
 
 

Delft University of Technology

Plan-Then-Execute
An Empirical Study of User Trust and Team Performance When Using LLM Agents As A
Daily Assistant
He, Gaole; Demartini, Gianluca; Gadiraju, Ujwal

DOI
10.1145/3706598.3713218
Publication date
2025
Document Version
Final published version
Published in
CHI 2025 - Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems

Citation (APA)
He, G., Demartini, G., & Gadiraju, U. (2025). Plan-Then-Execute: An Empirical Study of User Trust and
Team Performance When Using LLM Agents As A Daily Assistant. In CHI 2025 - Proceedings of the 2025
CHI Conference on Human Factors in Computing Systems Article 414 (Conference on Human Factors in
Computing Systems - Proceedings). ACM. https://doi.org/10.1145/3706598.3713218
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3706598.3713218
https://doi.org/10.1145/3706598.3713218


Plan-Then-Execute: An Empirical Study of User Trust and Team 
Performance When Using LLM Agents As A Daily Assistant 

Gaole He 
Delft University of Technology 

Delft, Netherlands 
g.he@tudelft.nl 

Gianluca Demartini 
School of Information Technology 

and Electrical Engineering 
University of Queensland 

Brisbane, Australia 
g.demartini@uq.edu.au 

Ujwal Gadiraju 
Web Information Systems 

Delft University of Technology 
Delft, Netherlands 

u.k.gadiraju@tudelft.nl 

Figure 1: Illustration of the human-AI collaboration with plan-then-execute LLM agents. 

Abstract 
Since the explosion in popularity of ChatGPT, large language mod-
els (LLMs) have continued to impact our everyday lives. Equipped 
with external tools that are designed for a specific purpose (e.g., for 
flight booking or an alarm clock), LLM agents exercise an increas-
ing capability to assist humans in their daily work. Although LLM 
agents have shown a promising blueprint as daily assistants, there 
is a limited understanding of how they can provide daily assistance 
based on planning and sequential decision making capabilities. We 
draw inspiration from recent work that has highlighted the value of 
‘LLM-modulo’ setups in conjunction with humans-in-the-loop for 
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planning tasks. We conducted an empirical study (𝑁 = 248) of LLM 
agents as daily assistants in six commonly occurring tasks with dif-
ferent levels of risk typically associated with them (e.g., flight ticket 
booking and credit card payments). To ensure user agency and 
control over the LLM agent, we adopted LLM agents in a plan-then-
execute manner, wherein the agents conducted step-wise planning 
and step-by-step execution in a simulation environment. We ana-
lyzed how user involvement at each stage affects their trust and 
collaborative team performance. Our findings demonstrate that 
LLM agents can be a double-edged sword — (1) they can work well 
when a high-quality plan and necessary user involvement in ex-
ecution are available, and (2) users can easily mistrust the LLM 
agents with plans that seem plausible. We synthesized key insights 
for using LLM agents as daily assistants to calibrate user trust and 
achieve better overall task outcomes. Our work has important im-
plications for the future design of daily assistants and human-AI 
collaboration with LLM agents. 
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1 Introduction 
Autonomous agents have been regarded as a research focus for arti-
ficial intelligence (AI) over the last century [1]. With the wish that 
autonomous agents can make our life better, many autonomous 
agents have been designed as virtual personal assistants [49]. These 
AI assistants (e.g., Siri) perform well (albeit imperfectly) in fol-
lowing user instructions to execute low-risk tasks like playing a 
song, reporting weather forecasts, or searching for an image to 
support everyday tasks. However, on tasks entailing potential risks 
(e.g., monetary payments or hiring an employee), humans hesitate 
to trust such AI systems due to loss aversion [96] and algorithmic 
aversion [13, 19, 40, 71]. Only when users can obtain a sense of con-
trol by being able to modify the outcomes of imperfect AI can they 
overcome such algorithm aversion and be willing to collaborate 
with imperfect AI systems [14]. 

With the recent rise of large language models (LLMs) in natural 
language understanding and generation [114], researchers have 
started to analyze LLM-based agents and their applicability in a 
plethora of tasks [101, 109]. The term ‘LLM agent’ refers to an 
artificial entity based on LLMs that perceives its context, makes 
decisions, and then takes actions in response [109]. Compared to 
existing deep learning and LLM-based methods (e.g., chaining multi-
ple LLMs [108]), LLM agents provide more flexibility in task solving 
and user interaction, which makes them suitable for daily assis-
tance. This is primarily due to three reasons. First, with a planning 
module, LLM agents can generate a dynamic plan based on the 
tools provided [101, 109]. Such plans are typically defined in a log-
ical structure — step-wise plans, which can be easily understood 
by humans. Second, with LLMs as a core control module, users 
can access and interact with external toolkits via a more natural 
interaction (i.e., conversation) with LLM agents [6, 114], reducing 
manual control efforts over function-specific tools. For example, 
LLM agents can complete time-consuming jobs like information 
seeking and information filtering (e.g., searching for a flight in 
itinerary planning) based on specific user needs. Third, the Markov 
decision process of LLM agents can generate a sequence of actions 
(i.e., using external toolkits) as output.1 Paired with an understand-
ing of actions and necessary parameters for the interaction with 
the LLM agents, users can get involved in the real-time execution 

1In our study, the usage of one tool is the same as executing one action. Therefore, we 
refer to a tool and an action interchangeably. 

of tasks with LLM agents and fix potential problems while bene-
fiting from task delegation.Based on an intuitive framework for 
task delegation, Lubars et al. [66] found that user trust can play 
an important role in human delegation behaviors to AI systems. 
However, there is a relatively limited understanding of user trust 
development and calibration in collaboration with LLM agents. 

There is also a growing debate in the machine learning and AI 
research communities about whether LLMs can be truly considered 
as planning and reasoning agents [47]. With this in the backdrop, 
existing work on automated task completion has revealed that LLM 
agents can exhibit promising performance in handling complex 
tasks like playing games [105], answering complex questions [116], 
and in simulating social behavior [78]. However, such agents are 
still far from perfect. Due to the probabilistic nature of LLMs, there 
is much uncertainty in automating LLM agents for tasks with high 
risks attached. To avoid unintended or unexpected consequences, 
there is a need for user control over the real-time execution process. 
Through an empirical study of LLM planning capabilities, planning 
experts found that “LLMs’ ability to generate executable plans au-
tonomously is rather limited” [97]. However, when combined with 
a sound planner in an ‘LLM-Modulo’ mode, “the LLM-generated 
plans can improve the search process for underlying sound plan-
ners” [97]. Humans can potentially be the ‘sound planners’ who can 
work in conjunction and optimize plans drafted by LLMs, which can 
then be executed by LLM agents. Such human-AI collaboration can 
reduce human efforts in generating a reliable plan from scratch. 

Drawn by the promise of LLM agents, there have been some 
early explorations [27] of adopting them in human-AI collaboration. 
However, existing works have primarily analyzed how LLM agents 
can serve specific use cases (e.g., design creation [27]), while others 
have conducted structured interviews to obtain expert insights [113, 
115]. Yet, little is known about how well LLM agents can work as 
general purpose daily assistants—to assist users in everyday tasks 
with varying stakes—and how user trust and team performance 
evolve by interacting with LLM agents. 

In our work, we address this research gap and adopt LLM agents 
to assist humans in everyday tasks by following a plan-then-execute 
workflow [102]. First, the LLM agent generates a step-wise plan 
formulated with a hierarchical structure. Then, the LLM agent 
executes the generated plan by transforming it into a sequence of 
actions (leveraging external toolkits). The benefits of such a plan-
then-execute framing are three-fold: (1) Compared to a dynamic 
process where planning and execution are bound closely, separating 
planning and execution into two stages provides more task clarity to 
the users, which reduces user cognitive load and contributes to the 
quality of task outcomes [26]. (2) With planning at the beginning 
of the task, users can develop a global understanding of how the 
LLM agents will execute the task. Based on a follow-up step-by-
step execution, it would be straightforward for users to be involved 
in such a process and control the outcomes of task execution. (3) 
Planning and execution are representative abstractions of how 
LLM agents work. The findings of such an empirical study can be 
generalized to human-AI collaboration with other kinds of LLM 
agents (e.g., dynamic planning-execution). To this end, we propose 
the following research questions: 

https://doi.org/10.1145/3706598.3713218
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• RQ1: How does human involvement in the high-level plan-
ning and real-time execution shape their trust in an AI sys-
tem powered by LLM agents? 

• RQ2: How does human involvement in the high-level plan-
ning and real-time execution of tasks with an AI system 
powered by LLM agents affect the overall task performance? 

Addressing these research questions, we carried out an empirical 
study (𝑁 = 248) of human-AI collaboration in six different everyday 
scenarios with varying stakes and risks attached (e.g., credit card 
payment and itinerary planning). We found that user involvement 
in the planning and execution can be beneficial in addressing im-
perfect plans and fixing execution errors. As a result, LLM agents 
can achieve better task performance. However, we also found that 
user involvement in the planning and execution stages of the LLM 
agent fails to calibrate user trust in corresponding task outcomes. 
A potential reason here is that the plausible plans generated by the 
LLMs can mislead users into trusting the LLM agents when they 
are in fact wrong. Our findings highlight that user involvement 
can also bring about additional trade-offs to consider: (1) user in-
volvement in the planning and execution poses a high cognitive 
load on users and decreases user confidence in their decisions; (2) 
user involvement can be harmful in some task contexts (e.g., user 
involvement reduces plan quality). Further research is required to 
understand when to provide necessary user involvement. Our key 
insight is that as opposed to following a fixed mode of user involve-
ment, it is prudent to explore how user involvement in planning 
and execution can be tailored to fit the task and the user. Based 
on our quantitative and qualitative findings, we share insights for 
designing effective LLM agents as daily assistants and synthesize 
promising directions for further research around LLM agents in 
the context of human-AI collaboration. Our work has important 
theoretical implications for human-AI collaboration with LLM as-
sistance and design implications for plan-then-execute LLM agents 
to support human-AI collaboration. 

2 Background and Related Work 
Our work proposes to analyze how user involvement in the plan-
ning and execution stages of LLM agents shapes user trust in the 
LLM agents and the overall task performance of LLM agents. Thus, 
we position our work in three realms of related literature: human-
AI collaboration (§ 2.1), trust and reliance on AI systems (§ 2.2), 
task support with LLMs and LLM agents (§ 2.3). 

2.1 Human-AI Collaboration 
In recent decades, deep learning-based AI systems have shown 
promising performance across various domains [23, 110] and appli-
cations [15, 81]. However, such AI systems are not good at dealing 
with out-of-distribution data [44, 72], and their intrinsic probabilis-
tic nature brings much uncertainty in practice [28]. Such observa-
tions raise wide concerns about the accountability and reliability 
of AI systems [48]. Under such circumstances, human-AI collab-
oration has been recognized as a well-suited approach to taking 
advantage of their promising predictive power and ensuring trust-
worthy outcomes [45, 53]. While humans can provide more reliable 
and accountable task outcomes, too much user involvement to 
check and control AI outcomes is undesirable [52]. It goes against 

the premise that AI systems are introduced to reduce human work-
load. In that context, researchers have theorized and empirically 
analyzed when and where users could and should delegate to AI 
systems [52, 66]. 

