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Efficient Allocation of Harvested Energy
at the Edge by Building a Tangible

Micro-Grid—The Texas Case
Nikolaos Kouvelas , Student Member, IEEE, and R. Venkatesha Prasad , Senior Member, IEEE

Abstract—The electricity grid, using Information and
Communication Technology, is transformed into Smart Grid
(SG), which is highly efficient and responsive, promoting two-
way energy and information flow between energy-distributors
and consumers. Many consumers are becoming prosumers by
also harvesting energy. The trend is to form small communities
of consumers/prosumers, leading to Micro-grids (MG) to manage
energy locally. MGs are parts of SG that decentralize the energy
flow, allocating the excess of harvested energy within the commu-
nity. Energy allocation amongst them must solve certain issues
viz., 1) balancing supply/demand within MGs; 2) how allocating
energy to a user affects his/her community; and 3) what are the
economic benefits for users. To address these issues, we propose
six Energy Allocation Strategies (EASs) for MGs – ranging from
simple to optimal and their combinations. We maximize the usage
of harvested energy within the MG. We form household-groups
sharing similar characteristics to apply EASs by analyzing energy
and socioeconomic data thoroughly. We propose four evaluation
metrics and evaluate our EASs on data acquired from 443 house-
holds over a year. By prioritizing specific households, we increase
the number of fully served households to 81% compared to ran-
dom sharing. By combining EASs, we boost the social welfare
parameter by 49%.

Index Terms—Micro-girds, energy allocation strategies, har-
vested energy, social welfare, clustering, water filling, game
theory.

I. INTRODUCTION

TRADITIONALLY, the energy distribution network (grid)
is centralized. Substations are primarily used to interface

centralized generators with a large number of end-users.
However, the electricity grid, utilizing ICT, has been trans-
formed into a highly efficient and responsive grid, also known
as Smart Grid (SG). Further, apart from only drawing energy
from the power line, some consumers harvest energy using
renewable sources and are called prosumers. SG promotes
the bidirectional communication between the substation and
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Fig. 1. Models of MG with Central Controller (CC); (left) CC used only
for communication; (right) CC also has storage.

the consumers/prosumers –mostly by using Long Range Wide
Area Networks (LoRaWAN) and other Low Power WANs [2]–
and employs intelligent monitoring and control to manage their
requirements efficiently. The above enhanced the efficiency,
reliability, and sustainability of the electricity grid. SGs deploy
large numbers of smart meters. These Internet-enabled devices
collect fine-grained data regarding energy usage and offer real-
time information to enhance efficiency in energy harvesting
and distribution and bring consumption-awareness. Prosumers
generate power using solar (mostly), wind, and hydro-power,
which can be allocated to other customers in the vicinity.
This makes SGs dynamic and less dependent on substations.
However, renewable sources of energy are intermittent and
require forecasting. Thus, the presence of power distribution
lines of substations as stable electricity suppliers is imperative.

Micro Grids (MGs) are small communities of consumers
and prosumers that have evolved to support distributed con-
trol from SGs. MGs allocate energy between consumers and
prosumers while complying with policies prioritizing certain
users. The energy redistribution at a local level is also eco-
nomically beneficial (see Fig. 1). Buying energy from the
substation is more expensive compared to getting it from the
neighborhood while selling back to the substation is less lucra-
tive compared to selling directly to neighbors [3]. To share
energy at a neighborhood level, coalitions of utility companies
and municipalities use storage points. They store the excess of
harvested energy and supply it according to the service priori-
ties and policies of their respective MGs. However, allocating
energy among prosumers and consumers is non-trivial because
of several constraints:
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(a) individual consumers present varying energy require-
ments over time, and hence allocation mechanisms must
be adaptive,

(b) prioritizing certain consumers causes bias in the commu-
nity, therefore it is essential to develop rigorous Energy
Allocation Strategies (EASs),

(c) the predictability of the amounts of harvested energy is
limited as the renewable sources are intermittent, and

(d) socioeconomic characteristics (often private) affect con-
sumption and generation of energy (e.g., size of house-
holds, income, and age of residents) [4], [5].

We propose EASs to achieve fairness, defined for particular
groups of consumers or over entire MGs. Specifically, encom-
passing the above issues we answer the general question: How
to optimize the allocation of the excess of harvested energy
between the members of a community under various
constraints? To this end, our contributions are:

1) We characterize the MG community regarding the excess
and deficiency of energy of its members.

2) We propose three optimal EASs to maximize energy
sharing and minimize the energy borrowed from the
substation based on game theoretic and information
theoretic formulations [1], [6].

3) We propose three simple EASs for MGs without cen-
tralized energy storage.

4) We demonstrate the efficacy of our proposed algorithms
on a real-world dataset collected over a year from 443
households located in Texas [7].

5) We provide an analysis of the economic benefits for the
members when sharing the excess of energy at a local
level (MG) compared to trading with the substation.

Though we utilize commonly used methodology well-known
in communications, the metrics and treatment are different
and novel. This work targets the problem of sharing the
energy locally in networks of energy-harvesting devices that
communicate wirelessly. The idea is to provide generic frame-
works spanning from simple to complex and targeting different
aspects such as social welfare. This article aligns with the
context of green communication and networking by provid-
ing (non-)cooperative mechanisms of energy redistribution in
self-organized, dynamic communities (MGs), which involve
energy-aware, although heterogeneous, members (households).
We improve the energy efficiency and overall sustainability of
MGs fairly, by utilizing environmentally aware methods, i.e.,
energy harvesting, and bidirectional communication among
smart meters and energy storage utilities. This work signif-
icantly deals with the data collected from smart meters and
the communication within a microgrid. The communication
between the customers and Central Controller (CC) helps in
bringing overall energy efficiency and also sharing amongst
the consumers and prosumers. The algorithms are generic and
can be used in any other situation, such as computation of
off-loading to match the energy harvested, and/or edge com-
puting, having multiple CCs working locally to stabilize the
production and consumption.

