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Abstract
We construct bootstrap confidence intervals for a mono-
tone regression function. It has been shown that the
ordinary nonparametric bootstrap, based on the non-
parametric least squares estimator (LSE) ̂f n, is inconsis-
tent in this situation. We show that an n2∕5-consistent
bootstrap can be based on the smoothed ̂f n, to be called
the SLSE (Smoothed Least Squares Estimator). The
asymptotic pointwise distribution of the SLSE is derived.
The confidence intervals, based on the smoothed boot-
strap, are compared to intervals based on the (not nec-
essarily monotone) Nadaraya Watson estimator and the
effect of Studentization is investigated. We also give
a method for automatic bandwidth choice, correcting
work in Sen and Xu (2015). Analogous methods for
constructing confidence intervals in the current status
model are discussed, improving on work in Groeneboom
and Hendrickx (2018).

K E Y W O R D S

bandwidth choice, confidence intervals, Nadaraya Watson, smooth
monotone regression, smoothed bootstrap

1 INTRODUCTION

We consider the monotone regression setting where we observe independent pairs (Xi,Yi) of
random variables (1 ≤ i ≤ n), where the Xi are i.i.d. with nonvanishing density g on [0, 1] and

Yi = f0(Xi) + 𝜀i, 1 ≤ i ≤ n. (1)
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2 GROENEBOOM and JONGBLOED

The regression function f0 ∶ [0, 1] → R is nondecreasing or nonincreasing and the 𝜀i are
i.i.d. sub-Gaussian with expectation 0 and variance 𝜎2

0 , independent of the Xi’s. Our aim is to con-
struct pointwise nonparametric confidence intervals for f0(t). In the discussion below we will only
return to the nonincreasing functions in the example, given in Section 6, and for the rest stick to
the nondecreasing functions. The theory for these cases is completely similar.

The monotone regression model is often natural to assume, when the expected value of the
response naturally increases with the value of the explanatory variable. Think of Y as the height
of a child of age X in a certain region. In other situations, monotonicity may not be that obvi-
ous and one may want to test monotonicity. Such tests for (local and global) monotonicity are
discussed, for example, in Armstrong (2015), Hall and Van Keilegom (2005), and Groeneboom
and Jongbloed (2012). A basic ingredient of such tests is a monotone estimator of the regression
function.

The basic monotone least squares estimate (LSE) ̂f n of f0 is the so-called isotonic regression of
(Xi,Yi). This estimator is defined as minimizer of

n∑

i=1
(Yi − f (Xi))2,

over all nondecreasing functions f . This LSE can be computed via a straightforward method, using
the so-called cumulative sum diagram (cusum diagram). From now on, we interpret X1,…,Xn as
ordered in the sense that X1 < X2 · · · < Xn and relabel the Yi’s accordingly (as Yi related to the
specific Xi). The cusum diagram is then the set of points

(0, 0),

(
i,
∑

j≤i
Yj

)
, i = 1,…,n,

and the monotone least squares estimator ̂f n(Xi) is given by the left-continuous slope of the great-
est convex minorant of the cusum diagram evaluated at i (see lemma 2.1 in Groeneboom &
Jongbloed, 2014).

Constructing nonparametric pointwise bootstrap confidence intervals for f0(t) poses sev-
eral difficulties. It has been proved by several authors that the straightforward bootstrap, using
resampling with replacement from the pairs (Xi,Yi) and computing the monotone least squares
estimator ̂f n based on the bootstrap samples, is inconsistent (see, e.g., Abrevaya & Huang, 2005,
Kosorok, 2008, Sen & Xu, 2015, and Sen et al., 2010 for results related to this phenomenon).

A problem closely related to least squares estimation in monotone regression, is maximum
likelihood estimation in the current status model. In this model, the variable of interest is a sur-
vival variable X with distribution function F0. Instead of observing the exact survival time X , a
censoring variable T ∼ G is observed together with the indicator Δ = 1X≤T . Such data arise natu-
rally in clinical trials when a patient can only be checked at one measurement due to destructive
testing.

Within this context, it has been suggested in Sen and Xu (2015) to construct confidence inter-
vals by using a smoothed bootstrap. In the monotone regression setting, their approach means
that one fixes the values of the Xi’s and generates bootstrap values of the Yi by resampling with
replacement from the residuals of the Yi with respect to a smooth monotone estimate of f0. This
approach addresses the intrinsic cause of the inconsistency of the bootstrap method based on
direct resampling of the pairs, namely the fact that the derivative f ′0 cannot be estimated directly
by differentiating the (piecewise constant) monotonic least squares estimator ̂f n.
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GROENEBOOM and JONGBLOED 3

Bootstrap confidence intervals based on the smoothed maximum likelihood estimator (SMLE)
for the current status model were also proposed in Groeneboom and Hendrickx (2017) and
Groeneboom and Hendrickx (2018). One of the main issues in these papers is the treatment of the
bias, which will be treated differently in the present paper. The usual methods for dealing with the
bias are undersmoothing and correction by estimating the bias. These methods are rather unsat-
isfactory for the present model. Härdle and Marron (1991) suggest a third method, which we will
systematically use in the sequel.

A lot of research has been published on the behavior of the maximum likelihood estimator
(MLE) ̂Fn of the distribution function F0 in the current status model. The limiting distribution of
n1∕3( ̂Fn(t) − F0(t)) is, after scaling by the constant 𝜅 = {4F0(t)(1 − F0(t))f0(t)∕g(t)}1∕3 given by,

Z = arg max
t

{
W(t) − t2}

,

where W is a two-sided Brownian motion with W(0) = 0 (see Groeneboom & Wellner, 1992).
Other estimators with similar asymptotic properties are Chernoff’s estimator of the mode
(Chernoff, 1964), the Grenander estimator (Grenander, 1956) of a nonincreasing density, Manski’s
maximum score estimator (Manski, 1975) and Rouseeuw’s least median of squares estima-
tor (Rousseeuw, 1984). A general framework for cube-root n asymptotics is given in Kim and
Pollard (1990).

It is known that the nonparametric bootstrap is inconsistent for generating the limit distribu-
tion of the MLE. Abrevaya and Huang (2005) prove that

n1∕3{4F0(t)(1 − F0(t))f0(t)∕g(t)}−1∕3{̂f ∗n(t) − ̂Fn(t)}


−−→ arg max
t
(W(t) + ̂W(t) − t2) − arg max

t
(W(t) − t2),

where ̂f ∗n is the bootstrap MLE and W and ̂W are two independent two-sided standard Brownian
motions originating at zero. Similar results are discussed in Kosorok (2008) and in Sen et al. (2010)
for the Grenander estimator. The maximum score estimator of Manski (1975) is another example
of a cube-root n statistic with asymptotic distribution first derived in Kim and Pollard (1990),
where inconsistency of the nonparametric bootstrap for this estimator is shown in Abrevaya and
Huang (2005).

In Section 2, we define a Smoothed Least Squares Estimator (SLSE) for f0 in the regression con-
text. We show that, under some conditions, this estimator is asymptotically normally distributed
with rate n2∕5 and derive its asymptotic bias and variance. Furthermore, we consider the smooth
but not necessarily monotone Nadaraya Watson (NW) estimator of f0. Based on the SLSE and the
NW estimator, we propose bootstrap methods to construct confidence sets for f0(t) in Section 3.

We also prove a theorem stating that the bootstrap method based on the SLSE asymptotically
works, with specific choices for the various bandwidths involved. In particular, we show that the
method for computing the optimal bandwidth in Sen and Xu (2015) will only work if bandwidths
of different order are chosen. Moreover, we empirically study the effect of Studentization on cov-
erage probabilities. In Section 4 we address the problem of bandwidth selection in practice. Also
here, we propose a smoothed bootstrap approach.

In Section 5 we treat analogous methods for the aforementioned current status model and
give a much better method for treating the bias than in Groeneboom and Hendrickx (2018). We
also compare with cube root n convergent methods here, based on the MLE itself. Using the
MLE without smoothing has the (at first sight) attractive aspect that we do not have to specify a
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4 GROENEBOOM and JONGBLOED

bandwidth. However, one still needs smoothness restrictions in applying the asymptotic con-
vergence of the MLE to Chernoff’s distribution or a variant of this distribution in the
Bannerjee–Wellner confidence intervals (Banerjee & Wellner, 2005). Also, in the Sen-Xu confi-
dence intervals (Sen & Xu, 2015), one needs the SMLE in the centering of the bootstrap intervals,
for which one needs to specify a bandwidth. And finally, one alleviates the dependence on the
bandwidth choice by applying an automatic method of bandwidth choice as given in Section 4.

Section 6 illustrates the method using a well known data set related to climate change.
We note that the methods described in this paper can be applied using the open software
(Groeneboom, 2021).

2 SMOOTH (MONOTONE) ESTIMATION OF THE
REGRESSION FUNCTION

As immediately follows from its construction, the LSE ̂f n is a (nonsmooth) step function. It can be
used to define a smooth estimate. We define a particular SLSE, ̃f nh. For this, let K be a symmetric
twice continuously differentiable nonnegative kernel with support [−1, 1] such that ∫ K(u) du =
1. Let h > 0 be a bandwidth and define the scaled kernel Kh by

Kh(u) =
1
h

K
(u

h

)
, u ∈ R. (2)

Then, for t ∈ [h, 1 − h], the SLSE is defined as a two-sided local average of the LSE,

̃f nh(t) =
∫

Kh(t − x) ̂f n(x) dx. (3)

Note that on [h, 1 − h] the SLSE inherits monotonicity from ̂f n(t). For t ∉ [h, 1 − h] we use a
boundary correction to be discussed later. In this paper, we choose for K the triweight kernel

K(u) = 35
32

(
1 − u2)31[−1,1](u).

Estimator (3) is rather different from the NW estimator, which is defined by

̃f NW
nh (t) =

∫ yKh(t − x) dHn(x, y)
∫ Kh(t − x) dHn(x, y)

=
∑n

i=1YiKh(t − Xi)
∑n

i=1Kh(t − Xi)
, (4)

for t ∈ [h, 1 − h], where Hn is the empirical distribution function of the pairs (Xi,Yi), i = 1,…,n.
This estimator can also be differentiated, just as (3), but is not necessarily monotone.

The NW estimator (4) is seemingly simpler than SLSE (3), because it is expressed as ratio of
sums over sample values, whereas (3) is an integral with respect to Lebesgue measure. However,
using integration by parts, (3) can be rewritten as a simple sum. Indeed, for t ∈ [h, 1 − h],

̃f nh(t) = ̂f n(0) +
∫x∈(0,t+h]

IKh(t − x) d̂f n(x) = ̂f n(0) +
∑

𝜏i∈(0,t+h]
IKh(t − 𝜏i)pi, (5)

where

IKh(y) =
∫

y

−∞
Kh(u) du =

∫

y∕h

−∞
K(u) du. (6)
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GROENEBOOM and JONGBLOED 5

Here the 𝜏i are the locations of the jumps of the LSE ̂f n and the pi > 0 the sizes of the jumps.
This time the summation is over points at stochastic locations 𝜏i with stochastic masses pi,
characterizing the LSE.