Task Delegation. While humans prefer to play the leading role in 
human-AI collaboration [66], delegating to AI systems can bring 
benefits like cost-saving and higher efficiency. Apart from manual 
delegation decisions, it is common to apply automatic rules for 
human delegation (e.g., heuristics obtained from domain expertise 
or manually crafted rules [52]). Many user factors like trust [66], hu-
man expertise domain [20], and AI knowledge [80]) have a substan-
tial impact on human delegation behaviors. Another relevant stream 
of recent research has explored AI delegation to humans [25, 70, 80]. 
Researchers have investigated the conditions under which AI sys-
tems should defer to a human decision maker, which may bring 
benefits of improved fairness [70], accuracy [75], and complemen-
tary teaming [36]. Compared to human delegation, AI delegation 
has been observed to achieve more consistent benefits in team per-
formance [25, 39]. In collaboration with LLM agents, users need 
to determine when they should be involved in high-level planning 
and real-time execution. Such involvement decisions are similar to 
the delegation choices made by users. While task delegation is not 
the focus of our study, future work can explore this further. 

AI-assisted Decision Making has attracted a lot of research fo-
cus in human-AI collaboration literature. Most existing work has 
conducted empirical studies [53] and structured interviews [45] to 
understand how factors surrounding the user, task, and AI systems 
affect human-AI collaboration. User factors like AI literacy [8], cog-
nitive bias [82], peer input [84], and risk perception [24, 29] have 
been observed to substantially impact user trust and reliance on the 
AI system. Similarly, task characteristics like task complexity and 
uncertainty [85, 86] and factors of the AI system (e.g., performance 
feedback [4, 65], AI transparency [100], stated accuracy [33], and 
confidence of AI advice [95, 112]) also affect user trust and reliance 
on the AI system. For a more comprehensive survey of existing 
work on AI-assisted decision making, readers can refer to [53]. 

While machine learning and deep learning methods have been 
extensively analyzed in existing human-AI collaboration literature, 
to our knowledge, human-AI collaboration with LLM agents is 
still under-explored. Unlike previous studies where AI systems 
only follow a fixed mode to generate advice, LLM agents can be 
equipped with more logical clarity and can provide a step-wise 
plan and can follow a step-by-step execution. With such a plan-
then-execute setup, LLM agents can bring high flexibility as well as 
uncertainty in high-level planning and real-time execution. Little 
is known about how well LLM agents can work as daily assistants 
while handling tasks entailing varying stakes and potential risks. In 
our study, we analyzed the impact of user involvement in such AI 
systems by adjusting their intermediate outcomes (plan and step-by-
step execution) to calibrate their trust and improve task outcomes. 
Our findings and implications can help advance the understanding 
of the effectiveness of LLM agents in human-AI collaboration. 

2.2 Trust and Reliance on AI systems 
Trust and reliance have been important research topics since human 
adoption of automation systems [17, 56]. Due to the widespread 
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integration of AI systems and LLMs in all walks of society, there has 
been a growing interest in understanding user trust [2, 73, 99] and 
reliance [18] on AI systems. User trust in the context of human-AI 
collaboration is typically operationalized as a subjective attitude 
toward AI systems/AI advice [56]. In comparison, user reliance on 
AI systems is based on user behaviors (e.g., adoption of AI advice and 
modification of AI outcomes). The two constructs have been shown 
to be highly related [55, 56]: for example, user trust can substantially 
affect user reliance [56]. However, they are intrinsically different 
and cannot be viewed as a direct reflection of each other [46]. Most 
existing work has, therefore, studied the two constructs separately 
in terms of subjective trust and objective reliance. 

Earlier work exploring human-AI trust primarily focused on the 
impact of different contextual factors surrounding user (e.g., risk 
perception [29]), task (e.g., task complexity [85]), and system 
(e.g., stated accuracy [111, 112]). Empirical studies have shown 
that most users tend to trust AI systems that are perceived to be 
highly accurate [111]. Such trust is vulnerable, as the AI system 
may provide an illusion of competence with persuasive technology 
(e.g., explanations [10, 30]) or overclaimed performance [111]. Even 
if the AI systems are accurate on specific datasets, they still suffer 
from out-of-distribution data [9, 62]. The misplaced trust in the 
AI systems can lead to misuse of the systems. Several empirical 
studies [94] have shown that once users realize the AI system errs 
or performs worse than expected, their trust in the AI system can 
be violated, even resulting in the disuse of the AI system. Both 
the misuse and disuse of the AI system hinder optimal human-AI 
collaboration. 

To address such concerns, researchers have explored how to help 
users calibrate their trust in the AI system. Different techniques to 
help users realize the trustworthiness of the AI system have been 
proposed [48, 68, 83]. For example, increasing the transparency of AI 
systems by providing confidence scores [112], explanations [104], 
trustworthiness cues [58], and uncertainty communication [50]. 
However, the actual trustworthiness of the AI system does not 
always align with user perception. As found by Banovic et al. [3], 
untrustworthy AI systems can deceive end users to gain their trust. 
Another example is that users can develop an illusion of explanatory 
depth brought by explainable AI techniques [10], which leads to 
uncalibrated trust in the AI system. Even if users have indicated 
trust in the AI system, they may turn to rely more on themselves in 
final decision-making. The reasons are complex, and many factors, 
such as accountability concerns [60, 93] and cognitive bias [34], 
may affect user reliance behaviors. 

While trust calibration is an important goal in human-AI col-
laboration, it may be not enough to ensure complementary team 
performance. Through empirical user studies with different confi-
dence levels of AI predictions, Zhang et al. [112] found that “trust 
calibration alone is not sufficient to improve AI-assisted decision 
making”. To achieve optimal human-AI collaboration, humans and 
AI systems need to play complementary roles [37, 38], and humans 
need to know when they should adopt AI assistance. In other words, 
humans should rely on AI advice when AI systems are correct and 
outperform them, and override AI advice when AI systems are 
incorrect or less capable than humans. Such user reliance patterns 
are denoted as appropriate reliance [87, 88], which is the key to 
achieving complementary team performance. 

The main issues that lead to sub-optimal human-AI collabora-
tion are: under-reliance (i.e., disuse AI assistance when AI sys-
tems outperform humans) and over-reliance (i.e., misuse AI as-
sistance when AI systems are wrong or perform worse than hu-
mans) [87]. Users with an uncalibrated trust in the AI system 
can be easily misled to disuse or misuse AI systems [42]. Re-
searchers have proposed various interventions to promote appro-
priate reliance [8, 9, 31, 34, 64, 65] and calibrate user trust in AI 
systems [7, 112]. For example, explainable AI methods have been 
shown to help reduce over-reliance [98] and under-reliance [104] 
in different scenarios albeit with little consistency across contexts. 
Another example is tutorial interventions, which have shown effec-
tiveness in user onboarding [54], mitigating cognitive biases [34] 
and developing AI literacy [8]. For a more comprehensive overview 
of interventions to facilitate trust calibration and appropriate re-
liance, readers can refer to [18, 46, 53, 73]. 

LLM agents [101] have gained much popularity in recent years, 
distinguishing them from most prior AI systems. They can com-
municate through conversation, plan logically, and can be built 
to leverage powerful external tools to achieve complex functions. 
While trust and reliance have been extensively analyzed in exist-
ing human-AI collaboration literature, it is still unclear how users 
trust and rely on AI systems powered by LLM agents. In our work, 
calibrated trust is adopted as an important goal for human-AI col-
laboration in the planning and execution stage. Meanwhile, users 
are expected to fix potential errors in the planning and execution 
stages, reflecting their reliance on the AI system. Our work can 
substantially advance the understanding of trust and reliance on 
plan-then-execute LLM agents. 

2.3 Task Support with LLMs and LLM Agents 
LLMs and LLM agents bring new opportunities and challenges to 
human-AI collaboration [6]. It is evident that their generation ca-
pabilities can help reduce the cognitive effort from humans. But 
LLMs are also riddled with challenges such as hallucination [43] 
(i.e., generated text seems plausible but is factually incorrect). Fail-
ure to handle such issues may bring fatal errors with unaffordable 
costs depending on the context (e.g., medical diagnosis). 

Due to the capability of generating coherent, knowledgeable, 
and high-quality responses to diverse human input [106], a wide 
community of human-computer interaction researchers has paid 
attention to large language models [59]. Researchers have actively 
explored how LLMs can assist users in various tasks like data an-
notation [35, 103], programming [77], writing [5, 90], and fact 
verification [91]. All the above functions can be achieved with 
elaborate prompt engineering using a single LLM. By chaining 
multiple LLMs with different functions, humans can customize 
task-specific workflows to solve complex tasks [108]. Apart from 
obtaining answers with a one-shot text generation, LLMs also pro-
vide convenient conversational interactions. Through empirical 
studies, such conversational interactions have been shown to be ef-
fective in human-AI collaboration with multiple applications, such 
as decision making [61, 67, 92], scientific swriting [90], and mental 
health support [89]. With the growing popularity of LLMs, more 
and more humans have begun to adopt LLMs (e.g., ChatGPT) to 
boost their work efficiency and productivity [114]. 
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Figure 2: Screenshot of user-involved planning interface. 

LLM agents have been shown to have good planning, memory, 
and toolkit usage capabilities [101, 109]. When suitable toolkits are 
provided, LLM agents can readily generate a task-specific plan and 
solve the tasks using toolkits. Attracted by the promise of LLM 
agents, there have been some early explorations [27, 113, 115] of 
adopting them in human-AI collaboration contexts. These works 
were mostly analyzed in specific use cases (e.g., design creation [27]). 
It is unclear how user trust and team performance are affected by 
user interactions with LLM agents in a sequential decision making 
setup (i.e., solving a task by executing a sequence of actions) where 
users can be in control of the execution. To fill this research gap 
and advance our understanding of user control over LLM agents, 
we carried out a quantitative empirical study. 

3 Method 

3.1 Overview of User Involvement in 
Plan-then-execute LLM Agents 

In our study, we adopted plan-then-execute LLM Agents [102] as 
assistants to help users handle daily tasks, e.g., itinerary planning 
and currency transactions. Figure 1 illustrates how users collaborate 
with plan-then-execute LLM agents. First, the LLM agents will 
generate a step-wise plan based on a prompt specifying the plan 
format adopted from [41]. Then, users will make necessary edits to 
the plan based on the provided edit tools (will be further detailed in 
Section 3.2). After the user edit, we obtained the step-wise plan as 
outcomes of the planning stage. Next, the LLM agents will transform 
the step-wise plan into a sequence of action predictions, which will 
be served in a step-by-step manner. Users will join the real-time 
execution process and check whether they approve the current 
predicted action (i.e., blue card shown in Figure 1) or they would 
like to modify the current action prediction. The user involvement 
in execution stages will be introduced in Section 3.3. After the 
iterative execution of all steps, the task is solved. The evaluation of 

task performance is mainly based on the plan quality and execution 
accuracy of the action sequences. 

Implementation details. In our study, we adopted GPT-3.5-turbo 
as the backbone LLM to serve the plan-then-execute LLM agent. 
The backend LLM agent implementation is mainly based on the 
Langchain plan and execute agent.2 The execution of tasks are 
based on a simulation environment, where all tools/actions of the 
LLM agents are pre-defined as backend APIs hosted with Flask3 . In 
the spirit of open science, all code and data analysis results can be 
found at Github.4 

3.2 Planning 
While LLMs can generate high-quality plans, there is no guarantee 
of their correctness and their further impact on the execution of the 
plan. Thus, involving users in the planning stage and controlling 
the plan quality would be essential to ensure successful subsequent 
execution. 

