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ABSTRACT: The recently discovered attractive force between hydrophobic surfaces is incorporated in a 
theory of polyelectrolyte solutions. Ita influence on the second and third virial coefficients is estimated. 
Binary collisions between two polyions are virtually unaffected by attractive forces of long range whereas the 
impact on the third virial coefficient is enormous. The theoretical coefficients are compatible with those 
determined for solutions of rodlike xanthan by Kawakami and Norisuye. When the third virial coefficient 
is negative, the solution may become unstable. This instability appears to explain the onset of aggregation 
of DNA. The long-range attraction is strong enough to enforce stability of a hexagonal phase at low ionic 
strength. The predicted spacings agree with those found for tobacco mosaic virus by Millman et al. 

Introduction 

Despite intense research during the past four decades, 
many phenomena witnessed in polyelectrolyte solutions 
remain unexplained. It often seems as if the screened 
Coulomb interaction on its own is unable to offer a 
rationalization for the experimental data. For instance, 
there is evidence that long-lived entanglements among 
intrinsically flexible polyions influence the light scattered 
by such a solution to a substantial degree.’ More 
concretely, there seem to be long-range attractive forces 
operative in solutions of rigid or slightly flexible polyions. 
Gels of tobacco mosaic virus whose positional order is 
hexagonal are stable against dilution at  fairly low ionic 
 strength^.^,^ The virus particles often aggregate under 
similar  condition^.^ At low salt, Van der Waals forces are 
too weak to overcome the screened Coulomb repulsion 
between the charged rods which are enhanced by slight 
undulations, although an undulation theory is almost 
quantitative at  high ionic  strength^.^ Double-stranded, 
rodlike DNA in a semidilute solution also exhibits a 
peculiar aggregational phenomenon at  high salt concen- 
tration.6 Recent scattering experiments on rodlike xan- 
than show strong anomalies in the third virial coefficient 
as I point out at  the end of this paper in a comparison of 
the present theory with the data by Kawakami and 
Norisuye.’ 

On the other hand, a newly discovered attraction 
between hydrophobic surfaces has been studied by colloid 
scientists.g12 It is asserted to be weak but of long range; 
its origin is unclear a t  present though it appears to be 
quite insensitive to the chemical nature of the surface.12 
In particular, it does not seem to depend on its polarity.12 
Christenson et al.12 have been able to summarize a range 
of experimental data for the force F exerted by perpen- 
dicularly crossed cylinders which are covered by hydro- 
phobic molecules 

Fla = Ae‘It (1) 

where a is the cylinder radius, s is the shortest distance 
between the hydrophobic surfaces, and 5 is a decay length 
of about 14 nm which is not disturbed by the monovalent 
electrolyte. The magnitude of the force does depend on 
the ionic strength.I2 For the purpose of this paper, I 
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approximate it roughly by 

A = cXk,T (2) 
where T is the temperature, kg is Boltzmann’s constant, 
the constant c = 0.008 nm-3 at room temperature, and X 
is the Debye screening length (A-2 = 87rQn, with the 
Bjerrum length Q = 0.714 nm for HzO at room temperature 
and n, the concentration of the 1-1 electrolyte). When 
extrapolated to “pure” water (which if not specially treated, 
contains traces of ions amounting to an effective molarity 
of lo4-10-6 M), eq 2 is still a fairly reasonable estimate 
for the magnitude of the attraction.12 There is no 
consensus on the nature of these attractive forces. Some 
workers believe electrostatic forces are implicated.13 
Others have tried to dismiss the attractive nature of the 
force altogether.I4 By contrast, the Russian and Australian 
schools in colloids treat eq 1 as a well-established fact.15128 

Leaving aside the debate about the validity and nature 
of eq 1, I here adopt the naive and probably bold hypothesis 
that eq 1 may be applied to the solution behavior of certain 
rodlike biopolymers (xanthan, DNA, tobacco mosaic virus 
[TMVI). It is often thought that the charges effect 
solubility of these macromolecules whose backbones are 
hydrophobic in part. However, the real justification is 
whether eq 1 is able to rationalize heretofore unexplained 
phenomena. I will argue that this is indeed the case: (1) 
Recent theoretical work on slender rods by Van der Schoot 
and Odijkl6 shows that weak dispersion forces may have 
a significant impact on three-body interactions under 
conditions when binary interactions are perturbed only 
mildly. I here extend this analysis to electrostatic and 
long-range attractive forces along similar lines and in- 
vestigate the virial coefficients of xanthan; (2) I formulate 
an approximate stability criterion to estimate the onset 
of aggregation in DNA; (3) Long-range attraction is 
incorporated in a recent analysis of the hexagonal phase5J7 
and applied to TMV. 