It is well known that defining ̃f nh as in (3) outside the interval [h, 1 − h], leads to serious bias.
We define ̃f nh therefore slightly differently on the intervals near zero and one, using quadratic
Taylor approximations at the points h and 1 − h, respectively. More precisely, for t ∈ [0, h) we
define

̃fnh(t) = ̃fnh(h) + (t − h)̃f ′nh(h) +
1
2
(t − h)2̃f ′′nh0

(h0), (7)

where

̃f ′′nh0
(h0) =

∫
K′

h0
(h0 − x) d̂f n(x) =

∑

𝜏i

K′
h0
(h0 − 𝜏i)pi.

Here h0 ≍ n−1∕9 and the 𝜏i are the points of jump of ̂f n with values pi. Note that̃f ′′nh0
(h0) converges

in probability to to f ′′0 (0+), as n → ∞. We can replace ̃f ′′nh0
(h0) by any other consistent estimate of

f ′′(0+).
For t ∈ [1 − h, 1] we define analogously

̃fnh(t) = ̃fnh(1 − h) + (t − (1 − h))̃f ′nh(1 − h) + 1
2
(t − (1 − h))2̃f ′′nh0

(1 − h0). (8)

Note that we may lose monotonicity in the boundary intervals [0, h] and [1 − h, 1] in this way.
For the NW estimator we use a different boundary correction, replacing the kernel K by a

linear combination of the kernels K and uK(u), because of its more complicated expression as a
ratio. This type of boundary correction is for example described on pp. 210 and 211 of Groeneboom
and Jongbloed (2014).

We have the following asymptotic pointwise result for the SLSE. Note that by going from ̂f n(t)
to (3) we improve the rate of convergence n1∕3 to n2∕5 and lose the “non-standard asymptotics”
behavior of ̂f n (for its cube root n convergence to Chernoff’s distribution, see Brunk, 1970, Thm.
5.2, p. 190).

Theorem 1. Let f0 be a nondecreasing continuous function on [0, 1]. Let X1,X2,…be
i.i.d. random variables with continuous density g, staying away from zero on [0, 1], and
where the derivative g′ is continuous and bounded on (0, 1). Furthermore, let 𝜀1, 𝜀2…
be i.i.d. random variables distributed according to a sub-Gaussian distribution with
expectation zero and variance 0 < 𝜎2

0 < ∞, independent of the Xi’s. Then consider Yi,
defined by

Yi = f0(Xi) + 𝜀i, i = 1, 2,…

Suppose t ∈ (0, 1) such that f0 has a strictly positive derivative and a continuous sec-
ond derivative f ′′0 (t) ≠ 0 at t. Then, for the SLSE ̃f nh defined by (3) based on the pairs
(X1,Y1),…, (Xn,Yn), and h ∼ cn−1∕5 for c > 0,

n2∕5{
̃f nh(t) − f0(t)

} 

−−→N(𝛽, 𝜎2). (9)
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6 GROENEBOOM and JONGBLOED

Here

𝛽 = 1
2

c2f ′′0 (t)∫ u2K(u) du and 𝜎

2 =
𝜎

2
0

cg(t) ∫
K(u)2 du. (10)

The asymptotically Mean Squared Error optimal constant c is given by:

c =

{
𝜎

2
0

g(t) ∫
K(u)2 du

/{
f ′′0 (t)∫ u2K(u) du

}2
}1∕5

. (11)

Remark 1. For the first function in Example 1, discussed below, the conditions
of Theorem 1 are satisfied, and the asymptotically optimal bandwidth is approxi-
mately 0.7n−1∕5 (in particular not depending on t). It is seen from Theorem 1 that
the smoothed LSE has the same rate of convergence and also the same asymptotic
variance as the NW estimator under the usual conditions (see (23) below).

However, the asymptotic bias is different. For the NW estimator, the asymptotic
bias up to order h2 at t ∈ (0, 1) is given by

h2
{

1
2

f ′′0 (t) + f ′0(t)
g′(t)
g(t)

}

∫
u2K(u) du, (12)

while the asymptotic bias for the SMLE is just given by

1
2

h2 1
2

f ′′0 (t). (13)

In both cases it can happen that the coefficient of h2 is zero and then on could take a
bandwidth h tending to zero at a slower rate than n−1∕5 to get a better MSE (smaller
variance).

In the current status model, to be discussed in Section 5, there is a similar distinc-
tion between the SMLE and the maximum smoothed likelihood estimator (MSLE)
which have the same asymptotic variance, but the SMLE has asymptotic bias (13) and
the MSLE asymptotic bias (12), with f0 replaced by the distribution function F0, see
Groeneboom et al. (2010). It is clear that the asymptotic biases of the SLSE and the
SMLE are simpler that the respective biases of the NW estimator and the MSLE, but
it is clear that not one of the situation is necessarily to be preferred over the other.

The convergence result (9) still holds if f ′′0 (t) = 0, but then the optimality result via
the constant (11) does no longer hold.

We now give a road map of the proof of Theorem 1. The proof itself is given in Appendix.
Since the estimators are based on the LSE ̂f n, the proof is totally different from the proofs for the
NW estimator, which is a ratio of two sample averages. To prove the result, we introduce methods
similar to those used in Groeneboom et al. (2010) for local smooth functionals in the current status
model.

The first step is to write

̃f nh(t) − f0(t) =
∫

Kh(t − x){̂f n(x) − f0(x)} dx +
∫

Kh(t − x)f0(x) dx − f0(t), (14)
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GROENEBOOM and JONGBLOED 7

and represent the first term at the right-hand side as functional

∫
𝜓t,h(x)

{
̂f n(x) − y

}
dH0(x, y), where 𝜓t,h(x) =

Kh(t − x)
g(x)

,

and H0 is the distribution function of the pairs (Xi,Yi). Next, a piecewise constant version 𝜓 t,h of
𝜓t,h is constructed to be able to use the characterization of ̂f n as a least squares estimator, enabling
us to write

∫
𝜓 t,h(x)

{
̂f n(x) − y

}
dH0(x, y) =

∫
𝜓 t,h(x)

{
̂f n(x) − y

}
d (H0 −Hn) (x, y).

Here Hn is the empirical distribution function of the pairs (Xi,Yi). The latter expression turns out
to behave as the empirical integral

∫
𝜓t,h(x){f0(x) − y} d (H0 −Hn) (x, y),

for which we have a central limit theorem, after multiplying with n2∕5 and letting h ∼ cn−1∕5.
The main effort goes into showing that the remainder terms are of lower order. For example,

it needs to be shown that

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}{
̂f n(x) − f0(x)

}
g(x) dx = op

(
n−2∕5)

.

To this end we use the Cauchy–Schwarz inequality and the inequality

||𝜓 t,h(x) − 𝜓t,h(x)|| ≤ Kh−2|||
̂f n(x) − f0(x)

|||,

for a K > 0, which follows from a judicious choice of 𝜓 t,h (see (A2) and lemma A.4 on p. 379
of Groeneboom et al., 2010). We need the existence of f ′0 here. This method was also used in
Groeneboom and Jongbloed (2014), pp. 290 and 332, and Groeneboom and Hendrickx (2018),
p. 154.

We also need L2 bounds for ̂f n − f0, restricted to an interval [a, b] ⊂ (0, 1), These follow from
the condition that the errors 𝜀i are sub-Gaussian and L2-bounds for functions of uniformly
bounded variation in chap. 9 of van de Geer (2000). Alternatively, we could use the “switch
relation,” as used in Groeneboom and Hendrickx (2018) and Sen and Xu (2015). The proof is
completed by incorporating the behavior of the bias term in (14),

∫
Kh(t − x)f0(x) dx − f0(t) =

1
2

h2f ′′0 (t)∫ u2K(u) du + o
(

h2)
.

3 CONFIDENCE INTERVALS BASED ON THE SMOOTHED
BOOTSTRAP

In this section, we will create confidence intervals for f0(t) based on the SLSE. As basis for the
intervals, we choose the quantity

̃f nh(t) − f0(t), (15)
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8 GROENEBOOM and JONGBLOED

as studied asymptotically in Theorem 1. The distribution of this quantity is approximated by the
distribution of a related quantity based on observations (X1,Y∗

1 ),…, (Xn,Y∗
n ) generated by an esti-

mated model, which makes it a bootstrap approach. As an approximate (estimated) model, we
choose to generate the Y∗

i -values by taking an oversmoothed SLSE, and adding noise to that. More
precisely, we take h0 ≍ n−1∕9 (we will come back to this choice in Section 4), compute ̃f nh0

and
also compute the residuals of the Yi with respect to this estimate:

Ei = Yi − ̃f nh0
(Xi), i = 1,…,n.

Next, we center the Ei by subtracting their mean:

̃Ei = Ei − n−1
n∑

j=1
Ej, i = 1,…,n. (16)

Using the ̃Ei, we generate bootstrap samples

(Xi,Y∗
i ) =

(
Xi, ̃f nh0

(Xi) + E∗i
)
, i = 1,…,n, (17)

where the E∗i are (discretely) uniformly drawn with replacement from the ̃Ei, and consider the
differences

̃f ∗nh(t) − ̃f nh0
(t). (18)

Here ̃f ∗nh(t) is the estimate of f0, based on a bootstrap sample, with bandwidth h as in (15). Note
that we keep the Xi fixed in the bootstrap samples.

Example 1. Consider the setting used in Chakraborty and Ghosal (2021), who study
a Bayesian approach to constructing confidence sets for f0. Following their choice,
we take f0(x) = x2 + x∕5, g(t) = 1[0,1](t) and independent normal errors 𝜀i with expec-
tation 0 and variance 0.01. For a sample of size n = 100, the NW estimator and the
SLSE are shown as blue solid curves in Figure 1. The confidence intervals, of which
the construction will be explained below, are shown in Figure 1 at the points t =
0.01, 0.02,…, 0.99. The coverage is shown in Figure 2a, also for sample size n = 100. In
Figure 2b we also show the results for the rather different function f0(x) = exp{4(x −
1∕2)}∕{1 + exp(4(x − 1∕2)}, for which the second derivative is not constant. The
results for sample size n = 500 are given in Figure 3. For generating the confidence
intervals and coverage percentages, we use the code in Groeneboom (2021).

