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Abstract

Wind turbine blades in standstill or parked conditions often experience large angles of attack (AoA), where vortex-induced
vibrations (VIV) may occur that increase the risk of structural damage. To better understand the VIV of airfoils at high AoA
from an aerodynamic perspective, we conducted experimental investigations into the vortex dynamics of a surging airfoil at
a 90° incidence undergoing forced vibrations. Experiments were conducted at two reduced frequencies (k) to demonstrate
the lock-in effect, where the vortex shedding frequency aligns with the motion frequency. Results indicate distinct vortex
shedding behaviors: at higher k value of 0.38, downstream wake vortices form when the airfoil is moving upwind, while
upstream vortices emerge during the downwind motion, interacting with the downstream vortices and leading to an outward
flow. At lower k value of 0.19, the wake remains directed to the downwind side, regardless of the airfoil’s motion direction.
Lock-in is evident in both cases, with one vortex pair shed per cycle at lower k and two pairs at higher k. Furthermore, the
study examines the influence of vortex dynamics on unsteady aerodynamic loads. The results show that drag peaks when
the airfoil moves upwind near the center position of its trajectory; at higher k, negative drag occurs as the airfoil moves
downwind near the center, driven by the interactions among convection, turbulent momentum, pressure, and viscous forces.
A reduced-order load estimation model for a flat plate is applied to the experimental data, showing good agreement during
the upwind motion of the airfoil, which is the design condition for the original flat plate model. However, during the down-
wind motion, as the flow condition does not match the original flat plate design condition, the circulatory part of the model
is modified to account for the presence of two pairs of vortices in the flow field, yielding improved agreement with the drag
values determined from the measured flow field. The findings highlight distinct flow patterns and vortex interactions for the
two motion cases, offering insights into their impact on aerodynamic loads.

1 Introduction

Wind energy plays a vital role in fulfilling the worldwide
increasing need for renewable energy. In the last ten years
(2013-2023), the worldwide installed wind power capacity
has increased by three times (Statista 2024). However, dur-
ing certain incoming wind conditions of wind shear events,
extreme wind speed and rapid change in wind speed and
direction (IEC 2005), the wind turbine needs to remain idle
or even parked to maintain its integrity. When a wind turbine
is parked, the pitch angle of the blade is much higher than in
normal operating conditions; for example, the SCADA data
shows a pitch angle of 78° or 88.3° for the standstill/parked
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wind turbine in the Belwind wind farm in the north sea
(Shirzadeh et al. 2015). In this case, the slender wind turbine
blades might experience vortex-induced vibrations (VIV),
increasing the blade fatigue loads and leading to structural
damage. VIV happens when the vortex shedding frequency
synchronizes with the structural frequency, resulting in
large structural displacements and structural loads (Wil-
liamson and Govardhan 2004). Such a phenomenon occurs
in many engineering situations, such as bridges, offshore
structures, transmission lines, etc. In the past few decades,
much research has been conducted on this topic, as demon-
strated by the reviews from Bearman (1984), Williamson
and Roshko (1988), and Sarpkaya (2004). A relevant phe-
nomenon occurring in Vortex Induced Vibrations is the so-
called lock-in effect. In Bearman’s review (1984), the lock-in
region, also called the "range of capture,” refers to a narrow
range of reduced velocities- defined as the ratio of the free-
stream velocity to the product of the bluff body’s character-
istic dimension and its oscillation frequency- where the flow
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conditions around the bluff body, as well as the force coeffi-
cient, change rapidly. Williamson and Roshko (1988) define
the lock-in as the condition where the structural oscillation
frequency and the vortex formation frequency are close to
the structure’s natural frequency. The authors also point out
that large amplitude motion can be triggered at frequencies
that are hundreds of times larger than the structural natural
frequency. This is confirmed in the work of Sarpkaya, who
showed that lock-in can happen at the super-harmonics of
the natural frequency (Sarpkaya 2004).

Although much research has been conducted on VIV,
it mainly focuses on cylindrical structures, which are
representative of many engineering setups. Instead, lim-
ited research can be found on airfoil VIV, a topic that has
recently become more relevant owing to the increasing size
of wind turbines. Most of the latter research uses numerical
simulations; the most pertinent works are presented here.
Heinz et al. (2016) studied the aero-elastic response of a
DTU 10MW wind turbine blade; their results suggest that
with a certain combination of wind speed and incidence,
the blade tip vibration can reach several chord lengths.
Skrzypinski et al. (2013) numerically investigated the VIV
on an airfoil at 90° AoA. The forced vibration (in the chord-
wise direction) case showed that negative aerodynamic
damping happened for oscillation frequencies near the static
vortex shedding frequency. A recent research from Pirrung
et al. (2024) conducted a full turbine-level simulation in a
fluid—structure interaction setup to study the effect of VIV.
The results showed that VIV induces both edgewise and
flapwise motions onto the three blades, whose amplitude
depends on the incoming wind condition and turbine setup.
As these results focused on the whole blade and wind turbine
level, the detailed flow structures around the blades were not
investigated, thus leaving open questions about the physics
behind lock-in.

Sarpkaya (2004) also pointed out that, during the free
vibration motion, the frequency of object oscillation and
vortex shedding at lock-in cannot remain constant over time
due to the continuous change of added mass. Instead, the
problem has often been addressed by considering forced
vibration conditions, whereby the frequency and ampli-
tude of the object’s motion can be maintained constant. It is
important to note that under the forced vibration condition,
the classical definition of lock-in needs to be modified. For
the forced oscillation of a circular cylinder, Bishop and Has-
san (1964) define lock-in/synchronization when the forcing
frequency (f) approaches the vortex shedding frequency (f;,).
This is the definition used in this research, which is also used
in Besem et al. (2016) and Tang and Dowell (2014).

Since the pioneering research into establishing invis-
cid models for unsteady airfoils from Theodorsen (1935),
Sears Sears (1938) and Mayo Greenberg (1947), several
related works have been performed over the past decades.

@ Springer

The following discussions highlight the most relevant top-
ics related to vortex dynamics, the lock-in effect, and aero-
dynamic loads for an airfoil setup.

Young and Lai (2004) studied the wake structures of a
plunging airfoil by varying the motion’s oscillation fre-
quency and amplitude. The results showed that the leading
edge separation is the dominant effect in the aerodynamic
force until a specific reduced frequency (k). Detailing the
wake structures revealed that the reduced frequency k has
a significant role in the vortex shedding frequency. The
plunging and surging airfoil was studied by Choi et al.
(2013), who found out that, for different motion ampli-
tudes, there exist two separate ranges of k values where the
lift force generated by the moving airfoil is maximized and
minimized, respectively. However, this result only con-
siders the cycle-averaged force, whereas the evolution of
the loads along a cycle and the associated vortices were
not investigated. By studying the wake structure, Young
and Lai (2007) classified the wake shedding modes of the
plunging airfoil, and defined an asymmetric lock-in bound-
ary about the natural shedding frequency. The authors
attributed this asymmetry to the sharp trailing edge of the
airfoil that forces the vortex to shed from the windward
side of the airfoil for most of the plunging cycle. Even
though these results provide valuable insights into vortex
dynamics and frequency lock-in on the airfoil, they focus
on a limited range of low angles of attack (typically below
15°). In contrast, the unsteady aerodynamics of airfoils at
high angles of attack (AoA) have not been investigated.

The present work is motivated by the need for addi-
tional insight into the VIV of airfoils at high AoA from an
aerodynamic perspective. Following the same approach as
Young and Lai (2004) and Choi et al. (2013) which inves-
tigate forced vibrations on airfoils, the case of an airfoil
undergoing forced surging motion is considered. The main
goal is to investigate the vortex structures from forma-
tion, evolution to shedding and their role in the aerody-
namic forces. In the following sections, the experimental
approach and analysis methodology are introduced. Then,
an overview of vortex kinematics and flow development
is provided for the two motion cases at each phase of the
measurement. The main results detailing the aerodynamic
forces are discussed in two sections: (i) the overall force
and the contribution of each force component and (ii) the
comparison of the experimental data with the flat plate
reduced-order model.
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2 Methodology
2.1 Experimental setup
2.1.1 Wind tunnel setup

The experiments were conducted in the open jet facil-
ity (OJF) of Delft University of Technology. The OJF is
a closed-circuit wind tunnel with an open, 2.85 X 2.85m
octagonal test section. The setup is depicted in Fig. 1 and is
described in detail in Xu et al. (2024).

