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Preface
In the course Statistical Physics I got a basic understanding of the concept of Bose­Einstein conden­
sate. This specific part I found interesting because it was not intuitive to me. Therefore I wanted to
understand this better, and as I had to start my thesis I figured this is a great way to understand this
concept better.

With this idea I approached Stephan Eijt as he was one of the tutors of the statistical physics course.
He introduced the idea to study annihilating particles, or specifically positronium particles. As a Bose­
Einstein condensate is the equilibrium position of a system we cannot do this with just the knowledge
from equilibrium statistical physics. Therefore Stephan Eijt introduced Frank Redig from the math de­
partment of applied probability. He introduced me to the Zero­Range process.

After understanding the basics of the Zero range process that I documented with intensive help from
Frank Redig. Now we started to explore what happens when an annihilation term is introduced to these
kind of systems we constructed an easy single slow site zero range process. Frank Redig introduced
us to Stefan Grosskinsky, who helped me in this part with the simulations of this exact same system,
and together with Frank Redig discussed the proof that the equations we came up with are the limit of
the large system.

After that I build a zero range process that behaves the same as a 3D harmonic oscillator with a finite
amount amount of particles in equilibrium. This result can be interpreted with results from statistical
physics, and therefore be of use for statistical physics.

K.Koot
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Abstract
In this thesis the behaviour of a Bose Einstein condensate is explored that consists of bosons that
annihilate. In order to do this a system where bose einstein condensation occurs is modeled as a Zero
Range process which is a special case of a Markov process.

First we made a single slow site Zero range process with uniform rates and see how this would be
influenced by annihilating particles. For this system it is shown that, in the large system limit, the num­
ber of particles in the slow site is given by a differential equation. A series of realization of different
sizes of this system are done to support that the fraction of the particles in the ground state converges
to the differential equation.

In order to relate this mathematical approach to physical Bose Einstein condensates it is established
that the equilibrium distributions of multiple bosons in one system is the same as the detailed balance
of a zero range process where the transition rates depend on the occupation of a site, with an indication
function, that is equal to 0 when there are no particles at that site and some constant 𝑐 if there is one
or more particles at that site.

In statistical physics we need to take the energy of the state of the system into account. If the par­
ticles do not have interaction with each other this is the sum over all particles of the energy of the
particle site. As a zero range model only has rates with one particle hop we can see that the difference
in energy of the system is equal to the difference in energy of the sites of hop. In order to stay in detailed
balance the rate for the specific hop must be 𝑒−𝛽Δ𝐸 times the opposite rate, where 𝛽 = 1

𝑘𝐵𝑇
.

Now we can go from any system with a set of spin orbitals and energies of those spin orbitals and
design a zero range model where the spin orbitals correspond to sites of the zero range model with
rates between those sites, such that the systems detailed balance distribution is the same distribution
as the equilibrium of the physical system. In this zero range model an annihilation term is introduced.
This can be any function of occupation for the site, but in this report a simple relation that decreases
when Δ𝐸 increases is used.

In order to see the effect on such systems the system is numerically approached for a 100 particles
system in a 3 dimensional harmonic potential. This system is too complicated to get an differential
equation that can be easily solved. Therefore it is approximated. This numerical approximation ap­
pears to have similar behaviour to the numerical approximation done in [3]. However the results are
not identical.

The advantage of the model in this thesis is that an annihilation therm can be implemented. This
approximation of a 3 dimensional harmonic oscillator with annihilating particles is done. If annihilation
is slow enough, the exited sites form a different equilibrium compared to a Bose Einstein condensate
of non annihilating particles. This happens as long as there is a condensate in the ground state.
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1
Introduction

In 1924 Albert Einstein together with Satyendra Nath Bose came up with the Bose Einstein distribution
and also theorized that when a boson gas becomes sufficiently dense and cold it would form a state of
matter known as the Bose Einstein condensate.

A Bose Einstein condensate (BEC) is a state of matter only bosons can be in. It only occurs when
they are very cold and dense. At that High density and low temperature if one would increase the
density of that boson even further by adding particles all those particles would go to the ’lowest energy
state’.

Positronium is a boson consisting of an electron and a positron (also known as an anti­electron). This
means we have a particle that consists of matter and anti matter. As expected these particles are un­
stable and have an average lifespan of 1.42 ∗10−7𝑠 when the positron and electron have parallel spins
also known as the triplet states (total spin 𝑠 = 1). When the positron and electron have anti parallel
spins it is in the singlet state (𝑠 = 0) and the average lifespan is 1.24 ∗ 10−10𝑠.