The 95% bootstrap confidence intervals are given by
(
̃f nh(t) − Q∗

0.975,
̃f nh(t) − Q∗

0.025
)
, (19)

where Q∗
0.025 and Q∗

0.975 are the 2.5th and 97.5th percentiles of 1000 (bootstrap) samples of (18).
Note that the percentiles Q∗

0.025 and Q∗
0.975 contain an estimate of the asymptotic bias

1
2

h2
̃f ′′nh0

(t) ∼ 1
2

h2f ′′0 (t),

(see also Lemma 1 in Section 4) and that therefore the bias of ̃f nh(t) drops out in (19). So we do
not need undersmoothing or explicit estimation of the bias in our procedure. The oversmoothing
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GROENEBOOM and JONGBLOED 9
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F I G U R E 1 (a) The smoothed least squares estimator (SLSE) (blue, solid) and 95% confidence intervals,
using the confidence intervals (19). The red dashed curve is f0. (b) The Nadaraya Watson estimator (blue, solid)
and pointwise 95% confidence intervals, for sample size n = 100, the dashed red curve is the function f0. In both
cases the bandwidth h = 0.5n−1∕5 and h0 = 0.7n−1∕9.
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(a)
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1.00

(b)

F I G U R E 2 Coverage of the confidence intervals, based on the bootstrap described. (a) Fraction of the B
experiments where f0(t) is in the interval (19) for the function f0(x) = x2 + x∕5 and for the smoothed least squares
estimator (SLSE) (blue) and the Nadaraya Watson (NW) estimator (red), and (b) fraction of the B experiments
where f0(t) is in the interval (19) for the function f0(x) = exp{4(x − 1∕2)}∕{1 + exp(4(x − 1∕2)} and for the SLSE
(blue) and the NW estimator (red), based on B = 1000 samples of size n = 100, and t = 0.01,…, 0.99. The chosen
bandwidths h and h0 are h = 0.5n−1∕5 and h = 0.7n−1∕9.
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10 GROENEBOOM and JONGBLOED
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F I G U R E 3 Coverage of the confidence intervals, based on the bootstrap described. (a) Fraction of the B
experiments where f0(t) is in the intervals (19) for the function f0(x) = x2 + x∕5 and for the smoothed least
squares estimator (SLSE) (blue) and the Nadaraya Watson (NW) estimator (red), and (b) fraction of the B
experiments where f0(t) is in the intervals (19) for the function f0(x) = exp{4(x − 1∕2)}∕{1 + exp(4(x − 1∕2)} and
for the SLSE (blue) and the NW estimator (red), based on B = 1000 samples of size n = 500, and t = 0.01,…, 0.99.
The chosen bandwidths h and h0 are h = 0.5n−1∕5 and h = 0.7n−1∕9.

by taking h0 ≍ n−1∕9 (or at least a bandwidth tending to zero slower than n−1∕6) is essential here,
though.

Theorem 2 shows that the bootstrap method described will asymptotically give the right cov-
erage, in the sense that after rescaling with n2∕5 the asymptotic distribution of (18) under the
estimated model (17) coincides with the asymptotic distribution of (15) under model (1).

Theorem 2. Let the conditions of Theorem 1 be satisfied. Moreover, let h ∼ cn−1∕5 and
h0 ∼ c′n−1∕9, for some positive constants c and c′. Then, at t ∈ (0, 1),

n2∕5
{
̃f ∗nh(t) − ̃f nh0

(t)
}



−−→N(𝛽, 𝜎2),

given (X1,Y1),…, (Xn,Yn), almost surely along sequences (X1,Y1), (X2,Y2),…, where 𝛽
and 𝜎2 are defined in (10).

The proof is given in Appendix. It goes through similar steps as the proof of Theorem 1 but is
more complicated because we are here in the “bootstrap world” and for example have to use the
Lindeberg–Feller version of the central limit theorem to deal (conditionally) with the dependence
on the changing regression function ̃f nh0

instead of f0.
We compare the confidence intervals based on the SLSE with confidence intervals based on

the NW estimator. To construct the latter, we define the (empirical) residuals by

Ei = Yi − ̃f NW
nh0
(Xi), i = 1,…,n,

where ̃f NW
nh0

is the NW estimator with bandwidth h0 (again of order n−1∕9), leading to the bootstrap
quantity
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GROENEBOOM and JONGBLOED 11

(
̃f NW

nh

)∗(t) − ̃f NW
nh0
(t). (20)

Here
(
̃f NW

nh

)∗ is the NW estimator based on (17) with ̃f nh0
(Xi) replaced by ̃f NW

nh0
(Xi) and E∗i sampled

with replacement from the residuals ̃ENW
i , i = 1,…,n,

̃ENW
i = ENW

i − ̄ENW
, ENW

i = Yi − ̃f
NW
nh0
(Xi), ̄ENW = n−1

n∑

i=1
ENW

i .

In Hall (1992) the variance of the NW estimator, conditionally on X1,…,Xn, in the model (1) at t
is shown to be equal to

𝜏

2
t = 𝜎

2
0𝛽

2
t , (21)

where 𝜎2
0 = var(𝜀i) and

𝛽

2
t =

∑n
i=1Kh(t − Xi)2

{∑n
i=1Kh(t − Xi)

}2 . (22)

In our set-up the parameter 𝛽t is the same in the original sample and in the bootstrap samples, so
to estimate 𝜏2

t we only need an estimate of 𝜎2
0 .

Denoting the empirical distribution function of the Xi by Gn, note that

1
n

n∑

i=1
Kh(t − Xi) =

∫
Kh(t − x) dGn(x)→Pg(t),

whenever g is continuous at t and h = hn tends to zero such that nh → ∞. Under the same
conditions,

h
n

n∑

i=1
Kh(t − Xi)2 = h

∫
Kh(t − x)2 dGn(x) →P g(t)

∫
K(u)2 du.

Therefore, as n →∞, the variance of ̃f NW
nh (t) behaves like

𝜎

2
0𝛽

2
t = 𝜎

2
0

1
n

∑
n
i=1Kh(t − Xi)2

n
{

1
n

∑
n
i=1Kh(t − Xi)

}2 ∼
𝜎

2
0

nhg(t) ∫
K(u)2 du =

𝜎

2
0

cn4∕5g(t) ∫
K(u)2 du, (23)

where we use h = cn−1∕5 in the final step. In view of Theorem 1, it follows that the SLSE and the
NW estimator (both rescaled and centered) have the same asymptotic variance.

A well known approach to improve the coverage of bootstrap confidence sets is Studentization.
For the SLSE in the setting of this paper, this would mean that instead of using difference (15) as
basis for the bootstrap, one would use a rescaled difference such that asymptotically the variance
does not depend on unknown quantities anymore. In view of Theorem 1, this means

{
̃f nh(t) − f0(t)

}
∕𝜎̂n,0, (24)
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12 GROENEBOOM and JONGBLOED

where the estimate of the variance 𝜎2
0 , 𝜎̂2

n,0, is given by

𝜎̂

2
n,0 = n−1

n∑

i=1

̃E2
i . (25)

The distribution of (24) under the true model is then approximated by the distribution of

{
̃f ∗nh(t) − ̃f nh0

(t)
}
∕𝜎̂∗n,0, with

(
𝜎̂

∗
n,0
)2 = n−1

n∑

i=1

(
̃E∗i − ̄E∗

)2 and ̄E∗ = n−1
n∑

i=1

̃E∗i , (26)

where
(
𝜎̂

∗
n,0
)2 is the variance estimate based on a bootstrap sample, and where again h0 ≍ n−1∕9.

A 95% confidence interval for f0(t) can then be based on the 2.5th and 97.5th percentiles Q∗
0.025

and Q∗
0.975 of 1000 bootstrap draws of (26). It is then given by

(
̃f nh(t) − Q∗

0.975𝜎̂n,0, ̂f nh(t) − Q∗
0.025𝜎̂n,0

)
, (27)

where 𝜎̂2
n,0 is defined by (25). The comparison with the bootstrap intervals based on the SLSE

without Studentization is shown in Figure 4a.
For the NW estimator, an estimate of 𝜎2

0 is given on p. 226 of Hall (1992) (but note the typo
w.r.t. the index j in Hall, 1992). We take the definition from Hall et al. (1990) and define

(
𝜎̂

NW
n

)2 = (n −m)−1
n−2∑

i=1

( 2∑

j=0
djYi+j

)2

, (28)
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0.95

1.00

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

(b)

F I G U R E 4 Coverage of the confidence intervals, Studentized and non-Studentized, based on the bootstrap
described. Fraction of the B experiments where f0(t) is in the intervals (19) for the function f0(x) = x2 + x∕5 for (a)
the Studentized smoothed least squares estimator (SLSE) (red) and the non-Studentized SLSE (blue), and (b) the
Studentized Nadaraya Watson (NW) estimator (red) and the non-Studentized NW estimator (blue). The figures
are based on B = 1000 samples of size n = 100, and t = 0.01,…, 0.99. The chosen bandwidths h and h0 are
h = 0.5n−1∕5 and h0 = 0.7n−1∕9.
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GROENEBOOM and JONGBLOED 13

for the variance of the 𝜀i, where m = 2 and

(d0, d1, d2) =
(1

4
(
√

5 + 1),−1
2
,−1

4
(
√

5 − 1)
)
,

(as recommended in Hall et al., 1990).
If we now compare the non-Studentized and Studentized confidence intervals based on the

NW estimator, constructed in the same way as in the case of the SLSE, we get Figure 4b Here the
non-Studentized are based on the differences (20) and the Studentized intervals on the differences

{(
̃f NW

nh

)∗(t) − ̃f NW
nh0
(t)
}
∕
(
𝜎̂

NW
n

)∗
, (29)

where
(
𝜎̂

NW
n

)∗ is the estimate (28) for the bootstrap samples. It is seen that in both cases there is
not a great improvement.

For the NW estimator, one can also use the estimate of 𝜎0, based on the residuals, the type
of estimate of 𝜎0 we used for the SLSE. In this case we get a bit more improvement for the NW
estimator, see Figure 5. We still do not understand this phenomenon, based on the different ways
of estimating 𝜎0 for the NW estimator, however.

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

F I G U R E 5 The Studentized Nadaraya Watson (NW) estimator (red), with variance estimated from the
residuals, just as for the smoothed least squares estimator (SLSE), and the non-Studentized NW estimator (blue).
The figures are based on B = 1000 samples of size n = 100, and t = 0.01,…, 0.99. The chosen bandwidths h and h0

are h = 0.5n−1∕5 and h0 = 0.7n−1∕9.
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14 GROENEBOOM and JONGBLOED

4 BANDWIDTH SELECTION

As seen in the previous section, for the smooth bootstrap to work, h0 can be chosen as c′n−1∕9 and
the precise value of c′ > 0 is not crucial for this. However, the value of c in the bandwidth choice
h = cn−1∕5 is important. It can be chosen such that the asymptotic MSE is minimal. However,
this optimal choice depends on unknown quantities, as seen in (11). In this section, we propose a
bootstrap method to find an approximately MSE optimal bandwidth for estimating f0(t) at a point
t ∈ (0, 1). The MSE to have minimized as a function of h is given by:

MSEh(t) = E

{{
̃f nh(t) − f0(t)

}2|||X1,…,Xn

}
. (30)

Of course, f0 being unknown, this quantity cannot be computed as function of h. However,
the analogous bootstrap quantity (again using oversmoothing, in the sense that h0 ≍ n−1∕9) is
given by,

MSE∗h(t) = E

{{
̃f ∗nh(t) − ̃f nh0

(t)
}2|||(X1,Y1),…, (Xn,Yn)

}
, (31)

where h0 is called a “pilot” bandwidth. We shall show that (31) is asymptotically independent of
the constant in the pilot bandwidth h0 if we take h0 ≍ n−1∕9.