The rest of the manuscript is organized as follows. A sum-
mary of the literature is provided in Section II. In Section III,
we present the model of an MG and define the relations

among the involved entities. In Section IV, we explain how
the characterization of the community regarding energy takes
place, and we explain the EASs. Further, in Section V, we
present the dataset and define the metrics used for the eval-
uation. In Section VI, we present the characterization of the
MG in energy terms, we evaluate our EASs and offer a cost
analysis of sharing energy between prosumers and consumers.
Section VII concludes this manuscript.

II. RELATED WORKS

Characterization: Smart meter data is used for clustering,
classification, forecasting, and energy management of house-
holds. To this point, demand response strategies have been
enabled by the analysis of the smart meter data at house-
hold, appliance, and occupant level [8]. Nambi et al. create an
online demand regulation model to find the temporal dynam-
ics of households’ energy demand, using the smart meter data
from more than 4000 households of a real-world SG [9].
Humala et al. develop individual models of energy consump-
tion from appliances of pilot-houses and cluster them to
define general models for each appliance, which are used as
means of blind disaggregation of energy consumption [10].
Çimen et al. apply deep neural network techniques on data
acquired from house-appliances to characterize the energy
consumption behavior of end-users, and design a distributed
system of energy management and load scheduling for residen-
tial MGs [11]. Chou and Ngo consider the energy consumed
by residential buildings as time-series data consisting of lin-
ear and non-linear components, and by analyzing them they
predict one-day energy consumption, to achieve energy sav-
ing in residential buildings [12], [13]. Viegas et al. [14] cluster
data acquired from smart meters to derive the representative
consumption profiles of existing customers, and then combine
them with meta-data from questionnaires to characterize their
behavior.

Energy Sharing: Coordination of different MGs composed
of multiple households in the same area is considered in
several works. The excess energy is either stored in batter-
ies or transferred to other households or to the power grid.
In independent multi-agent structures, households communi-
cate with each other in the community regarding electricity
prices and their energy profiles, whereas, in dependent multi-
agent systems centralized entities control this information
and influence households regarding their energy transfer deci-
sions [15], [16]. Huang et al. realize direct energy sharing
between nearby households by a hierarchical, three-layer
system architecture. A harvesting/consumption layer uses
smart meters, a prediction layer forecasts harvested/consumed
energy to characterize each household as supplier/demander,
and a sharing layer utilizes a greedy matching algorithm that
pairs close-by suppliers and demanders and schedules energy
transmissions [17]. Morstyn et al. propose a virtual power
plant created through peer-to-peer (P2P) transactions among
prosumers to incentivize them to coordinate and trade their
excess energy [18]. Similarly, Long et al. [19] use energy
sharing coordinators for households to control the energy they
generate by renewables. Akter et al. present a distributed
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energy management scheme for residential microgrids of
consumers and prosumers using mixed-integer linear program-
ming, to optimize energy management in a neighborhood [20].
Bui et al. introduce a multi-MG energy trading strategy,
wherein MGs being in electricity shortage form pairs with
those in excess to exchange energy. MGs able to gener-
ate excess at lower costs are preferred, reducing the total
trading costs [21]. MG-prosumers store their excess energy
in a shared storage unit for later usage in the work of
AlSkaif et al. [22]. Reallocation of the stored energy and
consumption scheduling is achieved by accounting for the his-
torical consumption data of the households. Online energy
management in networked MGs is considered in [23]–[26].
Shi et al. proposed a stochastic model of the power flow in
MGs for real-time energy management based on Lyapunov
optimization [23]. Online energy management of MGs by
applying the Alternating Direction Method of Multipliers
(ADMM) on the historical data of the generated energy was
proposed by Liu et al. [24] and Ma et al. [25]. Liu et al.
consider a centralized operator per MG that constructs and
controls an energy exchange network between prosumers and
the power grid. In contrast, Ma et al. consider privately
owned MGs exchanging energy with adjacent MGs based
on power flow constraints using the power line. Cui et al.
analyze energy sharing in an MG as a bi-level optimization
problem among retailer and prosumers with energy storage
capabilities. The prosumers, applying load-shifting, follow an
online optimization model with a punishment mechanism to
schedule their energy usage in real-time [26]. Game-theoretic
approaches are considered in [27]–[35]. Motivated by the
cooperative game theory, Du et al. form coalitions of MGs,
which coordinate the sharing of surplus in electrical and ther-
mal energy to minimize their operational costs [27]. Yang et al.
consider such coalitions of MGs consuming and exchang-
ing energy according to a bi-level structure, cooperating to
maintain the balance of supply-demand in the system and
minimize their operational cost [33]. The economic bene-
fits of applying a game-theoretic P2P energy trading scheme
are analyzed by Tushar et al. [28], where a game-theoretic
framework –developed on a consumer prioritization basis–
is introduced for the reduction of peak to average power
ratio in neighbourhoods. Anoh et al. group prosumers in
virtual-MGs and model the energy trading interactions among
prosumers and consumers as a Stackelberg game in which
prosumers lead, and consumers follow [29]. Cui et al. design
P2P energy sharing algorithms using the ADMM algorithm.
Sharing is modeled as a non-cooperative game wherein equi-
librium is reached between buildings regarding the prices of
supply/demand of the generated energy [30]. Zhang et al.
establish a hierarchical, four-layer system architecture for
P2P energy sharing among prosumers and consumers, incor-
porating physical components (e.g., smart meters), commu-
nication protocols, control strategies, and non-cooperative
game-theoretic bidding procedures regarding trading. Further,
a software platform called Elecbay handles energy sharing
among the entities [31]. Paudel et al. model the real-time P2P
sharing in a prosumer-MG wherein sellers compete on price
and amount of dispatched energy based on a non-cooperative

