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A geometrically and physically nonlinear solid-like shell element is
presented to analyse the behaviour of laminated structures. The
geometrically nonlinear formulation of the element is derived from three-
dimensional continuum mechanics and accounts for the change of
thickness. The geometry of the element is described by sixteen nodes which
are located at the top and the bottom surface of the element. At each node
three translational degrees of freedom are defined. Additionally, four
internal degrees of freedom are assumed to improve the description of the
internal stretching. The physically nonlinear behaviour is assumed to be
governed by the Hoffmann yield criterion for orthotropic materials and the
von Mises yield criterion for isotropic materials. It is explained how the
element can be applied to laminated structures. By calculating benchmark
tests obtained from the literature the behaviour of the element is compared
with that of standard finite shell and solid elements. From these tests it is
concluded that the solid-like shell element is well suited to compute
laminated structures. Finally, the element is applied to compute the
behaviour of a tensile specimen made of the Fibre Metal Laminate
GLARE® which gives results which are in good agreement with
cxperimental data.

1 INTRODUCTION

The economical situation of commercially oper-
ating airlines is characterized by an increasing
pressure on the direct operation costs due to an
ever increasing worldwide competition. Since
the price for flying is decreasing, the number of
passengers shipped has increased which results
in an overload of the existing infrastructure due
to an increasing number of flights. To reduce
the operation costs or to lift the number of
passengers per flight new aircraft designs have
to be taken into consideration. This leads to
incremental improvement of existing flight vehi-
cles or to the development of a new aircraft
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generation which is discussed as ‘Super-Jumbo’.
To achieve a design concept which reaches
this target intensive research in the fields of
avionics, propulsion technologies and aero-
dynamics is undertaken. Another field which
offers a great potential for the improvement of
the design concepts is the structure of the air-
craft. Here the application of new materials
offers improvements resulting from the material
properties itself, but also from the improvement
of existing structural design concepts. In con-
sideration of this potential the Fibre Metal
Laminates (FML) ARALL® and GLARE®
have been developed at the Production and
Materials Laboratory of the Faculty of Aero-
space Engineering of Delft University of
Technology. The materials are characterized by
aluminium layers (alu. 2024-T3, alu. 7075-T6)
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which are connected to each other by either R-
Glass or Aramid prepreg layers. In general, an
unlimited number of aluminium layers could be
connected to each other by prepreg layers.
ARAIL® and GLARE® are composed of three
aluminium layers connected by two prepreg lay-
ers. The potential of weight saving is between
20-30% compared with structures built using
aluminium alloys. In relation to other advanced
composites the relative costs are forecasted to
be halved.!

To make full use of these advanced materials
proper design concepts and reliable computa-
tional methods are necessary. These methods
have to describe effects caused by the inter-
laminar  reaction, the various failure
mechanisms and geometrical nonlinearities. As
part of this research project structural parts of
an aircraft shall be modelled with finite ele-
ments. These parts typically occur in huge
thin-walled structures. When applying standard
finite elements to these problems, proper mod-
elling leads to difficulties. On the one hand
standard solid elements tend to lock for large
length/thickness ratios. To avoid this locking
phenomenon a finite element model applying a
large number of elements has to be used, which
leads to considerable calculation time. Since the
topology of standard shell elements is reduced
to the location of the nodal points on the mid-
surface the application of standard shell
clements leads to problems when modelling
interlaminar effects in a three-dimensional
state. To avoid numerical difficulties on one
hand and to account for the various failure
effects on the other hand a solid-like shell ele-
ment is applied.

In the literature several methods are descri-
bed for a solid-like shell element. In contrast to
the element used here most solid-like elements
account for the change of thickness via a stag-
gered iterative update procedure which is
constructed by exploiting the plane-stress
assumption. Simo er al.? present an approach in
which the thickness director is a truly independ-
ent field which is coupled with bending,
membrane and transverse shear fields through
the constitutive equation. The method intro-
duced by Biichter et al.® applies the enhanced
natural strain concept to obtain a three-dimen-
sional constitutive relation. Assuming a linearly
varying thickness director the displacement field
is separated into the displacement field of the
mid-surface and the displacement of the thick-

