corresponds to moments where video annotation is in conflict with CAN bus, e.g. foot observed above gas pedal while brake activity registered on 
CAN. Possible causes include synchronisation accuracy (up to 1 s latency for the pedal-bay video feed), lost video frames and annotation errors. 
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steering support (LTA:F(1,21)=0.688, p=.416;) or overruling of ACC (disable rate: F(1,21)=0.070, p=.794; gas pedal override: F 
(1,21)=0.634, p=.435). 

Experienced and inexperienced drivers also did not adopt different foot placement strategies (F(1,21)<0.001, p=.969). 

3.3.4. Further effects between subjective ratings 
The experiment did not change participants’ trust ratings between pre-drive and post-drive questionnaire (F(1, 28)=0.607; 

p=.422). Verbal real-time trust ratings were higher compared to questionnaire ratings. For automated conditions, trust in automation 
(75.4%) was rated significantly lower compared to trust in situation (83.7%) (F(1,26)=6.753, p=.015; diff. EMM = 8.3%, SE  = 2.0% 
p=.015) and a significant interaction between trust attribution (to situation or automation) and road type (F(1.727, 44.900)=4.705, 
p=.018) suggests this distinction was present on monotonic highways (diff. EMM = 7.8%, SE  = 2.9%, p=.012) and curvy motorways 
(diff. EMM = 11.4%, SE  = 3.8%, p=.006) but not in the engaging highway condition (diff. = 5.6%, SE  = 3.3%, p=.102). Trust in 
automation also varied more compared to trust in situation (Fig. 4). 

There was no within-subject relation between changes in trust and foot-away time according to a repeated measures correlation (r 
(47)=-.023, p=.875). There were also no significant correlations between post-drive trust and the amount of conflicts experienced 
(LTA steer conflict: r(23)=.219, p=.316; LDA: r(23)=.176, p=.422; ACC_gas: r(22)=-.015, p = 946; ACC_brake: r(23)=-.268, p=.217) 
or perceived risk (LTA steer conflict: r(23)=.123, p=.577; LDA: r(23)=.055, p=.802; ACC_gas: r(22)=.322, p = 144; ACC_brake: r 
(23)=-.288, p=.182). 

3.4. Condition effects on physiological measures 

Mixed ANOVAs were performed to examine if the experimental conditions affected the physiological metrics. To minimise possible 
confounding factors, results exclude periods of congested driving and pupil data excludes tunnel driving. Effects are summarised in 
Table 2. Additional descriptives are in Appendix D. 

While real-time trust ratings were significantly affected by environment and automation, most physiological metrics were not. GSR 
phasic drive suggests participants had more emotional arousal during automation use (diff. EMM = 0.04 μS, SE 0.01, p=.001). Car-
diovascular power in the HF band was higher in manual than in automated driving (diff. EMM = 45, SE 18.5, p=.023) which suggests a 
stronger parasympathetic (rest and digest) activity during manual driving. 

Table 2 
Mixed ANOVAs for various physiological signals. Significant effects are highlighted. 3X represents the three way interaction con-
dition*automation*experience. Tunnel sections are excluded when analysing pupil dilation.  
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The remaining effects did not indicate clear relations. The inexperienced group had 0.37 mm larger pupils compared to the 
experienced group (SE 0.11, p=.005), which is likely related to individual differences. Heart rate reduced by 1.2 BPM from monotonic 
to engaging highways (SE 0.35, p=.002) and 0.8 BPM from engaging highways to curvy motorways (SE 0.35, p=.033). Since anxiety 
should have caused the opposite, this trend is more likely a time-on-task effect. This is supported by repeated measures correlation 
between time in trip and heart rate (r(120)=.406, p<.001). The LF power interaction suggests that automation increased LF power for 
experienced drivers and decreased it for inexperienced drivers, which in classical beliefs would suggest that experienced users were 
stressed while inexperienced users were comforted by the automation. However, as discussed by Shaffer et al. (2014) LF power is no 
longer believed to reflect sympathovagal balance. It is more likely to indicate blood pressure regulation and respiration under slow 
breathing rates. 