game, buyers select from whom they receive energy in an
evolutionary game, and the interaction among sellers and
buyers is modeled as a Stackelberg game [32]. Stackelberg
game is also considered by Zhou et al. for seller-buyer
interaction at MG-level. Each MG distributes/requires energy
depending on the equilibrium of decisions among its non-
cooperative members regarding load scheduling for utility
maximization [34]. Jadhav et al. form clusters of MGs with
excess/deficit of energy which communicate through aggrega-
tors (cluster heads). Monetary incentives are offered to MGs
with excess, while deficit-MGs compete over the generated
energy [35].

III. SYSTEM MODEL

Fig. 1 depicts an abstract model of an MG neighborhood-
community. From an energy perspective, MGs are sets of
households with different energy needs, equipped with sev-
eral electrical appliances. Because of heterogeneity in size,
building type, type of appliances, and preferences/number of
occupants, the energy needs are different for each household.
Besides, among the households, some are prosumers gen-
erating energy through renewable sources. Note that if the
households cannot cover their own needs by generating energy,
the deficit is drawn from the power distribution line of the
substation. In an MG community of c consumers and p pro-
sumers, let the group of consumers be C = {C1,C2, . . . ,Cc}
and, similarly, P = {P1,P2, . . . ,Pp} representing prosumers.
Both C and P are connected to the power line of the substa-
tion, which is also mandatory for energy transactions between
them, as C and P do not possess the infrastructure required
to share energy directly. To this end, applying EASs between
households is the responsibility of a central controller (CC),
owned by the MG-operator (utility companies). In Fig. 1, the
CC is connected to all the households, to route information
about the energy needs of consumers and the amounts of
energy generated by the prosumers. The decisions of CC
about any energy transition are forwarded to the involved pro-
sumers and consumers. The communication between the CC
and the smart meters of the households which measure the
energy consumption/generation takes place using LoRaWAN
(or other Low Power WANs), due to their efficient and long
range transmission capability. LoRaWAN can help in mitigat-
ing the hassles of last mile connectivity, so the CC can use
authentic generation and consumption data. Specifically, CC
works as the gateway to which the smart meters uplink their
energy-data. Further, CC broadcasts or multicasts information
to (groups of) the members of MG regarding the energy needs
of other members and/or regarding changes in the energy allo-
cation. However, apart from the MG models in which the CC is
solely a communication point, there are also models in which
it connects to the power line of the substation, to store and
forward the excess energy from prosumers to (members of) C
using the EAS-algorithms (see, right part of Fig. 1) [1], [6].
Since prosumers have their own energy needs, they cannot
allocate all their generated energy to consumers. Once the
total produced excess energy is stored in CCs, the CCs are
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Fig. 2. Community characterization step-by-step; 1: smart meters in a single
household, 2: community of prosumers (red) and consumers (black), 3: energy
clustering, 4: temporal metrics, 5: meta-data.

informed by the consumers regarding their energy require-
ments, Ea = {Ea,1,Ea,2, . . . ,Ea,c}, and then, the dictated
allocation strategy (EAS) is applied. As a result, every con-
sumer i ∈ [1, c] receives an amount of energy represented by
Eg = {Eg,1,Eg,2, . . . ,Eg,c}, to cover his/her needs partially,
Eg,i < Ea,i , or totally, Eg,i = Ea,i , depending on his/her
priority of service within the MG. In this work, MG com-
munities with users having their own battery storage are not
considered. Using batteries in houses incurs capital and main-
tenance costs. Furthermore, battery round-trip efficiency has
to be taken into account, i.e., power losses during charging-
discharging. We assume that the costs as mentioned above and
losses are undertaken by the utility (company, business oper-
ator) that controls CC. Besides, in our study case, we assume
a small neighborhood where we consider neither the losses
when CC stores/distributes energy nor the physical limitations
of the distribution grid, i.e., capacity limits, rapid increase of
power flow on transmission lines when long-distance trading
is considered.

IV. METHODOLOGY

A. Characterization

Fig. 2 depicts the steps taken to characterize the members of
an MG community in terms of their energy deficiency/excess.
We use fine-grained data regarding consumption of appliances
and generation by renewable energy sources. Using the con-
sumption/generation data, we compute the deficiency/excess of
energy for every household. For a household i, consumption is
Coni , and generation is Geni . Supposing it can cover its own
needs, its excess is Ee,i = Geni −Coni , while, if it still needs
energy, its deficiency is Ea,i = Coni −Geni . The patterns of
a family’s daily chores affect the energy behavior of a house-
hold, varying within a day, between weekdays-weekends, and
seasons. To achieve convergence, we smooth the daily (and
hourly) differences in energy by averaging the measurements
over weekly intervals. To associate every household with
the others in its community, we use clustering to distribute
households into different groups (clusters). The clusters are
characterized by their centroids. The households with values
closer to a centroid, are placed around it. Specifically, assume
that the averaged values for an attribute A, over a certain
time interval T, are CA

T = {CA,1
T

,CA,2
T

, . . . ,CA,c
T },

for C consumers. After clustering, the group is defined as
CA

T
= ClA,1 ∪ ClA,2 ∪ · · · ∪ ClA,m , where m is the

total number of clusters. The same holds for the prosumers

Fig. 3. Consumption clustering (from date 1/6 to 1/12).