ness director. Due to this separation in the
latter two cases the finite elements cannot sim-
ply be coupled in thickness direction with other
elements which is disadvantageous when model-
ling interlaminar effects in layered materials.
For these reasons a solid-like shell element is
used, which is based on a three-dimensional
continuum theory with sixteen geometrical
nodes as proposed by Parisch.* Hereby three
translational degrees of freedom are defined at
each node, Fig. 1. Additionally, four internal
degrees of freedom are established at the cor-
ners of the element to account for the internal
stretching, which yields a fully three-dimen-
sional field of membrane and bending strains.
Accordingly, these solid-like shell elements can
be coupled in thickness direction in a straight
forward manner, which is advantageous when
modelling interlaminar effects in a three-dimen-
sional state. Furthermore, locking effects that
occur with standard solid elements are avoided.

2 ELEMENT GEOMETRY AND
KINEMATICS

Using the Green strain tensor y which is
defined as:

1 T T
=3 (f f-F'F), ¢}

the strains are calculated by expressing the
deformation tensor F in the undeformed config-
uration and the deformation tensor f in the
deformed configuration in terms of the corre-
sponding metric vectors G, and g;.*® The latter
quantities are derived from the derivatives of
the position vector of an arbitrary material
point P in the deformed state x and the unde-
formed state X in the element with respect to
the isoparametric coordinates ©°={{n,¢}.

a  Geometrical nodes (1-16)
& Intemnal nodes (A-D)

Fig. 1. Element geometry and nodes of the sixteen-
noded solid-like shell element.
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Denoting the displacement vector of the mid-
surface as u’, the change of thickness as u' and
the internal stretching as u?, the displacement
field at point P is written as:

u=u’+{u' +(1-?)u?, (2

which yields for the position of P in the
deformed configuration:

x=X +u. 3)

By specifying the classical kinematics of rigid
rotation of the shell director the description
of the internal stretching is reduced to one
parameter ws. Accordingly, we get for the
corresponding displacement vector u?=w-d,
where d denotes the director in the deformed
state. By invoking the internal stretching a fully
three-dimensional strain field is described. In a
global iteration procedure the equations charac-
terizing the equilibrium are solved for the
change of displacements. After computing the
metric vector and subsequently the deformation
tensors, the change of the Green strains within
an iteration j can be derived as:’

dy°=(d e+ dp.;) E*QE?
+(des3+{dp,3)E*QE?
+(de3a+L d p3) E*QE
+(dess+{dp3) E°QE>. 4)

Here the strains are decomposed into a {-inde-
pendent membrane part and a ({-dependent
bending part de,, and dpg, respectively. The
contravariant vector E* is calculated** using the
covariant metric vector E, which is defined by
using the position of the mid-surface X°.

0

o0X°
E,=———, with a,f=1,2.
00>

Performing the substitution of the deformation
tensors in eqn (1) and decomposing the strains
according to eqn (4) into the membrane and
bending components the following expressions
can be derived:

2dep=ey.duls+e,.du’+du’,.du’,  (5)

2de,s=e,.du'+d.du’ +du’.du, 6)

2de3=2d.du' +2du’.du’, @)

2dpop=ey.du,+d dul+du’,.du’ (8)
+e . dulg+d 5.du’,+duls.du’,

—(es.duly+es.du’,+du’.du’)G?

—(ea.duf’,+et.duf)¢+duf’a.duf’r)G§;,
2dp,3=d ,.du'+d.dul,+du!,.du’, 9)
2dps3=—8w;d.du' —4d.ddw,

—4dwsd.du' —4wydu'.du'.  (10)

The quantity ¢, denotes the derivative of the
shell mid-surface in the deformed configuration
x® with respect to the isoparametric coordi-
nates, ¢ and #. Applying G} the mixed-variant
metric is introduced which can be computed
using the constant part of the contravariant
metric G and the linear part of the covariant
metric G,.° The strains defined by eqns
(5)-(10) are calculated with respect to the in
general non-orthogonal reference system FE/.
However, for composite materials the stress—
strain relation is conveniently accomplished in a
local frame m; which is provided by the charac-
teristic material directions. The change of
strains in the material system dy, is derived by
applying the transformation t* from the refer-
ence system E* to the local system m;:

dyy=(den+{dpu)tit), with t5=(E*.m,).