Bose Einstein condensates come from the theory that assuming all particles are in thermodynamic
equilibrium. However when we have particles that disappear very fast it might not be reasonable to
presume that the system goes to the same equilibrium, as we introduce an inherent change in the
system.

Bose Einstein condensation occurs because the number of particles is presumed large, known as the
thermodynamic limit. Because we cannot consider the quantum mechanical forces that act on every
state we design we do not consider quantum mechanics that would contribute to any state change.
Therefore we presume the only thing that changes the state is a given and only depends on the occu­
pation of that site. This corresponds to the Zero Range process.

The goal of this report is to compute how a system that without annihilation forms a Bose Einstein
condensate will behave when we introduce annihilation’s that are of similar order as the time it takes
for the ’normal’ system to go to equilibrium, and then use that to make a prediction of what happens
when a system where the rates of the system to go to equilibrium are of the same order as the time
until the particles annihilate, like a BEC consisting of positronium might.

1.1. Positronium and spin
There has to date not been an experiment where positronium is made into a BEC. Therefore we will
do a short exploration of some fundamentals of how such a state would be reached.

A way to make a Bose Einstein condensate of positronium is by isolating positronium particles in the
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2 1. Introduction

triplet state that all have the same spin 1. Spin 1 particle are magnetic dipoles. Therefore they can be
trapped in a magnetic field in order to create a dense gas. This way we can use magnetism to create a
harmonic oscillator for the positronium with that spin. Because we would need to make this as dense
as possible it will probably be best to have the range of freedom in all dimensions equal. Therefore we
will work towards a 3 dimensional harmonic oscillator in this thesis.

1.2. Laser optical trap
The laser optical trap is a set of lasers that have a frequency marginally lower than an exited state of
the bosons. This means bosons with low impulse do not react with the lasers photons. However if a
boson has an impulse opposite to that of the photons the energy difference means it can interact due to
the Doppler Effect. Therefore it will absorb the photons impulse and therefore slow down. The boson
itself will fall back to it ground orbit releasing a photon in a random direction. So photons are absorbed
in the direction a boson is traveling in and ejected in a random direction. This will result in an decrease
in impulse and therefore energy is decreased.

In order to decrease the energy of particles in all directions all three axis need lasers and they need to
be pointed in both directions. These lasers do slow down particles in any direction, and therefore cools
the gas down however it does not change with space therefore does not oppose diffusion. In order to
get condensation the gas needs to be dense. This can be achieved with a magnetic trap.

1.3. Thesis overview
In this thesis we will go no further into the method of producing a BEC of positronium. The goal of this
thesis is to describe the dynamics of such a system, where we generalize to a systemwith condensation
and annihilating particles. To get to such a system we first need a model that properly describes a BEC
and where we can introduce an annihilation therm. In chapter 5 we will describe BEC from a statistical
physics background. Than we will build a Zero range process that has the same equilibrium properties
as the statistical physics theory. Before we can do that we need to have a good understanding of the
Zero range process.

In order to do this chapter 2 we will describe and explore a Markov process. We do this because
the Zero range processes are a specific set of Markov processes. The theory of zero range processes
is described in chapter 3. In chapter 4 we will introduce an annihilation therm to a zero range model
with condensation on a single slow site. This single slow site zero range process is a rather simple
system. Therefore we derive a differential equation that describes the number of particles at that site.

In chapter 6 we will first do some simulations to confirm that the zero range process in chapter 4
and the differential equation described there are the same in the large system limit. Than we derive an
approximation of a system with energy levels like a 3D harmonic potential. We compare these results
to those in [3], that we explored in chapter 5. In this same approximation we added an annihilation
therm and see how the particles redistribute when annihilation is introduced.



2
Markov processes

In this chapter Markov processes are defined, and the properties of Markov processes are discussed.
This is the mathematical foundation for the Zero Range process.

A stochastic process is a process which describes the random evolution of a system in the course
of time. A stochastic process is called a Markov process if it has “no memory’’. This means that condi­
tioned on the current state of the process, the distribution of future states only depends on that current
state, and not on the further past, i.e., not on how the current state has been reached. Equivalently,
conditioned on the current state, the past and future of the process are independent.

A simple example of a Markov process (in discrete time) is a random walk where the “no memory’’
property comes from the fact that the individual steps of the walk are independent.