2.1.2 Wing model

A 40 cm span wing with NACAO0021 airfoil of 7.5 cm chord
was used in the experimental campaign. The model was 3D
printed, and carbon fiber strips were attached at the loca-
tion of the one-quarter chord to enhance its stiffness. The
AoA of the wing was fixed at 90°. A motor with a slider-
crank mechanism was used for the surging motion of the
wing. The wing is subjected to the sinusoidal surging motion
(i.e., parallel to the free-stream direction), with a nominal
amplitude of 1.1c, similar to the simulation from Heinz et al.
(2016). The motion frequency was set to 5 Hz and 2.5 Hz,
yielding the reduced frequencies (k = zfc/U ) of 0.38 and
0.19, respectively. In order to trigger lock-in phenomenon,
an appropriate combination of motion frequency and ampli-
tude needs to be considered. As was discussed by Koopmann
(1967), Anagnostopoulos (2000), and Meneghini and Bear-
man (1995), the boundary of the lock-in region presents a
V-shape: the larger the departure of the frequency ratio f/f;,
from unity, being f;, the static vortex shedding frequency, the
larger the amplitude required to trigger lock-in. Consider-
ing that the static vortex shedding frequency was f,, = 6.4
Hz (the procedure to obtain the static shedding frequency
is discussed in the results section), and the limitations of
the motor, at the highest motion frequency of 5 Hz, the fre-
quency ratio was f/f,, = 0.78, corresponding to a reduced
frequency k£ = 0.38. The motion frequency 2.5 Hz was also
investigated in the experiments, yielding f/f,, = 0.39 and

Fig. 1 Experimental setup of
the experiments in the OJF,
looking in the upstream direc-
tion. The relevant components
are: 1. Flow outlet 2. LaVision
Imager sCMOS camera 3.Air-
foil model 4. Quantel Evergreen
Nd:YAG laser 5. The base
plate 6. Surging mechanism.
Note that the schematic plot of
the experimental setup (on the
right) is not to scale

k = 0.19. The experimental parameters are summarized in
Tablel (Xu et al. 2024). The wing’s kinematic motion is
driven by a slider-crank linkage, which transfers a circular
motion to a linear motion. The wing’s actual motion ampli-
tude 4 is obtained by physically tracking the airfoil leading
edge position from the phase-averaged particle image veloci-
metry (PIV) images. The velocity / and acceleration / of the
motion were calculated by temporal derivatives of the wing’s
positions. The results of the wings kinematics are shown in
Fig. 2a, and the relative locations are shown in Fig. 2b for
four phases of the motion: 0° and 180°, corresponding to
the wing’s position close to the center of its trajectory, 90°
and 270°, corresponding to the most upwind and downwind
positions, respectively.

2.1.3 PIV measurements

Stereoscopic PIV measurements were performed to
evaluate the flow fields surrounding the wing. A SAFEX
smoke generator created water-glycol droplets with a
median diameter of 1 ym to seed the flow within the tun-
nel. The illumination was provided by a Quantel Ever-
green Nd: YAG laser (200m] pulse energy, maximum 15Hz
repetition rate, 532nm wavelength). To acquire the three
velocity components within the measurement domain, two

Table 1 Experimental parameters

Parameter Symbol Value
Freestream velocity U, 3.1m/s
Model chord c 0.075m
Reynolds number Re 1.5x 10*
Static vortex shedding frequency St 6.4 Hz
Model angle of attack AoA 90°

Model span s 0.4m
Model aspect ratio AR 5.33
Motion frequency f 2.5Hz, SHz
Reduced frequency k 0.19, 0.38
Frequency ratio flfa 0.39,0.78
Motion amplitude Piax 0.083m(1.1¢)

@ Springer
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Fig.2 a The actual motion amplitude (%) based on the leading edge
of the airfoil, velocity (h) and acceleration (/1) of the surging motion
for two motion frequencies. Note that the lines for & overlap each
other since two cases have the same travel distance. The bottom panel
represents the relative wind speed (U,y = U,, — k) experienced by the
airfoil. b The relative locations of the airfoil at four different phases:
0° and 180° where the wing is near the center of its trajectory, 90° and
270°, where it is in the most upwind and downwind positions, respec-
tively

LaViSion Imager sCMOS cameras (2560 x 2160 pixel, 16
bit, 6.5 X 6.5 um pixel size) were installed at the tunnel’s
side at a relative angle of 40°, as shown in Fig. 1. The
size of a single field of view (FoV) is 269.4 X 331.8 mm,
which corresponds to approximately 3.6¢ in the stream-
wise direction and 4.4c in the cross-flow direction. The
image magnification factor is 0.05 with a digital reso-
lution of 7.92 pixels/mm. The experimental procedure
involved two stages: initially, a measurement with the
static wing was performed to determine the static vortex
shedding frequency f,, which was then used to select the
frequencies for unsteady measurements. Two single FoVs
were stitched together, giving the total FoV of 5.2¢ in the
streamwise direction and 4.2¢ in the cross-flow direction.
Secondly, the unsteady measurements were performed for
the surging airfoil. The measurement plane was placed at
a distance of 3¢ from the tip of the wing where the flow
is less affected by the three-dimensional effects occurring
at the wing tip. To achieve a broader FoV, the entire PIV
system was traversed twice in the streamwise direction,
which gives the total FoV of 8c in the streamwise direction
and 4.2¢ in the cross-flow direction. Phase-averaged acqui-
sitions were obtained at 12 phases: 0°, 45°, 80°, 90°, 100°,
135°,180°, 225°,260°, 270°, 280°, and 315°. For each phase
at each local FoV, 200 image pairs were captured, and the
time interval between the images of a pair is 120 ms.

@ Springer

User-defined region S

3 Illustration of I'; method

2.1.4 Uncertainty analysis of the PIV measurements

The uncertainty of the PIV measurements can be estimated
from the ensemble data size and the flow velocity fluctuation
(Ye et al. 2016). For each phase measured, 200 uncorrelated
snapshots were taken; hence, the standard uncertainty of the
phase-average flow velocity is equal to:

O-M
SR o

o, is the representative standard deviation value of the
streamwise velocity component (o, /U, is approximately
0.1 in the wake of the wing) and N represents the number
of uncorrelated samples. This equation yields £, = 0.7% for
the present experiment.

The uncertainty of the root mean square (RMS) of the
velocity fluctuations is estimated as (Sciacchitano and Wie-
neke 2016):

3

Uu

Su/ —
U, V2(N-1) 2)

The expression yields €, = 0.5%.

2.2 Vortex identification method and calculation
of circulation

Following the approach from Laurent Graftieaux et al.
(2001) and Morgan et al. (2009), the so-called I'; method
is introduced here, which is employed to identify the vortex
center(s) in the flow field.

The illustration of the method is shown in Fig. 3. Given
a two-dimensional flow field as those measured by PIV, a
user-defined rectangular region S is selected, composed of
N data points. Let P be a fixed center point in this region.
At each point M within the region S, 6,, is the angle
between the location vector PM and the velocity vector
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uy;. The sine of the angle ,, can then be calculated, which
gives the dimensionless scalar function I'; at P:

1 PM X uy,
I(P)=— _—
1P) N; IPM]] - [yl

Z sin(6,,) (3)

The value of I'; is calculated for all the data points in the
measurement domain. Notice that|I"; | is bounded by 1; such
bound is reached at the center of the vortex if the vortex
is axisymmetric. Typically, |I';| near the vortex center is
between 0.9 and 1.

Once the center of the vortex has been identified using
the I''; criterion, the circulation I of the vortex can be com-
puted by integration of the vorticity @ within a certain
area A:

F=//codA (4)

A

The area A can be selected based on the vortex boundary,
identified using the I, method (Laurent Graftieaux et al.
2001; Morgan et al. 2009). However, in the present work,
because the vortices are shed from the leading and trailing
edges and separated, a user-defined area is selected as fol-
lows. For each phase of measurement, a rectangle boundary
is set around each vortex in the flow field; the region is large
enough to cover more than the area of the vortex. Then,
the integration for the circulation using Eq. 4 is performed,
excluding the contribution from the vortices in the opposite
direction (opposite sign of vorticity). The schematic plot is
shown in Fig. 4.