To set up the stiffness matrices the tensor d Vi
can be rewritten using vector-matrix notation.
The strains depend on the displacement u and
its derivatives with respect to the isoparametric
coordinates. If the displacements are arranged
in the following raanner:

dz=(du’ du’,dw,)T,

then the change of the strains can be decom-
posed into a linear part dy* and a nonlinear
part dy™"*> The displacements du®, du' and
dwj; are expressed in terms of nodal displace-
ments and their corresponding shape functions.
To achieve this approximation the nodal dis-
placements of the sixteen nodes and the four
internal nodes are arranged in the following
way:

dﬁT=(du},...,duiﬁ,du;,...,du}l,‘s,dui,
condug®dwy, . dwE). (1)

Using the vector of nodal displacements and the
shape functions the vector dz is written as:®

diag(11°) 0
diag(T1') 0
07 1§

dz= dé=A di. (12)
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The matrices I1° IT' and IT* contain the shape
functions. They are derived from the ordinary
isoparametric shape functions of an eight-noded
standard shell element.> Employing the approx-
imation by shape functions and nodal values the
linear part dy" can be written as:’

dy“=B, da. (13)

The matrix B; contains the derivatives of the
displacements, the approximation with shape
functions and the transformation into the mate-
rial frame of reference.” Accordingly, eqn (13)
relates the nodal displacements to the strains
with respect to the material system. In principle
the derivation of the nonlinear part is achieved
in the same way. But a vector of nonlinear
strains cannot as conveniently be composed as
for the linear part. Therefore, the derivation of
the nonlinear strains is performed for each
component separately. When calculating the
nonlinear contribution to the stiffness matrix
this leads to a sum of different matrices repre-
senting the shape functions, their derivatives
and transformations.’

3 THE STIFFNESS MATRICES

The derivation of the stiffness matrices is based
on the weak form of the equilibrium equations.*
While integrating the equations over the vol-
ume special attention has to be paid to the
integration in thickness direction. Since the ele-
ment may consist of different layers with
varying material properties the integration in
thickness direction is split up in a number of n,
subintegrations. Hereby n; denotes the number
of layers. For every layer the constitutive rela-
tion is built with the individual material
parameters represented by the matrix D,
Assuming a total Lagrangian formulation the
equilibrium is established as:

)3 8(dy")"D(dy")d Vo,

i=1 JI,

+ Z 0@y e: dVyi (14)
i=1 Voi
=5(du)Tf.— ) 5(dy")To; dVy.
i=1 Voi
Substituting the expressions for the linear parts
of the strains, eqn (13), and those for the non-
linear parts the equilibrium is described with

terms up the order three in the displacement
increment. By linearizing the equilibrium equa-
tions and accomplishing the integration over the
volume the following system of equations is
reached which must be solved for the change of
displacements in iteration j:>

(KL + Ky, ) du/ * =g 7, (15)

The matrix K; denotes the contribution of the
linear part and is computed performing a triple
matrix multiplication of the constitutive matrix
D; and the matrix B. The matrix K,; denotes
the nonlinear contribution to the total stiffness
matrix and represents a sum of the nonlinear
strains multiplied with the corresponding stres-
ses. To obtain the element stiffness matrix the
internal degrees of freedom are condensed on
element level. For a detailed description of the
derivation of the element stiffness matrices the
reader is referred to Parisch® or Hashagen.’
The element matrices can therefore be assem-
bled to the total structural stiffness matrices.
The resulting system of equations is solved
using an arc-length controlled procedure.®

4 PHYSICALLY NONLINEAR BEHAVIOUR

Since the structures composed of composite
materials show local failure effects the constitu-
tive equations describing the stress—strain
relation on local level have to be refined. An
advantage of the present shell formulation is
that standard three-dimensional constitutive
models can be applied. Since fibre metal lam-
inates consist of aluminium layers and of
prepreg layers two different kinds of constitu-
tive models shall be used here. The aluminium
layer can be described by the isotropic von
Mises yield criterion. Accordingly, the ortho-
tropy caused by producing the aluminium layers
is neglected. The yield function ®(c) which sig-
nals the onset of plastic behaviour then equals:”