Plan Format. The step-wise plan in our study followed a hierar-
chical structure, adapted from a benchmark for LLM agents toolkit 
usage [41]. The whole plan consists of multiple sub-steps, which 
are at most three levels (e.g., 1., 1.x, 1.x.y where x,y are integers). 
All sub-steps started with the same prefix index are denoted as one 
primary step (e.g., the three blocks of planning outcome in Figure 1). 
A high-level step (e.g., 1.) will provide high-level instruction of the 
current primary step, while low-level steps (e.g., 1.x, 1.x.y) will pro-
vide subsequent details. In the execution stage, each primary step 
will be used as the execution unit. The LLM agent will transform 
one primary step into a predicted action filled with parameters. 
Thus, we ask participants to provide all necessary details in sub-
steps of each primary step. Each primary step will be transformed 

2https://api.python.langchain.com/en/latest/plan_and_execute/langchain_ 
experimental.plan_and_execute.agent_executor.PlanAndExecute.html
3https://github.com/pallets/flask
4https://github.com/RichardHGL/CHI2025_Plan-then-Execute_LLMAgent 

https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.agent_executor.PlanAndExecute.html
https://api.python.langchain.com/en/latest/plan_and_execute/langchain_experimental.plan_and_execute.agent_executor.PlanAndExecute.html
https://github.com/pallets/flask
https://github.com/RichardHGL/CHI2025_Plan-then-Execute_LLMAgent
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(a) (b) 

Figure 3: User-involved execution flow chart and interface. Panel (a): a flow chart illustrating how each primary step is executed 
with two stages: action prediction and action execution. Panel (b): a screenshot of the conversation interface for user-involved 
execution. 

into single action in the follow-up execution stage. If one primary 
step requires two actions to accomplish, it may cause a potential 
loss of one action. Thus, when a plan contains one primary step 
that contains information about two potential actions (e.g., the ini-
tial plan in Figure 1), we consider it as a low-quality plan with 
‘grammar errors.’5 All these plan format designs are informed in 
our onboarding tutorial. 

User-involved Planning. Figure 2 shows one screenshot of user-
involved planning in our study. At the top of the interface, we 
provide a task description along with three buttons: ‘Show Poten-
tial Actions’, ‘Plan Edit Instruction’, and ‘Add one step’. By clicking 
‘Show Potential Actions’, we provide a prompt window to show con-
crete documentary descriptions of all potential actions (including 
action purpose and parameters) to be used in the execution stage. 
All instructions used in our tutorial are accessible with clicking the 
button ‘Plan Edit Instruction’. After users join the planning stage, 
an initial plan generated by LLM will be presented in the orange 
area. We allow users to edit the plan with following interactions: 

• Add step. By clicking ‘Add one step’ button, users can insert 
a valid sub-step index into the whole plan, and then they 
can edit the plan text. 

• Delete step. By clicking the ‘Delete step’ button at the end 
of one step, all sub-steps associated with that step will be 
deleted from the plan. 

• Edit step. By clicking the text input area in each step, users 
are allowed to edit the text with keyboard input. 

• Split step. By clicking the ‘Split step’ button associated with 
one step, we will split the original primary step into two 

5Note that this is not to be confused with the notion of grammar in language. 

primary steps. A new primary step will start the current 
step and contain all follow-up sub-steps. For example, if we 
click ‘Split step’ for the plan show in Figure 2 at index ‘2.2’. 
We will generate a new blank step ‘3.’ (where user input is 
expected) and re-index all sub-steps with ‘2.2.x’ to ‘3.1.x’. 
At the same time, the original plan steps behind it will be 
automatically updated. Through this action, users can easily 
split one step that contains too much information into two 
primary steps. Figure 1 shows an example of plan edit with 
‘split step’. 

3.3 Execution 
After the planning stage, we obtain a plan with a step-wise structure. 
In the execution stage, the LLM agent executes the outcome of 
the planning stage (i.e., a step-wise plan in text) in a step-by-step 
manner. In each step, the LLM agent translates a single step of the 
plan into one action, which is implemented with an API call in 
the backend. This setup is a simulation of real-world applications, 
which provide services with API calls (commonly implemented as 
langchain tools6). Such a simulation setup is effective in developing 
and validating theory [12] and has been widely adopted in existing 
research on agent-based modeling and HCI studies [76]. To provide 
a smooth user experience, we adopted a conversational interface to 
present the execution process. Figure 3(b) shows one screenshot of 
user-involved execution in our study. As we can see, after a message 
of the first primary step of the plan, the LLM agent predicts one 
action ‘create_alarm’. In our study, to provide a tidy view of the 

6https://python.langchain.com/v0.1/docs/modules/tools/ 

https://python.langchain.com/v0.1/docs/modules/tools/
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action prediction, we wrap the predicted action as one card (the 
blue area in Figure 3(b)). 

User-involved Execution. Figure 3(a) presents a flow-chart to 
illustrate a primary step executed by the daily assistant (i.e., LLM 
agent). First, given one primary step, the daily assistant predicts 
an action based on a given list of prepared actions (i.e., pre-defined 
APIs in the backend). After users check the predicted action, they 
can choose from one of the following three buttons to respond. 
(1)‘Proceed’: It indicates users agree that the predicted action is 
correct. After clicking this button, the LLM agent moves forward to 
execute it and shows the execution result of this action. (2) ‘Feed-
back’: Users can give text feedback based on the message input 
area at the bottom of the conversational interface. This triggers 
another action prediction based on the current primary step and 
user feedback. Then, users are provided with the three options to 
proceed again. (3) ‘Specify Action’: Users can override the cur-
rent action prediction with the manual specification of one action. 
If users choose this response, they are first asked to choose one 
action from the prepared action list and then fill in the parameters 
manually. The LLM agent directly executes the user-specified ac-
tion. After one action is executed, if users are not satisfied with the 
results, they can choose to re-execute this step by providing text 
feedback (i.e., by clicking button ‘Give feedback and try again’), 
which works similarly to the ‘Feedback’ option. If users are satisfied 
with the execution results, they can click the ‘Next Step’ button 
and move to execute the next primary step. By iterating over this 
process through the step-wise plan, users can choose to either ap-
prove or get involved in modifying the execution outcomes in each 
step. All actions are predicted and executed in the backend (i.e., the 
respective API calls are triggered). 

3.4 Hypotheses 
Our experiment is designed to answer questions of how human 
involvement in the planning and execution stages will shape their 
trust and overall task performance. To analyze such impact, we 
regulate the levels of automation in the LLM agent through the 
planning and execution stage as baselines for comparison. The 
automatic planning and execution denotes that the LLM agent 
directly generates the task outcomes without user involvement. 

With user involvement in the planning stage, users have the op-
portunity to fix potential mistakes or issues in the plan generated 
by LLMs. Working on such plan editing tasks is similar to debug-
ging, which has been argued to bring about a critical mindset [32] 
to the generated plan. With a critical mindset, users may better 
calibrate their trust in the planning outcome. We also consider 
user involvement in planning to be beneficial to the plan quality, 
which can then contribute to the overall task performance. Thus, 
we hypothesize that: 

(H1): Compared to automatic planning, user-involved plan-
ning will result in a higher calibrated trust in the plan. 
(H2): Compared to automatic planning, user-involved plan-
ning will result in better overall task performance. 

In the user-involved execution process, users manually check the 
action prediction and execution results of each primary step. Such 

user involvement increases the chances of discovering potential 
mistakes of LLM agents. Once users realize that the LLM agent 
made mistakes, they can get involved in modifying the execution 
outcome of the current step. By fixing these mistakes, the overall 
task performance gets improved. With such involvement in fixing 
potential errors, users will be more critical of trusting the task 
outcome. Therefore, we hypothesize that: 

(H3): Compared to automatic execution, user-involved ex-
ecution will result in a higher calibrated trust in execution 
outcome. 
(H4): Compared to automatic execution, user-involved execu-
tion will result in better overall task performance. 

4 Study Design 
This section describes our experimental conditions, tasks, variables, 
procedure, and participants in our study. Our study was approved 
by the human research ethics committee of our institution. 

4.1 Experimental Conditions 
In our study, users collaborate with LLM agent-based daily assis-
tants in two stages: planning and execution. To comprehensively 
understand the effect of user involvement at each stage, we consid-
ered a 2 × 2 factorial design with four experimental conditions: (1) 
automatic planning, automatic execution (represented as AP-AE), 
(2) automatic planning, user-involved execution (represented as AP-
UE), (3) user-involved planning, automatic execution (represented 
as UP-AE), (4) user-involved planning, user-involved execution 
(represented as UP-UE). In conditions with user-involved planning, 
users are allowed to edit the plan generated by LLM with the actions 
of edit/add/delete/split step. By comparison, in conditions with au-
tomatic planning, users will directly adopt the plan generated by the 
daily assistant. In conditions with user-involved execution, users 
can interact with the step-by-step execution LLM agent (cf. Sec-
tion 3.3) and refine execution results with text feedback or manual 
specification. By comparison, in conditions with automatic execu-
tion, users will directly accept the automatic execution results. 

4.2 Tasks 
To analyze how LLM agents can serve as daily assistants, we 
adopted tasks from a planning dataset designed for LLM agents — 
UltraTool [41]. We selected daily scenarios: currency transactions, 
credit card payments, repair service appointments, alarm setting, 
flight ticket booking, and trip itinerary planning. The selected tasks 
are shown in Table 1. For more details about how the plan-then-
execute LLM agent works on the selected tasks (e.g., automatic 
plan, pre-defined actions, automatic evaluation, and explanation 
for errors in automation), please refer to the appendix. All tasks in 
UltraTool dataset are annotated with the step-wise plan format de-
scribed in Section 3.2. The execution of these tasks is based on a sim-
ulation environment (described in Section 3.3) where all required 
actions are implemented as backend APIs. In our study, all tasks are 
executed in a simulation setup, which has been a popular method 
for orchestrating meaningful human-centered AI studies [16, 86]. 
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Table 1: Selected tasks in our study. The ‘Risk’ is based on the risk feedback obtained with pilot study. #A and #C refer to the 
number of actions and the number of named concepts in each task, respectively. 

ID Risk Domain Task Description #A #C Notes 
1 High Finance My account ID is 54321, and the password is PWD2023. I plan to make two foreign exchange transactions. The 

first is to buy 10,000 euros (with USD), and the second is to sell 5,000 US dollars (to EUR). Please help me operate. 
4 4 simple task, im-

perfect plan 
2 High Finance Please inquire about the current debt amount of my credit card with the last five digits 12345, and deduct the 

corresponding 12000 USD from my savings card number 6212345678900011 to repay this debt, then help me 
check the amount of the outstanding bill for the same credit card within 30 days after today. 

4 6 complex task, 
imperfect plan 

3 High Repair I need to schedule a repair for my TV at 6 PM tomorrow evening. The brand is Sony, model X800H, and there is 
an issue with the screen. Please book the repair service and tell me the reservation number. 

4 7 complex task, 
imperfect plan 

4 Low Alarm I need to set an alarm for every weekday morning at 7:30, and then cancel the alarm for Thursday, changing it to 
8:00 in the evening. 

2 3 simple task, cor-
rect plan 

5 Low Flight I have an important meeting to attend next Wednesday, and I need to book a flight ticket from London to 
Amsterdam for tomorrow, it must be a morning flight, and then return from Amsterdam to London tomorrow 
night, please handle it for me. 