Interactions between Two Rodlike Polyions. Q u a -  
tions l and 2 can be rewritten in terms of the attractive 
interaction WA between two fat cylinders crossed at  90° 

(3) 
We now wish to extrapolate eq 3 to the regime a << ,$which 
often applies to polyelectrolyte solutions. Such an exten- 
sion necessarily involves additional suppositions. 

Scenario 1. Equation 3 contains the combination a[ 
which may be regarded as the geometrical “area of 

WA/k,T = -cXtae“/f (6 1 A; a >> E;  a >> A) 
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Figure 1. Two skewed polyione. 

interaction"l6 for two crossed cylinders in the limit a >> 
5. For a << 5,  this area is independent of a and scales as 
52  if one assumes a polyion perturbs the surrounding water 
over a distance of order 5 by its mere presence. Further- 
more, it is conceivable that the influence of the electric 
double layer on the attraction is altered by the fact that 
a is no longer much greater than [ so this might introduce 
a power law Am with m # 1. For cylinders skewed at an 
angle 6, the "area of interaction" is inversely proportional 
to sin 6 (Figure 1). Therefore, one possible extension of 
eq 3 reads 

(4) 

with 

H = H, = hX"(a + ~)~"+'exp(2a/E) (5 )  

where p = L/5 >> 1, x 2a + s is the distance between 
the polyion centerlines and I have introduced a dimen- 
sionless coupling constant h E c53 c 20 for con~enience.~~ 

Scenario 2. Equation 3 is a screened form (albeit of 
attractive nature) and plausibly interpretable as a super- 
position of Debye-Huckel-like potentials with screening 
length 5. In other words, I suppose the formal manipula- 
tions in the respective long-range attraction and electro- 
static theories are identical. The theory of charged rods 
interacting by screened Coulomb forces has been discussed 
at length by various authors.lS2l By analogy, we then 
have for the coefficient of attraction for cylindrical polyions 
skewed at an angle 6 

where21 

g(z )  = z2e%q(z) (7) 

and K1 is the first-order modified Bessel function of the 
second kind.3O In the case a >> 5 and 6 = n/2, eqs 4 and 
6 reduce to eq 3. At  the opposite extreme, we have 

Thus, the attraction now scales as a2 as it should, for a2 
sin-' 6 signifies the "area of interaction" for thin cylinders, 
at least within the context of the second scenario. 

Equation 4 breaks doen when the polyions are almost 
parallel. According to the arguments of refs 16 and 22, we 

Figure 2. Interaction between two polyions that are almost 
parallel (D&L 5 6 I p - l ~  ,$/L). 

should then have 

(-L I A2 I L; 6 I p - l =  [/L) (9) 

One of the rods is placed along the z axis of a Cartesian 
coordinate system; A2 is the distance between the centers 
of mass of the two rodlike polyions. Equation 9 represents 
a sticking energy proportional to the area of contact and 
crosses over fairly smoothly to eq 4 at  6 E p-l .  The total 
energy of interaction is now a superposition of attractive 
and electrostatic potentials (see Figure 2) 

(10) 

where the electrostatic term We, has been discussed in 
detail in ref 21. 

wb, E we, + WA 

we, = Ee-U - 
sin 6 (6 2 Deff/L) 

LE(I - )e -KX 

(-L I b I L; 6 I D,,/L) (12) = De, 

Here, E is generally a very complicated function of the 
polyion parameters21 and D,ff is the effective diameter19*20 
which scales approximately as the Debye screening length 
x = K-1. 