2.3 Load estimation method

Due to the highly unsteady character of the flow, unsteady
load measurements are difficult to conduct with conven-
tional load cells. However, from the PIV velocity data,
the derivative-moment transformation method (Rival and
Oudheusden 2017) can be used to infer the aerodynamic
loads for incompressible unsteady flows. The method is
explained below.

Fig. 4 Demonstration of the
user-defined area for circula-
tion calculation. The dashed
rectangle represents the user-
defined area. The red and blue

curls represent the vortices with

opposite signs

First, the pressure gradient can be obtained through the
Reynolds Averaged Navier—Stokes equation:

op) ow) _ oy, %(u, 0(“’ 0
_1o®) o) | o) O )
p ox; ot ! ox; 0x;0x; 0x;

where u; represents the time-average velocity component for
the static case (and phase-average for the surging case) in
the i direction, p is the time-average pressure for the static
case (and phase-average for the surging case), v is the kin-
ematic viscosity, p is the air density and u:uj’ represents the
Reynolds stress tensor. The pressure p can then be calculated
by reformulating the problem as the Poisson equation for
pressure, as described by Van Oudheusden (2013), with
appropriate boundary conditions: for the inlet of undisturbed
flow, the Dirichlet boundary condition is applied; for the
remaining boundaries, Neumann boundary conditions are
applied.

Second, for two-dimensional evaluation, the aerodynamic
forces can be evaluated via the conservation of momentum in a
control contour around the airfoil body (Rival and Oudheusden
2017), following the approach employed by Ragni et al. (2011)
and Van De Meerendonk et al. (2016) for load evaluations
from phase-locked PIV measurements:

—p— //(xlulnl)dl —p//uuna’lz—p//uu’nja’l2
//pndlz+p\///<—+—>na’l2

(6)
with [ the control contour and n;, n; the normal unit vector
(pointing outward) in the i and j directions, respectively.
From left to right of the right-hand side of the equation,
the integrals represent the contributions to the aerodynamic
loads from the flow unsteadiness, mean convection, turbu-
lence momentum transfer, pressure and mean viscous stress.
Note that in the present approach of phased-locked PIV
measurements, the FoV is fixed for different phases. Thus,
the flow unsteadiness term (the first term on the right-hand
side) in Eq. 6 can be written as:

il
—p% // (in)dl’ = —p // <x[§ni>dlz %)
1 1

Specifically, % is obtained from the consecutive phases
measured, as shown in Eq. 8:
o, _ O Oy _ Oy . Hikert — Hi-i

= = ! N -2
or  d¢, ot J¢, % a1 — b &l ®)
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Here, ¢, denotes the phase at the k-th point in the cycle and
¢ = 2xft. u; .,y and i; . are the phase-averaged velocities
at the adjacent phases.

Equation 6 is valid when the flow is incompressible and
the body is thin (Rival and Oudheusden 2017). In this work,
the airfoil NACA 0021 at 90° AoA acts as a bluff body, thus
yielding an additional body force term on the right side of
Eq. 6:

_ _,po
F(t)y = —pBS ©)

where B is the surface area of the airfoil’s cross section and

oh - . . .
518 the airfoil’s acceleration.

2.4 Analytical solution for the surging airfoil
2.4.1 Accelerating motion in one direction

Since the surging airfoil has a fixed AoA of 90°, its shape
and the resulting flow dynamics resemble that of a flat plate
normal to the free-stream direction, whereby the leading and
trailing edge vortices are dominant. This research compares
a low-order model of a flat plate at 90° incidence presented
by Corkery et al. (2017) with the loads estimated from PIV.
In the low-order model, the vortices are assumed to be con-
centrated into two parts: a leading edge vortex (LEV) and a
trailing edge vortex (TEV). The analytical solution for the
accelerating flat plate is presented below.

This method decomposes the force into the added mass
force (non-circulatory force) and the circulatory force. The
former is due to the acceleration induced by the plate to the
flow and is equal to the product between added mass and
acceleration:

2
nc
F p

non-circ — Th (10)
This force can be non-dimensionalized with respect to
the dynamic pressure force (1/ 2ch§°) to obtain the force
coefficient:

ﬂc .
Cnon-circ = m (11

The circulatory force, instead, is ascribed to the vortex
pair generated by the impulsive motion of the plate. If the
strengths of the two vortices are +I", with the distance d
between the cores of the two, the impulse (momentum)
(Lamb 1945) of the vortex pair is:

J = pI'd (12)

The time derivative of Eq. 12 gives the force in the stream-
wise direction:

@ Springer

F. = p(Td +Td) (13)

where I" and d are the time derivative of circulation and vor-
tex distance, respectively. The schematic plot of the model
is shown in Fig. 5.
The circulatory force can then be non-dimensionalized

with respect to dynamic pressure force (1/ 2ch§o) as:
Cope = ——(Id +Td

cire = @( +TI'd) (14)
The total drag force coefficient C, is the sum of the non-
circulatory and circulatory terms:
zc

I T .
_2U2 h+ _U2 C(Fd +1I'd) 15)

Cd = Cnon—circ + Ccirc =
Equation 15 presents the low-order force solution with the
contribution from virtual mass and circulatory force, where
the circulatory force component is influenced by both the
growth of the vortices and the relative motion between LEV
and TEV.

2.4.2 Modified model for surging motion

One limitation of the reduced-order model (Eq. 15) is that
it only considers the accelerating motion of a flat plate,
assuming that the motion is only in one direction. In the
case of the surging wing, accelerations and decelerations
occur, with the wing moving both upwind and downwind.
In particular, a vortex pair is generated downstream of
the wing during the upwind motion, as for the flat plate.
Instead, during the downwind motion, depending on
the reduced frequency k, vortices can also be generated
upwind of the wing, resulting in a situation where both
upwind and downwind vortices are present. In this case,
Eq. 15 cannot be applied anymore. Let us consider, for
instance, the case when the wing is moving downstream
in a surging case, as illustrated in Fig. 6. The downstream
motion of the wing causes the formation of two upwind

TEV
Uso h
—_— D Fci re d
LEV

Fig.5 Illustration of the airfoil’s vorticity field and circulatory force
moving in the upstream direction. I" represents the absolute value of
the circulation from LEV and TEV. "+" represent the vortex cores.

F,. represents the circulatory drag force
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Fig. 6 Illustration of the airfoil’s vorticity field and circulatory force
moving in the downstream direction during a surging motion. The
circulatory force and circulation are split into two groups. The ones
with the underscore "us" represent the circulatory force and circula-
tion generated by the wake velocity Uy, during the downwind motion
of the wing. The ones with the underscore "ds" represent the circula-
tory force and circulation generated during the upwind motion of the
wing

vortices of circulation (I'j and -T"), whose contribution
to the drag is F. .. However, the wing is moving in a
region of flow directed upstream at a velocity Uy,. In this
flow region, two vortices are present, generated from the
previous upwind motion of the wing, whose circulation is
'y and -y, which contribute to the drag force via F 4.
Considering this situation in the flat plate model (Eq. 15),
the circulatory force in the updated model is computed as
the sum of the circulatory forces from each vortex pair.
Thus, during the downstream motion in certain cases, the
drag coefficient is calculated as:

1
Cd = (Fnon—circ + Fcirc,us - Fcirc,ds)/<§pUzoC> (16)

Using Eq. 10 to calculate F, and Eq. 15 to calculate

on-circ

Fcirc,us and Fcirc,ds? Eq' 16 becomes:
c - 2 . . . "
Cd = 202 h+ m(rusdus + 1—‘usdus - I_‘dsdds - Fdsdds)

an

Fig.7 Streamwise velocity field
it/ U, and vorticity field @c/U,,
of the static wing at 3¢ location
from the tip

3 Results and discussion
3.1 Velocity and vortex dynamics
3.1.1 Static case

The static wing case is discussed first regarding velocity and
vorticity fields. Figure 7 shows the time-averaged (from 200
samples) streamwise velocity i#/U,, and vorticity @c/U,,
field at 3¢ distance from the wing’s tip, with the airfoil at
AoA = 90°. The gray area in the plots represents the shadow
region where the airfoil blocked the laser light from the bot-
tom, as shown in Fig. 1; hence, no velocity measurement
is possible in that region. At such large AoA, the airfoil
generates a large wake, whose width scales with the airfoil’s
chord, where a significant flow reversal occurs (velocity up
to about 0.3 of U,). Vortices are shed alternatively from the
leading and trailing edges but are not visible in the mean
flow field. Instead, high vorticity is present in the shear lay-
ers emanating from the leading and trailing edges.