We have:

MSE∗h(t) = E

{{

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx
}2|||(X1,Y1),…, (Xn,Yn)

}

+
{

∫
Kh(t − x) ̃f nh0

(x) dx − ̃f nh0
(t)
}2

. (32)

For the second term on the right we get:

∫
Kh(t − x) ̃f nh0

(x) dx − ̃f nh0
(t) = 1

2
h2
̃f ′′nh0

(t)
∫

u2K(u) du + op
(

h2)
,

so
{

∫
Kh(t − x) ̃f nh0

(x) dx − ̃f nh0
(t)
}2

= 1
4

h4
̃f ′′nh0

(t)2
{

∫
u2K(u) du

}2

+ op
(

h4)
.

We have the following result.

Lemma 1. Let the conditions of Theorem 1 be satisfied. Moreover, let h0 = hn,0 ∼
c0n−1∕9, as n →∞. Then

̃f ′′nh0
(t)

p
−−→ f ′′0 (t), n → ∞.

Remark 2. Note that this convergence result does not hold if the pilot bandwidth h0
is of order n−1∕5. For this reason the method suggested in Sen and Xu (2015), where
the pilot bandwidth is chosen of order n−1∕5 will not work. Another way out is to use
subsampling, as used in Groeneboom and Hendrickx (2018), but choosing the right
subsample size is a rather hard problem.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12730 by T

u D
elft, W

iley O
nline L

ibrary on [15/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GROENEBOOM and JONGBLOED 15
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F I G U R E 6 Estimated mean integrated squared error (MISE), for samples of sizes n = 500, 1000, and 5000
and h = cn−1∕5, c = 0.4, 0.41,…, 1 and asymptotic MISE with g(x) = 1[0,1](x) and f0(x) = x2 + x∕5 on [0, 1]. The
blue curve is based on (34), and the red curve on (35), B = 10,000, where ti = 0.20, 0.21,…, 0.80, and m = 60. (a)
Estimates for n = 500, (b) Estimates for n = 1000, (c) Estimates for n = 5000. The asymptotically minimizing c in
h = cn−1∕5 is cmin ≈ 0.697601.

We can choose to let h0 tend to zero at any rate slower than n−1∕6 (see the proof
of the Lemma, where it is shown that one needs h−4

0 n−2∕3 → 0 and h−3∕2
0 n−1∕2 → 0).

We choose rate h0 ≍ n−1∕9 because this is the optimal choice for estimating the sec-
ond derivative. See also Figure 10c for the disastrous effect of choosing h0 equal to
h ≍ n−1∕5, which is the bandwidth for estimating the distribution function F0 in the
original sample in the current status model in Section 5.

The proof of Lemma 1 is given in Appendix. The lemma suggests, as in Hazelton (1996), to
take the pilot bandwidth h0 = c0n−1∕9 for some c0 > 0, taking the optimal order for a bandwidth
for estimating the second derivative f ′′0 in the case that the fourth derivative f (4)0 (t) exists and is not
equal to zero. Note that for our example function f0(x) = x2 + x∕5 we have f (4)0 (t) = 0, so in this
case we cannot apply the optimality criterion. The most important fact is, however, that h0 has to
tend slower to zero than n−1∕6, since otherwise the variance of ̃f ′′nh0

(t) does not tend to zero.
For the first term on the right of (32) we get:

E

{{

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx
}2|||(X1,Y1),…, (Xn,Yn)

}
∼ Sn

nh
+ op

( 1
nh

)
,

where

Sn
p
−−→

𝜎

2
0

g(t) ∫
K(u)2 du,

if h ∼ cn−1∕5 (see (A14) and the argument using the Lindeberg–Feller central limit theorem part
of the proof of Theorem 2).

So, asymptotically, the bandwidth h, minimizing (32) minimizes

𝜎

2
0

g(t)nh ∫
K(u)2 du + 1

4
h4f ′′0 (t)

2
{

∫
u2K(u) du

}2

.

The minimization of (30) leads asymptotically to the same minimization over h.
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16 GROENEBOOM and JONGBLOED

Instead of minimizing (31), we minimize a Monte Carlo approximation of (31):

B−1
B∑

i=1

{
̃f ∗,inh(t) − ̃f nh0

(t)
}2
, (33)

where the ̃f ∗,inh, i = 1,…,B are the estimates in B bootstrap samples.
As we are choosing a fixed bandwidth over the range of t-values, it is then natural to aim

at minimizing the Mean Integrated Squared Error (MISE) as a function of h. The asymptoti-
cally MISE optimal bandwidth can also be approximated by a smoothed bootstrap experiment, in
which case one replaces (33) by

̂MISE
∗
c = n4∕5B−1

B∑

j=1

m∑

i=1

{
̃f ∗,jn,cn−1∕5(ti) − ̃f nh0

(ti)
}2
Δi, Δi = ti − ti−1. (34)

for a grid of points 0 ≤ a = t0 < t1 < t2 < · · · < tm = b ≤ 1. The latter global minimization pro-
duced Figure 6, where we took a = 0.21 and b = 0.8. We compare with the plot of the asymptotic
MISE as a function of c:

AsMISEc =
𝜎

2
0

c ∫
K(u)2 du

∫

b

t=a

1
g(t)

dt + 1
4

c4
{

∫
u2K(u) du

}2

∫

b

t=a
f ′′0 (t)

2 dt. (35)

In this case we consider

E

{

∫

b

a

{
̃f ∗nh(t) − ̃f nh0

(t)
}2

dt|||(X1,Y1),…, (Xn,Yn)

}
, (36)

where h0 is the pilot bandwidth. We have:

E

{

∫

b

a

{
̃f ∗nh(t) − ̃f nh0

(t)
}2

dt|||(X1,Y1),…, (Xn,Yn)

}

∼ E

{

∫

b

t=a

{

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx
}2

dt|||(X1,Y1),…, (Xn,Yn)

}

+
∫

b

t=a

{

∫
Kh(t − x) ̃f nh0

(x) dx − ̃f nh0
(t)
}2

dt. (37)

For the second term on the right we get:

∫

b

t=a

{

∫
Kh(t − x) ̃f nh0

(x) dx − ̃f nh0
(t)
}2

dt ∼ 1
4

h4
∫

b

t=a

̃f ′′nh0
(t)2 dt

{

∫
u2K(u) du

}2

dt + op
(

h4)
.

Since we want ̃f ′′nh0
to be as close as possible to f ′′0 , we suggest to minimize

∫

b

t=a

{
̃f ′′nh0

(t) − f ′′0 (t)
}2

dt, (38)

over h0, which is a direct generalization of the locally optimal choice of h0.
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GROENEBOOM and JONGBLOED 17
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F I G U R E 7 Coverage of the confidence intervals: (a) n2∕5-consistent interval, based on smoothed
maximum likelihood estimator (SMLE) with Studentization, (b) n2∕5-consistent interval, based on SMLE without
Studentization. Sample size is n = 500.

We get:

̃f ′′nh0
(t) − f ′′0 (t) = ∫ K′′

h0
(t − x){̂f n(x) − f0(x)} dx +

∫
K′′

h0
(t − x)f0(x) dx − f ′′0 (t),

and

∫
K′′

h0
(t − x)f0(x) dx − f ′′0 (t) = ∫ Kh0(t − x)f ′′0 (x) dx − f ′′0 (t)

∫
Kh0(t − x)

{
f ′′0 (x) − f ′′0 (t)

}
dx = 1

2
h2

0f (4)0 (t)
∫

u2K(u) du + o
(

h2
0
)
,

provided a bounded fourth derivative f (4)0 (t) exists.
This yields:

∫

b

t=a
{̃f ′′nh0

(t) − f ′′0 (t)}
2 dt ∼

𝜎

2
0

nh5
0
∫

K′′(u)2 du
∫

b

t=a

1
g(t)

dt

+ 1
4

h4
0

{

∫
u2K(u) du

}2

∫

b

t=a

(
f (4)0 (t)

)2
dt,

and minimizing this as a function of h0 gives again h0 ≍ n−1∕9 if ∫ b
t=a

(
f (4)0 (t)

)2
dt ≠ 0.

5 CONFIDENCE INTERVALS FOR THE CURRENT STATUS
MODEL

We now turn to confidence intervals for the current status model. In this case there is a very
large choice of cube root n consistent confidence intervals. There are the Banerjee–Wellner con-
fidence intervals, based on likelihood ratio tests (see e.g., Banerjee & Wellner, 2005), the Sen–Xu
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18 GROENEBOOM and JONGBLOED

confidence intervals, based on SMLEs (see Sen & Xu, 2015), and bootstrap intervals, based on
subsampling and, conceivably, the numerical bootstrap (see Hong & Li, 2020). Still other options
are discussed in Banerjee and Wellner (2005).

Confidence intervals which are n2∕5-consistent are discussed in Groeneboom and Hen-
drickx (2017) and Groeneboom and Hendrickx (2018). For the n2∕5-consistent intervals the
variance and the squared bias are of the same order n−4∕5, in contrast with the cube root n consis-
tent intervals, where the bias vanishes in comparison with the variance. This entails that dealing
with the bias is the big issue for the n2∕5-consistent intervals.

Analogously to Theorem 1 we have the following result (see thm. 4.2 in Groeneboom
et al., 2010 and thm. 11.4 in Groeneboom & Jongbloed, 2014).

Theorem 3. Let the distribution corresponding to F0 have support [0,M] and let F0
have a density f0 staying away from zero on (0,M). Furthermore, let G have a density
g with a support that contains [0,M] and let g stay away from zero on [0,M], with a
bounded derivative g′. Finally, let t be an interior point of [0,M] such that f0 has a
continuous derivative f ′0 at t. Then, if h ∼ cn−1∕5 and the SMLE ̂Fnh be defined by

̂Fnh(t) =
∫

IKh(t − x) d ̂Fn(x), IKh(x) = IK(x∕h), (39)

where the integrated kernel IK is defined by (6) and ̂Fn is the MLE. Then

n2∕5 {
̃Fnh(t) − F0(t)

} 

−−→N
(
𝜇, 𝜎

2)
,

where

𝜇 = 1
2

c2f ′0(t)∫ u2K(u) du and 𝜎

2 = F0(t){1 − F0(t)}
cg(t) ∫

K(u)2 du.

Remark 3. In thm. 4.2 on p. 365 of Groeneboom et al. (2010) there is the extra con-
dition that f ′0(t) ≠ 0. This condition is not needed for the validity of Theorem 3, but
only to ensure that a bandwidth of order n−1∕5 is the optimal choice. If f ′0(t) = 0, the
squared bias vanishes with respect to the variance and in that situation one can choose
a larger bandwidth to obtain a faster convergence than order n−2∕5. For more details,
see Groeneboom et al. (2010).