as PA
T

. A critical limitation with clustering algorithms, such
as k-means, is the requirement of a priori knowledge on
the number of clusters, which is not possible in our case.
In this article, we use the Expectation-Maximization (EM)
algorithm to define the exact number of clusters that can
best accommodate the households regarding their attributes
(e.g., consumption, generation), and distribute every house-
hold uniquely to one cluster (c) [36]. We utilize the EM
algorithm as it derives the maximum likelihood estimates of
parameters in models that depend on latent variables, i.e.,
the intermittency in energy harvesting and the socio-economic
characteristics of the occupants. These variables, although not
observable directly, affect the generation/consumption mea-
sured by the smart meters. EM clustering iteratively refines
an initial clustering model to fit the data according to the
principle of maximum likelihood estimation [37]. The likeli-
hood of a household being a member of a cluster increases
per iteration as we slowly reach convergence. In the end,
we can define homogeneous clusters in terms of each energy
attribute (consumption, generation, etc.). A household is a
member of only one cluster (c) at any given time interval T
and this uniquely characterizes its relationship with the other
households.

For example, in Fig. 3, the energy consumption results for
the second week of the year are clustered. Clusters are set in
ascending order regarding their centroids, with levels increas-
ing from c1 to c5 on the x-axis. Most of the households
consumed high amounts of energy during that week (see c4
in Fig. 3). To acquire the energy consumption/generation per-
spective of households over longer periods (e.g., yearly), the
metrics of temporal membership and adaptability are used.
Cluster membership refers to the presence of a household in
one of the clusters that are defined for an energy attribute
and cluster adaptability refers to the transition between differ-
ent clusters of the same attribute in consecutive time intervals
(clustering periods) [1], [6], [9]. In consumption terms, a
transition from high to low clusters is considered beneficial
because the household saves energy and expenses. Regarding
generation, a low to high cluster transition is beneficial as the
prosumer shows his/her potential to generate higher amounts
of energy (than other prosumers in the community), leading to
a higher profit by selling it. The terms temporal membership
and temporal adaptability assess the probability that a house-
hold is a member of a cluster or performs a cluster transition.
Thus, for a household i, under a clustering scheme of time
interval T, its temporal membership for cluster u over a long
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Fig. 4. Simple and Optimal Energy Allocation Strategies.

time-period (e.g., year) is defined as,

ClA,u,i =
∑Tmax

T=1 ClA,u,i
T

Tmax
, (1)

where, ClA,u,i
T = 1 iff i was member of u during T (0 oth-

erwise) and Tmax is the number of consecutive time intervals,
T, that constitute a long time-period. The temporal adaptabil-
ity of a household between clusters u and v is defined in the
same way as,

(ClA,u → ClA,v )
i ,z

=

∑Tmax
T=1 (ClT−z

A,u → ClTA,v )i
Tmax − z

(2)

where, z is the number of consecutive time intervals needed
for the (series of) cluster transition(s) to happen. Further,
(ClT−z

A,u → .. → ClTA,v )i = 1 iff the (series of) transi-
tion(s) took place (0 otherwise). Temporal membership and
adaptability are combined with meta-data, to derive a com-
plete characterization of the community. Meta-data are social
attributes related to non-energy characteristics, which influence
the energy attributes and affect the energy-characterization of
a household [4], like the income of the family or the building
type. Moreover, social and energy aspects of households are
usually revealed using several programs for consumption reg-
ulations that families sign with utility companies (involving
monetary incentives, pro-poor programs, text feedbacks, etc.).
For the analysis, we considered anonymized data.

B. Energy Allocation Strategies (EAS)

Characterization aids in segmenting households, enabling
us to define and apply EASs, algorithms by which the CC
distributes excess energy among the consumers. We mention
simple strategies but delve more into the optimal strategies
and provide in-depth discussion. For easy understanding and
comparing, all the EASs are presented schematically in Fig. 4,
and their algorithms are found in [6].

Simple allocation strategies create prosumer-consumer
pairs, wherein energy flows from the prosumer to the con-
sumer, using the power line. CC is used only for routing.

Random strategy: Every prosumer sends information about
his/her available energy to the CC, and the CC chooses a con-
sumer randomly to allocate the energy. If the consumer is
covered fully, the remaining energy is allocated randomly to
another [see Fig. 4(a)].

Greedy strategy: As seen in Fig. 4(b), the CC lists con-
sumers in a priority sequence, and they are served as the
sequence dictates. Every prosumer transfers energy to its
corresponding consumer-pair by First-In-First-Served. In the
greedy approach, the order of service is the same for every
time interval. This order relation results in consumers being
served in the same sequence at every time interval, leading to
dissatisfied consumers in the community. To ensure fair energy
allocation, we propose the λ level of service. λ is a percent-
age limit of service imposed on every household. When this
limit is reached, the following household will be served, and
consequently, more households will be served with the same
amount of energy.

Round-robin strategy: This mechanism ensures that served
households in an interval are moved to the end of the service
sequence, as seen in Fig. 4(c). This sequence is initially created
by the priority policy at T = 1. At T = 2, the algorithm moves
the previously served households to the end of the service
sequence (and redefines it). This mechanism continues until a
predefined limit of time intervals, called Time-Limit (TL), is
reached. TL reveals the number of service rounds until reini-
tialization; it resets the service sequence at T mod TL = 0.
Consequently, TL defines the depth of service diversity.