Example 2.0.1. Take a discrete time unit step random walk with independent steps 𝑋(Τ) ∈ ℤ at time
Τ ∈ ℕ. i.e. 𝑋(Τ) = ∑Τ𝑖=1 𝜉𝑖 where 𝜉𝑖 are all independent from one another and 𝑃(𝜉𝑖 = 1) = 𝑃(𝜉𝑖 =
−1) = 1

2 for all 𝑖.

This is a mathematical model for a system of a particle on a grid. In this example, every second
the particle has a 50% chance to hop one unit to the right and a 50% chance to hop one unit to the left
(independent from one another). Now 𝑋(Τ) is the position of the particle.

For this process one can calculate the probability distribution for the particle at any time. Also when
we know that at a time 𝑇 the system is at place 𝑋(𝑇). We can calculate the probability distribution
𝑃(𝑋(𝜏) = 𝐿 | 𝑋(𝑇)) of the particle time 𝜏 > 𝑇. Here 𝐿 represents the place of the particle. If we add
to this that at time 𝑆 < 𝑇 the particle is at 𝑋(𝑆) this does not change the probability distribution which
becomes:

𝑃(𝑋(𝜏) = 𝐿|𝑋(𝑇), 𝑋(𝑆)) = 𝑃(𝑋(𝜏) = 𝐿|𝑋(𝑇)) (2.1)

This shows that the process is a Markov process, as it does not depend on the ’past’ (𝑆) when the
’present’ (𝑇) is known and we talk about the ’future’ 𝜏, and thus has no memory.

It is important to realize that there is a correlation between 𝑋(𝜏) and 𝑋(𝑆). This does not prohibit
the process from being Markov. However there is no correlation between 𝑋(𝜏)|𝑋(𝑇) and 𝑋(𝑆)|𝑋(𝑇).
This example 2.0.1 is in discrete time and in this thesis is included only to gain intuition about theMarkov
property. It has set times when it transitions from one state to another. The phenomena we want to ana­
lyze however are continuous in time. Therefore we need to explore continuous time Markov processes.

As will be shown later, the Markov property will require the probability for the state to remain the same
through out a time interval to be exponentially decaying (as a function of the length of the interval).

3



4 2. Markov processes

The probability density to hop from a certain state 𝐴 to another state 𝐵 will be constant when the sys­
tem is in state 𝐴. But as the probability to be in state 𝐴 decreases exponentially so does the probability
density to hop from state 𝐴 to state 𝐵.

We will now define in more mathematical terms the Markov property and provide some elements of
Markov process theory.

2.1. Definition of the Markov process
Let Ω denote the state space of the process 𝑋𝑡 , 𝑡 ≥ 0. i.e. For all 𝑡 ≥ 0, 𝑋𝑡 is a random variable with
values in Ω (𝑃(𝑋𝑡 ∈ Ω) = 1). In this thesis Ω will always be a countable set, Therefore all functions on
Ω are measurable.

Definition 2.1.1 (Markov process). Take a random process with state space Ω (Ω is assumed to be
equipped with a 𝜎­algebra). Denote ℱ𝑡 to be the 𝜎­algebra generated by the random variables 𝑋𝑠,
0 ≤ 𝑠 ≤ 𝑡

The process 𝑋𝑡, 𝑡 ≥ 0 is Markov if for every 𝑓 ∶ Ω ⟶ ℝ.

𝔼(𝑓(𝑋𝑡)|ℱ𝑠) = 𝔼(𝑓(𝑋𝑡)|𝑋𝑠) (2.2)

In this definition 𝐹𝑠 is the 𝜎­algebra generated by the state at all times before time 𝑠. This 𝜎­algebra
can be thought of as any subset of the history of the system. Therefore the Markov property can be
interpreted as; the future of the system depends on the latest known state only, any information before
that does not change the probability of the future in any way.

In this thesis the processes will have a discrete state space and will be continuous in time. For these
state spaces, the process is uniquely determined by the transition probabilities.

𝑃𝑡(𝑥, 𝑦) = 𝑃(𝑋𝑡|𝑋0 = 𝑥) = 𝑃(𝑋𝑠+𝑡|𝑋𝑠 = 𝑥) = 𝑃(𝑋𝑠+𝑡|𝑋𝑠 = 𝑥, 𝑋[0,𝑠)) (2.3)

Where 𝑋[0,𝑠) is any information about the state of the system in the time interval [0, 𝑠).