Under the conditions of this theorem, we can construct confidence intervals for F0 in the
following way. From the original sample we obtain a bootstrap sample (T1,Δ∗1),…, (Tn,Δ∗n) by
keeping the original Ti fixed and by resampling the indicators Δ∗i from a Bernoulli distribution
with probability ̃Fnh0(Ti), where h0 ∼ cn−1∕9. A crucial difference w.r.t. the approach in Groene-
boom and Hendrickx (2018) is that we base the Bernoulli probabilities on an oversmoothed
estimate ̃Fnh0(Ti) instead of an estimate using the bandwidth of order n−1∕5.

Next we compute the SMLE ̃f ∗nh(t) in the (smoothed) bootstrap samples with the usual band-
width h of order n−1∕5 and compare this with the estimate ̃Fnh0(t). The following bootstrap
confidence interval is then defined:

[
̃Fnh(t) − 𝜎̂nh(t)U∗

1−𝛼∕2(t), ̃Fnh(t) − 𝜎̂nh(t)U∗
𝛼∕2(t)

]
, (40)
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GROENEBOOM and JONGBLOED 19

where U∗
𝛼

(t) is the 𝛼th quantile of
{
̃f ∗nh(t) − ̃Fnh0(t)

}
∕𝜎̂∗nh(t),

and
𝜎nh(t)2 = ̃Fnh(t){1 − ̃Fnh(t)}, 𝜎

∗
nh(t)

2 = ̃f ∗nh(t){1 − ̃f ∗nh(t)}.

The bootstrap value {̃f ∗nh(t) − ̃Fnh0(t)}∕𝜎̂
∗
nh(t) has, conditionally on (T1,Δ1),…, (Tn,Δn), the same

limit behavior as n2∕5{ ̃Fnh(t) − F0(t)}∕𝜎̂n(t), so the bias drops out in (40), just as in the same
type of intervals for the homoscedastic regression in (18). Since we keep the observation times
Ti fixed, the density g of the Ti acts in the same way on the original sample and on the boot-
strap sample, but it helps to improve the intervals by a kind of Studentization by dividing by
estimates of {F0(t){1 − F0(t)}}1∕2. A comparison between the “non-Studentized” intervals, based
on ̃f ∗nh(t) − ̃Fnh0(t) and the “Studentized” intervals, based on {̃f ∗nh(t) − ̃Fnh0(t)}∕𝜎̂

∗
nh(t) is shown in

Figure 9.
It is clear that the intervals, exhibited in parts (a) of Figures 7 and 8, are much better than

the intervals in parts (b) and (c), if the conditions of Theorem 3 are satisfied. There is also a big
improvement on the intervals, proposed in Groeneboom and Hendrickx (2018). Although the
latter intervals were constructed in a similar way, there were three major differences:

1. The bootstrap samples in in Groeneboom and Hendrickx (2018) were generated by the same
estimate ̃Fnh of the distribution function as used in the original sample, with a bandwidth of
order n−1∕5.

2. The difference ̃f ∗nh(t) − ̃Fnh ∗ ̃Fnh(t)was used in Groeneboom and Hendrickx (2018) in the cen-
tering of ̃f ∗nh(t) to remove the bias, with the consequence that we had to deal with the bias in
the resulting bootstrap confidence intervals around ̃Fnh(t). Getting a good estimate of the bias
is extremely difficult, and it is amazing how well the oversmoothing in the resampling, using
h0 ≍ n−1∕9, and using the differences ̃f ∗nh(t) − ̃Fnh0(t) (where we implicitly estimate the bias in
the bootstrap samples) deals with this problem.
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(a)
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0.0

0.2

0.4

0.6

0.8

1.0

(b)
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(c)

F I G U R E 8 Confidence intervals, based on the bootstrap described: (a) n2∕5-consistent interval, based on
smoothed maximum likelihood estimator (SMLE), (b) Banerjee–Wellner l, based on SMLE, (b) Banerjee–Wellner
n1∕3-consistent intervals, based on LR test and asymptotic critical value, (c) Sen–Xu n1∕3-consistent intervals
based on maximum likelihood estimator (MLE) and SMLE. Red dashed curve: real (truncated on [0, 2])
exponential distribution function, blue curve: SMLE for (a) and MLE for (b) and (c). Sample size is n = 500.
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20 GROENEBOOM and JONGBLOED
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F I G U R E 9 Coverage of the confidence intervals: (a) n2∕5-consistent interval, based on smoothed maximum
likelihood estimator (SMLE), (b) Banerjee–Wellner intervals, based on LR test and asymptotic critical value, (c)
Sen–Xu n1∕3-consistent intervals based on maximum likelihood estimator and SMLE. Sample size is n = 500.
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F I G U R E 10 Coverage of the confidence intervals: (a) n2∕5-consistent interval, based on smoothed
maximum likelihood estimator (SMLE) with Studentization and second bandwidth h0 = 1.9n−1∕9, (b)
n2∕5-consistent interval, based on SMLE with Studentization and second bandwidth h0 = 1.5n−1∕9. (c) interval,
based on SMLE with Studentization and second bandwidth h0 = h = 1.5n−1∕5. Sample size is n = 500.

3. We used in the present paper a very simple type of “Studentization,” where we divide in the
bootstrap samples by {̃f ∗nh(t){1 − ̃f ∗nh(t)}}

1∕2 instead of the S∗nh(t)
1∕2 on p. 141 of Groeneboom

and Hendrickx (2018).

We used the same boundary correction as in sec. 2.4 of Groeneboom and Hendrickx (2018),
however.

For the SMLE ̃Fnh in the Sen–Xu intervals ̂f ∗n(t) − ̃Fnh(t) we chose h = 2n−1∕5. For the SMLE
in the confidence intervals, resulting in parts (a) of Figures 7 and 8 we chose bandwidths h =
1.5n−1∕5 for the SMLE around which the confidence intervals are formed and h0 = 1.9n−1∕9 for
the bandwidth of the SMLE generating and centering the bootstrap intervals ̃f ∗nh(t) − ̃Fnh0(t). Note
that h0 is used in generating the bootstrap intervals and also for the centering function ̃Fnh0 in
these intervals and this role is taken by ̃Fnh with h ≍ n−1∕5 in the Sen–Xu intervals.

So in both cases the generation of the bootstrap samples and the centering of the bootstrap
intervals is accomplished by a function which has greater smoothness than the actual estimator
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GROENEBOOM and JONGBLOED 21

itself in order to catch the bias appropriately. For the intervals in parts (a) of the figures it is abso-
lutely necessary to use oversmoothing and a bandwidth h0 that converges at a slower rate than
n−1∕6, since otherwise the bias is not estimated correctly (in contrast with the suggestion in Sen &
Xu, 2015). On the other hand the constant c0 chosen in h0 = c0n−1∕9 is not crucial for the behav-
ior of the confidence intervals. Figure 10 shows the effect of taking c0 = 1.5 instead of c0 = 1.9. If
h0 = h = 0.5n−1∕5, however, the intervals are totally off. The essential feature of this procedure is
that the second derivative is estimated consistently, and converges to zero at a slower rate than
n−1∕6, but the constant c0 does not show up in the asymptotic distribution of ̃Fnh. All procedures
(also the Banerjee–Wellner and Sen–Xu intervals) can be produced by running theR scripts, given
on Groeneboom (2023).

One can also construct cube root n consistent confidence intervals different from the
Banerjee–Wellner or Sen–Xu intervals, as is shown in sec. 4 of Groeneboom and Jongbloed (2023).
For reasons of space we will not elaborate on that here.

6 LAKE MENDOTA: YEARLY NUMBER OF DAYS FROZEN

As a real data application, we give confidence intervals for the Lake Mendota data, analyzed
in Groeneboom and Jongbloed (2014), sec. 1.1. For 157 consecutive years, starting in 1854, the
number of days that the lake was frozen was recorded. The idea is that in the presence of global
warming, the number of days that the lake is frozen will show a downward trend over the years.
It is the first example in Barlow et al. (1972).

1850 1900 1950 2000

20

40

60

80

100

120

140

160

F I G U R E 11 95% confidence intervals for the regression function for the Mendota data. The red curve is
the SLSE, with the bandwidth chosen by the method based on the MISE-approximation (34).
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22 GROENEBOOM and JONGBLOED
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F I G U R E 12 The MISE-approximation (34), as a function of c for the transformed Mendota data.

To apply the methods of the preceding sections, we first rescale the x-coordinates to [0, 1] by
making the transformation

Xi ∶= (Xi − 1853)∕158 = i∕158,

and next by letting Yi ∶= Yn−i+1. If there is a downward trend in the Yi, there will be an upward
trend in the (old) Yn−i+1, where n = 157, and so we can apply the theory of the preceding sections
to the new (Xi,Yi).

As before (in the examples) we take the pilot bandwidth h0 = 0.7n−1∕9, and used the band-
width choice of Section 4, based on (34), which gave c = 0.84 for the optimal bandwidth h =
cn−1∕5 ≈ 0.30556. The isotonic confidence intervals for this choice of h are shown in Figure 11.
The bootstrap approximation of the MISE as a function of the constant c in the bandwidth choice
h = cn−1∕5 is shown in Figure 12.

7 CONCLUSION

We introduce the SLSE

̃f nh(t) =
∫

Kh(t − x)̂f n(x) dx, (41)
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GROENEBOOM and JONGBLOED 23

in the monotone regression problem, where ̂f n is the monotone nonparametric least squares
estimator, where K is a smooth symmetric kernel with support [−1, 1] and Kh = h−1K(⋅∕h).
In contrast with ̂f n, the smooth estimator converges at rate n2∕5, under the conditions of our
Theorem 1; the monotone nonparametric regression estimator ̂f n only converges at rate n1∕3 in
these circumstances.

We use the SLSE to construct bootstrap confidence intervals, based on sampling with replace-
ment residuals with respect to an oversmoothed estimator of type (41). The oversmoothing has the
effect that the bias is estimated correctly (which is not the case if one uses residuals w.r.t. an esti-
mate, based on a bandwidth of order n−1∕5) and the bias drops out in the final confidence interval.
The idea goes back to similar methods used for NW estimates in Härdle and Marron (1991).

We compare the monotone estimates with the NW estimates, suggesting that the monotone
estimates are somewhat more stable if the underlying regression function is monotone. The
method extends the construction of confidence intervals for distribution functions in interval
censoring models, studied in Sen and Xu (2015) and Groeneboom and Hendrickx (2018). We
think the bias problem is solved more efficiently than in Groeneboom and Hendrickx (2018),
where undersmoothing or explicit estimation of the bias was suggested, which is also suggested
in Hall (1992).

We describe in Section 4 a method for choosing the bandwidth automatically, correcting the
method used in Sen and Xu (2015). This method is used in Section 6 to choose the bandwidth in
the classical example of the Lake Mendota data, which is the first example in the book Barlow
et al. (1972).