Second and Third Virial Coefficients. Precise 
computations of the virial coefficients are complicated in 
general.16*23 Here, I present a semiquantitative analysis 
focusing on the leading order terms which should be 
reasonable for 5 1 D,ff. I first note that two test polyions 
are prevented from approaching each other closer than 
D,ff in view of the repulsive electrostatic force.% This 
argument is legitimate even when the macromolecules are 
enclosed in the confined orientational space 6 I p-1 = 
[/L. Hence, in calculating attractive contributions to the 
virial terms we simply let the variable x run from D,E to 
infinity (see Figure 2). Next, we know that whenever the 
influence of the attractive forces becomes discernible in 
thermodynamic quantities, the lead terms are dominated 
by Boltzmann factors.16 Moreover, configurations that 
are almost parallel give the largest contributions to the 
virial coefficients.16 These caveats allow for a considerable 
simplification of the analysis below. 

The second virial coefficient may be written as16122 

B=B,,+B,  (13) 
where the electrostatic contribution is often represented 
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effects) 

although in practice one must include end effectsz3 

Bel = Bel,o (1 + p) 
(14) 

(15) 

and the attractive contribution is16,22 

where the Mayer function I#JA exp (- WA/kBT) - 1, u and 
u' are the orientational unit vectors along the two test 
polyions and AR is the vector distance between their 
centers of mass. 

The first steps in the evaluation of eq 16 are analogous 
to those in the calculation of the Van der Waals coefficient 
in refs 16 and 22. Parallel configurations are the most 
heavily weighted ones: eq 9 is independent of 6 so the two 
integrations over the orientational variables in eq 16 yield 
47r2/p2. Next, I introduce polar coordinates 

(17) 
with 

p-leX - 11 ( p  3 H l p ;  X x / [ )  (18) 
log w 

(19) 

where a = exp(D&[) varies between fairly narrow bounds 
1 < a < O ( e ) .  The logarithm in the integrand poses 
difficulties but fortunately it can be eliminated quite 
simply by deleting it: (i) If p << 1, an exact series expansion 
of eq 19 is possible and the approximate J can then be 
shown to underestimate the exact J by a factor of two at  
most; (ii) If p = 0(1), one sets w = a + q noting that the 
leading contribution of the integral stems from the region 
q = O(a21p); the approximate J is now very close to the 
exact J; (iii) The case p > O(l0) is of no interest because 
the attraction then overwhelms the Coulomb repulsion so 
that the virial expansion is rendered meaningle~s.~' 

I eliminate the awkward exponent by setting X 

J = Smdw log w [p(-'epw-l - p-' - w-'I 

After the substitution w = pt,  the integral 

is readily tackled by one integration by parts which 
circumvents potential divergences 

(21)  J ( z )  = l ( z )  - z-'eZ + z-' + 1 
with z p / a  

eY-1 z" 

(-0 n!n 
I(z) limJzdy( T) E - (22)  

J(z) = 2 / 2  ( z  << 1)  (23)  

J(z) - f 2 e Z  ( z  L 1) (24)  
The summation in eq 22 is easily carried out numerically 
since z is never very large in practical applications. 

It is expedient to define the relative attractive contri- 
bution to the second virial coefficient (neglecting end 

with 

a exp(Deff/[) p = LHIt 
When p / a  L 1, the physical interpretation of eq 25 is as 
follows: by eq 24 Jcontains a Boltzmann factor depending 
on a sticking energy kBTp/a for two almost parallel polyions 
fairly close to each other though always separated by the 
intervening electric double layer (Figure 2); this is partly 
offset by an entropy of orientational confinement equal 
to 5 log([IL). 

The analysis of the third virial coefficient proceeds by 
arguments advanced in ref 16. 

The purely electric term Cel is approximated by the hard- 
rod coe f f i~ i en t~~  but with the hard-core diameter replaced 
by Deff 

This approximation neglects end effects. The cross term 
is given by16 

(28)  
The purely attractive term is assessed qualitatively as in 
ref 16 

Therefore, the relative attractive contribution to C can be 
expressed as 

(30) 

Whenever p / a  L 1, eq 30 contains three exponential terms 
exp(pla): three pairs of virtually parallel polyions are 
involved in the attraction. 