Flow fields are captured 2.5¢ downstream of the wing to
determine the vortex shedding frequency of the static wing.
The distance is defined between the airfoil chord line to the
left boundary of the FoV. Two instantaneous flow fields at
t=10.27s and = 15.65s are shown in Fig. 8a and b. In the
figure, the vortex shedding from the leading edge and trail-
ing edge is visible, resulting in a sinusoidal shape of the
wake. Proper orthogonal decomposition (POD) analysis is
performed on the flow fields to identify the most energetic
modes associated with the wake dynamics (Smith et al.
2005). The first two modes feature a comparable energy
content of 9.5% and 8.1% (as shown in Fig. 9) and are in
quadrature of phase; the first two modes of the cross-flow
velocity component v, shown in Fig. 8c and d, represent the
convection of the streamwise vortices shed from the leading
and trailing edges of the wing. The distance between the
two neighboring peaks in the streamwise direction (1.88¢)
in Fig. 8c represents half of the wavelength of the vortex.
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Fig. 8 Instantaneous streamwise velocity field u/U, 2.5¢ down-
stream from the airfoil at a r= 10.27 s, (b) = 15.65 s and the first
two modes of the cross-flow velocity component v (¢) and d from the
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Fig. 9 Energy content at different mode number

Based on the convective velocity in the shear layer, which
is estimated as 60% of the free stream, the vortex shedding
frequency f;, for the static wing (defined as velocity divided
by wavelength) is calculated as 6.4 Hz, resulting in a Strou-
hal number St = f,,c/U_, = 0.159.

3.1.2 Surging cases

The surging motion was conducted at 5 Hz and 2.5 Hz.
Based on the f; obtained from the static measurements,
the corresponding frequency ratio of the motion frequency
f with respect to f,, is 0.78 and 0.39. The phase-averaged
streamwise velocity fields superimposed with stream-
lines are shown in Fig. 10 during a cycle of motion for the
reduced frequency k = 0.38 (Animation provided in Online
Resource 1). In total, 12 phases were captured, and the result
is shown in a vortex formation order in the wake instead
of the phase-increasing order. When the airfoil moves in
the upstream direction (for instance, phases ¢ = 0° and
45°), the flow shares similarity with that of the static wing,
even though with a stronger velocity deficit inside the wake
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POD analysis. Note that distance of the FoV with respect to the air-
foil is defined as the distance between the airfoil chord line and the
left boundary of the FoV

and a larger flow acceleration outside of the wake. When
the airfoil moves in the downstream direction, instead, a
region of velocity higher than U_ is formed upwind of the
wing, whereas the wake downwind of the wing elongates
on the top and bottom of the wing in the upwind direction
(see for instance phases ¢ = 180° and 225°). The phase-
averaged vorticity fields superimposed with streamlines for
the same k are shown in Fig. 11 (Animation provided in
Online Resource 2). The green crosses in Fig. 11 represent
the vortex cores identified using the I'l method explained in
the methodology section. For the k = 0.38 surging case, the
vortex formation in the wake starts from ¢ = 270°, where
the airfoil is at the most downstream position. At this phase,
the wing starts moving upwind from zero velocity; thus, a
vortex pair starts to form at the leading and trailing edges.
As the wing moves upwind, the vortices grow in size and
strength, fed by the vorticity of the shear layers. The end
of the vortex formation period can be determined through
the circulation of each phase, which for the leading edge
vortices is shown in Fig. 12. The circulation is calculated
using Eq. 4, excluding the points where the vorticity has
the opposite sign with respect to that of the vortex. For the
k = 0.38 case, I' reaches the maximum at ¢ = 80° (close
to the most upwind location) and remains approximately
constant afterward. From ¢ = 80°(Fig.11g) to ¢ = 100°
(Fig. 11i), the wake vortices increase their distance in the
cross-flow direction, while shrinking their size in the stream-
wise direction. Before ¢p = 80°, the vortex pair builds up and
the vortex formation length (the distance between the airfoil
and the vortex core) elongates. When the airfoil decelerates
toward ¢ = 90°, the trailing vortices decelerate, because
their motion is obstructed by the airfoil itself. When the
airfoil starts to move in the downwind direction (¢ > 90°),
it induces an increase of pressure between the vortices: as
a consequence, the vortices detach and move apart in the
cross-flow direction. From ¢ = 90° (the most upstream posi-
tion) onwards, as the airfoil moves downwind, the vortices
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Fig. 10 Streamwise velocity field /U, for k =0.38 surging case
for all the measured phases. Instead of showing the increasing phase
order, the same order as Fig. 11 is shown here. The black arrow

are pushed away from the airfoil, causing the vortex pair to
detach from the airfoil’s leading edge and trailing edge. This
is identified by the fact that at 135°(Fig. 10j), the two vortices
are cut off from the supply of fluid circulation from the shear
layer connected to the airfoil leading and trailing edges.
Starting from ¢ = 135°, another pair of starting vortices,
in the upwind direction, starts generating and growing until
¢ = 225°. At ¢ = 180°, while the upwind vortices grow in
size and strength, the downwind vortices gradually move
away in the cross-flow direction from the wing. Similar to
the downwind vortices, from ¢ = 225° the upwind vorti-
ces start to separate from the wing due to the deceleration
of the latter. At ¢ = 280°, they move away from the wing
at a comparable speed as the downwind vortices. As the
airfoil moves downstream, it moves within its own wake,
characterized by low streamwise velocity generated during
its upwind motion. With the relatively low incoming velocity

x/c

(k) ¢ = 180°

x/c

(1) ¢ = 225°

represents the scaled relative velocity U, and the red arrow repre-
sents the scaled motion velocity 4. (Animation provided in Online
Resource 1)

and the relatively high wing motion velocity, the vortices
shed upwind remain roughly at the same streamwise location
during the donwnwind motion of the wing. It is noticed that
one pair of downwind vortices (generated during the upwind
motion) and one pair of upwind vortices (generated during
the downwind motion) are shed simultaneously during one
cycle of motion. Hence, it is concluded that, for the current
case (frequency ratio f/f,; = 0.78), lock-in occurs between
the vortex shedding and wing’s motion.

Figure 13 displays the superimposed streamlines with
streamwise velocity fields for all the measured phases for
the k = 0.19 case (Animation provided in Online Resource
3). Compared with the k = 0.38 case, the wing’s velocity
is lower, meaning that the perceived wind of the airfoil is
closer to the free-stream velocity; as a consequence, the
resulting flow fields exhibit higher similarity to that of the
static wing case shown in Fig. 7a. In particular, during the
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Fig. 11 Contours of the phase-averaged spanwise vorticity com-
ponent superimposed with streamlines. Vortex identified using I,
method for k& = 0.38 surging case. The vortex center is marked as

downwind motion of the wing (phases between ¢ = 90°
and ¢ = 270°), the wing’s velocity is not high enough to
move the downwind vortices laterally. Furthermore, the flow
stagnation always occurs on the upwind side of the wing,
whereas the wake is always on the downwind side. From the
vorticity fields, illustrated in Fig. 14 (Animation provided in
Online Resource 4), two main observations can be made: (i)
contrary to the kK = 0.38 case, vortices are shed only on the
downwind side of the wing and not on the upwind side: this
result is because the wing motion velocity is low compared
with the free-stream velocity, hence no starting vortex is
formed when the wing moves downwind; (ii) Although dif-
ferent from the k = 0.38 case where two pairs of vortices
(one pair upwind and one pair downwind) shed, at k = 0.19,
during one period of motion, only one pair of counter-rotat-
ing vortices is shed, which indicates a different form of lock-
in between the wing motion and the vortex shedding. The
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crosses in green. The black arrow represents the scaled relative veloc-
ity U, and the red arrow represents the scaled motion velocity /.
(Animation provided in Online Resource 2)