Our paper was inspired by the recent paper Chakraborty and Ghosal (2021) for Bayesian con-
fidence intervals in this setting, which will converge at a slower rate and which is analyzed from a
bootstrap perspective in Groeneboom and Jongbloed (2023). We use their example of a regression
function in our examples.

All examples in our paper can be recreated using the R scripts in Groeneboom (2021).

ORCID
Piet Groeneboom https://orcid.org/0000-0001-8027-8114
Geurt Jongbloed https://orcid.org/0000-0003-4708-5868

REFERENCES
Abrevaya, J., & Huang, J. (2005). On the bootstrap of the maximum score estimator. Econometrica, 73, 1175–1204.
Armstrong, T. (2015). Adaptive testing on a regression function at a point. Annals of Statistics, 43, 2086–2101.

https://doi.org/10.1214/15-AOS1342
Banerjee, M., & Wellner, J. (2005). Confidence intervals for current status data. Scandinavian Journal of Statistics,

32, 405–424. https://doi.org/10.1111/j.1467-9469.2005.00454.x
Barlow, R., Bartholomew, D., Bremner, J., & Brunk, H. (1972). Statistical inference under order restrictions. The

theory and application of isotonic regression Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons.

Birman, M. Š., & Solomjak, M. Z. (1967). Piecewise polynomial approximations of functions of classes W𝛼

p .
Mathematics of the USSR-Sbornik, 73(115), 331–355.

Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric techniques in statistical inference (pro-
ceedings of Symposium, Indiana University, Bloomington, Indiana, 1969 (pp. 177–197). Cambridge University
Press.

Chakraborty, M., & Ghosal, S. (2021). Coverage of credible intervals in nonparametric monotone regression. Annals
of Statistics, 49, 1011–1028. https://doi.org/10.1214/20-aos1989

Chernoff, H. (1964). Estimation of the mode. Annals of the Institute of Statistical Mathematics, 16, 31–41.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12730 by T

u D
elft, W

iley O
nline L

ibrary on [15/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0001-8027-8114
https://orcid.org/0000-0001-8027-8114
https://orcid.org/0000-0003-4708-5868
https://orcid.org/0000-0003-4708-5868
https://doi.org/10.1214/15-AOS1342
https://doi.org/10.1214/15-AOS1342
https://doi.org/10.1111/j.1467-9469.2005.00454.x
https://doi.org/10.1111/j.1467-9469.2005.00454.x
https://doi.org/10.1214/20-aos1989
https://doi.org/10.1214/20-aos1989


24 GROENEBOOM and JONGBLOED

Grenander, U. (1956). On the theory of mortality measurement. Skandinavisk Aktuarietidskrift, 39, 125–153.
Groeneboom, P. (2021). Monotone regression. https://github.com/pietg/monotone-regression
Groeneboom, P. (2023). Confidence intervals current status examples. https://github.com/pietg/Confidence

-Intervals-current-status-examples-
Groeneboom, P., & Hendrickx, K. (2017). The nonparametric bootstrap for the current status model. Electronic

Journal of Statistics, 11, 3446–3484.
Groeneboom, P., & Hendrickx, K. (2018). Confidence intervals for the current status model. Scandinavian Journal

of Statistics, 45, 135–163. https://doi.org/10.1111/sjos.12294
Groeneboom, P., & Jongbloed, G. (2012). Isotonic L2-projection test for local monotonicity of a hazard. Journal of

Statistical Planning and Inference, 142, 1644–1658. https://doi.org/10.1016/j.jspi.2012.02.004
Groeneboom, P., & Jongbloed, G. (2014). Nonparametric estimation under shape constraints. Cambridge University

Press.
Groeneboom, P., & Jongbloed, G. (2023). Credible intervals and bootstrap confidence intervals in monotone regres-

sion. https://arxiv.org/abs/2307.16168
Groeneboom, P., Jongbloed, G., & Witte, B. (2010). Maximum smoothed likelihood estimation and smoothed

maximum likelihood estimation in the current status model. Annals of Statistics, 38, 352–387.
Groeneboom, P., & Wellner, J. (1992). Information bounds and nonparametric maximum likelihood estimation. In

DMV seminar (Vol. 19). Birkhäuser Verlag.
Hall, P. (1992). The bootstrap and Edgeworth expansion Springer series in statistics. Springer.
Hall, P., Kay, J. W., & Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance

in nonparametric regression. Biometrika, 77, 521–528. https://doi.org/10.1093/biomet/77.3.521
Hall, P., & Van Keilegom, I. (2005). Testing for monotone increasing hazard rate. Annals of Statistics, 33, 1109–1137.

https://doi.org/10.1214/009053605000000039
Härdle, W., & Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. Annals of

Statistics, 19, 778–796. https://doi.org/10.1214/aos/1176348120
Hazelton, M. (1996). Bandwidth selection for local density estimators. Scandinavian Journal of Statistics, 23,

221–232.
Hong, H., & Li, J. (2020). The numerical bootstrap. Annals of Statistics, 48, 397–412. https://doi.org/10.1214/19

-AOS1812
Kim, J., & Pollard, D. (1990). Cube root asymptotics. Annals of Statistics, 18, 191–219. https://doi.org/10.1214/aos

/1176347498
Kosorok, M. (2008). Bootstrapping the Grenander estimator. In Beyond parametrics in interdisciplinary research:

Festschrift in honor of professor Pranab K. Sen (Vol. 1, pp. 282–292). The Institute of Mathematical Statistics
Collections.

Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice. Journal of Econometrics,
3, 205–228.

Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79,
871–880.

Sen, B., Banerjee, M., & Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Annals of
Statistics, 38, 1953–1977. https://doi.org/10.1214/09-AOS777

Sen, B., & Xu, G. (2015). Model based bootstrap methods for interval censored data. Computational Statistics &
Data Analysis, 81, 121–129. https://doi.org/10.1016/j.csda.2014.07.007

van de Geer, S. (2000). Applications of empirical process theory Cambridge series in statistical and probabilistic
mathematics (Vol. 6). Cambridge University Press.

How to cite this article: Groeneboom, P., & Jongbloed, G. (2024). Confidence intervals
in monotone regression. Scandinavian Journal of Statistics, 1–33. https://doi.org/10.1111
/SJOS.12730

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12730 by T

u D
elft, W

iley O
nline L

ibrary on [15/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/pietg/monotone-regression
https://github.com/pietg/monotone-regression
https://github.com/pietg/Confidence-Intervals-current-status-examples-
https://github.com/pietg/Confidence-Intervals-current-status-examples-
https://github.com/pietg/Confidence-Intervals-current-status-examples-
https://doi.org/10.1111/sjos.12294
https://doi.org/10.1111/sjos.12294
https://doi.org/10.1016/j.jspi.2012.02.004
https://doi.org/10.1016/j.jspi.2012.02.004
https://arxiv.org/abs/2307.16168
https://arxiv.org/abs/2307.16168
https://doi.org/10.1093/biomet/77.3.521
https://doi.org/10.1093/biomet/77.3.521
https://doi.org/10.1214/009053605000000039
https://doi.org/10.1214/009053605000000039
https://doi.org/10.1214/aos/1176348120
https://doi.org/10.1214/aos/1176348120
https://doi.org/10.1214/19-AOS1812
https://doi.org/10.1214/19-AOS1812
https://doi.org/10.1214/19-AOS1812
https://doi.org/10.1214/aos/1176347498
https://doi.org/10.1214/aos/1176347498
https://doi.org/10.1214/aos/1176347498
https://doi.org/10.1214/09-AOS777
https://doi.org/10.1214/09-AOS777
https://doi.org/10.1016/j.csda.2014.07.007
https://doi.org/10.1016/j.csda.2014.07.007
https://doi.org/10.1111/SJOS.12730
https://doi.org/10.1111/SJOS.12730
https://doi.org/10.1111/SJOS.12730
https://doi.org/10.1111/SJOS.12730


GROENEBOOM and JONGBLOED 25

APPENDIX

Proof of Theorem 1. Let t ∈ (0, 1), and let n be sufficiently large, so that t ∈ [h, 1 − h],
where h = hn = cn−1∕5. Then ̃f nh is represented by the so-called local smooth
functional

∫
Kh(t − x) ̂f n(x) dx.

We now analyze the difference of this functional with the corresponding functional
of f0,

∫
Kh(t − x)

{
̂f n(x) − f0(x)

}
dx.

Defining G as the distribution function of the Xi, we can trivially write this in the
following form:

∫
Kh(t − x)

̂f n(x) − f0(x)
g(x)

dG(x).

We define
𝜓t,h(u) =

Kh(t − u)
g(u)

, (A1)

and

𝜓 t,h(u) =
⎧
⎪
⎨
⎪⎩

𝜓t,h(𝜏i), if f0(u) > ̂f n(𝜏i), u ∈ [𝜏i, 𝜏i+1),
𝜓t,h(s), if f0(s) = ̂f n(s), for some s ∈ [𝜏i, 𝜏i+1),
𝜓t,h(𝜏i+1), if f0(u) < ̂f n(𝜏i), u ∈ [𝜏i, 𝜏i+1),

(A2)

where the 𝜏i are successive points of jump of ̂f n.
The characterization of the LSE ̂f n, implies that ̂f n satisfies

∫
𝜓 t,h(u){y − ̂f n(x)} dHn(x, y) = 0,

see lemma 2.1 on p. 19 of Groeneboom and Jongbloed (2014). This is a consequence
of the fact that 𝜓 t,h is constant between jumps of ̂f n.

So we get:

0 =
∫
𝜓 t,h(x){y − ̂f n(x)} dHn(x, y)

=
∫
𝜓t,h(x){y − ̂f n(x)} dHn(x, y) +

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − ̂f n(x)} dHn(x, y)

=
∫
𝜓t,h(x){y − ̂f n(x)} d(Hn −H0)(x, y) +

∫
𝜓t,h(x){y − ̂f n(x)} dH0(x, y)

+
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − ̂f n(x)} dHn(x, y)

=
∫
𝜓t,h(x){y − ̂f n(x)} d(Hn −H0)(x, y) +

∫
𝜓t,h(x){f0(x) − ̂f n(x)} dG(x)

+
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − ̂f n(x)} dHn(x, y).
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26 GROENEBOOM and JONGBLOED

Hence

∫
Kh(t − x)

{
̂f n(x) − f0(x)

}
dx =

∫
𝜓t,h(x){̂f n(x) − f0(x)} dG(x)

=
∫
𝜓t,h(x){y − ̂f n(x)} d(Hn −H0)(x, y) +

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − ̂f n(x)} dHn(x, y)

=
∫
𝜓t,h(x){y − ̂f n(x)} d(Hn −H0)(x, y) +

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{f0(x) − ̂f n(x)} dGn(x)

+
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − f0(x)} dHn(x, y) =∶ AI + AII + AIII .

We have:

AI =
∫
𝜓t,h(x){y − f0(x)} d(Hn −H0)(x, y) +

∫
𝜓t,h(x){f0(x) − ̂f n(x)} d(Gn − G)(x).