®(c)=5/26"Ps -, (16)

where the yield value ¢ can be measured from a
uniaxial tension test. The matrix P denotes a
projection matrix with constant components.’
However, the prepreg layers are considered to
behave as orthotropic material and the von
Mises yield criterion does not describe this
behaviour. Accordingly, the Hoffmann yield cri-
terion® is applied to the prepreg layers. The
Hoffmann yield criterion is a modification of
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the Hill yield criterion,” such that by inclusion
of terms varying linearly in the stress, differ-
ences between the tensile and the compression
properties can be described. The Hoffmann
yield criterion is written as:'°

1
(I>(a)=; 6"P,0+p.o—6. 17

The matrix P, in eqn (17) contains six para-
meters which can be obtained from six uniaxial
tension and compression tests. The vector p,
contains three additional parameters and o
denotes the normalized yield stress.'® If small
strains are assumed the total strain rate can be
additively decomposed into an elastic and a

plastic part:

=D, (18)
)-,P1=Aa_q) . (19)
oo

Here, A denotes the plastic multiplier which is
zero in case of elastic straining and greater than
zero in case of plastic straining. To achieve a
proper formulation for plasticity eqn (18) and
(19) have to be integrated over the loading
sequence. Applying a single point integration to
the plastic strain rate leads to:

Ay=Ay* +Ay”, (20)

Ay*=D"'Agc, (21)
o0

AyP'=A)— , (22)
60‘ t+aAt

with ¢ denoting the beginning and ¢+ At the
end of the load step. For every iteration a stress
increment Ag can be computed by combining
eqns (21) and (22) which represents the change
of stress while loading:

L)
Ac=DAy—AiD —
o

(23)

t+aAt

Algorithmically, a trial stress o,=go+DAy is
first computed. If this trial stress does not com-
ply with the yield condition ®(s) <0 a corrector
is applied which returns the stress to the yield
surface. Dependent on the choice of the param-
eter « several methods to compute the stress ¢,

can be selected."’ Here, a fully implicit Euler
backward method («=1) is applied. The new
stress then equals:

op
o,=09g+Ac=0,—AID— . (24)

60 t+ At

This stress has to comply with the yield condi-
tion. By substituting eqn (24) into the equation
®(a)=0 the yield condition is rewritten as func-
tion of AA The function ®(AL) is solved
accomplishing a local Newton-Raphson proce-
dure.

The global iterative procedure is carried out
applying finite load steps. For this iterative pro-
cedure a tangent stiffness operator must be
used which is consistently linearized from eqn
(24):

e rve1al ; %D p od
=D '¢/ +AA > &+ —. (25)
0o Oo

In case of infinitesimal load steps the second
term on the right hand side vanishes and leads
to the classical continuum elasto-plastic tangent
operator. Here finite load steps are considered
and omitting the second term leads to a poor
convergence behaviour. After some manipula-
tions and using Prager’s consistency condition
®=0 the consistent tangent stiffness matrix is
derived as:

()2
_— da o

H

30 \" a0\ |
hl—) g1 {22

do Oo |

=DCOII v’
with A the hardening modulus and

R0

’
02

H'=D"'+A4

for the von Mises yield criterion. For the Hoff-
mann criterion a more complicated relation
ensures.'”> The derivatives 02®/d¢> can be
obtained by twice deriving eqns (16) or (17) for
the von Mises or the Hoffmann criterion,
respectively.
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5 NUMERICAL EXAMPLES
5.1 Modelling aspects

For the modelling of layered materials the
solid-like shell elements can be applied in two
different ways. On the one hand every layer can
be modelled individually by an element. This
application is advantageous when the interface
between the different layers is subject of the
investigation. The interface itself can then be
represented by special interface elements. On
the other hand the element can represent the
whole stacking sequence of the layered compo-
site. To achieve this the integration in thickness
direction is separated into n; subintegrations.
In this case interlaminar effects cannot be con-
sidered.