2 6 simple task, cor-
rect plan 

6 Low Travel Please plan a trip for me departing on October 1st at 8:00 AM to Japan, returning on October 7th at 11:00 PM, 
including Tokyo Disneyland, Senso-ji Temple, Ginza, Mount Fuji, Kyoto cultural experience, Universal Studios 
Osaka, and visiting the Nara Deer Park on October 4th, and help me find hotels where the nightly cost does not 
exceed 10,000 Japanese yen. 

3 11 complex task, 
correct plan 

Task Selection. First, based on the domain distribution of the Ul-
traTool dataset, we selected seven domains: Finance, Alarm, Travel, 
Tracking, Restaurant, Flight, and Repair. For each domain, we only 
consider tasks that contain more than ten steps (including all sub-
steps) and require at least three uses of actions. Then, we manually 
selected ten tasks: four from the finance domain and one for each of 
the others. With a pilot study, we tested how users work on the ten 
tasks. We recruited 10 participants from the Prolific platform and 
only considered the feedback of 9 participants who passed all atten-
tion checks. Using the question “How much risk do you perceive in 
this task when relying on this daily AI assistant?”, we collected the 
perceived risk of working with the LLM agents on each task using 
a 5-point Likert scale, ranging from 1: not risky at all—to—5:very 
risky. We categorize the ten tasks into a high-risk group (top 5) 
and a low-risk group (bottom 5). We selected three tasks from each 
group while balancing the complexity of the task description (three 
simple tasks and three complex tasks) and the correctness of the 
provided plan (three correct plans and three imperfect plans). Based 
on existing literature on task complexity [85, 107], we considered 
component complexity to inform our selection. This is assessed 
as the ‘total number of distinct information cues that need to be 
processed to perform the task’. Here, we considered the number of 
unique actions and the number of named concepts provided in each 
task. According to prior work [74], most people can only handle 5 
to 9 concepts at the same time. The component complexity of all 
complex tasks in our study is more than nine. The six tasks selected 
are shown in Table 1. Besides the six tasks, we used one simple 
task (i.e., checking bank account balance) as the example in the 
onboarding tutorial. 

4.3 Measures and Variables 
The variables and measures used in our study refer to existing 
empirical studies of human-AI collaboration [53]. All measures 
adopted in our study can be summarized in Table 2. 

Calibrated Trust. To assess calibrated trust in the planning stage 
and execution stage, we assessed user trust at each stage with 
a question “Do you trust that [the execution of this plan / the 

execution process] can provide a correct outcome based on the 
task instructions?”. Based on the plan quality evaluation (5-point 
Likert), the calibrated trust in the planning (CT𝑝 ) is calculated 
based on the frequency at which users trusted the high-quality plan 
(expert annotation with 5) and users distrusted the plan with other 
evaluation results. Similarly, for the calibrated trust in execution 
(CT𝑒 ), we calculated the frequency at which users trusted the correct 
execution results and distrusted the wrong execution results. The 
two measures can be calculated as: 

CT𝑝 =I (trust = ‘Yes’, plan quality = 5) 
+ I (trust = ‘No’, plan quality < 5) (1) 

CT𝑒 = I (trust = ‘Yes’, ACC𝑒 = 1) + I (trust = ‘No’, ACC𝑒 = 0) (2) 
To assess the task performance, we mainly considered the task 

outcome from the planning and execution stages. 

Plan Quality. As for the planning outcome, we evaluate the plan 
quality based on a 5-point Likert scale: 1. low-quality plan, task 
requirements not covered; 2. low-quality plan, task requirements 
covered but with grammar errors; 3. medium-quality plan, task 
requirement covered but with at least one action intent mismatch 
with ground truth action sequence; 4. medium-quality plan, task 
requirements covered but miss or have wrong details for action 
parameters; 5. high-quality plan, covering all task requirements 
and providing all necessary details. 

Execution Performance. The execution of the step-wise plan 
will result in an action sequence. We provide a ground truth action 
sequence as a reference to evaluate the generated action sequence. 
We measure the action sequence accuracy (ACC𝑠 ) as the strict match 
of the action sequence and ground truth. Meanwhile, if one action 
sequence contains some redundant actions that are not harmful 
(e.g., searching for flights), the execution results should still be 
correct. Thus, we also consider execution accuracy (ACC𝑒 ) as a task 
performance measure. 

Subjective Trust and Covariates. To enrich our analysis of user 
trust, we followed existing work to adopt the six subscales from 
the Trust-in-automation questionnaire [51]. The four subscales — 
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Table 2: The different variables considered in our experimental study. “DV” refers to the dependent variable. 

Variable Type Variable Name Value Type Value Scale 

Calibrated Trust (DV) Calibrated Trust in planning (CT𝑝 ) Binary 0: miscalibrated trust, 1: calibrated trust 
Calibrated Trust in execution (CT𝑒 ) Binary 0: miscalibrated trust, 1: calibrated trust 

Task Performance (DV) 
Plan Quality Likert 5-point, 1: low, 5: high 

Action Sequence Accuracy (ACC𝑠 ) Binary 0: mismatch, 1: exact match with ground truth 
Execution Accuracy (ACC𝑒 ) Binary 0: wrong execution result, 1: correct execution result 

Trust 

Reliability/Competence Likert 5-point, 1: poor, 5: good 
Understanding/Predictability Likert 5-point, 1: poor, 5: good 

Intention of Developers Likert 5-point, 1: poor, 5: good 
Trust in Automation Likert 5-point, 1:strong distrust, 5: strong trust 

Covariates 

LLM Expertise Likert 5-point, 1: No experience, 5: Extensive experience 
Automatic Assistant Expertise Likert 5-point, 1: No experience, 5: Extensive experience 

Propensity to Trust Likert 5-point, 1: tend to distrust, 5: tend to trust 
Familiarity Likert 1: unfamiliar, 5: very familiar 

Exploratory 

Confidence Likert 5-point, 1: unconfident, 5: confident 
Risk Perception Likert 5-point, 1: not risky at all, 5: very risky 

Open Feedback on Planning Text Open Text 
Open Feedback on Execution Text Open Text 

Other Open Feedback Text Open Text 

Cognitive Load 

Mental Demand Likert -7: very low, 7: very high 
Physical Demand Likert -7: very low, 7: very high 
Temporal Demand Likert -7: very low, 7: very high 

Performance Likert -7: Perfect, 7: Failure 
Effort Likert -7: very low, 7: very high 

Frustration Likert -7: very low, 7: very high 

Reliability/Competence, Understanding/Predictability, Intention of 
Developers, Trust in Automation are used as subjective measures 
of user trust in the LLM agent. Meanwhile, the Familiarity and 
Propensity to Trust are also used as covariates. Besides them, we 
considered user expertise in LLMs and user expertise in automatic 
assistants as covariates. 

Exploratory Variables. To enrich our understanding of LLM agent 
as daily assistant, we assessed user confidence (both planning and 
execution) and risk perception along with each task. After users 
finish the study, we also ask for their open-text feedback on the 
planning and execution stages as well as other comments. To check 
the cognitive load of user involvement in our study, we adopted 
the NASA-TLX questionnaire [11], which contains six subscales. 

4.4 Participants 

Sample Size Estimation. To ensure sufficient statistical power, we 
estimated the required sample size for a 2 × 2 factorial design based 
on G*Power [22]. To correct for testing multiple hypotheses, we 
applied a Bonferroni correction so that the significance threshold 
decreased to 0 .05 = 0.0125. We specified the default  4 effect size 
𝑓 = 0.25 (i.e., indicating a moderate effect), a significance threshold 
𝛼 = 0.0125 (i.e., due to testing multiple hypotheses), a statistical 
power of (1 − 𝛽) = 0.8, and that we will investigate 4 different 
experimental conditions/groups. This resulted in a required sample 
size of 244 participants. We thereby recruited 347 participants from 
the crowdsourcing platform Prolific7 , to accommodate potential 
exclusion. 

Compensation. All participants were rewarded with an hourly 
wage of £8.1 deemed to be “Fair” payment by the platform (esti-
mated completion time was 30 minutes). As participants in con-
dition UP-UE spent longer in the study, we paid each participant 
a commensurate bonus accounting for an extra 10 minutes. We 

7https://www.prolific.co 

rewarded participants with extra bonuses of £0.05 for every high-
quality plan and correct execution result. According to existing 
literature [56], such a bonus setup can help incentivize participants 
to reach a correct decision. In comparison with existing literature ex-
ploring human-AI decision making [53], our reward setup is above 
the average payment and can be considered as being sufficient to 
elicit ecologically valid behavior among participants (i.e., aiming 
to arrive at accurate execution results). Moreover, similar bonus 
structures akin to our setup have been effective in incentivizing 
reliable participant behavior and improving data quality across 
different studies with crowdsourced participants [21, 57, 69, 86]. 

Filter Criteria. All participants were proficient English speakers 
between the ages of 18 - 50. We also constrained their prior experi-
ence (at least 40 successful submissions) and had an approval rate 
of above 90% on the Prolific platform. We excluded participants 
from our analysis if they failed any attention check, or represented 
an outlier regarding the plan quality. Outliers were 4 participants 
who generated more than three low-quality plans among six tasks. 
The reserved 248 participants had an average age of 32.5 (𝑆𝐷= 8.1) 
and a balanced gender distribution (50%, 49.6% female, 0.4% other). 

4.5 Procedure 
Participants were first presented with a study description and an 
informed consent for data collection. Only those who signed the 
informed consent were allowed to continue onto our study. Next, 
participants were asked to complete a pre-task questionnaire to 
measure their expertise on LLMs and automatic assistants. 

Participants were then assigned to one of the experimental condi-
tions, which differed in the level of user involvement in the planning 
stage and execution stage. With an onboarding tutorial, we show-
cased the necessary interactions that participants were expected to 
perform in the planning and execution stages. We used an example 
task to help participants understand how to work with the plan-
then-execute LLM agent. After the onboarding tutorial, participants 

https://www.prolific.co
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Figure 4: Bar plot for cognitive load across all conditions. ** indicates significance (𝑝 < 0.0125) through post-hoc Tukey HSD test. 
The error bars represent the 95% confidence interval. 

worked on the selected tasks, which were shuffled at random for 
every participant to prevent task ordering effects. After the partici-
pants finished the task batch, we measured their perceived cognitive 
load using the NASA-TLX questionnaire [11], their overall trust in 
the daily assistant using the trust in automation questionnaire [51], 
and we gathered their feedback on our system (related to planning, 
execution, and other aspects) using open-ended text. 

5 Results 
In this section, we will present the main experimental results and 
exploratory analysis for our study. 

5.1 Descriptive Statistics 
In total, our analysis is based on 248 participants, who are balanced 
across conditions: AP-AE (63), AP-UE (64), UP-AE (61), and UP-UE 
(60). All edited plans in user-involved planning conditions are eval-
uated by the authors following the plan quality criteria described 
in Section 4.3. 

Distribution of Covariates. In our study, most participants 
claimed to have some experience with using large language models 
(𝑀 = 3.6, 𝑆𝐷 = 1.0) and automatic assistants (𝑀 = 3.4, 𝑆𝐷 = 1.1). 
In the trust in automation questionnaire, participants indicated a 
medium level of Familiarity (𝑀 = 2.9, 𝑆𝐷 = 1.2) and Propensity to 
Trust (𝑀 = 3.0, 𝑆𝐷 = 0.7). 