first observation implies that the motion kinematics of the
wing dominates the upwind vortex shedding, thus highlight-
ing the importance of motion-reduced frequency on the flow
dynamics. From the measured data, the start of the vortex
generation is at ¢ = 225°, where a pair of small vortex blobs
starts to form downstream of the airfoil. From Fig. 12, it is
noticed that, for the k = 0.19 case, I" increases until ¢p = 90°
and decreases afterward. At ¢ = 135°, it is observed that the
vorticity exhibits a "noisy" pattern between x/c = 1 and 2.
Although this is ascribed to the limited ensemble size (it is
reminded that the phase-average flow fields were obtained
from 200 instantaneous fields), it indicates that the wake
vortices are not stable and dissipate to the surrounding flow.
At ¢ = 180°, the vorticity is spread in a larger area, and
only the leading edge vortex core can be found in the meas-
urement domain. Compared with k = 0.38 case, when the
wing is moving upwind, the wake generated in the k = 0.19
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Fig. 12 Circulation I" of the wake vortex in the downstream side from
the leading edge at different phases in a cycle. The solid horizontal
arrow pointing right on top of the plot represents the downstream
motion, and the dashed arrow pointing left represents the upstream
motion of the airfoil

case is downwind of the wing, similarly to the k = 0.38
case. However, in the latter case, a higher reverse velocity
is encountered. In this condition, when the airfoil moves
back in the downwind motion, the energy that the wing
feeds into the flow combines with the energy of the wake
flow: because of the lower wing velocity in the k = 0.19
case, the wake remains downwind of the wing, contrary to
the k = 0.38 case, where the wake elongates to the sides
and upwind of the wing. It is noticed that, in the kK = 0.19
case, the vorticity field is significantly different from that
of the k = 0.38 case, indicating that k influences the vortex
dynamics to a large extent. On the other hand, the second
observation (namely the fact that only one pair of counter-
rotating vortices is shed during one motion cycle under this
frequency, which is different from the k = 0.38 case where
two pairs of vortices are generated and shed simultaneously
during one cycle, only one pair of counter-rotating vortices
is shed) indicates that even though the two motion cases
have different vortex dynamics, they all eventually feature
the lock-in effect. While the lock-in from the high reduced
frequency is expected due to f/f;, close to unity, the lock-in
in the low reduced frequency case is ascribed to the large
motion amplitude. The simulation results from Choi et al.
(2015) of an oscillating airfoil indicate that lock-in occurs
for small motion amplitudes for f/f,; closes to unity. In con-
trast, for large motion amplitudes, it can also occur for sub-
harmonics, e.g., f/f,, = 0.5. In the present test case, for the
low reduced frequency (k = 0.19) case, the frequency ratio
is f/fy = 0.39, which, given the motion amplitude of 1.1¢
yields a lock-in between frequency of motion and vortex
shedding.

Figure 15 presents the trajectory of the downwind leading
edge vortex along a cycle. The vortex core is identified using

the I'; method explained in the previous section. Starting
from the beginning of the vortex formation (¢ = 280° for
k = 0.19 case and ¢ = 260° for k = 0.38 case) to ¢p = 45°,
the motion in the streamwise direction follows the sinusoidal
shape. For both the reduced frequencies, up to ¢ = 315°,
the vortex moves slightly downstream because of the free-
stream velocity in the downwind directions; for successive
phases up to ¢ = 45°, the vortex moves upstream instead,
subject to the flow velocity induced by the upwind motion
of the wing. Clearly, such displacement is significantly larger
for the k = 0.38 case due to the higher speed of the wing.
From ¢ = 45°, the vortex moves downstream because of the
decreasing wing velocity (up to ¢ = 90°) and its successive
motion in the downwind direction (from ¢ = 90° onward).
When looking at the transverse displacement of the vortex
(along the y direction, illustrated in Fig. 15b), it can be seen
that, for the lower reduced frequency k = 0.19, the vortex
gradually moves away from the airfoil starting from phase
¢ = 315°. Instead, at the higher reduced frequency k = 0.38,
the vortex transverse position remains approximately con-
stant up to ¢ = 45°; afterward, the vortex quickly moves
away from the wing due to the high wing velocity that has
the effect of displacing the vortex in the vertical direction.

3.2 Load estimation
3.2.1 Static case

The load estimation method based on Eq. 5 to Eq. 6 is
applied to the static wing first; in this case, because the wing
is static and the time-average flow field is considered, the
time derivative term in Eq. 6 is null. The pressure field is
shown in Fig. 16a. The pressure field is non-dimensionalized
asCp = (P — Pw)/(l/Zpro), where P is the static pressure
in the flow field and P is the free-stream pressure. The
shadow region at the top of the airfoil, present in the velocity
fields, was interpolated to allow for the pressure calcula-
tion using the Poisson equation. It is important to note that,
although the shaded area is present, it primarily remains
outside the wake region. For the sake of computation of
the aerodynamic loads via Eq. 6, linear interpolation of the
velocity at the boundaries at the shaded region is performed.
Because in the shaded region, the flow is mainly a potential
flow, and because the aerodynamic loads are evaluated from
the line integral along the control boundaries, the uncer-
tainty associated with this interpolation is deemed negli-
gible. Upwind of the wing, the flow field clearly follows
potential flow theory: As the wind approaches the airfoil,
the speed decreases and the pressure increases, based on
Bernoulli’s principle. Instead, downstream of the airfoil, a
wake is present, where Cp is lower than 0 due to the pres-
ence of wake vortices and reverse flow. The corresponding
force contributions from mean convection (MC), pressure
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Fig. 13 Streamwise velocity field &1/U,, for k =0.19 surging case
for all the measured phases. Instead of showing the increasing phase
order, the same order as Fig. 14 is shown here.The black arrow repre-

(press) and turbulence momentum transfer (TMT) are shown
in Fig. 16b. Note that the positive or negative sign in front
of each term in Eq. 6 is included in the force component.
The mean viscous stress term is not included in the bar
plot because it is several orders of magnitude lower than
the others. Also, for the static case, the body force term is
zero. For the calculation of the force contributions via Eq. 6,
a control contour around the airfoil shall be defined. The
control contour surrounding the airfoil, shown in Fig. 16a,
extends from 10 dx to 30 dx from the airfoil surface, where
dx = 0.027¢ represents the streamwise grid spacing. Error
bars of forces determined using the different control con-
tours are added to the bar plot of Fig. 16b, whose sizes rep-
resent the uncertainty at 95% confidence level. From the load
result of 21 different control contours, the drag coefficient Cy
is obtained with a mean value of 0.95 and a 95% confidence
interval of 0.01. The pressure term provides the only positive
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sents the scaled relative velocity U, and the red arrow represents the
scaled motion velocity 4. (Animation provided in Online Resource 3)

contribution to the total force, while MC and TMT give a
negative contribution, which is ascribed to the fact that all
control contours are relatively close to the airfoil. As the
airfoil stands as the bluff body in the flow at AoA 90°, the
pressure force from the flow acts mainly horizontally, that
is, normal to the chord line, thus giving rise to a relatively
high-pressure drag. The contribution of MC to the control
contour boundary is shown in Fig. 17. The control contour
showcased has a fixed 20 dx distance from each boundary of
the airfoil surface. The curve starts from the bottom-left of
the control contour; The dashed lines represent the bound-
ary of the turning point in the control contour. Note that for
the rest of the discussion, the control contour follows the
same as here. The figure shows that even though the front
boundary has a positive contribution from MC due to the
deceleration of flow in front of the airfoil, the top, bottom,
and back boundaries provide a negative contribution due to
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Fig. 14 Contours of the phase-averaged spanwise vorticity com-
ponent superimposed with streamlines. Vortex identified using I,
method for the k = 0.19 surging case. The vortex center is marked
as crosses in green. The black arrow represents the scaled relative
velocity U, and the red arrow represents the scaled motion velocity

Fig. 15 Streamwise and lateral
trajectory of the leading edge
vortex core (in the order of
vortex formation) for k = 0.38
and k = 0.19 surging motions.
Only the core of the downwind
vortex is considered. The solid
horizontal arrow pointing right
on top of the plot represents
the downstream motion, and
the dashed arrow pointing left
represents the upstream motion
of the airfoil
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h. Note that for ¢ = 225°, this method cannot recognize the vorti-
ces near the leading edge and trailing edge of the airfoil as the small
vortices are near the shadow region. (Animation provided in Online
Resource 4)
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(a) Streamwise trajectory
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(b) Lateral trajectory
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Fig. 16 a Pressure field of the static blade at 3¢ location from the
tip. The control contour outside of the airfoil in Fig. 16a ranges from
10 dx to 30 dx from the airfoil surface, with dx = 0.027¢. Re Force
contribution from mean convection (MC), pressure (press) and tur-

x107°

Bottom

-6 ‘
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Fig. 17 Force component from mean convention (MC) on the control
contour for the static measurement. The control contour presented
here has a fixed 20 dx distance from each boundary of the airfoil sur-
face. The curves start from the bottom-left of the control contour. The
dashed lines represent the boundary of the turning point in the control
contour

the accelerated flow at the top, bottom, and downwind of the
airfoil outside the shear layer (Fig. 7a).