In optimal allocation strategies, CC, besides routing, stores
energy too; and computes the amount to be distributed to
every consumer. Optimal EASs define Relations of Weight
when serving the consumers. Weights are assigned to the
members of C . The exact amount of energy to be received by
a consumer is found using his/her weight as follows,

p∑

i=1

Ee,i = x
c∑

j=1

wj , (3)

where at first, the total amount of energy that is saved by the
prosumers during a time interval is gathered at CC. Then, by
using the weights w given to every consumer of C , the single
unit of energy, x, is computed, and every consumer, j, receives
an amount of energy corresponding to xwj . Within the com-
munity, weight-ratios between consumers dictate differences
in the amounts of energy that they are entitled to. As the ratio
between the assigned weights of two consumers increases, the
difference in the amount of energy allocated to each of them
also increases.

Weighted strategy: As seen in Fig. 4(d), the total excess
energy, on every T duration, is gathered by the central con-
troller (CC). The CC splits consumers C into N subgroups,
C = ∪N

n=1Cn . To each subgroup, it assigns a weight, wn ,
same for all the consumers of a subgroup (n). The highest
weights are assigned to the subgroups of prioritized con-
sumers. The priority policies used by this EAS are based on
size and energy (deficiency) attributes, for increased accuracy
of prioritization. The energy from p prosumers is distributed
according to

∑p
i=1 Ee,i = x

∑N
n=1(wnCn ).

Game Theoretic strategy (GT): In GT, all the consumers
seek energy according to their weights from the CC simul-
taneously, as shown in Fig. 4(e). They withdraw only when
they are adequately served. The concept behind this algo-
rithm relies on Game Theory, and specifically on the existence
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Algorithm 1 Game Theoretic (GT)
consumer and prosumers are indexed by k and i
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a CPP
At each time interval

Initialization phase:
2: CC collects excess energy from prosumers,

∑p
i=1 Ee,i

3: Consumers C send their deficiencies Ea to the CC
4: CC defines the heights of service H using H = Ea/w

Energy Allocation phase:
5: while

∑c
k=1 Hk > 0 do

6: CC chooses non-zero minimum height of service, min(H )nz
7: if (min(H )nz

∑c
k=1 wk ) ≤∑p

i=1 Ee,i then
8: Ea,k ← Ea,k −min(H )nzwk , ∀k ∈ [1, c]

9:
∑p

i=1 Ee,i ←
∑p

i=1 Ee,i − (min(H )nz
∑c

k=1 wk )
10: Consumer with min(H )nz is fully served
11: wmin(H )nz

= 0

12: H ← H −min(H )nz
13: else

14: min(H )nz ←
∑p

i=1 Ee,i∑c
k=1 wk

15: Ea,k ← Ea,k −min(H )nzwk , ∀k ∈ [1, c]
16: Break
17: end if
18: end while

of an equilibrium based on the choices of non-cooperative
consumers-players on energy allocation, where everyone is
bound to a specific decision. After assigning a different weight,
w , to each consumer according to the imposed priority pol-
icy, the CC, holding information about the deficiency of all
the consumers, defines the ratios of deficiency and weight,
termed Levels of Service, H = Ea/w . The amounts of
energy that are individually received fit into the specific
energy and socioeconomic characterization of each consumer.
Assuming non-cooperative consumers, the equilibrium exists
since no consumer has any gain from abstaining from request-
ing energy, but instead loses his/her share of energy by
others. Consequently, we reach a stable state wherein everyone
requires energy, and no one changes his/her strategy.

Water-Filling strategy (WF): At the beginning, different
weights are given to each consumer by the CC depending
on the priority policy that is followed. Then, being informed
regarding the deficiency of each consumer, the CC defines
their H . However, in this EAS, the CC arranges the H of the
consumers in ascending order, which becomes their order of
service. The difference between this algorithm and the GT is
that some consumers can ask for energy before others. Many
consumers often have to wait until the prioritized households
are fully covered, as can be seen in Fig. 4(f). Let us assume
that the transferred energy is added on top of the H of every
consumer, as additional service-level, h = Eg/w . As the CC
starts sharing energy with the first consumer in the order of
service, its level h1 increases until h1 = H2 − H1. Then,
assuming there is enough excess energy stored, the CC starts
transferring to the second consumer in the order too; until
h2 = H3 − H2 = h1 − (H2 − H1) ⇒ h1 = H3 − H1. This
procedure continues until the need of every consumer is cov-
ered or the energy is depleted. A consumer j is withdrawn

Algorithm 2 Water-Filling (WF)
Prosumers are indexed by i
j, l represent the indices of the most and least prioritized
consumer being served simultaneously
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a priority policy
At each time interval

Initialization phase:
2: CC collects the excess energy from prosumer,

∑p
i=1 Ee,i

3: C send info on their deficiencies Ea to the CC
4: CC defines initial heights of service by H = Ea/w and forms

them in ascending order, H ini
5: j = 1, l = 1
6: H ← H ini

Energy Allocation phase:
7: while j � c do
8: Perform GT algorithm for energy allocation phase on the

following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

group of (l + 1− j ) consumers with weights assigned in
step 1 with

∑p
i=1 Ee,i and additional heights h

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if l + 1 � c, hk =

{
Hl+1 −Hk , if Hl+1 < 2Hini,k
2Hini,k −Hk , otherwise

else hk = 2Hini,k −Hk
for k :[j , l ]

After GT algorithm:
9: Total excess decreased,

∑p
i=1 Ee,i updated

10: Individual deficiencies of (l + 1 − j ) households decreased
or covered, Ea,k updated ∀k ∈ [j , l ]
Updating the Heights of service:

11: a ← j
12: for k : [a, l ] do
13: Hk ← Hk + hk ,
14: if Hk = 2Hini,k then
15: j ← j + 1
16: end if
17: end for
18: if ( Hl = Hl+1 or Hl = 2Hini,l ) and l + 1 � c then
19: l ← l + 1
20: end if
21: end while

TABLE I
SIMPLE AND OPTIMIZED EASS

from service only when fully covered (hj = Hj ). For two
consumers, j and l, with Hl > Hj , it is also possible that
Hl − Hj ≥ Hj , and thus the consumer j is fully covered
before l starts requesting for energy. Several consumers can
be served simultaneously at any time instance, as long as they
have equal sums of H and h [see Fig. 4(f)]. Table I states the
main advantages differentiating each EAS from the others.