Performance Overview. Overall, users show calibrated trust in 
the planning (𝑀 = 0.50, 𝑆𝐷 = 0.13) and calibrated trust in the 
execution (𝑀 = 0.64, 𝑆𝐷 = 0.19). For the execution outcome, we 
find that although it is tricky to obtain a ground truth action se-
quence (𝑀 = 0.48, 𝑆𝐷 = 0.17), the action sequence has a relatively 
high recall of ground truth actions (𝑀 = 0.77, 𝑆𝐷 = 0.11). The 
successful rate for correct execution (𝑀 = 0.52, 𝑆𝐷 = 0.18) is higher 
than the strict evaluation of the action sequence. We also collected 
user subjective trust with four subscales of the trust in automation 
questionnaire: Reliability/Competence (𝑀 = 3.49, 𝑆𝐷 = 0.77), Under-
standing/Predictability (𝑀 = 3.30, 𝑆𝐷 = 0.56), Intention of Developers 
(𝑀 = 3.61, 𝑆𝐷 = 0.81), Trust in Automation (𝑀 = 3.52, 𝑆𝐷 = 1.01). 
With a two-way ANOVA analysis considering user involvement 

in planning and execution, we do not find any significant impact 
of user involvement on subjective user trust in AI systems across 
conditions. 

Cognitive Load. The cognitive load of participants across the 
four experimental conditions is shown in Figure 4. Based on two-
way ANOVA, we analyzed the impact of user involvement in plan-
ning and execution affect user cognitive load. User involvement in 
planning shows a significant impact on Mental Demand, Temporal 
Demand, and Frustration. User involvement in execution shows a 
significant impact on Performance and Effort. With post-hoc Tukey 
HSD test, we confirmed such impact — involvement in both plan-
ning and execution posed a higher cognitive load on participants. 

User Involvement. Among 121 participants in conditions with 
user-involved planning, 104 participants edited at least one task 
plan. Meanwhile, 90 participants used the provided buttons (i.e., ad-
d/delete/split step) in our study. In total, delete step is used 394 times, 
add step is used 183 times, split step is used 126 times. Among 124 
participants in conditions with user-involved execution, 114 partic-
ipants interacted with the conversation interface to change action 
prediction (i.e., have at least one task where they choose to give 
feedback or override predicted action). Meanwhile, 105 participants 
specified at least one action in the task batch. In total, Specify Action 
is used 445 times, feedback to the LLM agent is used 91 times before 
action execution, and feedback to the LLM agent is used 163 times 
after execution. 

5.2 Hypothesis Verification 
As the tasks selected in our study are of different initial plan qual-
ity and risk levels, we conducted a task-specific analysis in each 
hypothesis verification. 

5.2.1 The Impact of User Involvement in Planning on Calibrated 
Trust. To verify H1, we adopted the one-way ANOVA test and 
post-hoc Tukey HSD test on the calibrated user trust in planning 
(i.e., CT𝑝 ). The results are shown in Table 3. Only in task-4, we 
found user involvement in planning will have a negative impact on 
calibrated trust in planning. To avoid a potential impact of user in-
volvement in the execution stage, we conducted a two-way ANOVA 
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Table 3: Task-specific evaluation results for user-involvement in planning on calibrated trust in planning (CT𝑝 ) and plan quality. 
We also report the mean value for each measure on each condition. 

CT𝑝 Plan Quality 
Tasks AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results 
Avg 0.51 0.50 0.50 0.50 - 3.8 3.8 3.6 3.7 AP > UP 
task-1 0.11 0.20 0.13 0.27 - 2.0 2.0 2.3 2.4 AP < UP 
task-2 0.21 0.11 0.20 0.17 - 3.0 3.0 2.9 2.9 -
task-3 0.10 0.03 0.10 0.07 - 3.0 3.0 2.7 2.9 AP > UP 
task-4 0.94 0.97 0.80 0.90 AP > UP 5.0 5.0 4.3 4.8 AP > UP 
task-5 0.87 0.84 0.90 0.82 - 5.0 5.0 4.6 4.8 AP > UP 
task-6 0.81 0.81 0.85 0.75 - 5.0 5.0 4.7 4.6 AP > UP 

Table 4: Task-specific evaluation results for user-involvement in planning on task performance. ACC𝑠 denotes the strict 
accuracy of an action sequence, and ACC𝑒 denotes the correctness of execution results. Bold fonts are used to highlight the best 
performance across conditions. 

Tasks ACC𝑠 ACC𝑒 

AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results 
Avg 0.53 0.46 0.46 0.48 - 0.54 0.53 0.47 0.56 -
task-1 0.00 0.00 0.10 0.12 AP < UP 0.00 0.00 0.10 0.13 AP < UP 
task-2 0.78 0.64 0.61 0.57 - 0.78 0.72 0.66 0.75 -
task-3 0.44 0.12 0.36 0.28 - 0.44 0.42 0.36 0.52 -
task-4 0.95 0.89 0.75 0.82 AP > UP 0.95 0.89 0.75 0.82 AP > UP 
task-5 0.98 0.91 0.90 0.90 - 0.98 0.91 0.92 0.90 -
task-6 0.05 0.22 0.02 0.18 - 0.06 0.23 0.03 0.22 -

test to confirm the findings. We only find a significant difference in 
task-4. Post-hoc Tukey HSD results show that participants in con-
ditions with automatic planning (AP) showed significantly higher 
calibrated trust in planning outcomes than those in conditions with 
user-involved planning (UP). Thus, our experimental results do not 
support H1. 

We noticed that the calibrated trust in planning is quite low in the 
high-risk tasks where all initial plans are imperfect. This indicates 
that many users across all conditions consider the generated plan 
trustworthy. On tasks with low risk, where the initial plan is of 
high quality, users achieved much higher calibrated trust in the 
planning outcome. We also find that conditions with user-involved 
execution (UE) show slightly higher CT𝑝 in task-1 and task-4 than 
conditions with automatic execution (AE). With the same statistical 
test as H1 analysis, such differences are not significant. 

5.2.2 The Impact of User Involvement in Planning on Task Perfor-
mance. To verify H2, we considered plan quality, the accuracy of 
action sequences (ACC𝑠 ), and the execution accuracy of the plan 
(ACC𝑒 ) for analysis. For plan quality (cf. Table 3), we conducted 
one-way ANOVA on plan quality considering the user involvement 
in the planning stage. We found that overall user involvement in the 
planning stage caused a decrease plan quality, especially on tasks 
with a perfect plan (i.e., task 4, 5, 6, where plan quality = 5) and task-
3. However, in task-1, where the original plan contains a grammar 
error, we find that user involvement in planning can improve the 
plan quality. As the action sequence accuracy (ACC𝑠 ) and execution 
accuracy (ACC𝑒 ) are not normally distributed, we conducted the 
Kruskal-Wallis H-test by considering the user involvement in the 
planning as the independent variable. The results are shown in 

Table 4. With further post-hoc Mann-Whitney tests, we found that 
while participants achieved a relatively higher accuracy of action 
sequences in condition AP-AE, the condition UP-UE achieved the 
best execution accuracy. In most tasks, condition UP-UE achieved 
better or compatible performance as other conditions. The only 
exception is task-4, where user involvement in the planning caused 
a significantly worse performance (both ACC𝑠 and ACC𝑒 ). As user 
involvement does not consistently lead to improved performance, 
these results are not enough to support H2. 

We found that in task-1 and task-6 most participants in the AP-
AE condition achieved a very low success rate. This is mainly due 
to the imperfect plans and imperfect execution generated by LLMs. 
In task-1, the plan generated by LLMs includes one step which 
contains two actions to execute. Due to the inability to edit the 
plan, the LLM agent execution missed one transaction in conditions 
with automatic planning. In task-6, the plan generated by LLMs 
is correct. However, in the automatic execution of step 2 of the 
plan (i.e., selecting an itinerary suggested), the LLM agent has a 
high probability of choosing an itinerary that does not match the 
task description. If the participants do not carefully check the task 
description, and correct this agent behavior, the execution results 
would be wrong. This also helps explain why user involvement 
substantially improves the task outcome accuracy in task-6. More 
details about tasks can be found in the appendix. 

5.2.3 The Impact of User Involvement in Execution on Calibrated 
Trust in Execution Outcome. As we observe in Table 3, user in-
volvement in planning can have some negative impact on the plan 
quality, which further impacts the execution stage. To control such 
impact, we filtered out the tasks where plan quality decreased after 
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Table 5: Task-specific evaluation results for user-involvement in execution on task performance. Bold fonts are used to highlight 
the best performance across conditions. 

Tasks ACC𝑠 ACC𝑒 

AP-AE AP-UE UP-AE UP-UE Post-hoc results AP-AE AP-UE UP-AE UP-UE Post-hoc results 
Avg 0.53 0.46 0.50 0.51 - 0.54 0.53 0.50 0.58 -
task-1 0.00 0.00 0.10 0.12 - 0.00 0.00 0.10 0.14 -
task-2 0.78 0.64 0.67 0.62 - 0.78 0.72 0.69 0.78 -
task-3 0.44 0.12 0.42 0.29 AE > UE 0.44 0.42 0.42 0.53 -
task-4 0.95 0.89 0.94 0.88 - 0.95 0.89 0.94 0.88 -
task-5 0.98 0.91 1.00 0.98 - 0.98 0.91 1.00 0.98 -
task-6 0.05 0.22 0.02 0.19 AE < UE 0.06 0.23 0.04 0.23 AE < UE 

user-involved planning in the analysis of user involvement in the 
execution stage. To verify H3, we conducted one-way ANOVA on 
calibrated trust in execution outcome (CT𝑒 ). The results are shown 
in Table 6. We found that user involvement in execution causes no 
significant difference across conditions. Thus, H3 is not supported 
by our experimental results. 

Table 6: Task-specific evaluation results for user-involvement 
in execution on calibrated trust in execution (CT𝑒 ). We also 
report the mean value for each measure on each condition. 

Tasks CT𝑒 

AP-AE AP-UE UP-AE UP-UE Post-hoc results 
Avg 0.66 0.65 0.64 0.65 -
task-1 0.48 0.44 0.51 0.49 -
task-2 0.78 0.83 0.71 0.80 -
task-3 0.51 0.41 0.60 0.47 -
task-4 0.94 0.92 0.88 0.86 -
task-5 0.89 0.92 0.96 0.94 -
task-6 0.37 0.38 0.28 0.42 -

5.2.4 The Impact of User Involvement on Overall Task Performance. 
Similar to the verification of H3, we excluded the tasks where plan 
quality decreased after user-involved planning in this analysis. As 
the plan is generated before user involvement in the execution, we 
only considered ACC𝑠 and ACC𝑒 in the analysis of user involvement 
in the execution stage. To verify H4, we conducted Kruskal-Wallis 
H-test by considering the user involvement in the execution as 
the independent variable. The results are shown in Table 5. With 
post-hoc Mann-Whitney tests, we found that user involvement in 
the execution stage showed significantly higher ACC𝑠 and ACC𝑒 

in task-6 (where the LLM assistant mainly failed to choose the 
most suitable itinerary plan). We found that participants in the 
AP-AE condition achieved the best accuracy of action sequences 
(i.e., ACC𝑠 ), and participants in condition UP-UE achieved the best 
execution accuracy (i.e., ACC𝑒 ). In other words, the executed action 
sequence in condition AP-AE is more aligned with the ground 
truth action sequence annotated by the authors. However, with 
user involvement in the execution stage, participants in condition 
UP-UE have a better opportunity to obtain correct task outcomes by 
correcting potentially flawed actions. Such a difference is due to our 
measure of ACC𝑒 , which tolerates the non-risky actions (e.g., search 
flight) and failure of action predictions. In contrast, our measure of 
ACC𝑠 considers this as a wrong action sequence. Thus, in task-3, 

even if we find automatic execution achieved significantly better 
ACC𝑠 than user-involved execution, participants in condition AP-
UE and UP-UE obtained comparable or higher execution accuracy 
(i.e., ACC𝑒 ) than conditions with automatic execution. While user 
involvement shows some positive impact on the execution accuracy, 
such impact is not significant and consistent across all tasks. Only 
in task-6, where users can correct the errors made by the LLM agent 
(i.e., the wrong itinerary selection mentioned in Section 5.2.2), user 
involvement in the execution shows a significant contribution to 
the task performance. Thus, these results are not enough to strictly 
support H4. 