The central limit theorem implies that if h ≍ n−1∕5 the first term, multiplied with n2∕5,
converges in distribution to a normal distribution with expectation zero and variance

𝜎

2 =
𝜎

2
0

cg(t) ∫
K(u)2 du, (A3)

where 𝜎2
0 is the variance of the error in the regression model.

We now consider the term

∫
𝜓t,h(x)

{
f0(x) − ̂f n(x)

}
d(Gn − G)(x).

Note that we may assume that |̂f n(x) − f0(x)| is bounded by a fixed constant M on an
interval [a, b] ⊂ (0, 1) for all sufficiently large n (consistency of the LSE on the interior
of [0, 1]).

Let h be the collection of functions x → h𝜓t,h(x) {f0(x) − f (x)}1[t−h,t+h] for uni-
formly bounded nondecreasing functions f ∶ [a, b] → R. Then the bracketing entropy
number for the L2-distance HB(𝜀,h,G) satisfies

HB(𝜀,h,G) ≤
c
𝜀

,

for all 𝜀 > 0 and some c > 0, using the results of Birman and Solomjak (1967), see
(2.5) on p. 18 of van de Geer (2000). As in van de Geer (2000) we use the nota-
tion || ⋅ ||2 for the L2- norm w.r.t. the relevant probability measure, such as G or (the
two-dimensional) H0.

We can now apply for example lemma 5.13 on p. 79 of van de Geer (2000) with 𝛼 =
1 and 𝛽 = 0, where we multiply both sides of the inequalities inside the probabilities
with n2∕5h−1. This implies by (5.42) of lemma 5.13 in van de Geer (2000) that there are
constants c and n0 such that for all T ≥ c and n ≥ n0, taking 𝛼 = 1 and 𝛽 = 0,

P

{
n2∕5h−1 sup

𝜙∈hn , n1∕3||𝜙−𝜙0||2≤1

||||∫
{𝜙(x) − 𝜙0(x)} d(Gn − G)(x)

||||
≥ Tn2∕5h−1n−2∕3

}

≤ c exp
{
−Tn1∕3∕c2}

, (A4)
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GROENEBOOM and JONGBLOED 27

and

P

{
n2∕5h−1 sup

𝜙∈n, n1∕3||𝜙−𝜙0||2>1
||𝜙 − 𝜙0||−1∕2

2
||||∫

{𝜙(x) − 𝜙0(x)} d(Gn − G)(x)
||||
≥ Tn2∕5h−1n−1∕2

}

≤ c exp
{
−T∕c2}

, (A5)

where we multiply both sides of the inequalities inside the probabilities with n2∕5h−1.
Taking h ≍ n−1∕5, we get from (A4),

P

{
n3∕5 sup

𝜙∈hn , n1∕3||𝜙−𝜙0||2≤1

||||∫
{𝜙(x) − 𝜙0(x)} d(Gn − G)(x)

||||
≥ Tn−1∕15

}
≤ c exp

{
−Tn1∕3∕c2}

,

and hence

n2∕51{n1∕3||(̂f n−f0)1[t−h,t+h]||2≤1} ∫
𝜓t,h(x)

{
f0(x) − ̂f n(x)

}
d(Gn − G)(x) = op(1). (A6)

The inequality (A5) yields:

P

{
n3∕5 sup

𝜙∈n, n1∕3||𝜙−𝜙0||2>1

n−1∕10

||𝜙 − 𝜙0||1∕2
2

||||∫
{𝜙(x) − 𝜙0(x)} d(Gn − G)(x)

||||
≥ T

}
≤ c exp

{
−T∕c2}

,

and hence

n2∕5

||𝜓t,h{̂f n − f0}||1∕2
2

1{n1∕3||(̂f n−f0)1[t−h,t+h]||2>1} ∫
𝜓t,h(x)

{
f0(x) − ̂f n(x)

}
d(Gn − G)(x) = Op(1),

implying

n2∕51{n1∕3||(̂f n−f0)1[t−h,t+h]||2>1} ∫
𝜓t,h(x)

{
f0(x) − ̂f n(x)

}
d(Gn − G)(x)

= Op

(
||𝜓t,h{̂f n − f0}||1∕2

2

)
= op(1). (A7)

The last equality follows from the fact that for large n and h ≍ n−1∕5,

E
‖‖‖𝜓t,h||(̂f n − f0)

‖‖‖
2

2
= h−2

∫

t+h

t−h

K((t − x)∕h)2

g(x)2
E{̂f n(x) − f0(x)}2 dG(x = O

(
h−1n−2∕3) = O

(
n−7∕15)

.

Combining (A6) and (A7) we find

n2∕5
∫
𝜓t,h(x)

{
f0(x) − ̂f n(x)

}
d(Gn − G)(x) = op(1).

For the term AII we get:

AII =
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{f0(x) − ̂f n(x)} d(Gn − G)(x)

+
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{f0(x) − ̂f n(x)} dG(x).
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28 GROENEBOOM and JONGBLOED

By the same reasoning as used for AI , the first term n the right-hand side is
again of order op(n−2∕5). For the second term on the right-hand side we get by the
Cauchy-Schwarz inequality:

||||∫
{
𝜓 t,h(x) − 𝜓t,h(x)

}
{f0(x) − ̂f n(x)} dG(x)

||||

≤

{

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}2 dG(x)
}1∕2

{

∫

t+h

t−h

{
f0(x) − ̂f n(x)

}2
dG(x)

}1∕2

.

We first note that, letting [a, b] ⊂ (0, 1):

E‖‖(𝜓 t,h − 𝜓t,h)1[a,b]‖‖2 = Op

(
h−3∕2||(̂f n − f0)1[a,b]||2

)
, (A8)

where we use the Cauchy–Schwarz inequality.and where we use

|||𝜓 t,h(x) − 𝜓t,h(x)
||| ≤

c
h2

|||
̂f n(x) − f0(x)

|||.

This relation presently belongs to the standard tools of this type of theory, and is for
example proved in lemma A.4 of of Groeneboom et al. (2010) and used in Groeneboom
and Jongbloed (2014), pp. 290 and 332.

So we obtain:

|||||∫
b

a

{
𝜓 t,h(x) − 𝜓t,h(x)

} {
̂f n(x) − f0(x)

}
dG(x)

|||||
= Op

(
h−1‖‖‖(

̂f n − f0)1[a,b]
‖‖‖

2

2

)
.

Hence:

|||||∫
b

a

{
𝜓 t,h(x) − 𝜓t,h(x)

} {
̂f n(x) − f0(x)

}
dG(x)

|||||
= Op

(
n1∕5−2∕3) = Op

(
n−7∕15) = op

(
n−2∕5)

.

Finally we consider AIII . We can write

AIII =
∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − f0(x)} d (Hn −H0) (x, y),

since

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{y − f0(x)} dH0(x, y) =

∫

{
𝜓 t,h(x) − 𝜓t,h(x)

}
{f0(x) − f0(x)} dG(x) = 0.

We now consider the class of functions

h = {𝜙 ∶ 𝜙(x, y) = h{𝜓h,f (x) − 𝜓h(x)}(y − x), f ∶ [a, b] → R},

for piecewise constant right-continuous bounded monotone functions f ∶ [a, b] → R,
where𝜓h,f is chosen in the same way as𝜓h in (A2), but with ̂f n replaced by f . We now
get by (5.42) of Lemma 5.13 in van de Geer (2000) that there are constants c and n0

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12730 by T

u D
elft, W

iley O
nline L

ibrary on [15/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GROENEBOOM and JONGBLOED 29

such that for all T ≥ c and n ≥ n0,

P

{
n2∕5h−1 sup

𝜙∈h, n1∕3||𝜙−𝜙0||2≤1

||||∫
{𝜙(x, y) − 𝜙0(x, y)} d(Hn −H0)(x, y)

||||
≥ Tn2∕5h−1n−2∕3

}

≤ c exp
{
−Tn1∕3∕c2}

, (A9)

and

P

{
n2∕5h−1 sup

𝜙∈n, n1∕3||𝜙−𝜙0||2>1
||𝜙 − 𝜙0||−1∕2

2
||||∫

{𝜙(x, y) − 𝜙0(x, y)} d(Hn −H0)(x, y)
||||

≥ Tn2∕5h−1n−1∕2}

≤ c exp
{
− T

c2

}
. (A10)

Note that

h2
∫x∈[t−h,t+h]

{
𝜓 t,h(x) − 𝜓t,h(x)

}2{y − f0(x)}2 dH0(x, y)

≲ h−2
∫x∈[t−h,t+h]

{
̂f n(x) − f0(x)

}2
{y − f0(x)}2 dH0(x, y)

= Op
(

h−1n−2∕3) = Op
(

n−7∕15)
, (A11)

if h ≍ n−1∕5.
So, using the same arguments as used for AI , and defining

𝜙1(x, y) = y − f0(x)},

we get:

n2∕51n1∕3||h{𝜓 t,h−𝜓t,h}𝜙1}||2≤1}
∫
{𝜓 t,h(x) − 𝜓t,h(x) {y − f0(x)} d(Hn −H0)(x, y) = op(1),

and

n2∕51n1∕3||h{𝜓 t,h−𝜓t,h}𝜙1}||2>1}
∫
{𝜓 t,h(x) − 𝜓t,h(x) {y − f0(x)} d(Hn −H0)(x, y)

= Op

(
‖‖‖
(
𝜓 t,h − 𝜓t,h

)
𝜙1
‖‖‖

1∕2

2

)
= Op

(
h−1∕2n−7∕60) = op(1),

using (A11) and h ≍ n−1∕5 in the last two steps. It now follows that AIII = op(n−2∕5). ▪

Proof of Theorem 2. We follow the set-up of the proof of Theorem 1, take t ∈ (0, 1) and
consider n sufficiently large so that h < t < 1 − h. Then ̃f ∗nh is defined by

̃f ∗nh(t) = ∫ Kh(t − x) ̂f ∗n(x) dx,

where ̂f ∗n is the LSE based on a bootstrap sample. Consider

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx,
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30 GROENEBOOM and JONGBLOED

and recall that G is the distribution function of the Xi. Then:

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx =
∫

Kh(t − x)
̂f ∗n(x) − ̃f nh0

(x)
g(x)

dG(x).