3.5. Effects of risk events on perceived risk and physiological response 

3.5.1. Responses to risk-events and non-events 
To examine if perceived risk causes physiological responses, we examined event-averaged responses for each event type and 

compared these to a baseline period when no events took place. Event averaging improves the signal to noise ratio of any responses 

Fig. 9. Physiological responses to various aggregated events and non-events. Columns indicate from left to right: GSR, heart rate, pupil diameter, 
and continuously perceived risk. Averages are in blue, and in red where differing significantly (Welch t, α = .01) from non-events (bottom row). 
Dashed lines indicate the 25, 50 and 75 percentile response. Dashed vertical lines mark the 10 s surrounding the event. 
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which are time-locked to the event while reducing unrelated physiological activity. The same principles (and limitations) are used in 
the analysis of event-related potential in EEG studies (de Tommaso et al., 2020). 

Fig. 9 provides the average and percentile responses to each event. Heart variability metrics were not considered since they require 
longer samples (Baek et al., 2015). Sample mean heart rate and pupil dilation were removed before averaging. Since a large number of 
evaluations is made across the time domain, a stricter significance criterion of α = .01 is used to visualise where responses differ from 
the non-event baseline. 

For GSR phasic drive, the 25 percentile remains close to zero for all event types, which means at least 25% of all events elicit no GSR 
response. The average response tends to be close to the 75 percentile, suggesting that at any time only 25% to 50% of responses 
contribute phasic activity to the observed event-related potential. 

Perceived risk gives a timed response in GSR phasic drive. During this response, the 50 percentile reaches only 0.29 μS, which is 
comparable to the 75 percentile response in non-events. No response to risk perception is visible in heart rate or pupil dilation. 

Moments of strong braking increased GSR phasic drive, heart rate, pupil dilation and perceived risk (risk was reported in 6.5% of all 
strong braking events). Average perceived risk peaked 2.35 s before maximum deceleration, followed by the GSR response 1.25 s 
before maximum deceleration. This early response suggests GSR to reflect arousal from perceiving risk rather than the physical activity 
of resolving it. Heart rate responded only after reaching maximum deceleration. The lower-than-baseline heartrate preceding the event 
is an artefact from removing sample means prior to averaging. The responses of disengaging ACC through braking are similar to those 
of hard braking (because 50% of these events include hard braking) disengaging ACC through button did not elicit any physiological 
response. 

Short time headways did not affect physiology and risk was indicated in 3.2% of the events. Short time to collision co-occurred with 
risk perception in 5.3% of events and gave the largest response in GSR phasic drive. While the 25 percentile did not deviate much from 
zero, the 50 percentile increased to a relatively high 0.42 μS. Short THW and TTC did not elicit a discernible response on heart rate or 
pupil dilation. Lane departure assist increased GSR response and pupil dilation, but the latter only differs from baseline at α = .05. 

Merging vehicles, performing a lane change or being near to a truck or motorcycle did not give a physiological response. There were 
only few of these events (Fig. 6), making it harder to attain statistical significance. Moments where driver and LTA disagree also did not 
lead to a physiological response and risk was perceived for only 2.9% of these occurrences. Similarly, moments where the driver 
pressed the gas pedal while ACC was active did not lead to perceived risk (0.6%) or a physiological response, though a brief increase in 
pupil diameter occurred two seconds before using the gas pedal. 

3.5.2. Event classification by response features 
To evaluate if perceived risk can be identified from physiological signals, we trained a classifier to discriminate events from non- 

events. We require a successful classifier to at least separate moments where participants indicated risk from non-events. Ideally, the 
classifier should be able to also identify situations where a timed physiological response was visible in Fig. 9. Positive events were 
therefore drawn from perceived risk, LTA, short TTC and hard braking. Negatives were drawn from the non-events. 

As a classifier, we designed a CNN which takes a 10 s sample of physiological data consisting of 100 samples per channel (GSR 
phasic drive, heart rate and pupil dilation) and outputs a class for each (non) event. The architecture operates similarly to a template 
matching procedure, except the templates are learned rather than manually crafted. The convolution allows the network to learn 
characteristic signal patterns regardless of their latency within the sample. This way, the network accounts for variance in time dif-
ference between event occurrence and event perception. Further details on designing the classifier is given in Appendix E. 

Fig. 10 shows the confusion matrix for training and validation sets of the best-performing classifier. Per-class validation accuracy 
was 46.2%. Events were identified as risky 58.6% of the time while non-events are correctly identified 63.7% of the time. 36.2% of 
perceived risk events were labelled as non-events. Even on the training set, overall accuracy was only 56.1%. The classifier was 
therefore unable to meaningfully discriminate between events and non-events. 