In order to examine the validity of the load estimation
method, C4 obtained from each control boundary is plot-
ted against the control boundary width w/c in Fig. 16¢. The
black horizontal line represents the mean value. It is shown
that as w/c increases, C, first decreases, reaching a local
minimum and then increases again. Therefore, the result
does not show a convergence related to the control boundary.
Firstly, when the control boundary is too small, the relatively
high velocity gradients near the airfoil cause larger uncer-
tainty in the local pressure value and in turn in the estimated
load. Secondly, as we neglect the spanwise flow in the load
estimation method, the mass and momentum are not pre-
served in the two-dimensional control boundary. As a result,
the larger the control volume, the less two-dimensional mass
and momentum conservation are expected to hold. This
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bulence momentum transfer (TMT) for the static case. The errorbar
height represents the uncertainty at 95% confidence level. ¢ C, as a
function of control boundary length, where the black horizontal line
is the mean value

poses a limitation to the method used here. However, it is
further noted that the error for the total drag coefficient is
smaller than the error from MC and pressure, indicating that
the momentum and pressure terms are more influenced by
the control volume boundary while the total drag coefficient
is minimally affected due to the cumulative contribution of
all forces. The variation of C, in the range of considered
contours is approximately 5% to 10%, which is much smaller
than the variation of C, at the different phases of the surging
motion cases (discussed later). Thus, the average C, is used
to represent the mean value of the tests.

To validate the result, measurements reported in the lit-
erature have been reviewed. Even though this airfoil profile
has been widely studied, the large angle of attack case is
rarely considered. Experimental load measurements can be
found in Holst et al. (2019). In their study, load measure-
ments were conducted at AoA 90° and Re = 1.4 x 10°, from
which a drag coefficient of 0.87 was computed. However,
the C, obtained from this campaign is 0.95 for a lower Re
of 1.5 x 10*. In the wind tunnel measurement by Xu et al.
(2024), a DU91 airfoil was tested with three different Re
numbers. The results showed a slightly higher C, at the low-
est Re value of 2 x 107, compared to the other two values
(Re = 5x 10°and Re = 8 x 10°) at AoA 90°. Thus, the effect
of Re is one of the contributing factors to the difference in
Cd compared with the result of Holst et al. (2019). Apart
from this, both campaigns use an open jet, while two end
plates were applied to the airfoil for the campaign by Holst
et al. (2019), whereas only one end plate was applied for this
campaign. This may induce some three-dimensional effects
in our campaign, where the spanwise velocity is not zero.
Regarding uncertainty, the difference between the experi-
mental measurements by Holst et al. (2019) and the integra-
tion method presented here mainly stems from (1) the uncer-
tainty of the PIV measurements compared to the pressure
measurements and (2) the uncertainty in the interpolated
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shadow region in the PIV data. Since uncertainties and
three-dimensional effects are inevitable in this campaign,
the results from the integration method are considered valid
for the dynamic case measurements.

3.2.2 Surging cases

The load estimation method was then applied to the surging
motion case. Figure 18a presents the C, as a function of the
motion phase, whereas Fig. 18b presents the C, as a function
of the wing’s position. For both plots, the shaded area rep-
resents the 95% confidence interval based on all the control
contours tested. The solid lines in Fig. 18b represent the air-
foil moving in the upwind direction, while the dashed curves
represent the airfoil moving in the downwind direction. The
gray line in both plots represents the static C4 value. As the
95% confidence interval is rather small for the static case, it
cannot be seen in the plot.

Figure 18a shows that the highest C4 occurs at ¢p = 0°
for both reduced frequencies. At this phase, the airfoil is at
the center of the travel and is moving upstream, bringing
high momentum in the direction opposite to the free stream,
thus resulting in the highest relative velocity perceived by
the airfoil. In this case, the surging motion at k = 0.38 has
3 times the C; compared with the static case, whereas for
the £ = 0.19 motion, the Cy is 2.4. This result emphasizes
the importance of studying the wing dynamics because the
wing’s motion can yield force coefficients that are several
times larger than the corresponding static ones.

For most of the tested phases, the drag force is positive,
meaning that it is directed downstream (same direction as
the free-stream velocity). However, around ¢ = 135°, C, has
a negative value, which means that the drag force is directed
upwind. The force contribution in the streamwise direction
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Fig. 18 Drag coefficient C4 a at each phase and b at each location.
The shaded area represents 95% confident intervals of the mean value.
The horizontal line in the plot represents the static C4. The solid hori-
zontal arrow pointing right on top of the plot represents the down-
stream motion, and the dashed arrow pointing left represents the

from MC, press, TMT, and TD on the control contour is
shown in Fig. 19. Note that the viscous force and the body
force term are not included and will not be included in the
discussion as they are relatively small compared to the rest
of the force terms. At this phase, the flow field (Fig. 10j)
shows that, as the airfoil moves downwind, the downwind
side still preserves the reversed flow from the previous
upstream motion. As a result, the flow at the back of the
airfoil potentially pushes the airfoil in the upwind direction,
thus creating a considerable force toward the upwind. This
leads to the substantial negative contribution from MC at the
back boundary. Conversely, Fig. 19 shows that the pressure
term has a positive contribution to the total C,. In addition,
the TD term has a negative contribution to the total Cy; in
fact, it can be seen from the figure that the major part of the
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Fig. 19 Force component from mean convention (MC), time deriva-
tive (TD) and turbulence momentum transfer (TMT) on the control
contour for ¢ = 135°, k = 0.38 case. The control contour presented
here has a fixed 20 dx distance from each boundary of the airfoil sur-
face. The curves start from the bottom-left of the control contour. The
dashed lines represent the boundary of the turning point in the control
contour
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(b)

upstream motion of the airfoil. Note that the shaded area for the static
case is barely visible as the value is small. Solid lines in b represent
the airfoil moving in the upstream direction and the dashed lines in b
represent the airfoil moving in the downstream direction. The arrows
represents the direction of the motion
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TD curve is below zero, including the front boundary, and
the parts of the top and bottom boundary which are in the
upwind of the airfoil. This is because at this phase, when the
airfoil is moving downstream, the flow in the upwind part
of the airfoil is accelerated, as can be seen from Fig. 10i —k.
At the back of the airfoil, due to the vortex shedding process
(see Fig. 11i— k), the vortices are moving away from the
airfoil in the cross-flow direction, creating a larger area of
deep reverse flow. This leads to the positive TD term at the
back part of the boundary. The TMT term is almost zero in
the upwind direction of the airfoil, due to the almost parallel
incoming wind. It has a negative value at the top, bottom,
and especially back due to the airfoil encountering reverse
flow, which increases the Reynolds stresses. Therefore, by
adding up all the contributions from the force, the total drag
coefficient is negative despite the positive contribution from
the pressure.

In a different perspective, Fig. 18b shows the C, hysteresis
in the wing’s motion loop. The kinematics highly influences
the variation of C, in a loop. The hysteresis loop has a larger
amplitude difference for k = 0.38 compared to k = 0.19. This
result also follows the trend from the result of Choi et al.
(2015), where the slender loop represents the sub-harmonic
lock-in and the more round loop represents the lock-in when
f/fy gets close to unity. During one motion cycle, the sub-
harmonic lock-in presents a flow field closer to the steady

Fig.20 Aerodynamic force

case than the higher k case. The wake vortices grow only at
the downwind side of the airfoil. In contrast, for the higher
frequency case (k = 0.38), wake vortices form on both
sides of the airfoil, resulting in greater flow variability. This
increased variation amplifies the hysteresis loop compared
to the lower frequency case (k = 0.19). Specifically, when
the airfoil moves in the downstream direction, it moves into
its own wake. Thus, the relative wind speed is much lower
than the free-stream velocity. As a result, the vortices are
shed toward the upstream direction for phases from ¢p = 135°
to ¢ = 280°, leading to a high difference with the upstream
motion case.