Let ̃Hn,h0 be the distribution function of the pairs (Xi,Y∗
i ), induced by uniform

sampling with replacement from the centered residuals ̃Ei. This means that the
distribution function ̃Hn,h0 corresponds to the probability measure Pn,h0 of the
two-dimensional random variable (X ,Y∗), defined by

Pn,h0

{
(X ,Y∗) = (Xi, ̃f nh0

(Xi) + ̃Ei)
}
= 1

n
, i = 1,…,n,

conditionally on (X1,Y1),…, (Xn,Yn).
Defining 𝜓t,h as in (A1), define

𝜓

∗
t,h(x) =

⎧
⎪
⎨
⎪⎩

𝜓t,h(𝜏∗i ), if ̃f nh0
(x) > ̂f ∗n(𝜏i), u ∈ [𝜏i, 𝜏i+1),

𝜓t,h(s), if ̃f nh0
(s) = ̂f ∗n(s), for some s ∈ [𝜏i, 𝜏i+1),

𝜓t,h(𝜏∗i+1), if ̃f nh0
(x) < ̂f ∗n(𝜏i), u ∈ [𝜏i, 𝜏i+1),

where the 𝜏∗i are successive points of jump of ̂f ∗n. We have:

∫
y 𝜓∗t,h(x) d ̃Hnh0(x, y) = n−1

n∑

i=1

{
̃f nh0

(Xi) + ̃Ei)
}
𝜓

∗
t,h(Xi)

= n−1
n∑

i=1

̃f nh0
(Xi)𝜓∗t,h(Xi) =

∫
̃f nh0

(x)𝜓∗t,h(x) dGn(x),

where Gn is the empirical distribution function of the Xi, using the fact that the
residuals ̃Ei are centered. (have mean zero). Hence

∫
{y − ̃f nh0

(x)} 𝜓t,h(x) d ̃Hn,h0(x, y) = 0. (A12)

By the characterization of the LSE ̂f ∗n, we also have

∫
{y − ̂f ∗n(x)}𝜓

∗
t,h(x) dH

∗
n(x, y) = 0,

where H∗
n is the empirical distribution function of the bootstrap sample

(X1,Y∗
1 ),…, (Xn,Y∗

n ).
So we get:

0 =
∫
{y − ̂f ∗n(x)}𝜓

∗
t,h(x) dH

∗
n(x, y) =

∫
{y − ̂f ∗n(x)}𝜓t,h(x) dH

∗
n(x, y)

+
∫
{y − ̂f ∗n(x)}

{
𝜓

∗
t,h(x) − 𝜓t,h(x)

}
dH

∗
n(x, y)
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GROENEBOOM and JONGBLOED 31

=
∫
{y − ̃f nh0

(x)}𝜓t,h(x) d
(
H
∗
n − ̃Hn,h0

)
(x, y) +

∫
{̃f nh0

(x) − ̂f ∗n(x)}𝜓t,h(x) dH
∗
n(x, y)

+
∫
{y − ̂f ∗n(x)}

{
𝜓

∗
t,h(x) − 𝜓t,h(x)

}
dH

∗
n(x, y),

using (A12) to replace dH
∗
n by d(H∗

n − ̃Hn,h0) in the first integral after the last equality
sign. This implies

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx =
∫
𝜓t,h(x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dG(x)

=
∫
𝜓t,h(x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dG(x) +
∫
{y − ̂f ∗n(x)}𝜓

∗
t,h(x) dH

∗
n(x, y)

=
∫
{y − ̃f nh0

(x)}𝜓t,h(x) d
(
H
∗
n − ̃Hn,h0

)
(x, y) +

∫
{̃f nh0

(x) − ̂f ∗n(x)}𝜓t,h(x) d (Gn − G) (x)

+
∫
{y − ̂f ∗n(x)}

{
𝜓

∗
t,h(x) − 𝜓t,h(x)

}
dH

∗
n(x, y). (A13)

The Lindeberg–Feller central limit theorem implies that

n2∕5
∫
{y − ̃f nh0

(x)}𝜓t,h(x) d
(
H
∗
n − ̃Hn,h0

)
(x, y)



−−→N(0, 𝜎2),

given (X1,Y1),…, (Xn,Yn), almost surely along sequences (X1,Y1), (X2,Y2),…. Note that

n2∕5
∫
{y − ̃f nh0

(x)}𝜓t,h(x) d
(
H
∗
n − ̃Hn,h0

)
(x, y) = n−3∕5

n∑

i=1
{Y∗

i − ̃f nh0
(x)}𝜓t,h(Xi),

which has conditional expectation zero and conditional variance

n−1∕5
n∑

i=1

{
n−1

n∑

j=1

̃E2
j

}
𝜓t,h(Xi)2 ∼

𝜎

2
0

cg(t) ∫
K(u)2 du, (A14)

given (X1,Y1),…, (Xn,Yn), if h ∼ cn−1∕5.
Note that

n−1
n∑

j=1

̃E2
j ∼ n−1

n∑

j=1

{
Yj − f0(Xi)

}2 + n−1
n∑

j=1

{
f0(Xi) − ̃f nh0

(Xi)
}2

→ 𝜎

2
0 ,

almost surely, as n →∞.
We now turn to the second term after the last equality sign in (A13). By lemma 4.1

and corol. 4.1 from Groeneboom and Jongbloed (2023), added to the monotonicity of
f ∗n , we may assume that

n =
{
{̂f ∗n − ̃f nh0

}1[a,b]
}
,

is of uniformly bounded variation for an interval [a, b] ⊂ (0, 1) and hence has
entropy with bracketing H(𝜀,n,Gn) ≤ c𝜀−1 for the L2-distance and some c > 0, con-
ditionally on (X1,Y1),…, (Xn,Yn), along all sequences (X1,Y1), (X2,Y2),…. Moreover,
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32 GROENEBOOM and JONGBLOED

the L2-distance ||{̂f ∗n − ̃f nh0
}1[a,b]||2 is of order n−1∕3, just as the L2-distance ||{̂f n −

f0}1[a,b]||2. So we find, if h ≍ n−1∕5,

∫
{̃f nh0

(x) − ̂f ∗n(x)}𝜓t,h(x) d (Gn − G) (x) = O∗
p
(

h−1n−2∕3) = O∗
p
(

n−7∕15) = o∗p
(

n−2∕5)
,

where we add the star ∗ to the Op and op symbol to indicate the conditional meaning
of these symbols for the bootstrap samples.

Finally, the third term after the last equality sign in (A13) can be written

∫
{y − ̂f ∗n(x)}

{
𝜓

∗
t,h(x) − 𝜓t,h(x)

}
d
(
H
∗
n − ̃Hn,h0

)
(x, y)

+
∫

{
̃f nh0

(x) − ̂f ∗n(x)
}{

𝜓

∗
t,h(x) − 𝜓t,h(x)

}
d ̃Hn,h0(x, y)

=
∫
{y − ̂f ∗n(x)}

{
𝜓

∗
t,h(x) − 𝜓t,h(x)

}
d
(
H
∗
n − ̃Hn,h0

)
(x, y)

+
∫

{
̃f nh0

(x) − ̂f ∗n(x)
}{

𝜓

∗
t,h(x) − 𝜓t,h(x)

}
dGn(x).

Using
||𝜓

∗
t,h(x) − 𝜓t,h(x)|| ≲ h−2|||

̂f ∗n(x) − ̃f nh0
(x)|||,

for all x in a neighborhood of t, we find again that these terms are op(n−2∕5).
Moreover, again conditionally and almost surely,

∫
Kh(t − x)̃f nh0

(x) dx = ̃f nh0
(t) + 1

2
h2f ′′0 (t)∫ u2K(u) du + o

(
h2)

.

Hence
E
{
̃f ∗nh(t) − ̃f nh0

(t)|||(X1,Y1),…, (Xn,Yn)
}

= E
{

∫
Kh(t − x)

{
̂f ∗n(x) − ̃f nh0

(x)
}

dx|||(X1,Y1),…, (Xn,Yn)
}

+ 1
2

h2f ′′0 (t)∫ u2K(u) du + o
(

h2)
.

This gives the expression for the mean of the conditional limit distribution of
̃f ∗nh(t) −

̃f nh0
(t). Note that the bias drops out in the construction of the bootstrap

confidence intervals. ▪

Proof of Lemma 1. We have:

̃f ′′nhn,0
(t) − h−3

n,0 ∫
K′′((t − x)∕hn,0

)
f0(x) dx = h−3

n,0 ∫
K′′((t − x)∕hn,0

) {
̂f n(x) − f0(x)

}
dx,

and

∫
K′′((t − x)∕hn,0

) {
̂f n(x) − f0(x)

}
dx =

∫

K′′((t − x)∕hn,0
)

g(x)

{
̂f n(x) − f0(x)

}
dG(x)

=
∫

K′′((t − x)∕hn,0
)

g(x)

{
̂f n(x) − y

}
dH0(x, y),
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GROENEBOOM and JONGBLOED 33

where G is the distribution function of the Xi and H0 the distribution function of the
pairs (Xi,Yi). We now define the function 𝜓t,h by

𝜓t,h(x) =
K′′((t − x)∕h)

h3g(x)
,

and introduce a piecewise constant version 𝜓 t,h of 𝜓t,h as

𝜓 t,h(x) =
⎧
⎪
⎨
⎪⎩

𝜓t,h(𝜏i), if f0(x) > ̂f n(𝜏i), u ∈ [𝜏i, 𝜏i+1),
𝜓t,h(s), if f0(s) = ̂f n(s), for some s ∈ [𝜏i, 𝜏i+1),
𝜓t,h(𝜏i+1), if f0(x) < ̂f n(𝜏i), u ∈ [𝜏i, 𝜏i+1),

where the 𝜏i are successive points of jump of ̂f n. So we can write:

h−3
n,0 ∫

K′′((t − x)∕hn,0
) {

̂f n(x) − f0(x)
}

dx = h−3
n,0 ∫

K′′((t − x)∕hn,0
)

g(x)

{
̂f n(x) − y

}
dH0(x, y)

=
∫
𝜓t,hn,0 (x)

{
̂f n(x) − y

}
dH0(x, y)

=
∫

{
𝜓t,hn,0 (x) − 𝜓 t,hn,0

(x)
} {

̂f n(x) − y
}

dH0(x, y) +
∫
𝜓 t,hn,0

(x)
{
̂f n(x) − y

}
dH0(x, y)

=
∫

{
𝜓t,hn,0 (x) − 𝜓 t,hn,0

(x)
} {

̂f n(x) − y
}

dH0(x, y)

+
∫
𝜓 t,hn,0

(x)
{
̂f n(x) − y

}
d(H0 −Hn)(x, y),

using the characterization of the LSE ̂f n in the last step. We now get:

∫

{
𝜓t,hn,0(x) − 𝜓 t,hn,0

(x)
} {

̂f n(x) − y
}

dH0(x, y)

=
∫

{
𝜓t,hn,0 (x) − 𝜓 t,hn,0

(x)
} {

̂f n(x) − f0(x)
}

dG(x) = Op
(

h−4
n,0n−2∕3) = Op

(
n−2∕9)

,

and

∫
𝜓 t,hn,0

(x)
{
̂f n(x) − y

}
d(H0 −Hn)(x, y) = Op

(
h−3∕2

n,0 n−1∕2
)
= Op

(
n−1∕3)

.

So the conclusion is:

̃f ′′nhn,0
(t) − h−3

n,0 ∫
K′′((t − x)∕hn,0

)
f0(x) dx = Op

(
n−2∕9)

.

But under the conditions on f0 of Theorem 1 we have:

h−3
n,0 ∫

K′′((t − x)∕hn,0
)

f0(x) dx = f ′′0 (t) + o(1), n → ∞.
▪
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