Fig. 10. Best performing classifier: 32 learned templates of 1.5s in length.  
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4. Discussion 

4.1. Automation effects on safety 

Participants were aware of automation limitations and the need for monitoring. Despite this awareness, drivers remained willing to 
use the automation even when tired or bored, and would perform secondary tasks similarly to manual driving. They were comfortable 
using it in monotonic and congested highways as well as on curvy motorways, but less comfortable in unstable traffic and on 
roundabouts. Disuse in unstable traffic is concerning and calls for further study. Disuse on roundabouts is expected and desirable as 
these are not part of the operational design domain (ODD). Overall, the automation seems to encourage a safety attitude appropriate 
for its level of automation (SAE2 driver support). Drivers were (6.95%) less comfortable using LTA compared to ACC. A similar 
observation was made in an on-line survey among 629 users of driving automation (Nordhoff et al., under review) This could relate to 
the high conflict rate (3.1/minute) between their own steering inputs and LTA, which suggest a lower perceived autonomy or 
trustworthiness of LTA compared to ACC, which may have further contributed to the driver’s safety attitude. 

Automation reduced short time headway occurrence (THW < 0.8s) on highways compared to manual driving, but did not 
significantly reduce the occurrence of short TTC (<3s) or merge events. Interestingly, short THW were not perceived as risky while 
short TTC often were. However, this discrepancy does not imply that automation is addressing the wrong risks. The increased headway 
improves occupant safety by reducing a hidden, latent hazard through safe distance keeping, while short TTC is a more salient, 
imminent hazard. In a way, the ACC helps to reduce risks which the driver is less aware of. 

These findings align with the conclusion by Heikoop et al. (2017) that real-world use of driving automation may not be as 
detrimental to monitoring performance as is suggested by some classical and simulation-based vigilance literature (Mackworth, 1948; 
Greenlee et al., 2018). It is possible that these issues have to some extent been addressed successfully in the design of real-world 
systems which support but not automate steering, though further analysis is required to verify this in naturalistic driving. 

4.2. Implications on trust and risk perception 

Pre- and post-drive ratings were not affected by the experiment or prior automation experience, nor did participants converge to 
unanimous levels of trust or perceived risk, which confirms that these attitudes are individual. While automation-experienced drivers 
likely already stabilised their views (Lee and See, 2004), also the automation-inexperienced drivers did not adapt their ratings. This 
could mean that the one hour exposure was too short for changing trust, or that this experience did not necessitate a change in trust. An 
alignment of pre-drive expectations and post-drive reflection may have been facilitated by the experiment’s description and intro-
duction to the support features. 

Trust-in situation was affected by road conditions, but trust-in-automation was not. Trust-in-automation changed from moment to 
moment regardless of environment, which supports that trust-in-automation is situational and should be evaluated within the context 
of the situation at hand. 

Trust attribution was examined by comparing ratings of trust-in situation and trust-in-automation. Trust was rated higher for 
situation than for automation. This distinction demonstrates that overall trust is comprised of more than automation alone. Trust-in 
situation was lower during automation use, which means that automation is either a part of, or has an influence on the situation from a 
trust perspective. The higher trust-in situation may have several causes. Drivers may have considered highway traffic to be relatively 
predictable, or felt they were in control of the situation while driving support was active. Alternatively, drivers may have found it 
intuitive to learn the system functionality and limitations. Khastgir et al. (2018) also demonstrated that trust can be high even for 
poorly performing systems as long as drivers understand the system limitations. 

A significant interaction showed that the advance of trust-in situation over trust-in-automation disappeared in the engaging 
condition. Lee and See (2004) already stipulated that uncertainty and complexity challenges trust. 

There was a strong positive correlation between individual post-drive trust and perceived risk. This strengthens beliefs that trust 
and perceived safety are closely dependent (Nordhoff et al., 2021). 

4.3. Behaviour and compliance 

Automation-experienced users had more LTA steering conflicts but experience did not affect LDA event rate. This suggests that 
automation-inexperienced drivers had a higher compliance compared to experienced drivers, without affecting lateral safety. This 
compliance may be caused by initial over-trust, which is a common bias before encountering sufficient system limitations to accurately 
gauge limitations and performance variability (Muir, 1987). An alternative explanation is that the automation-experienced partici-
pants were unaccustomed with the lower authority of the steering support in the Toyota vehicle, since they reported familiarity with 
systems of different brands, most of which provided steering automation (e.g. Tesla, Mercedes, Volkswagen) rather than steering 
support (e.g. BMW, Toyota). 