The results of the force components from time deriva-
tive (TD), mean convection (MC), turbulence momentum
transfer (TMT), and pressure (press) are shown in Fig. 20
for the two reduced frequencies. The mean viscous stress
term and the body force term are not included in the bar plot
as they have relatively small contributions. The error bar
height represents the 95% confidence intervals from all the
control contours tested. Comparing the two frequencies, the
case with k = 0.38 exhibits a significantly higher C, for each
force component. For instance, at ¢ = 0°, both the MC and
pressure terms are approximately twice as large for k = 0.38
compared to the k = 0.19 case, further confirming that the
flow dynamics greatly affect the aerodynamic loads. Despite
this, the periodic motion causes the force contributions to

contribution at k = 0.19 and

k = 0.38 from mean convection
(MC), pressure (press), turbu-
lent momentum transfer (TMT),
and time derivative (TD). The
errorbar height represents the
95% confidence intervals. The
solid horizontal arrow pointing
right on top of the plot repre-
sents the downstream motion, ‘

Ci [

and the dashed arrow pointing ‘
left represents the upstream o 0
motion of the airfoil
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follow a distinct trend over each cycle for both motion fre-
quencies, particularly for the MC and pressure terms. The
MC term increases from ¢ = 0° to ¢ = 180°, then decreases
until the cycle’s end (see Fig. 20). In contrast, the pressure
term peaks at ¢ = 0°, decreases to ¢p = 180°, and then rises
again by the cycle’s completion. Since both frequencies
exhibit the same trend for the main force component, the
force components at ¢ = 0° and ¢p = 180° are compared as
representative cases for k = 0.38 only.

The MC term, pressure term, and TD term are shown in
Fig. 21. The MC term on the boundary (Fig. 21a) reveals
that at ¢ = 0°, when the airfoil is moving against the wind,
a velocity deficit forms at the rear of the airfoil. In contrast,
at ¢ = 180°, when the airfoil moves downwind, the acceler-
ated velocity at the front of the airfoil (as shown in Fig. 10k)
leads to an MC deficit along the front boundary, albeit with
smaller amplitude. Additionally, as the flow accelerates at
¢ = 0° and decelerates at ¢p = 180° along the top and bottom
boundaries (see Fig. 10e and k), the MC force contributes
negatively at these boundaries for ¢ = 0° and positively for
¢ = 180°.

The pressure term in the streamwise direction (Fig. 21b)
is derived from the pressure field of the two cases shown
in Fig. 22. At the front of the airfoil, ¢ = 0° exhibits high
positive pressure on the pressure side, while at ¢ = 180°, the
front serves as the suction side, resulting in negative pressure
contribution. Conversely, at the back of the airfoil, ¢ = 0°

x107° x107°

has a reverse flow region that induces negative pressure.
However, this negative pressure adds to the positive pressure
term due to its sign in Eq. 6, as illustrated in Fig. 21b. For
¢ = 180°, positive pressure is present on the airfoil surface,
leading to a negative contribution in the central part of the
back boundary. Although shed vortices create negative pres-
sure, resulting in a positive contribution at the sides of the
back, the overall pressure force term remains negative.

The TD term on the boundary, shown in Fig. 21c, is cal-
culated using the first term in Eq. 6 and is obtained from its
two adjacent phases. Due to the negative sign in the front,
the decelerating flow from ¢ = 315° (Fig. 10k) to ¢p = 45°
(Fig. 10f) in the front and wake region of the airfoil results
in a positive contribution to the TD at ¢p = 0°. In contrast,
the accelerating flow from ¢ = 135° (Fig. 10j) to ¢ = 225°
(Fig. 101) in the same region leads to a negative contribution
to the TD at ¢ = 180°. By analyzing the three most dominant
force components — MC, pressure, and TD- from the two
extreme motion phases, it emerges that due to the difference
in the flow dynamics, the force components take opposite
effects on these two phases, which results in different total
C,4 as shown in Fig. 18b.

The non-dimensionalized aerodynamic power P* is
shown in Fig. 23. It is calculated as P x= Cyh/(h,,.f),
where Cj is the drag coefficient, h,, is the motion ampli-
tude, and f'is the motion frequency. If P* is positive, it means
the force is in the same direction as the motion, indicating

x10°°
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TD per m [N/m]
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Fig.21 MC a, pressure term b, and TD term c in the streamwise direction in Eq. 6 for ¢p = 0° and ¢p = 180° at k = 0.38

Fig.22 Pressure field for a
¢ =0°and b ¢ = 180° at
k=0.38
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Fig. 23 Non-dimensional aerodynamic power P* in a cycle. P* is cal-
culated as: P* = Cyh/(h,,.f), where Cy is the drag coefficient, A, i

max 18
the motion amplitude and f is the motion frequency. The solid hori-

zontal arrow pointing right on top of the plot represents the down-
stream motion, and the dashed arrow pointing left represents the
upstream motion of the airfoil

that the flow does positive work on the airfoil. Conversely, if
P* is negative, the aerodynamic force is acting in the oppo-
site direction of the motion. In this case, the airfoil does
positive work on the flow. This means that the flow does neg-
ative work on the airfoil in this period instead. This defini-
tion of dimensionless power is the same as that introduced in
Skrzypiniski et al. (2013). Before ¢p = 90° and after ¢p = 280°,
P* is below zero for both the motion cases, meaning the
airfoil does work on the flow. As a consequence, this phase
range is characterized by the vortex growing period where
continuous energy is fed to the vortices, which increases
their strength. Between ¢ = 90° and ¢ = 180°, instead, P*
has positive values for the k£ = 0.19 motion cases, which
means the airfoil extracts energy from the wind. As a result,
this phase range is characterized by vortex shedding, where
the flow loses energy to sustain the vortices. From ¢ = 180°
to ¢ = 270°, P* still remains positive for k = 0.19 motion
case. In this phase range, the vortex motion is the combina-
tion of vortex shedding in a larger area in the downwind side
and vortex growing in a smaller area in the closer downwind
side. This means that the energy the airfoil extracts from the
flow (that causes vortex shedding) is higher than the work
the airfoil does on the flow (that causes vortex growing). For
the k = 0.38 case, ¢ = 135° has negative P*. The flow at this
phase is composed of vortex shedding in the downwind side
and vortex growing in the upwind side. On the energy level,
it means that the airfoil feeds more energy to the wind for the
vortex growing than extracting the energy from the wind for
the vortex shedding. Afterward, at ¢ = 180°, P* returns to
positive values again. Although the basic flow features are
similar to those at ¢p = 135°, the key difference is that the
upwind vortices at ¢p = 135° are part of the start-up period.
This suggests that, while the generated upwind vortices

@ Springer
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Fig.24 Drag coefficient from control contour approach(Eq. 6) and
from the modified flat plate (FP) model (Eq. 17). The solid horizon-
tal arrow pointing right on top of the plot represents the downstream
motion, and the dashed arrow pointing left represents the upstream
motion of the airfoil

continue to grow during this phase (extracting energy from
the airfoil and causing P* to decrease), the positive P* at
¢ = 180° indicates that less energy is required for the vor-
tices to grow compared to the start-up phase at ¢ = 135°.