2.1.1. Exponential waiting time
In this paragraph we will show how aMarkov process with discrete state space and continuous time has
a decaying probability to stay in one place. Here we notate 𝑃(𝑋[𝑎,𝑏] = 𝛼|𝑌) = 𝑃(𝑋𝑡 = 𝛼 ∀𝑡 ∈ [𝑎, 𝑏]|𝑌).

Theorem 2.1.1. Take a Markov process 𝑋𝑡, 𝑡 ≥ 0 with 𝑋𝑡 ∈ Ω and 𝑋𝑡 = 𝛼. The probability for the
system to be in state 𝛼 trough out the interval [𝑡, 𝑡 + 𝑠], 𝑠 ≥ 0 is an exponential: 𝑃(𝑋[𝑡,𝑡+𝑠] = 𝛼) = 𝑒−𝜆𝑠.
Where 𝜆 > 0 independent of time.

Proof. Let us first show that 𝑃(𝑋[0,𝑠] = 𝛼) = 𝑒−𝜆𝑠. Here take 𝜆 to be the first therm in the Taylor
expansion of the probability

𝑃(𝑋𝑡 = 𝛼|𝑋0 = 𝛼) = 1 − 𝜆𝑡 + 𝒪(𝑡2) (2.4)

Now
𝑃(𝑋[0,𝑠] = 𝛼|𝑋0 = 𝛼) = lim

𝑛⟶∞
𝑃(𝑋 𝑠

𝑛
= 𝛼, 𝑋2𝑠

𝑛
= 𝛼, ..., 𝑋𝑛𝑠

𝑛
= 𝛼|𝑋0 = 𝛼) (2.5)

using 2.3 we get
𝑃(𝑋[0,𝑠] = 𝛼|𝑋0 = 𝛼) = lim

𝑛⟶∞
𝑃(𝑋 𝑠

𝑛
= 𝛼|𝑋0 = 𝛼)𝑛 (2.6)

And using 2.4 with 𝑡 ⟶ 0 we get
𝑃(𝑋[0,𝑠] = 𝛼) = 𝑒−𝜆𝑠 (2.7)

Now because of 2.3 it must be true that 𝑃(𝑋[𝑡,𝑡+𝑠] = 𝛼) = 𝑃(𝑋[0,𝑠] = 𝛼) = 𝑒−𝜆𝑠 as all steps to prove 2.7
can be done with a time shift 𝑡.

Example 2.1.1. Consider a process which can take only two states 𝐴, 𝐵 and flips between the two at
random independent exponential times mean 1.
This process is Markov because the transitions are independent from one another, and the exponential



2.2. Chapman­Kolmogorov equation 5

distribution makes one transition independent from itself.

Let us calculate the probability distribution when 𝑋0 = 𝐴.

Because we have only two states and identical transition probabilities we can use that the probabil­
ity for the system to be in state A after time t is equal to the probability that the number of jumps is
even, and the probability to be in state B is equal to the probability that the number of jumps is odd.
We end up with a sum over a Poisson distribution.

𝑃(𝑋𝑡 = 𝐴|𝑋0 = 𝐴) = 𝑃(#transitions[0,𝑡] = even) =
∞

∑
𝑘=0

𝑡2𝑘
2𝑘!𝑒

−𝑡 = (𝑒
−𝑡

2 + 𝑒
𝑡

2 ) ∗ 𝑒
−𝑡 = 1

2 +
1
2𝑒

−2𝑡 (2.8)

To illustrate the difference between 𝑃(𝑋𝑡 = 𝛼) and 𝑃(𝑋[0,𝑡] = 𝛼) for this example both are plotted in
figure 2.1

Figure 2.1: 𝑃(𝑋𝑡 = 𝐴|𝑋0 = 𝐴) and 𝑃(𝑋[0,𝑡] = 𝐴|𝑋0 = 𝐴)

It is clear that for small times the behaviour is similar. However when we include the chance to go from
site A to B and back to A and even more hops back and forth the difference becomes larger when the
time increases. This is because 𝑃(𝑋[0,𝑡] = 𝐴|𝑋0 = 𝐴) is the probability for no transitions to occur at all.

This behaviour can be expected in every Markov process. For very small timescales only one transition
needs to be taken into account. However as the time increases the higher orders of transitions take
over.