The material data which is necessary to set
up the model must provide information for the
whole three-dimensional continuum. In case of
isotropic material three material parameters (E,
v, and &) are employed. Since the prepreg lay-
ers are assumed to behave orthotropically, nine
elastic and nine plastic parameters are required.
The material data are provided for every layer
individually. Accordingly, it is possible to apply
different models in different layers. This feature
is applied when a GLARE® tensile test is com-
puted. Here the yield stresses of the prepreg
layers are significantly higher than that of the
aluminium layers. Therefore, plasticity is taken
into account for the aluminium layers only. For
the classical laminate theory this method would
lead to the bilinear stress—strain relation. For
the orthotropic layers of the buckling examples
presented all nine plasticity parameters must be
given.

5.2 A square plate under uniform surface load

Firstly, a cross-ply plate as proposed by Kim &
Lee'? is modelled: Fig. 2. The plate is analysed
assuming two different stacking sequences:
[90/0]» and [—45/45]r. For the [90/0]; lay-up
one-quarter is modelled with 9 solid-like shell
elements. Since the material does not fulfill the
symmetry condition the whole structure must be
modelled for the [—45/45); stacking sequence
by employing 36 solid-like shell elements. In
thickness direction one element is applied.
Since the layers have the same individual thick-
ness, the integration in thickness direction is
split into two equal-sized intervals. By defining
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the characteristic material direction individually
per layer the stress—strain relation is obtained
layered-wise. The global material parameters
are displayed in Table 1 and adopted with
respect to the direction chosen in the layer.
Here the direction of the fibre orientation is
measured with respect to the x-axis of the global
frame of reference, Fig. 2. The edges of the
plate are clamped. The plate is subjected to a
uniform surface load of 1-0 psi. In this case only
geometrically nonlinear behaviour is taken into
account. The force is applied performing three
equal-sized load steps with an initial load
parameter AA=0-5. The results of the calcula-
tions are displayed in Fig. 3. Obviously, the
results obtained with thick shell elements agree
well with those computed by applying standard
elements in the calculation of Kim & Lee."?

y

=
£
y
:;‘ I;:0.04 inch, X
&

13 X

£

it

-

X

ol
45inch = 4.5inch

Fig. 2. Geometry of the plate under surface loading as
proposed by Kim & Lee.

Table 1. Elastic material parameters for the orthotropic
plate as proposed by Kim & Lee

Young (psi) Shear (psi) Poisson
E” 2'0X10+7 G)Z 7'0X10+5 Viz 03
Ezz 1'4X10+6 623 7'0X10+5 Va3 03
E33 1'4X10+6 G)3 7'0X10+5 Vi3 0-3

1.50

Applied force p [psi)

050 [ ------t---

. i ST U

h L .
0.04 0.06 0.08 0.10

Displacement [inch}

© lay-up {90/0]
© lay-up [-45/45]
4 Kim and Lee

Fig. 3. Load displacement curve of the center of the
orthotropic plate as proposed by Kim & Lee.
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5.3 A square plate under compressive loading

The same plate is loaded with a compressive in-
plane load, Fig. 4. In order to obtain buckling
behaviour a double sinusoidal out of plane
imperfection is introduced. In the initial state
the amplitude of the imperfection equals 0-001
inch in the middle of the plate. The [90/0] lay-
up is examined and a clamped as well as a
hinged configuration are calculated. These
boundary conditions are applied to the edges on
which the load acts. The other edges remain
free. In the clamped case the displacements in
the x-direction and z-direction are zero. In the
y-direction the nodes at the boundary may dis-
place with the same value. In the hinged
configuration the displacements in the y-direc-
tion of the top nodes are equal to each other.
For the bottom nodes a similar relation holds.
The plate is modelled using 5 elements in load-
ing direction and 3 elements perpendicular to
the loading direction. The analysis is performed
applying an arc-length control procedure with a
reference load of p=25000 Ibs/inch.? The results
are exposed in Fig. 5. Obviously, they show a
good agreement with results obtained by Schel-

FTTTITHTTAC

hinged clamped
Ap ]*_
=
[oXe] [eXe]

TRITETTEEE

A~

Fig. 4. Geometry and boundary conditions of the square
plate under compressive loading.