The high conflict rate between driver and LTA provides a salient and frequent clue about the autonomy of the steering support 
system. This may explain the seemingly well-calibrated expectations towards the system’s capabilities. Interestingly, post-drive trust 
did not correlate with the amount of conflicts detected. This could mean that the effect of conflict rate on trust was already saturated, or 
that larger or more consistent conflicts are needed to affect trust. Alternatively, the automation’s strategy of conditionally reducing 
LTA performance to encourage engaged driving behaviour may have negated the effect on trust. Conveying trustworthiness of support 
systems through conflict rate remains feasible, but could not be demonstrated by this study. 
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Drivers kept their feet on or above the gas pedal while using ACC (65.8% of the time), though the proportion of time with feet away 
from the pedals increased from the (automated) monotonic to the engaging highway condition. This behaviour increases brake re-
action time and suggests drivers maintained postural readiness to intervene (Deo and Trivedi, 2020). Trust-in situation and comfort to 
use automation showed the opposite effect and trust-in-automation was unaffected. This contradicts the idea that reliance behaviour 
reflects changes in trust. Since the engaging condition always followed the monotonic, the effect is better explained by a gradually 
increasing desire for postural comfort. Participants with high trust-in-automation tended to spend more time with their feet away from 
the pedals, but there was no within-subject relation between momentary trust and foot placement. Our sample size is too small to 
explore if this results from a personality trait like trust propensity. 

4.4. Risk perception and physiology 

At a mesoscopic level, only 5 of the 13 physiological metrics differed significantly between conditions, with little consistency on the 
factors of influence. The GSR phasic drive and heart rate HF power differed significantly between manual and automated driving. 
Between the driving environments, only heart rate (and its inverse IBI) differed significantly. Effects for heart rate and variability on 
arousal and stress have been somewhat inconsistent in preceding works, in particular for on-road conditions (Lohani et al., 2019).Pupil 
dilation differed between groups and LF component of heart rate variability interacted between experience and automation use, but 
these findings may not generalise, since groups samples were small and the relation between LF and anxiety has been debated (Shaffer 
et al., 2014). The small number of affected dependent variables and their partially counter-intuitive effects (e.g. automation increasing 
arousal according to GSR but reducing it according to the heart’s HF component) indicate limited utility of physiological sensing in on- 
road driving when averaged over road sections. However, it should be noted that the difference in trust between these conditions was 
complex, with clear differences in risk event rates and trust-in situation, but no significant differences in trust-in-automation. 

At a smaller time scale, physiological responses were more insightful. Moments of perceived-risk, LDA activation, short TTC, strong 
braking and disabling ACC by braking resulted in a low-latency response in GSR phasic drive when averaged over multiple encounters, 
and these responses occurred across all driving environments. Pupil dilation only responded to LDA and hard braking, while heart rate 
only responded to hard braking. These findings agree with Healey and Picard (2005) who also found best sensitivity of GSR, followed 
by heart rate and its variability. Beggiato et al. (2019) found more consistent pupil dilation among their 4 most risky situations. Their 
simulated encounters were experienced more consistently among 40 participants, resulting in better signal to noise ratio. They also 
found that heart rate declined during their encounters, reproducing their earlier work with similar sensors (Beggiato et al., 2018) but 
contrasting a large body of stress, anxiety and workload literature (Lohani et al., 2019). 

Our findings suggest that of all examined physiological signals, GSR phasic drive was the most indicative of perceived risk. 
However, responses existed for 75% of the events, and were discernible from baseline variation in  < 50% of the events. It is likely that 
not all risk events (especially when no risk was indicated) were perceived as risky, for instance when anticipated or occurring in a non- 
threatening manner. The extent to which events were risky can however not be inferred reliably from the continuous risk ratings, in 
part because the rating task was not continuously performed, and in part because more mundane risks may not have been indicated, for 
instance because of its familiarity (Geller, 2001). A CNN was unable to distinguish between risky and baseline events based on 
physiological data alone. This can be a consequence of the same rating difficulties, in particular the occurrence of late and uninten-
tional presses. Alternatively some risky events may not cause physiological anxiety, for instance when the situation is only marginally 
risky, anticipated or easily resolved by the driver. However, most likely, the physiological indicators lacked specificity to perceived 
risk. 