5.3 Exploratory Analysis 
5.3.1 The Impact of Covariates. For further insights into all user 
factors on user trust and team performance, we calculated Spearman 
rank-order correlation coefficients for user trust, calibrated trust, 
risk perception, and task performance. As can be seen in Table 7, 
we found these covariates mainly show correlations with subjective 
user trust, calibrated trust in execution, and risk perception. First, 
all covariates (i.e., user factors) positively correlated with user trust 
(four subscales in the trust in automation questionnaire [51]) and 
negatively correlated with perceived risk (average over six tasks). 
It indicates that users with more expertise or familiarity with such 
systems tend to trust the daily assistant and show less perceived 
risk when using it. Meanwhile, users with a general propensity 
to trust also tend to trust the AI system. Besides user trust, Assis-
tant Expertise and Propensity to Trust show a significant negative 
correlation with calibrated trust in the execution outcome. Apart 
from the above correlation, these user factors do not significantly 
correlate with task performance measures or calibrated trust in the 
planning outcome. 

5.3.2 Impact of Plan Quality and Risk Percetion. Besides the mea-
sures calculated over task batch, a task-level analysis of plan quality 
and risk perception can deepen our understanding of their impacts. 
Besides measures adopted in Table 7, we include task-level con-
fidence in this analysis and exclude the subscales from the trust 
in automation questionnaire. Thus, we calculated Spearman rank-
order correlation coefficients for task-level measures across all 
groups of participants (shown in Table 8). As we can see, both plan 
quality and risk perception significantly correlate with user trust, 
calibrated trust, task performance, and user confidence. The plan 
quality shows a significant positive correlation with most measures, 
which indicates users perform better and calibrate their trust in the 
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Table 7: Spearman rank-order correlation coefficient for covariates level on dependent variables. All measures are calculated 
based on average over task batch. “†” and “††” indicate the effect of the variable is significant at the level of 0.05 and 0.0125, 
respectively. 

Covariates llm expertise assistant expertise Familiarity Propensity to Trust 
Category Variables 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 

User Trust 

Reliability/Competence 0.334 .000†† 0.245 .000†† 0.321 .000†† 0.679 .000†† 

Understanding/Predictability 0.307 .000†† 0.164 .010†† 0.208 .001†† 0.380 .000†† 

Intention of Developers 0.406 .000†† 0.324 .000†† 0.362 .000†† 0.517 .000†† 

Trust in Automation 0.380 .000†† 0.278 .000†† 0.356 .000†† 0.698 .000†† 

Calibrated Trust CT𝑝 0.053 .404 0.053 .402 0.056 .378 0.037 .566 
CT𝑒 -0.120 .059 -0.195 .002†† -0.032 .621 -0.174 .006†† 

Risk Perception Perceived Risk -0.187 .003†† -0.180 .004†† -0.237 .000†† -0.363 .000†† 

Task Performance 
ACC𝑠 0.037 .560 -0.014 .823 0.110 .085 0.018 .772 
ACC𝑒 -0.000 .995 -0.037 .567 0.085 .184 0.007 .911 
Plan Quality -0.035 .587 -0.037 .560 0.080 .211 -0.032 .611 

Table 8: Task-specific spearman rank-order correlation co-
efficient for plan quality and risk perception. “†” and “††” 
indicate the effect of the variable is significant at the level of 
0.05 and 0.0125, respectively. 

Category Variables Plan Quality Risk Perception 
𝑟 𝑝 𝑟 𝑝 

User Trust Trust-p 0.056 .032† -0.293 .000†† 

Trust-e 0.258 .000†† -0.160 .000†† 

Calibrated Trust CT𝑝 0.723 .000†† -0.102 .000†† 

CT𝑒 0.221 .000†† 0.000 .995 

Task Performance 
Plan Quality - - -0.141 .000†† 

ACC𝑒 0.400 .000†† -0.110 .000†† 

ACC𝑠 0.446 .000†† -0.096 .000†† 

Confidence 
Confidence-p 0.137 .000†† -0.532 .000†† 

Confidence-e 0.225 .000†† -0.271 .000†† 

LLM agents in tasks with a high-quality plan. By contrast, the risk 
perceptions shows a negative correlation with most measures and 
also a negative correlation with the plan quality. 

5.3.3 Failure Analysis. As we find that plan quality substantially 
affects task execution accuracy, we look into task performance 
across different plan qualities. For the tasks with low-quality plans 
(plans fail to cover task information or plan with grammar errors, 
i.e., plan quality=1, 2), the execution accuracy is 1.8%. While for 
tasks with a plan that may mislead action prediction (plan quality 
= 3, 4), our LLM agent-based daily assistant achieved 59% execution 
accuracy. The average execution accuracy for tasks with a high-
quality plan (plan quality =5) is 66.7%. 

We further check 717 tasks where a high-quality plan (plan 
quality = 5) is provided. Among them, 235 tasks provide wrong 
execution results. The main causes are: (1) Wrong action param-
eter prediction (48.9%). While action names match, one or more 
parameters mismatch the expected value at some step of the action 
sequence. (2) Invalid actions (48.5%). Given a perfect plan, the LLM 
agent failed to predict one valid action (failed to predict one action 
name or failed to predict some action parameter value) to execute 
in some steps. (3) Wrong action name prediction (2.6%). The gener-
ated action sequence has at least one action name prediction that 
mismatches the ground truth. 
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Figure 5: Bar plot for confidence dynamics, the x-axis denotes 
the task ordering index (shuffled for every participant). The 
error bars represent the 95% confidence interval. 

5.3.4 Confidence Dynamics. To visualize the user confidence in the 
planning and execution stage, we draw point plots (see Figure 5) for 
user confidence in the task order. Overall, condition AP-AE shows 
the highest confidence in both the planning and execution stages. 
To verify the impact of user involvement in confidence, we adopted 
two-way ANOVA and post-hoc Tukey HSD test. We find that: (1) 
with user involvement in the planning, participants showed sig-
nificantly lower confidence in planning (AP-AE > UP-AE, UP-UE); 
(2) with user involvement in the execution, participants showed a 
significantly lower confidence in execution (AP-AE > AP-UE, UP-
UE). Meanwhile, users typically showed a higher confidence in the 
execution stage. Compared with conditions with automation execu-
tion (i.e., condition AP-AE and UP-AE), the confidence gap narrows 
down in the conditions with user-involved execution (i.e., condition 
AP-UE and UP-UE). 

5.4 Analysis of Open Feedback 
At the end of our study, we collected open feedback regarding the 
planning stage, execution stage, and any other feedback using the 
following question: ‘Please share any comments, remarks or sugges-
tions regarding the planning/execution stage of LLM Assistant’ and 
‘Do you have any other comments, remarks or suggestions regarding 
the study?’. Overall, we analyzed all the feedback based on user 
opinions (positive, negative, mixed, neutral) and their suggestions. 
In our analysis, we ignored all responses that did not directly lead 
to useful input such as ‘None’, ‘N/A’, and ‘No comment’. 
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Table 9: Excerpts from participants’ responses to open questions soliciting their opinions. 

Opinions towards Planning Sentiment Reason 

I really like how organized it is. The step by step and numerical planning allows it to make sense in a 
clear and structured way, meaning there is less room for errors or misinformation 

Positive helpful with reducing error 

It was remarkable how quickly. It was able to achieve the goals which was set out in the tasks. I quite 
liked it I would definitely want something like this in my life as It would my my life much easier 

Positive Effective and make life easy 

As I said previously, it’s far, far too detailed in an unnecessary way. I’m not sure people need the 
entire plan of what the AI will do, as long as the job gets done. 

Negative too detailed 

I found it really helpful, but made me slightly nervous thinking all my plans being successful are in 
the hands of ai tech 

Mixed helpful assistant, agency concerns 

Opinions towards Execution Sentiment Reason 

The execution stage was amazing. I feel like this could be the future and we wont need to call or talk 
to people to get this kind of thing done ever again. 

Positive promising future 

The execution stage went smoothly, except for a few rare instances of an error response before also 
saying the AI’s automatic reply (which was correct). 

Mixed Smooth user experience, error re-
sponse 

I found it clunky and nit that user friendly Negative clunky, not user-friendly 
This bit is user friendly, but very robotic, which makes it difficult to trust Mixed user-friendly, distrust due to 

robotic nature 

Feedback and Suggestions. While most comments tended to 
demonstrate positive opinions towards LLM agents as daily assis-
tants (more than 80%), there were also negative opinions regarding 
the difficulty, expertise, and trust. We provide example excerpts 
from participants in Table 9. Besides opinions towards the system, 
some participants also appreciated our user-centric setup: 

"The study does a good job of emphasizing user experience by ask-
ing about perceptions of risk, trust, and confidence. This approach 
ensures that the evaluation is user-centric, which is important for 
assessing the real-world applicability of the LLM Assistant." 

Some participants also provided suggestions on how to further 
improve the general design of LLM agent-based daily assistants. 
Regarding the plan edit, participants hoped for the provision of 
more convenient edit operations like ‘drop/drag’ to adjust the plan-
related text ordering and an ‘undo’ operation to tolerate unexpected 
mistakes. Some participants also found the plans too detailed, which 
could increase their perceived cognitive load (cf. Table 9 except 3). 
As for the execution, many participants found it to be smooth. At 
the same time, some believed that additional verification in each 
step could further enhance the reliability of daily assistants: 

“For the execution stage, I commend it for creating an input format-
ting box to execute the user’s request validating each requirement.” 

Other comments from participants reflected on the entire plan-
then-execute workflow: 

“The planning was really challenging, and I mostly left the default 
plans (they looked fine). This worked in the main, but a couple clearly 
needed revisiting. I would approach this iteratively: plan, test, ob-
serve, back to planning, then another test, before reaching the desired 
outcome.” 

Our findings suggest open research opportunities to explore 
more effective ways to provide an overview of plans that trade-off 
user cognitive load resulting from granular descriptions, with the 
need to provide details to help users identify flaws. For example, 
we can consider developing methods to interactively allow users to 
flesh out further details in a plan. 

6 Discussion 

6.1 Key Findings 
Our experimental results show that user involvement in the plan-
then-execute workflow with LLM agents can help fix imperfect 
plans in planning and wrong action predictions in the step-by-step 
execution. However, user involvement does not ensure a consis-
tently positive impact on calibrated trust and overall task perfor-
mance across different tasks. 