Thermodynamic Stability. According to eqs 25 and 
30 the influence of attractive forces on the third virial 
coefficient is much greater than on the second, at  least in 
the case when the Boltzmann factor dominates. Hence, 
under certain conditions the third virial may be negative 
whereas the second remains positive. There is a distinct 
possibility of the solution becoming unstable. If the 
osmotic pressure for an isotropic solution is given by 

rTP = k,Tp(l + Bp + Cp2+ ...) (31) 
where p is the polyelectrolyte number density, we require 

(32)  

for the solution to remain stable. 

the following criterion for the onset of instability 
Neglecting virials higher than the third, we thus have 

where ira2Lp is the macromolecular volume fraction. 
Equation 33 represents an upper bound on H since most 
of the higher virials are expected to be negative also. The 
end result arising from the instability of the solution cannot 
be ascertained from eq 31. We need more information to 
investigate whether phase separation, aggregation, or 
gelation occurs. 
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Hexagonal Phase. It is straightforward to incorporate 
eq 9 into a recent theory of hexagonal polyelectrolyte 
gels.6J7 The undulations of a test polyion which is stiff 
or semiflexible are postulated to be distributed according 
to a Gaussian 

(34) 
where d is a variational amplitude and r is the distance 
from an infinitesimal segment of the test polyion to its 
position in the perfect nonundulating hexagonal lattice. 
An extension of ref 5 leads to a total Helmholtz free energy 
per unit length of polyion and scaled by kBT 

2 -1 -+/@ G - ( I d )  e 
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Table 1. The Ratios & and & for Xanthan (ref 7) 

ns A Dd 
(MI (nm) (nm) R2 Rs H vz R'a H' 

(35) 

where U is the interaxial spacing of the hexagonal lattice 
and the summation i is over the electrostatic (E), van der 
Waals (W), long-range attractive (A), and entropic inter- 
actions (S). The bare or unrenormalized interactions are 
given by 

(36) 

E , = -  WD112 [ 1 - "U; "'1 (37) 
8.2'12( U - D)3/2 

for U I 3/2 D 

p, - ~ T W  ( D )'[ + 25 D2 I 31.9 D4 150.7 Ds 
1280 U 16 16 r ~ 4  --I 64 @ 

for U > 3/2 D 

(39) 

E, = (2d)-2/3p'/3 (40) 
Here, P is the persistence length, W is the Hamaker 
constant scaled by kBT, the bare diameter D = 2a, and 
r is an effective charge density scaled by Q (I' is denoted 
by &ft in refs 5 and 17). The renormalizing factors are 
caused by undulations (see eq 34) 

"ll2KW 

4d2 J ,  = -1/4(U - D)2d-2 log[ 1 - 

J~ e@/@ (43) 

J ~ E  1 (44) 
Equations 34,40, and 41 have been introduced in ref 17; 
eqs 34-38,40-42 have been reviewed in detail in ref 5. A 
secondary minimum can be established by solving the 
following equations 

aFbt aps 8 Ji 
dd dd ,+ ad 

(45) -- - -+ pi- = 0 

- ~ n a ~ t P O  (46) 
M,, (U,d(U)) 

au 
Application to the Virial Coefficients of Xanthan 

(ref 7). Recently, Kawakami and Norisuye' determined 

1.0 0.30 2.6 0.53 12 - 
0.6 0.39 2.8 0.60 9 - 
0.2 0.67 3.8 0.61 4 
0.1 0.95 4.9 0.74 1.8 - 
0.06 1.22 6.0 0.64 1.46 - 

- 

0.03 1.73 8.3 0.61 0.81 0.82 
0.02 2.12 10.1 0.51 0.52 1.17 
0.01 3.0 14.5 0.64 0.38 1.84 
0.007 3.5 17.0 0.56 0.22 2.34 
0.005 4.2 20.6 0.49 0.122 3.21 

- 
- 
0.028 
0.040 
0.041 
0.043 
0.043 

- - 
1 -  
0.45 0.60 
0.37 0.74 
0.20 1.02 
0.13 1.25 
0.10 1.91 
0.06 2.38 
0.03 3.24 

A2 and As, the macroscopic second and third virial 
coefficients of aqueous solutions of reasonably monodis- 
perse xanthan as a function of the concentration of added 
sodium chloride. Since the theory of long-range attraction 
is approximate and sensitive to the precise choice of input 
parameters, the best policy is to gauge the extent of 
attractive forces from the experimental data, if possible. 