3.2.3 Comparison with flat plat reduced-order model

Because the flat plat reduced-order model introduced
previously (Eq. 15) only applies to an accelerating plate,
it is applied to the surging airfoil between ¢ = 0° to 90°
and between ¢ = 270° to 315°, where the airfoil is mov-
ing in the upstream direction. During the airfoil’s motion
in the downwind direction, Eq. 17 is applied for both of the
motion cases, except that for k = 0.19 case where there are
no upstream vortices, which gives zero value for I' . d, and
I, d,. Note that the C, values in the ¢ = 180° and ¢ = 225°
cases are not calculated due to the missing information of
vortex distance (¢ = 180°) and circulation (¢ = 225°), as
at least one of the vortices exits the measurement domain.
Also, because of missing information of vortex distance at
¢ = 180°, the vortex separation velocity d at ¢p = 135° is
obtained based on the backward differentiation only, con-
trary to the other cases where central differentiation was
applied. The final result is shown in Fig. 24, where the
results from the flat plate model (FP) are marked as green
and yellow crosses for k = 0.38 and k = 0.19, respectively.
Due to the limitation of the field of view, Eq. 17 is only
applied for ¢ = 135° and 180°. For ¢ = 180°, the I term
in Eq. 17 is modified from the experimental result as the
vortices at ¢ = 225° are not fully inside the FoV. Therefore,
based on the portion of vortices outside the FoV as shown
in Fig. 111, a 33% (0.2 m?/s in absolute value) increase of
I is applied to the circulation of ¢ = 225°. Note that the
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endpoint of ¢ = 90° is removed from the discussion for the
two motion cases as it may cause large errors in the time
derivative term. The result shows a good match for the two
phases of ¢ = 135° and 180° when the airfoil is moving
downstream at k = (0.38. For ¢p = 135°, k = 0.19 case, the
flat plate model result is higher than the experiment. On the
one hand, this difference is caused by the accuracy the two
differential methods have, where the backward differential
method used for ¢ = 135°, k = 0.19 case has lower accuracy.
On the other hand, by assuming zero value for I',.d,, and
,d, it is assumed that the downwind wake flow has no
impact on the airfoil. However, even though no upwind vor-
tices are generated, the downwind flow pushes the downwind
vortices to separate. Therefore, this effect is not reflected
in the model for this specific case. When the airfoil moves
upstream, the FP model result matches better for k = 0.19
than for the £ = 0.38 case. For the k£ = (.38 case, the most
significant error appears at ¢ = 45° and 90°. As shown in
Fig. 2a, the airfoil decelerates at ¢ = 45°, different from the
overall accelerating trend during surging between ¢p = 0° and
90°. Due to this disturbance, it is speculated that the sum of
the force from circulatory (Eq. 14) and non-circulatory terms
(Eq. 11) cannot correctly represent the drag force. Overall,
the modified model (Eq. 17) correctly reproduces the trend
of the experimental results for most of the phases.

4 Conclusion

The development of vortex structures in the wake of a
periodically surging NACA 0021 airfoil at 90° angles of
attack has been studied experimentally at Reynolds num-
ber 1.5 x 10*. The motion amplitude is fixed at 1.1 times
the chord length (with peak-to-peak amplitude 2.2 times
the chord length). Two motion frequencies were investi-
gated: one with reduced frequency k£ = 0.19 and frequency
ratio with respect to the static vortex shedding frequency
f/f = 0.39; the other one with reduced frequency k£ = 0.38
and f/f,, = 0.78. Through the comparison of the two motion
cases, the results focus on the vortex dynamics in a motion
cycle, the total drag force, and the contributions from each
component of the force.

The comparison of the two motion cases (k = 0.19 and
k = 0.38) reveals significant differences in the vortex struc-
tures. For the £k = 0.38 motion case, the vortices generate in
the wake during the surging motion in the upwind direction.
Conversely, at the beginning of the motion in the down-
wind direction, a pair of vortices start to accumulate at the
upwind side. During this period, as the airfoil is moving
in its own wake generated during the upwind motion, the
wing’s velocity is higher than the incoming flow velocity.
At the end of the downwind motion, the two pairs of vortices
shed simultaneously away from the airfoil. This contrasts

with the k£ = 0.19 case, where the vortices are confined to
the downstream side of the airfoil throughout the motion
cycle. The vortices tend to be more elongated and dissipate
because of turbulence.

Furthermore, this study provides clear experimental evi-
dence of the lock-in phenomenon in both motion cases. For
the k = 0.38 case, one pair of wake vortices and one pair
of upwind vortices grow at different phases within a cycle,
but shed simultaneously. For the k = 0.19 case, one pair of
wake vortices grows and sheds within a cycle. The k£ = 0.38
case align with the result of previous work from Koopmann
(1967), Anagnostopoulos (2000), and Meneghini and Bear-
man (1995): as the motion frequency is very close to the
static shedding frequency, lock-in happens. For the latter
case, the motion frequency is far from the static shedding
frequency, but lock-in still happens due to the large motion
amplitude. This finding aligns with and extends previous
work, such as that by Choi et al. (2015), demonstrating that
lock-in can happen at the sub-harmonics of the static shed-
ding frequency, but with large amplitude.

The load estimation method was tested out on the static
measurement of the airfoil, which shows fair comparison
with the experimental measurement from Holst et al. (2019).
Then, this method is applied to the surging airfoil to obtain
the force on each phase of the motion. Both of the motion
cases show that the total drag force is predominantly influ-
enced by the mean convection force and the pressure force,
and it is mainly the balance between the two that influences
the trend of the total drag force. For the k = 0.19 case, drag
is always in the same direction as the wind speed, as the
wake is always occurring at the downstream side of the air-
foil. For the k = 0.38 case, the highest drag coefficient within
a cycle is around three times higher than the static case. A
notable finding at this & is the occurrence of negative drag
at ¢ = 135° where the airfoil is moving downstream. This
is because at this phase, as the pressure force gives a posi-
tive contribution to the airfoil and points downstream, the
mean convection force provides a larger negative deficit on
the airfoil due to the preserved reversed flow in the front
of the motion direction. In addition, in agreement with the
result from Choi et al. (2015), the drag coefficient plot with
respect to location suggests a larger force difference for the
k = 0.38 case.

Finally, the load estimated from the experiment was com-
pared with the reduced-order flat plate load model (Corkery
et al. 2017). The original model correctly predicts the trend
and fits well with the experimental data when the airfoil is
moving in the upstream direction and the wake is gener-
ated in the downstream direction. The model was further
refined by summing up the circulatory force from all the
vortex pairs to account for the two-pair vortices condition
during the downstream motion of the k = 0.38 case, leading
to improved agreement with the experimental data.
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5 Supplementary information

The supplementary material of the airfoil moving video can
be found in the attached gif.

Appendix A

Uncertainty of the added mass term

To evaluate the uncertainties of the measured wing displace-
ment, velocity and accelerations, and in turn the uncertainty
of the added mass term (Eq. 9), an imposed sinusoidal
curve is compared with the actual motion of the airfoil.
The comparison is presented at the top of Fig. 25. Then, the
motion velocity (/) and acceleration (/) were calculated by
analytical derivation in time. The results show very good
agreement between the measured and the imposed values
for both position and velocity (root mean square of the dif-
ference equal to 0.008 m and 0.37 m/s for k = 0.38 (0.18
m/s for k = 0.19), respectively). Instead, h exhibits larger
differences, especially at phases 45°, 90°, 270° and 315° at
k = 0.38, where the uncertainty reaches maximum 57% of
the measured value. Consequently, it is expected the total Cy
has the largest relative difference for these cases.

The total C4 based on the theoretical added mass term
obtained from the imposed % - curve is compared with the
C, where the added mass term is calculated from the actual
motion. The root mean square uncertainty is calculated and

——k =0.19
0.05 = * -k =038 .
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Fig. 25 Real and imposed motion (%) of the airfoil (top), and the cor-
responding motion velocity (%) and acceleration (/1)
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is shown in Fig. 26. Overall, the added mass term on average
contributes to 1.9% (k = 0.19) and 2.2% (k = 0.38) of the
overall Cy. This results in a minimal change in the overall C,
value for most of the cases. On the one hand, the added mass
term is inherently small due to the small wing model (small
cross-section area). On the other hand, other force terms,
such as the mean convection term, pressure term, etc., have
a larger influence on the total C,. Therefore, the / calculated
from the measured airfoil motion is adopted for the analysis.

Appendix B

C4Non-dimensionalization issue

During the analysis, it is observed that the relative wind
speed experienced by the airfoil significantly influences
vortex dynamics. Therefore, in the section, the drag coef-
ficient with the drag force (D) non-dimensionalized by the
incoming wind (C,) and the one non-dimensionalized by the
relative wind (C(*j) are compared, which is shown in Fig. 27.

The results show that when the airfoil moves upstream
(between ¢ = 0° and 90°, and between ¢ = 270° and 315°),
C; is smaller than C, due to a higher relative wind speed
compared to the incoming wind speed. For different & cases,
this difference reflects the relative effect of varying vortex
dynamics. Vice versa, when the airfoil moves downstream,
Cy is higher than C, for both cases due to the lower rela-
tive wind speed compared to the incoming wind velocity.
Additionally, when moving downstream, the influence of
the relative wind speed on the vortex dynamics becomes less
significant compared to that of the downwind flow velocity.
Consequently, the C} during this period will provide a less
insightful comparison to C4. To ensure a valid comparison

L [er=om g

9 ‘ ‘ ‘ ‘ ‘ ‘
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Fig.26 Averaged total drag force coefficient Cy with the uncertainty
from the added mass term marked as the black bars
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