User Involvement Fails to Calibrate User Trust. Overall, user 
involvement in the planning and execution does not significantly 
impact user trust and calibrated trust in planning and execution out-
comes. As Table 3 shows, user involvement in planning can harm 
plan quality in tasks with a high-quality initial plan, which may po-
tentially cause worse task performance in the subsequent execution 
stage. Our experimental results do not support H1 or H3, which 
indicates user involvement does not necessarily help calibrate user 
trust in our study. Instead, with a task-specific correlation analysis 
(cf. Table 8), we found that the plan quality has a significant positive 
correlation with calibrated trust in both planning and execution 
outcomes. Combined with task-specific user trust and task-specific 
confidence, we can infer that users tend to trust the LLM agent 
overall. Such trust can be expected and calibrated in tasks with a 
high-quality plan. In contrast, users fail to calibrate their trust in 
the tasks where a low-quality plan is provided. A potential cause 
of such miscalibrated trust is the plausibility of plans generated by 
LLMs (i.e., plans that appear to be likely correct). In our study, all 
initial plans are formulated with a clear, logical structure, which 
covers most of the task requirements. At first glance, such high-
quality text pieces seem quite plausible and trustworthy. We also 
received some open text feedback such as, — “The plans look nice, I 
do not find any space for improvement” and “the planning stage of 
the LLM assistant was helpful and trustworthy.” Findings from re-
cent work on LLM-assisted fact checking corroborate this, wherein 
authors found that convincing explanations provided by LLMs can 
cause over-reliance when LLMs are wrong [91]. 
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User Involvement can Benefit Task Performance. User involve-
ment in planning and execution can positively impact overall task 
performance, especially execution accuracy. As the results in Ta-
ble 3 and Table 4 show, user involvement in planning can help 
address imperfect plans (e.g., task-1 with grammar error). Doing 
so further contributes to improvements in the execution accuracy. 
After controlling the plan quality, we found that user involvement 
in the execution can provide the best execution accuracy among 
most tasks considered in our study (cf. Table 5). Based on the failure 
analysis (Section 5.3.3), LLM agents can make mistakes in execut-
ing high-quality plans, which can be attributed to prediction errors 
(i.e., wrong action name or action parameters) and prediction fail-
ures (i.e., failure to provide valid action prediction). In practice with 
deployed LLM services, there is no reliability guarantee for the 
generated plan in planning or predicted actions in execution. User 
involvement can play an important role in the plan quality control 
and risky action control, ensuring that only correct and safe actions 
are executed to obtain desirable task outcomes. 

Other Findings. We also found some user factors and perceptions 
that affect user trust and task performance. As seen in Table 7, 
nearly all covariates show a significant positive correlation with 
user trust in the AI system. Some of these covariates also impact 
user trust in the planning and execution outcomes. Overall, these 
findings indicate that users who are familiar with such systems tend 
to show higher user trust. However, some factors also correlate 
negatively with the calibrated trust in the execution outcomes 
and risk perception of using the LLM agents as daily assistants. 
This reflects that these factors can cause miscalibrated trust and 
reduced risk perception when working with the LLM agent. While 
we found that risk perception negatively correlated with user trust, 
calibrated trust, task performance, and confidence (cf. Table 8), it 
does not mean risk perception is harmful in the human-LLM agent 
collaboration. The main cause is that users may only notice the risks 
of using LLM agents when the task is provided with a relatively 
low-quality plan. Risk perception is important to calibrate user trust 
in the planning and execution outcomes. Collaborative workflows 
should support users with the provision to take over control of 
planning and/or execution stages based on their perceived risk. 

6.2 Implications 

The Impact of Convincingly Wrong LLM Outcomes. As our 
study follows a plan-then-execute workflow for users to collabo-
rate with LLM agents, users were not offered a chance to revise the 
plan after starting with execution. Users following a wrong plan 
can lead to negative outcomes. Combined with existing work on 
algorithm aversion [13] and the impact of negative first impres-
sions on user trust [94], we can infer that such convincingly wrong 
content [91] can bias user trust and reliance towards the extremes. 
Before users take notice, they may develop an uncalibrated trust 
in the AI system, as observed through our findings in high-risk 
tasks (i.e., tasks 1,2,3) and corroborating work by Si et al. [91]. As 
a result, users over-rely on AI assistance, which is misuse akin to 
behavior that resonates with algorithm appreciation [63]. Once 
users notice such phenomena, their trust in the LLM-based systems 
may sharply decrease, resulting in disuse due to algorithm aver-
sion. This can be a result of the misalignment between perceived 

AI performance and actual AI performance. Existing human-AI 
collaboration literature has provided potential solutions for such 
problems, ranging from performance feedback interventions [34] 
to agreement-in-confidence heuristic [65, 79]. Future work can 
combine these insights to explore effective interventions for user 
trust calibration with convincingly wrong LLM outcomes. 

Insights for Effective Collaboration with Plan-then-execute 
LLM Agents. Our work has important theoretical implications 
for effective human-AI collaboration with plan-then-execute LLM 
agents. On the one hand, user involvement can be necessary to 
achieve complementary team performance. Although LLM agents 
have shown promising planning and execution capabilities, they are 
never perfect due to probabilistic uncertainty. With user involve-
ment in the planning, users can fix imperfect plans with grammar 
errors (cf. Table 3 task-1). With user involvement in the execution, 
users can fix uncertainty issues (e.g., LLM agent predicts invalid 
actions) and prevent risky actions (e.g., LLM agents choose an 
itinerary conflicting with task requirements, cf. Table 5, task-6). On 
the other hand, user involvement may also bring uncertainty and 
even harm LLM agent performance. In tasks where the LLM agent 
provides a high-quality plan (cf. task 4, 5, 6 in Table 3 and Table 4), 
user involvement can harm the plan quality, which further nega-
tively impacts the execution accuracy. Moreover, user involvement 
in planning and execution poses a significantly higher cognitive 
load on users (cf. Figure 4) and negatively impacts user confidence 
(cf. Figure 5). Thus, too much human involvement in collaboration 
with plan-then-execute LLM agents can be undesirable. User in-
volvement in the execution process brings more consistent benefits 
than user involvement in the planning stage. As suggested by the 
participants, iterative LLM agent simulation may be one potential 
way to decide when users should be involved. The LLM agent may 
first conduct a plan-then-execute round to obtain a clear plan and 
execution results. With humans checking the whole process and 
simulated outcomes, humans can decide whether to be involved 
in revising the plan or the execution process. In this way, we can 
minimize user involvement while keeping highly effective task 
outcomes through LLM agents. 

Human Oversight and Designing Flexible Collaborative 
Workflows. In our study, we found that human oversight does 
not consistently lead to improved outcomes. One potential cause 
can be the disparity between the planning and execution of LLM 
agents. Specifically, it is unclear how one plan step will be trans-
formed into one action. When users realize one plan step can be 
wrong during the execution stage, they may need to articulate it or 
manually override the agent action, posing a high cognitive load. 
Even worse, when users realize the LLM agent missed one action 
due to limited steps designed in the plan (in task-1), they do not 
have a chance to change the plan or add one extra step. To address 
such concerns, we may need a more flexible collaborative workflow 
where humans can fix planning and execution simultaneously. In 
this way, users can exercise more flexible control over the workflow 
and the task outcomes. For instance, the action prediction from the 
LLM agent can be provided along with each step in the planning 
stage. Users can thereby be informed of the potential impact of 
their edited plan, which provides more straightforward feedback 
and helps users adjust the plan according to the expected actions. 
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6.3 Caveats and Limitations 

Limitations and Potentail Biases. To ensure reliable task out-
comes, humans are expected to fix imperfect plans (e.g., grammar 
errors, misleading action intents) in the planning stage. However, 
not everyone in conditions UP-AE and UP-UE noticed such gram-
mar errors and split the plan in task-1. Similarly, not everyone in 
conditions AP-UE and UP-UE noticed that the LLM agent chose 
an itinerary that conflicted with task requirements. As discussed 
earlier, LLM agents can generate plausible plans, which may mis-
lead user trust in the planning and execution outcomes. In that 
case, participants in our study may have easily ignored some con-
vincingly wrong plan steps or execution actions. In our study, one 
primary step in the plan is only transformed into a single action. 
In practice, LLM agents can generate multiple actions for one spe-
cific goal. However, such action generation and execution modes 
are challenging for humans to get involved in and control, as the 
execution of the action sequences is automated by the LLM agent 
within one goal. Furthermore, using multiple actions to achieve 
one primary step (i.e., goal) also results in higher task complexity 
and reduced task clarity, which may impact the task outcomes [26]. 

Transferability Concerns. Although we selected representative 
tasks for daily scenarios, our study may not sufficiently cover all 
potential cases of daily assistance with LLM agents. Some task 
characteristics (e.g., task complexity, time consumption) may also 
impact how users are willing to rely on AI assistance. Moreover, 
complete control over the plan-then-execute LLM agents may not 
be desirable for some simple tasks (e.g., setting alarms). Once the 
efforts to control/interact with LLM agents are greater than the 
efforts to execute the tasks themselves, users will be unwilling to 
adopt such “assistance." Future work can look into what daily user 
needs are suitable for LLM agents to support. In our study, the 
execution of plans is conducted in a simulation environment. While 
it has been proven to be effective in prior work of agent-based 
modeling and HCI studies [76], more work is needed to understand 
how execution of tasks in real-world environments with additional 
dependencies and complexities can influence our findings. 

Participants in our study only followed a relatively fixed mode in 
collaboration with LLM agents, and they could determine when to 
get involved in the planning and execution stages. The experimental 
conditions considered in our study range from full automation 
(i.e., AP-AE) to complete user control (i.e., UP-UE). Such a setup 
provides good flexibility, and simulates the spectrum of real-world 
practice. Our findings and implications provide valuable insights to 
guide future research on human-AI collaboration with LLM agents. 

7 Conclusion 
In this work, we empirically studied human-AI collaboration us-
ing plan-then-execute LLM agents. Adopting such LLM agents in 
various everyday scenarios, we analyzed the impact of user involve-
ment in the planning and execution stages on user trust and overall 
task performance. We provide various interactions in each stage to 
help users fix imperfect plans and modify execution outcomes. Our 
results suggest that the LLM agents can provide plausible plans 
(in text) to cover task requirements, which can be convincingly 
wrong. As a result, users develop uncalibrated trust in the planning 

and execution outcomes, and user involvement in the planning 
and execution stages fails to calibrate user trust (RQ1). We also 
found that the plan quality substantially affects the subsequent 
execution accuracy. Thus, when user involvement in planning can 
fix imperfect plans, the overall task performance (i.e., plan quality, 
accuracy of action sequence, and execution accuracy) is improved. 
However, user involvement in planning can also harm task plan 
quality where the original plan is good to begin with. As a result, 
the LLM agents demonstrate worse task performance in these tasks. 
In contrast, user involvement in execution brings about a more sta-
ble positive impact on task performance (RQ2). Our results suggest 
that plausible but wrong LLM outcomes can be detrimental to user 
trust calibration and overall task performance. We discussed the im-
pact of convincingly wrong LLM outcomes and provided potential 
solutions and insights for future work. Furthermore, we synthe-
sized key insights for better control and effective collaboration with 
plan-then-execute LLM agents. We also shed light on opportunities 
to design flexible collaborative workflows with human oversight 
for effective collaboration with LLM agents. 