4.5. Limitations and future work 

The compliance condition could not be analysed because of confounding factors. Further research is thus needed to evaluate the 
relation between trust, perceived risk and compliance behaviour. We hypothesise that the large amount of steering conflict and 
continuation of salient risks during automation use contributed to the well calibrated safety attitude among participants, but we were 
not able to test this in this study. A direct comparison between different steering automation philosophies is required to further 
investigate this. 

Many participants had difficulty providing the continuous risk rating in this on-road study. This difficulty was surprising, since the 
setup has been applied successfully in preceding work in a simulator (He et al., 2022), and others have demonstrated similar devices to 
be effective as well (Cleij et al., 2018; Rossner and Bullinger, 2019). Since the rating technique has only been used in simulated 
autonomous driving, it is possible that combining the continuous rating with manual/supervised driving on public roads caused a high 
workload where drivers prioritise safe driving over the rating task. It is possible that drivers normally do not consider risk consciously 
while driving. This would make the rating task more artificial than originally anticipated, and hence more likely to be forgotten while 
multitasking. Alternatively, it is possible that only the reporting aspect is easily forgotten and conscious risk assessment is still taking 
place. We recommend caution when considering continuous subjective rating in an on-road setting, or in combination with many other 
tasks. 

We recommend that design for trust calibration in supervised automation should not only consider calibration of trust-in- 
automation, but also calibration of self-confidence and other trust agents. It may be worthwhile to investigate how perceived use-
fulness of different use cases relate these different elements of trust. We hypothesise that safety and comfort benefits are fully reliant on 
trust-in-automation, while a fun-factor of using supervised automation requires trust-in-self. It may be interesting to explore if 
moderate distrust-in-automation provides positive excitement as a remedy for drowsy driving. 
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5. Conclusions 

5.1. Was the automation safe? Was it accepted? 

The observed safety attitude towards the ACC and LTA in the tested vehicle was appropriate for a driving support system. Par-
ticipants believed that the automation improved safety, but also that it needs to be monitored. They were willing to use the automation, 
and indicated they would engage less often in mentally and visually distracting tasks while using the automation. They were generally 
comfortable using ACC and LTA in monotonic and congested highways as well as on curvy motorways, but less comfortable in unstable 
traffic and on roundabouts. 

ACC improved occupant safety by reducing latent risks that were not perceived by the drivers (short headways), but did not affect 
the occurrence of salient risks (short TTC). Safety aspects of steering support were not evaluated in this study. 

These findings indicate that user safety attitudes are not as detrimentally affected by driving support systems as suggested by some 
classical and simulation-based literature. 

5.2. How were trust and perceived risk affected by the experimental conditions? 

Automation use decreased trust-in situation by 2.0% but did not affect perceived risk. While using automation, drivers distin-
guished between trust-in-automation and trust-in situation, where trust-in situation was 8.3% higher on average, presumably due to 
driver self-confidence. 

Driving environment affected the driver’s trust-in situation but not their trust-in-automation, though trust-in-automation did vary 
from moment to moment. Dynamic aspects of trust-in-automation should therefore be examined situationally. Environment also 
affected the willingness to use automation, which was lowest during unstable traffic and on roundabouts. 

No effects of prior automation experience were found in this study. Ratings of trust and perceived risk were strongly, negatively 
correlated. 

These insights may help improve the calibration of trust in driving automation implementations. 

5.3. How well can physiology and behaviour indicate trust and perceived risk in on-road driving conditions? 

Averaged over test conditions, physiological metrics showed weak and partially counter-intuitive effects, which could not be 
explained by trust, perceived risk, driving conditions or automation use. For aggregated risk events, GSR phasic drive had the clearest 
response but was discernible from baseline in less than half the events. Pupil dilation and heart rate only increased during strong 
braking and LDA activity. A CNN was unable to distinguish between individual risk events and non-events based on physiology, which 
suggests that physiology lacks the specificity and reliability required for on-road, real-time monitoring of risk perception. For such 
applications, alternative measures have to be explored. 

Driver behaviour demonstrated active participation in the driving task, frequently overruling lane centring support (3.1 times/ 
minute), and keeping feet on or above the pedals while using ACC (65.8% of time). The amount of conflict between driver and 
automation did not correlate with trust. The automation may have effectively conveyed its trustworthiness through conflict rate, but 
this hypothesis was not tested by this study. Participants with high trust-in-automation ratings spent more time with their feet away 
from the pedals, but there was no moment-to-moment relation between trust and foot placement. 

These findings may aid the development of trust monitoring models and systems. 
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