In Two-stage Approaches, we apply one EAS to distribute
the generated energy to the different consumer groups, as

Authorized licensed use limited to: TU Delft Library. Downloaded on November 29,2021 at 16:22:22 UTC from IEEE Xplore.  Restrictions apply. 



100 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 1, MARCH 2021

an inter-group distribution, and then a second EAS to dis-
tribute the corresponding received amount of energy within
every group (to every member), as an intra-group distribution.
The advantage of two-stage approaches is the combination of
different EASs, fitting the needs of every group and consumer.

V. EXPERIMENTAL EVALUATION

To test our EASs, we employed the readily available and
standard Pecan Street dataset, which is located in Texas
Austin and composed of 443 households. Among them, 180
households generate energy using solar panels. We used one
year of consumption and generation data (in kW) from the
smart meters of all the households, and computed the defi-
ciency and excess of energy for every household. The smart
meters offered fine-grained data for accurate analysis. We only
selected those households having data for more than 300 days.
At first, we analyzed the metrics that focus on households
being served. These metrics refer to the consumers of an MG
community. Thus, for a consumer k, we answer with 1 (true)
or 0 (false) the following questions; (a) Is k served fully?,
(b) Is k not served at all?, (c) Is it the first time that k is
served in timespan T?

To quantify the potential of a strategy in covering com-
pletely the needs of (a group of) consumers c within a
community, we define the Served Ratio (SR) metric for T as,
SR = (

∑c
k=1 Cserved,k )/c where, Cserved,k = 1 if consumer

k ∈ [1, c] is fully served, 0 otherwise. If SR is averaged, we can
draw insights into the long-term serving potential of an EAS.
To evaluate the efficiency of prosumers in serving (a group of)
consumers during T, we define the Prosumers Beneficial Ratio,
PBR = (

∑c
k=1 CnotServed,k )/p where, CnotServed,k = 1 if

consumer k ∈ [1, c] is not at all served, 0 otherwise. If PBR is
averaged, we can draw insights into the way an EAS utilizes
the prosumers over a number of consecutive time intervals.
Low values of PBR imply efficient prosumer usage. For the
EASs that use priority sequences for consumer service, we use
Uniqueness Ratio (UR), which quantifies the service diver-
sity of a sharing strategy for (a group of) consumers for any
set of consecutive time intervals, denoted as Tb − Ta , with
Ta ,Tb ∈ [1,Tmax]. UR = (

∑Tb
T=Ta

∑c
k=1 CT

unique,k )/c
where, Cunique,k = 1 if it is the first time that a consumer
k ∈ [1, c] is served during Tb − Ta , 0 otherwise.

To quantify satisfaction regarding the service offered to a
consumer during a timespan T, we use the ratio of the amount
of energy given to a household (or a group) and its total energy
sought. We term this ratio Energy Ratio (ER) and, for a con-
sumer k, during T, the ER is defined as, ERk = Eg,k/Ea,k .
When ER = 0, no energy is received. However, to evaluate
fairness in service we have to consider the priority that every
household possesses within its group. Under a priority pol-
icy, the coverage of deficiency of every household impacts the
community differently. Prioritized households are more criti-
cal in terms of service and should receive higher amounts of
energy than the rest. For a consumer k, applying a weight that
mirrors his/her significance in the community turns ER into its
weighted form, ERw ,k = wkERk . To evaluate it, we use the

Fig. 5. Temporal membership behaviors.

log2 relation to define the Social Welfare (SW) for any con-
sumer k, SWk = wk log2(1+ERk ). However, SWk cannot be
characterized as high or low and thus fairness in serving con-
sumers according to their significance cannot be evaluated by
SW. It needs to be compared with the maximum possible value
of SWk . Obviously, when a consumer is fully served ERk =
1, then SWk ,max = wk . Thus the metric to characterize every
consumer regarding the fairness in energy allocation is the
Social Welfare Ratio (SWR), defined as SWRk = SWk/wk .
In order to expand the individual-SW to group-SW, or further,
to SW for a whole community of c consumers, the afore-
mentioned log2 relation gives SWc =

∑c
k=1 SWk . This term

will be maximum when all the consumers are served com-
pletely, i.e., SWmax,c =

∑c
k=1 wk . Thus, the community

SWR is, SWRc = (
∑c

k=1 SWk )/(
∑c

k=1 wk ). For a given
amount of excess energy, the SWR of c consumers increases
rapidly when the prioritized consumers receive higher amounts
of energy than the rest because these consumers possess the
highest weights within their community.

VI. IMPLEMENTATION RESULTS

A. Energy Behavior

We evaluate the temporal energy behavior of households
using membership and adaptability. In Fig. 5(a), the x-axis
shows the clusters in terms of consumption; c1 represents low
consumption and c5 high. Further, the position of the clusters
on x-axis represents cluster centroids. The yearly membership
ratio for a household being in a particular cluster is θm . In
Fig. 5(a), about 400 households consumed low amounts of
energy, out of which, 115 households were in c1 for more than
75% of the year (white). This result implies that 115 house-
holds can be prioritized by policies that focus on low deficient
consumers. Regarding generation, 100 out of 180 prosumers
generated a satisfactory amount of energy, distributed over c3

and c4 for more than six months [see Fig. 5(b)]. This implies
the following: 1) these 100 households are more efficient than
the other prosumers and 2) they present low consumption
membership because they cover their needs partially by using
their own generated energy.