15.0 T T
' 1 I
| | |
t )
1 I
i I
i i

__________________________

=€ clamped 16-noded |
©--© hinged 16-noded
4 Schellekens

]
=]

Applied load (Ibsfinch}

by
=

0.0 L
0.0 1.0 20 30 4.0

Displacement [inch]

Fig. 5. Load deflection curve for the center of the
square plate under compressive loading.

lekens.'” It can be seen in Fig. 5 that the
clamped plate has a higher load capacity. In the
clamped configuration the critical buckling load
is four times higher than the buckling load in
the hinged configuration. Since the buckling
length of the hinged configuration is twice as
large as the buckling length in the clamped con-
figuration this result is expected.

5.4 Analysis of a plate under compressive
loading

Since in the previous example the geometrically
nonlinear behaviour of the elements has been
subject of the calculations the following
example includes physically nonlinear behav-
iour. The example consists of a plate which is
loaded by a compressive force at two opposite
edges of the plate.'* One quarter of the plate is
modelled with 32 solid-like shell elements. The
plate is simply supported at the edges where the
load is applied. A double sinusoidal variation of
the thickness introduces the imperfection to
obtain buckling behaviour. The amplitude of
this imperfection equals 0-294 mm whereby the
thickness of the plate is /=6:00 mm. The other
geometrical properties are given in Fig. 6. The
magnitude of the pressure equals 87-46 N/mm?
which is related to the critical buckling force P,
for this plate."* Two material configurations
have been investigated: in the first example a
purely isotropic material is applied and in the
second case an orthotropic material is selected.
The material parameters of the isotropic mate-
rial equal: £=210-0 kN/mm? v=0-3. For this
material the von Mises yield criterion is adop-
ted with a yield value ¢,=240-0 N/mm® The
anisotropic configuration consists of three layers
composed of uniaxial orthotropic material:
[90]1, where the angle is measured with respect
to the x-axis, Fig. 6. The elastic material para-
meters and the plastic material parameters are

y

 hnomn
A 210 mm
] ;[ [zmmm
T T

Fig. 6. Plate subjected to compressive loading as pro-
posed by Ramm.
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Table 2. Elastic material parameters for the plate pro-
posed by Ramm assuming anisotropic material

Young (MPa) Shear (MPa) Poisson
E;, 180-0x10*3 G2 70x10%3 vi2 0-28
E22 60-0 x 10+3 G23 70 x 10+3 Va3 0-28
E3; 600 x 10+3 G370x10+3 Vi3 0-28

Table 3. Plastic material parameters for the plate pro-
posed by Ramm assuming anisotropic material

Tension Compression Shear

(MPa) (MPa) (MPa)
ol 2000 150-0 m 700
&22 40{) 50{) &55 70{)
a® 40-0 500 Oes 700

given in Table 2 and Table 3, respectively. The
reference load is applied using an arc-length
control procedure.® To calculate the stiffness
matrices a 2 x 2 Gauss-integration is applied on
the surface. In thickness direction the integra-
tion is accomplished using a different number
of integration points (two up to seven).

The comparison for the center deflection of
the isotropic case is shown in Fig. 7. The calcu-
lations with solid-like shell elements result in
the same reaction compared with the results
obtained by standard shell elements.!' Applying
standard shell elements in this benchmark test a
7-point integration in thickness direction is
required to obtain sufficient results, while a
4-point integration leads to sufficient results for
the solid-like shell element.

The results obtained with solid-like shell ele-
ments in the orthotropic case show good
agreement with the results using standard shell
elements, Fig. 8. Hereby the calculations are
performed with 2 integration points per layer.
However, it is emphasized that differences
between both simulations may occur especially
if the boundary conditions cause different
effects in the solid-like shell element compared
to the standard shell elements which are gov-
erned by a plane stress or plane strain
assumption. A conclusion of this benchmark
test and other tests carried out® is that the
solid-like shell element is well suited for model-
ling the behaviour of laminated structures.