First, I evaluate the following ratios defined with respect 
to the theoretical virials as if there were no attractive forces 
(see eqs 15 and 27; note that end effects are included in 
Bel but not in Ce1)e This procedure presupposes that the 
electrostatic theory for the effective diameter is in good 
shapelsZ1 

(47) 

Here, M is the xanthan molar mass and NA is Avogrado's 
number. If attractive forces are indeed absent or negligible, 
A2 should scale Deft and A3 as D$ and both R2 and Rs 
ought to be constant and close to unity. The effective 
diameter Dm can be computed according to ref 21 wing 
the accurate analytical solution to the nonlinear Poieson- 
Boltzmann equation developed by Philip and Wo0ding.m 
The following parameters pertain to xanthan:' the bare 
radius a = 1.1 nm, the molar mass per unit contour length 
MIL = 2.0 kglmol nm, the Bjerrum length Q = 0.714 nm 
at room temperature, and charge spacing 0.35 nm per 
electron charge. 

The ratio R2 = 0.6 is constant within experimental 
accuracy (See Table 1). It is less than unity, but this is 
to be expected in view of the neglect of semiflexibility in 
the theory.1s21 In principle, Bel should be corrected by 
the factor (1 - kLIP + ...) where k is an unknown constant 
and P i s  the persietence length equal to about 120 nm for 
xanthann (In ref 7, L = 110 nm). Accordingly, it is 
reasonable to conclude that the experimental second virial 
coefficient A2 can be understood within electrostatic 
theoryls21 without appeal to attractive forces, provided 
end effects23 are taken into account. 

By contrast, the ratio R3 decreases systematically and 
very strongly with decreasing salt concentration, irrespec- 
tive of the large margin of error in the scattering experi- 

In view of the arguments presented in ref 16, one 
is immediately inclined to suspect the influence of weak 
attractive forces: they may have a considerable impact on 
A3 yet merely perturb the second virial coefficient A2. In 
the present theory of long-range attraction, the magnitude 
of the parameter p / a  plays a crucial role in this respect. 

Now, it is well to realize that the magnitudes of the 
theoretical coefficients C,1 and CA are not known to a high 
degree of precision. Then, the best option appears to be 
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Table 3. Theoretical Values of the Spacing U, Undulations 
Scaled by the Debye Length ~ d ,  and the Free Energy LFMt 

of a TMV Particle, at the Secondary Minimum 

(M) (nm) Kd (ksn  (nm) (nm) (nm)(l 
0.87 0.32 1.35 -34 19.8 22 2 
0.096 1.0 0.97 -60 24.5 27 5 
0.01 3.0 0.49 -83 34 35 7 
0.001 9.5 0.58 -10 68 58 ? 

ns x LFtot u Uerp Auoxp  

a The experimental spacings U,, of Millman et  aL3 exhibit a large 
variation f AU,,,; only one spacing was measured at  the lowest ionic 
strength. 

Table 2. Critical Volume Fraction p at Which DNA Starts 
to Aggregate (refs 6 and 29); r ) ~  is Calculated with the Help 

of eq 33 and His  Obtained Iteratively from ea 30. 

1 1.03 0.30 2.71 0.068 2.62 0.55 
0.1 0.114 0.90 5.21 0.038 1.78 0.95 
0.01 0.020 2.15 10.4 0.027 1.26 1.86 

to let H be an adjustable parameter and force the quantity 
Rg/(l- 93) to equal unity (the anomalously large entries 
for R3 in Table 1 at  the two highest salt concentrations are 
disregarded). The resulting H values in Table 1 are quite 
insensitive to either the experimental accuracy7 of A3 or 
the prefactors in the theoretical values for BA and CA. In 
fact, setting R’3 R3/4 (rather arbitrarily) leads to new 
H’ values very close to the original ones. The reason is 
that 93 is dominated by the Boltzmann factor mentioned 
earlier. Note that in Table 1 the respective values of 92 
are very small so that R2 is indeed unperturbed by the 
attraction. Moreover, the dependence of 93 on the effective 
diameter is convoluted, yet the series of H parameters is 
quite reasonable. Thus, the theory is internally consistent. 
The exponent m in eqs 5 and 6 turns out to equal about 
1.5. If the first scenario were valid (see eq 5), hl would 
equal about 19; if the second (eq 6 )  were true, hz = 103. 

In the macroscopic experiments on hydrophobic sur- 
faces,12 the dimensionless coupling constant h is about 20. 
This is in good agreement with the first scenario (hl= 19; 
eq 5). I tentatively conclude that a xanthan molecule 
perturbs the surrounding water molecules up to distances 
of order 4. 