In Fig. 6(a), the x-axis presents the beneficial cluster transi-
tions in consumption. For a household, the ratio of particular
cluster transitions (x-axis) over all the performed transitions
is θt . Direct transitions between two non-consecutive clus-
ters (e.g., c3 to c1) are rare, because they demand higher
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Fig. 6. Temporal adaptability behaviors.

energy regulation potential from the households. As shown
in Fig. 6(a), most of the households regulate their consump-
tion between c1, c2, and c3; this explains the higher numbers
of households in these clusters [Fig. 5(a)]. Similarly, for pro-
sumers from Fig. 5(b) and Fig. 6(b), it is observed that cluster
transitions occur mostly between c2, c3, and c4. After con-
sidering the energy behavior of the households over the year,
we looked into socioeconomic attributes, to characterize them
more accurately. In Fig. 7(a), three different building types of
households, apartments (AP), single-family homes (SF), and
town-homes (TH), are studied with respect to temporal mem-
bership for their consumption. It is inferred that apartments
(cyan) cannot generate any energy, and along with the town-
homes (green) they consume the lowest amounts of energy in
the community. Regarding household-size, as the deficiency
clusters increase from c1 to c4, the average floor area (in
sq. ft) of the corresponding households that are members of
such clusters increases, as seen in Fig. 7(b). Thus, small types
of households (apartments and town-homes) are members of
lower deficiency-clusters.

As seen in Fig. 7(c), households enrolled in programs for
low-income families like Verizon (purple) did not generate
any energy. Households enrolled in pricing incentive programs
(orange) generate energy more efficiently than the rest.

B. Energy Allocation

Naturally, efficient prosumers perform many transitions in
high excess-clusters while efficient consumers can regulate
their consumption, and stay in low deficiency-clusters. In
Fig. 8(a), we compare different priority policies for the greedy
allocation strategy. Generally, by choosing policies that pri-
oritize the less deficient consumers, we manage to serve
more households than by promoting the highly deficient ones,
because the prioritized households are easily served. On the
contrary, high deficiency policy aims to serve those in high
needs requiring large amounts of excess energy. Furthermore,
by prioritizing small-sized households like the apartments, we
get similar results as if the low deficient ones were prioritized.
Similarly, prioritizing high deficient households is nothing but
prioritizing large households [see Fig. 8(a)]. The performance
of the random policy stays between other policies, as it gives
priority to none. The impact of the combination of differ-
ent λ levels and a round-robin approach to energy sharing

Fig. 7. Energy and socioeconomic behavior.

Fig. 8. Served households according to different priority policies and λ
levels of service.

is seen in Fig. 8(b). As the λ decreases, more households are
served. However, the connection between size and deficiency
regarding priority policies remains same as in Fig. 8(a).

In Fig. 9(a) and Fig. 9(b), we present SR for different target
groups of consumers, created based on energy deficiency and
size. These groups are served for three consecutive months,
using round-robin and greedy EASs. As seen in Fig. 9(b),
round-robin EAS serves households from different groups–
not only from the prioritized ones.

Moreover, under the round-robin strategy, because of the
repositioning of highly deficient consumers at the end of the
service sequence, high deficiency and large size priority poli-
cies serve more households. The opposite happens for the
policies prioritizing small and less deficient consumers. In
Fig. 10, the weighted EAS is presented. Each of the eight
groups that are created by the combination of size and defi-
ciency of households receives a different weekly percentage
of the stored excess energy. High differences in group-weights
prioritize consumers strictly, while low differences distribute
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Fig. 9. Average SR based on different priority policies (numbers in
parentheses are the members of each group).

Fig. 10. Fraction of total energy received weekly by different groups -
Weighted. High ratio between weights (strict): 1 → 8 (step 1.0), Low ratio
between weights (soft): 1 → 3.33 (step 0.333)

Fig. 11. Prosumer usage – Service diversity (week 38-49).

the excess energy more equally, resembling the unweighted
approach.

In Fig. 11(a) and Fig. 11(b), we evaluate how efficiently
the prosumers are used (PBR) and how diverse is the con-
sumer service. Note that the lowest values present the most
efficient behaviors as the PBR metric is related to the con-
sumers not served weekly by the prosumers. Among the EASs
that serve consumers in sequential order, the WF sharing
approach utilizes the prosumers more efficiently than the other
approaches, keeping at the same time a satisfactory UR [� 0.5,
Fig. 11(b)]. Because of no priority in serving, the random
approach has much lower PBR [Fig. 11(a)] and high diversity;
serving almost 85% of the consumers [Fig. 11(b)]. Service-
fairness in a community is described by the SWR metric. In
Fig. 12(a), the advantage of optimal algorithms against the

Fig. 12. Community social welfare ratio (yearly).

simple approaches on energy sharing is clear –they provide
higher fairness in service for every particular priority policy.
Specifically, for the WF and GT EASs, under the same pol-
icy, weights, deficiency, and stored energy, WF EAS manages
higher SWR. Focusing only on these two EASs, in Fig. 12(b)
and Fig. 12(c), their impact on different groups of households
(which have been assigned with the same priority weights) is
observed. WF prioritizes the targeted household groups stricter
–maximizing SW for the members of these groups. On the
other hand, in GT strategy the social welfare results for dif-
ferent groups of households are closer because all households
receive energy simultaneously. Note here that the big-sized or
the highly deficient groups of households present deficiencies
that are not covered easily, thus the impact of their weights
in SWR is lower than the impact of other groups when they
are prioritized. The WF approach presents overall higher SWR
results per priority policy, as confirmed by Fig. 12(a). Further,
the GT EAS is more stable than WF, because in WF we
observe more outliers.