Our results indicate that user involvement in the LLM agent 
workflow can be important in ensuring reliable task outcomes. Fu-
ture work can further investigate how to detect and handle plausible 
but imperfect LLM outcomes and design effective interventions to 
fix such problems. We hope that our key findings and implications 
reported in this work will inspire further research on human-AI 
collaboration with LLM agents. 
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A Details about Tasks 
Here, we provide more details about the selected task used in our 
study. For each task, we provide the automatic planning (i.e., step-
wise text plan) and execution (i.e., action sequence) generated with 
our plan-then-execute LLM agent. 

Task-1: My account ID is 54321, and the password is PWD2023. I 
plan to make two foreign exchange transactions. The first is to buy 
10,000 euros (with USD), and the second is to sell 5,000 US dollars 
(to EUR). Please help me operate. 

Automatic Plan: 

• 1. Log in to user account 
– 1.1 Obtain account login information (Account ID: 54321, 
Account Password: PWD2023) 

– 1.2 Log in to the account 
– 1.3 Confirm successful login 

• 2. Conduct foreign exchange transactions 
– 2.1 Buy euros 

∗ 2.1.1 Obtain information for buying euros (Currency 
Type: EUR, Purchase Amount: 10000) 

∗ 2.1.2 Buy the specified amount of euros 
∗ 2.1.3 Confirm successful euro purchase 

– 2.2 Sell US dollars 
∗ 2.2.1 Obtain information for selling US dollars (Currency 
Type: USD, Sell Amount: 5000) 

∗ 2.2.2 Check the US dollar holdings 
∗ 2.2.3 Obtain US dollar holdings information (Foreign 
Exchange Holdings Information: Obtained US dollar 
holdings information) 

∗ 2.2.4 Sell the specified amount of US dollars 
∗ 2.2.5 Confirm successful US dollar sale 

Automatic execution: 

• bank_account_login(account=54321, passwd=PWD2023) 
• buy_currency(account=54321, passwd=PWD2023, source-
Currency=USD, targetCurrency=EUR, amount=10000) 

Summary: The plan is imperfect. Users are supposed to split the 
primary step 2 into two primary steps. Then, the LLM agent can 
conduct two transactions instead of one. 

Task-2: Please inquire about the current debt amount of my credit 
card with the last five digits 12345, and deduct the corresponding 
12000 USD from my savings card number 6212345678900011 to 
repay this debt, then help me check the amount of the outstanding 
bill for the same credit card within 30 days after today. 

Automatic Plan: 

• 1. Inquire about the credit card debt amount 
– 1.1 Obtain credit card information (Account ID: Account 
ID, Account Password: Account Password, Credit Card: 
Last five digits 12345, Verification Code: Verification Code) 

– 1.2 Log in to the banking service platform 
– 1.3 Inquire about the current credit card debt amount 
– 1.4 Confirm the debt amount inquiry is successful and 
obtain the amount (Debt Amount: Inquired Debt Amount) 

• 2. Deduct funds to repay the credit card debt 

– 2.1 Obtain savings card information (Savings Card Num-
ber: 6212345678900011) 

– 2.2 Transfer from savings card to credit card 
– 2.3 Confirm the transfer is successful 

• 3. Check the credit card’s future outstanding bills 
– 3.1 Obtain date information (Date Range: Within 30 days 
after today) 

– 3.2 Inquire about the credit card’s outstanding bill amount 
within the specified date range 

– 3.3 Confirm the future outstanding bill amount inquiry 
is successful and obtain the amount (Outstanding Bill 
Amount: Inquired Outstanding Bill Amount) 

Automatic execution: 

• check_balance(card=12345) 
• pay_credit_card(source_card=6212345678900011, tar-
get_card =12345, amount=12000) 

• check_credit_card_bills(card=12345, period=30) 

Summary: The authors need to revise the plan and add one primary 
step to search for the credit card, which ends with ‘12345’. Due 
to missing this step, the LLM agent can not correctly execute all 
tasks because the correct credit card ID (i.e., 4980981092312345) is 
missing. 

Task-3: I need to schedule a repair for my TV at 6 PM tomorrow 
evening. The brand is Sony, model X800H, and there is an issue 
with the screen. Please book the repair service and tell me the 
reservation number. 

Automatic Plan: 

• 1. Obtain user contact information 
– 1.1 Obtain user’s name (Name: User’s name) 
– 1.2 Obtain user’s contact number (Contact number: User’s 
phone number) 

– 1.3 Obtain the installation address of the user’s TV (Instal-
lation address: User’s address) 

• 2. Find repair service 
– 2.1 Determine the repair service provider 

∗ 2.1.1 Search for authorized Sony TV repair service 
providers 

∗ 2.1.2 Select the nearest service provider to the user (Ser-
vice provider list: Authorized Sony TV repair service 
provider list, User address: User’s address) 

– 2.2 Obtain the contact information of the repair service 
provider (Service provider contact information: Nearest 
service provider’s contact information to the user) 

• 3. Book repair service 
– 3.1 Contact the repair service provider 

∗ 3.1.1 Provide the brand, model, and issue description of 
the TV (Brand: Sony, Model: X800H, Issue description: 
Screen issue) 

∗ 3.1.2 Provide the user’s contact information (Name: 
User’s name, Contact number: User’s phone number, 
Installation address: User’s address) 

∗ 3.1.3 Obtain the appointment time (Appointment time: 
Tomorrow’s date 18:00:00) 

∗ 3.1.4 Book the repair service 
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– 3.2 Obtain the reservation number (Reservation status: 
Repair request status, Reservation number: Repair request 
number) 

• 4. Notify the user 
– 4.1 Send the reservation number and the contact informa-
tion of the repair service provider to the user (Reservation 
number: Repair request number, Service provider contact 
information: Repair service provider’s contact informa-
tion) 

Automatic execution: 

• obtain_user_info() 
• search_service_provider(brand=Sony) 
• appliance_repair_request(applianceModel=X800H, 
applianceType=TV, appointment_time=Tomorrow 6 
PM,issueDescription =Screen issue, servicepointID=[Sony01, 
Sony03]) 

• appliance_repair_request(applianceModel=X800H, 
applianceType=TV, appointment_time=Tomorrow 6 
PM,issueDescription =Screen issue, servicepointID=[Sony01, 
Sony03]) 

Summary: While the first three primary steps are clear, the last 
primary step is not aligned with any provided actions. Users are 
supposed to delete the last primary step or override the potentially 
unnecessary actions after the first three steps. 

Task-4: I need to set an alarm for every weekday morning at 7:30, 
and then cancel the alarm for Thursday, changing it to 8:00 in the 
evening. 

Automatic Plan: 

• 1. Set the alarm for every day 
– 1.1 Get the alarm setting information (Time: 07:30 AM, 
Frequency: Monday to Friday) 

– 1.2 Set the alarm 
– 1.3 Confirm whether the alarm is set successfully 

• 2. Cancel the Thursday alarm 
– 2.1 Get the information of the alarm to be cancelled (Time: 
07:30 AM, Frequency: Thursday) 

– 2.2 Cancel the alarm 
– 2.3 Confirm whether the alarm is cancelled successfully 

• 3. Set the new alarm time 
– 3.1 Get the information of the alarm to be adjusted (New 
Time: 08:00 PM, Frequency: Thursday) 

– 3.2 Set the new alarm 
– 3.3 Confirm whether the new alarm is set successfully 

Automatic execution: 

• create_alarm(hour=7, minute=30, repeat=Weekly, frequency 
=Weekday) 

• cancel_alarm(hour=7, minute=30, repeat=Weekly, frequency 
=Thursday) 

• create_alarm(hour=20, minute=0, repeat=Weekly, frequency 
=Thursday) 

Summary: Both the automatic planning and execution are correct. 

Task-5: I have an important meeting to attend next Wednesday, and 
I need to book a flight ticket from London to Amsterdam for tomor-
row, it must be a morning flight, and then return from Amsterdam 
to London tomorrow night, please handle it for me. 

Automatic Plan: 
• 1. Search outbound flight ticket 
– 1.1 Obtain outbound flight search information (Departure 
City: London, Arrival City: Amsterdam, Departure Date: 
Tomorrow’s Date, Departure Time Slot: Morning) 

– 1.2 Search for outbound flights 
– 1.3 Select a suitable outbound flight (Flight Number: Se-
lected Flight Number) 

• 2. Book outbound flight ticket 
– 2.1 Obtain outbound passenger information (Name: User 
Name, ID Number: User ID Number) 

– 2.2 Book outbound flight ticket 
– 2.3 Confirm whether the outbound flight ticket is success-
fully booked 

• 3. Search return flight ticket 
– 3.1 Obtain return flight search information (Departure 
City: Amsterdam, Arrival City: London, Departure Date: 
Tomorrow’s Date, Departure Time Slot: Evening) 

– 3.2 Search for return flights 
– 3.3 Select a suitable return flight (Flight Number: Selected 
Flight Number) 

• 4. Book return flight ticket 
– 4.1 Obtain return passenger information (Name: User 
Name, ID Number: User ID Number) 

– 4.2 Book return flight ticket 
– 4.3 Confirm whether the return flight ticket is successfully 
booked 

Automatic execution: 
• search_flight(departure_city=London, arrival_city=Amsterd 
am, date=Tomorrow, timePeriod=’Morning’) 

• book_flight(flight_id=flight_id, flight_class=economics) 
• search_flight(departure_city=Amsterdam, arrival_city=Lond 
on, date=Tomorrow, timePeriod=’Evening’) 

• book_flight(flight_id=flight_id, flight_class=economics) 

Summary: Both the automatic planning and execution are correct. 

Task-6: Please plan a trip for me departing on October 1st at 8:00 
AM to Japan, returning on October 7th at 11:00 PM, including Tokyo 
Disneyland, Senso-ji Temple, Ginza, Mount Fuji, Kyoto cultural 
experience, Universal Studios Osaka, and visiting the Nara Deer 
Park on October 4th, and help me find hotels where the nightly 
cost does not exceed 10,000 Japanese yen. 

Automatic Plan: 
• 1. Itinerary planning 
– 1.1 Obtain itinerary information (destination: Japan, start-
ing from October 1st 8:00 AM, return around October 7th 
11:00 PM, including Tokyo Disneyland, Senso-ji Temple, 
Ginza, Mount Fuji, Kyoto cultural experience, Universal 
Studios Osaka, and visiting the Nara Deer Park on October 
4th) 

– 1.2 Plan the itinerary according to the info 
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– 1.3 show all planned itineraries 
• 2. Itinerary Selection 
– 2.1 Show users the planned itinerary 
– 2.2 ask users to select one route from them 
– 2.3 confirm the selected itinerary and show the schedule 

• 3. Book hotels 
– 3.1 Obtain travel budget (Accommodation budget: Not 
exceeding 10,000 yen per night) 

– 3.2 Search for hotels within budget 
– 3.3 arrange hotels for each night within budget (nightly 
cost does not exceed 10,000 Japanese yen) 

– 3.4 Complete hotel booking and show the arranged hotel 
plan 

Automatic execution: 
• travel_itinerary_planner(destination=Japan, depar-
ture_time= October 1st 8:00 AM, return_time=October 7th 
11:00 PM, interests=Tokyo Disneyland, Senso-ji Temple, 
Ginza, Mount Fuji, Kyoto cultural experience, Universal 
Studios Osaka, and visiting the Nara Deer Park on October 
4th) 

• select_itinerary(selection=route-1) 
• book_hotel(selection=route-1) 

Summary: The plan is correct. However, the LLM agent makes 
mistakes in selecting the route. The expected route should be route-
2 instead of route-1. The wrong parameters will further affect the 
hotel booking in step 3. 
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