Application to DNA Aggregation. Recently, isotro- 
pic solutions of 50 nm long DNA have been investigated 
by light scattering and cryomicroscopy6PB at concentrations 
higher than studied previously. The DNA was found to 
aggregate reversibly even though all precautions were taken 
to ensure purity of the samples. In order to explain this 
phenomenon, we would need a comprehensive formal 
theory of rod aggregation. In principle, there must be a 
relation between solution thermodynamics and aggregation 
but this is obscure at  present. Here, I adopt a naive point 
of view, simply equating the onset of thermodynamic 
instability with the onset of aggregation, and see whether 
eq 33 bears on the ionic-strength dependence of DNA 
aggregation at the critical DNA volume fraction #* (see 
Table 2). The values of the DNA parameters are contour 
length L = 50 nm, bare diameter D = 2a = 2 nm, Bjerrum 
length Q = 0.714 nm, and charge spacing along the axis 
0.17 nm per electron charge. In view of “uncondensed” 
counterions arising from the DNA itself, the ionic strength 
I is not n, but I = n, + 24/?rN~&D~. The H parameters 
are adjusted so as to satisfy eqs 3 and 33. 

In Table 2 we see that H increases with decreasing ionic 
strength roughly as we expect, and its magnitude is about 
1.5 times larger than the respective values for xanthan 
(Table 1). It would seem that h = 30 according to the first 
scenario. It is interesting to note that the postulated long- 
range attraction is able to rationalize a very puzzling 
problem: a lower onset of DNA aggregation with decreas- 
ing ionic strength. 

Application to the Hexagonal Phase of TMV. The 
hexagonal mesophase3 of TMV was interpreted in terms 
of undulation theory5 but without long-range attraction 
(H 3 0; H in ref 5 is W in this paper). A t  low ionic 
strengths, the van der Waals force is too small by several 
orders of magnitude to explain the stability of the gels. 
For instance, the Hamaker constant needed to rationalize 

the interaxial spacing at  M would have to be an 
absurdly high lo4 kBT. 

For TMV, I set the bare diameter D = 18 nm, length 
L = 300 nm, persistence lengthP = W n m ,  scaled Hamaker 
constant W = 0.6 and linear charge density = 14 nm-l (see 
ref 5). Since D > E ,  one expects H = hXa(-2 as in eq 2. If 
h is set equal to about 40, the data of Millman et al.3 are 
compatible with the analysis of eqs 35-46 (See Table 3). 
The undulation enhancement is strong at  1 M despite the 
stiffness of TMV, as has been argued before.5 

Concluding Remarks 
I have shown that the long-range attraction given by eq 

3 is able to rationalize the virial anomaly of xanthan 
(coupling constant h = 201, the perplexing stability of TMV 
gels (h = 40) and the remarkable aggregation of DNA (h 
= 30). I point out that: (1) there has been no tampering 
with parameters except for the adjustment of H (or h); (2) 
the theories are uniformly valid with respect to the ionic 
strength even though the electrostatic interaction varies 
very strongly; (3) given the present theories and experi- 
ments, it is very difficult to see how the additional 
interaction one would need to postulate could be other 
than attractive and of long range. A value of h = 20 may 
be inferred from the proposal by Christensonet which 
is a summary of a fair number of experiments on coated 
surfaces. I conclude that there is a long-range attraction 
which fits a diverse variety of data in aqueous solutions. 
Its origin, hydrophobic or otherwise, is obscure at  present. 

Acknowledgment. I thank T. Okubo and R. B. Meyer 
for discussions on possible attractive forces between 
colloidal spheres, M. Mandel for checking the virial 
analysis, and a very skeptical referee for his critical 
remarks. 

Note added in proof Preliminary calculations (setting 
h = 40) by Henk Lekkerkerker and myself show that eq 
3, when suitably adapted for the interaction between two 
platelets, is able to “explain” the spacings of lithium and 
n-butylammonium vermiculite ~ l a y s ~ ~ - ~ *  except at very 
low ionic strengths (n, < 0.0025 M). It has been pointed 
out a number of times in the past33s35 that conventional 
van der Waals forces offer an unconvincing resolution for 
the swelling of vermiculite where edge interactions are 
thought to be unimportant. 
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