5.5 GLARE® tensile test

A GLARE® tensile test is now simulated using
solid-like shell elements. The test has been per-

formed at the Production and Materials
Laboratory of the Faculty of Aeronautical Engi-
neering of Delft University of Technology'® in
the framework of a collaborative research pro-
ject on fibre metal laminates. The test con-
figuration is displayed in Fig. 9. One quarter of
the specimen is modelled using either 40 ele-
ments or 200 elements. In the case of 40
elements each element represents the whole
stacking sequence. Applying 200 element each
element acts in one material layer. The ele-
ments are connected in thickness direction. As
Young’s modulus of the aluminium layer
E=72000 MPa and as Poisson number v=0-33
are adopted. To assess the effects of tempera-
ture variation a thermal expansion coefficient

[— geom.nonl.
 standard shell

—-= geom./phys, nonl.
o 2-paint int.
a 3-point int.
° 4-point Int.
* 5-point int.
*» 7-point int.

Load Factor P/P(critical)

“0.0 100 200 300 40.0 50.0
Center deflection {mm)

Fig. 7. Load deflection curve for the center of the com-
pressed plate assuming isotropic material behaviour.

- geom. nool.
® standard shell
_—= geom./phys. nonl.

=4
w

B e St

Load factor P/P(critical)
o
I8

e

0.0 10.0 20.0 30.0
Center deflection [mm)

Fig. 8. Load deflection curve for the center of the com-
pressed plate assuming orthotropic material: [90] 7.

]

100 + 0.75

Fig. 9. Test specimen of the GLARE® tensile test in
mm,
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Table 4. Elastic material parameters for the GLARE® prepreg layer

Orthotropic layer

Young (MPa) Shear (MPa) Poisson Them. expand.
coef. (1/K)

E,, 53980-0 G, 55480 vy2 0-33 oy 6:1x107°
E,, 94120 G23 55480 va3 0-0575 a3 2:6x107°
E;;9412:0 G13 55480 vy3 0-0575 o33 26 x 1073
=23 x 10" /K is used. The y1€ld value of the 4500 _

. . o 2 000 fomcdento g L2~ without temp. 1
aluminium layer equals =310 N/mm?2. Since C T T T U eperiment
the plastic parameters of the R-Glass prepreg 5 - ;LJ L | - e
are S}gplﬁf:antly hlgher.than those of aluminium PO I S, ot I A R | — with tomp.  hardening
plasticity is not taken into account for the pre- % 2000 b
preg. The elastic material parameters for the T A N UNSE T S U S O
prepreg layers are collected in Table 4. While o I e B S
producing ARALL® and GLARE® the alu- ot 720 A S S S R

minium layers are connected to the prepreg
layers at a temperature Tp,,,=393 K. The test
however is carried out at a temperature
Tep=293 K. The resulting initial stress is
accounted for by simulating the cooling before
loading the test specimen. The material is
assumed to behave geometrically linear whereby
the aluminium layer is governed by the von
Mises yield criterion. In one of the calculations
hardening of the aluminium layer is assumed.
The hardening parameter expected for the alu-
minium layer is taken from Ramm.'¢

The results are shown in Fig. 10. Here the
strain is computed as end displacement related
to the initial length after cooling. The stress is
computed as applied force related to the gross
area in the configuration after cooling which
does not significantly differ from the gross area
before cooling. No significant difference in the
strain-stress diagram between the model using
200 elements and the model using 40 elements
could be noticed. All simulations show good
agreement with the experimental data. Espe-
cially the calculations incorporating hardening
lead to good agreement with the experimental
behaviour. In the latter case the slope of the
curve follows the experimentally obtained curve.
If no hardening is assumed the difference
between the experimental data and the numer-
ical data increases with increasing strains. Since
aluminium in general shows a typical hardening
behaviour this effect could be expected. The
impact of the temperature drop on the results is
minor in this case.

00 1 L L L L L
00 02 04 06 08 10 12 14 |6 18
Strain [%)

Fig. 10. Finite element simulation of a GLARE® speci-
men in a tensile test.

6 CONCLUSIONS

The paper introduces the concept of a solid-like
shell element and its application for modelling
fibre metal laminates. As a first step it has been
proved that the solid-like shell element applied
here leads to the same results obtained using
standard shell elements for a theoretical bench-
mark test. Subsequently, the element has been
employed to model an experiment using
GLARE®. The comparisons show a good
agreement between the numerical and experi-
mental results. Therefore these solid-like shell
elements are suitable for the calculation of the
behaviour of laminated structures.
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