Regarding two-stage approaches, after testing all combina-
tions of allocation strategies, we propose the Game-Theoretic
EAS for inter-group energy allocation and the Water Filling
EAS for intra-group allocation. GT applies to energy distribu-
tion at a group-level because different groups of consumers,
having different needs and characteristics, would demand
energy selfishly, according to their weights. However, in
intra-group allocation, households would cooperate under WF
because they share the same needs, as is proven during the
characterization procedure. As observed in Fig. 13, although
the prioritized groups of consumers receive the most substan-
tial part of the excess energy [i.e., the low deficient consumers
in Fig. 13(a) and the high deficient consumers in Fig. 13(b)],
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Fig. 13. Two stage energy sharing – GT for groups (1st stage), and WF
individually (2nd stage).

Fig. 14. (a) Cost schema; C: consumer, P: prosumer, (b) expenses reduction;
pricing comparison from 10/13 to 10/26.

there is a balance regarding the amount of allocated excess to
each group, contrary to Fig. 12(c).

C. Cost Analysis

In this section, we employ a standard pricing day from the
Power Smart Pricing site with hourly costs per kW and use it to
reproduce the expenses in case the community utilizes solely
the power line between 13th and 26th of October – a period in
which relatively high production of energy was observed on
the prosumers side [38]. Then, we compare with the expenses
when applying our EASs. By allocating the generated energy,
consumers experience price-reduction for covering their defi-
ciency, buying energy for lower prices than they would do
from the substation. Further, prosumers profit from sharing,
selling generated energy at higher prices to the consumers of
the neighborhood than to the utilities (substation), as depicted
in Fig. 14(a). We do not consider the cost of energy stor-
age individually, locally at the CC, and/or the cost of energy
losses over the wire. It is assumed that these costs are taken
into account when prosumers sell excess energy to consumers
[see x$ in Fig. 14(a)], increasing the price at which the excess
energy is sold to balance those costs. As the distribution range

increases, so do the charging/discharging losses at the stor-
age points, leading to an increase in selling prices from the
prosumers until they reach the price at which the substation
sells. In Fig. 14(b), the cost reduction using weighted EAS is
observed for the prioritized groups of households for different
priority policies. In addition, note that energy sharing is bene-
ficial for every consumer irrespective of the priority policy. In
Fig. 14(b), although the cost reduction is higher for the priori-
tized groups of households (white), still there is a considerable
reduction in expenses for the less prioritized consumers who
received lower amounts of energy (gray).

D. Discussion

In the literature, we see that many algorithms proposed
for energy allocation are based on simulated data or numer-
ical case-studies [20], [22]–[24], [26]–[30], [32], [34], [39].
A few proposals used real data sets, but they are either
not fine-grained enough [14], or not using meta-data [9].
Since meta-data provides important information, EASs can-
not be agnostic towards them. Our methodology is applied to
real-case data, considering 443 households, per minute con-
sumption/generation, and socioeconomic attributes. Further,
we did not encounter in the literature any combination of
energy allocation strategies in two-stage approaches, which we
propose and evaluate in this work. With the results, we can
indeed see that there is no general prioritization technique and
EAS pair that can address all the cases or requirements. This
is mainly because the energy needs of households and com-
munities keep varying while energy harvesting at a given time
also varies. However, with this study, one can gather insights
into MGs and EASs to make better decisions.

Expecting every household to be a prosumer in the future it
will be interesting to evaluate the scaling potential of our EASs
in a system of distributed MGs and/or generally in systems of
harvesting devices that can be considered as separate commu-
nities. Instead of characterizing each household based on its
energy attributes, a whole MG can be characterized based on
the behavior of its members. Furthermore, in such a way a
residential neighborhood with lots of prosumers can be split
into homogeneous MGs. However, new bidding/pricing mech-
anisms need to be devised, probably based on non-cooperative
game-theoretic approaches, as the energy transfer and the eco-
nomic interaction will be extended from the level of a single
MG-central grid to the level of multiple MGs-central grids.
Recently more datasets are being added and also more real-
time data is becoming available. It would be interesting to use
our EAS-algorithms on such datasets and possibly some refine-
ments are expected. Finally, the policies that each household
follows regarding energy consumption should be following the
general policy of its MG.

VII. CONCLUSION

With the growing adoption of energy harvesting techniques
using renewable energy sources, consumers and prosumers can
redistribute energy efficiently. ICT infrastructures provide the
means of communication (e.g., LoRa, NB-IoT) needed to share
the available energy locally, avoiding energy-transportation
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losses. In addition, prosumers have higher economic benefits
by selling excess energy locally compared to selling it to the
central stations. In this article, we proposed and evaluated six
EASs that could be easily computed at the edge of SGs, which
control the allocation of the excess of harvested energy in an
MG community. We considered many novel approaches, such
as using both fine-grained energy-data and social attributes
to exploit the temporal energy dynamics of communities. We
clustered households into multiple groups, thereby making it
easy to analyze the complex behavior of the community. We
show that there is no “one-size-fits-all” strategy when prior-
itizing households and distributing the excess energy in an
MG since the energy needs of households in a community
keep varying while harvested energy also varies. We analyzed
one year of data from 443 houses to test our algorithms and
their impact. The most optimal allocation strategy was WF,
having the highest social welfare ratio, higher by a factor of
2.5 compared to greedy approaches. This work provides many
knobs to control energy allocation under various scenarios with
different focuses. Although we applied our EAss to Pecan
Street dataset to demonstrate the efficacy of the proposed algo-
rithms, the ideas are generic and it can be used in any small
community involving consumers/prosumers.
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