2.2. Chapman­Kolmogorov equation
All systems considered in this thesis have a countable state space and satisfy equation 2.3. Such
systems can be uniquely described by their transition probabilities 𝑃𝑡(𝑥, 𝑦) defined by

𝑃𝑡(𝑥, 𝑦) = 𝑃(𝑋𝑡 = 𝑦|𝑋0 = 𝑥) = 𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋𝑠 = 𝑥) (2.9)

where 𝑥, 𝑦 ∈ Ω.
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Theorem 2.2.1. These translation probabilities satisfy the Chapman­Kolmogorov equation 2.10

𝑃𝑡+𝑆(𝑥, 𝑦) = ∑
𝑧∈Ω

𝑃𝑡(𝑥, 𝑧)𝑃𝑠(𝑧, 𝑦) (2.10)

Proof.

𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋0 = 𝑥) = ∑
𝑧∈Ω

𝑃(𝑋𝑡+𝑠 = 𝑦, 𝑋𝑡 = 𝑧|𝑋0 = 𝑥) = ∑
𝑧∈Ω

𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋𝑡 = 𝑧, 𝑋0 = 𝑥)𝑃(𝑋𝑡 = 𝑧|𝑋0 = 𝑥)

(2.11)
Now using that the process is Markov

𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋0 = 𝑥) = ∑
𝑧∈Ω

𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋𝑡 = 𝑧)𝑃(𝑋𝑡 = 𝑧|𝑋0 = 𝑥) (2.12)

Using 2.3 we get

𝑃(𝑋𝑡+𝑠 = 𝑦|𝑋0 = 𝑥) = ∑
𝑧∈Ω

𝑃(𝑋𝑠 = 𝑦|𝑋0 = 𝑧)𝑃(𝑋𝑡 = 𝑧|𝑋0 = 𝑥) = ∑
𝑧∈Ω

𝑃𝑠(𝑧, 𝑦)𝑃𝑡(𝑥, 𝑧) (2.13)

We can write these transition probabilities in a matrix, as we have countable state space and thus we
can number the states in Ω as 𝑥𝑛, 𝑛 ∈ ℕ.
For this the matrix 𝑃𝑡 with values 𝑃𝑡[𝑎, 𝑏] = 𝑃𝑡(𝑥𝑎 , 𝑥𝑏). It is easy to see in matrix notation the Chapman­
Kolmogorov equations can be written as

𝑃𝑡+𝑠 = 𝑃𝑡𝑃𝑠 (2.14)

2.2.1. Trajectories
We can also compute the probability of a finite trajectory to happen, (for 𝑋𝑡1 = 𝑋1 and then 𝑋𝑡2 = 𝑋2
and so on).

𝑃(𝑋𝑡1 = 𝑥1, 𝑋𝑡2 = 𝑥2, ..., 𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡0 = 𝑥0) = 𝑃𝑡1−𝑡0(𝑥0, 𝑥1)𝑃𝑡2−𝑡1(𝑥1, 𝑥2)...𝑃𝑡𝑛−𝑡𝑛−1(𝑥𝑛−1, 𝑥𝑛) (2.15)

Now using that all for continuous Markov processes equation 2.9 holds, we get

𝑝(𝑋𝑡𝑛 = 𝑥𝑛|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, ..., 𝑋𝑛−1 = 𝑥𝑛−1) = 𝑃(𝑋𝑡𝑛 = 𝑥𝑛|𝑋𝑡𝑛−1 = 𝑥𝑛−1) (2.16)

This shows that for a set Chapman­Kolmogorov equations the corresponding random process is a
Markov process. This is because for any possible history, the future only depends on the most recent
known state.

2.3. Semigroups and generators
2.3.1. Semigroups
For any function 𝑓 ∶ Ω → ℝ we can define an operator 𝑆𝑡 such that:

𝑆𝑡𝑓(𝑥) = 𝔼(𝑓(𝑋𝑡)|𝑋0 = 𝑥) (2.17)

Theorem 2.3.1. This family of operators we call the semigroups 𝑆𝑡 , 𝑡 ≤ 0. These have the following
properties:

1. 𝑆0 = 𝐼 identity at 𝑡 = 0
2. lim𝛿↓0 𝑆𝑡+𝛿 = 𝑆𝑡 right continuity

3. 𝑆𝑡+𝑠 = 𝑆𝑡𝑆𝑠 semigroup property

4. 𝑓 ≥ 0 ⟹ 𝑆𝑡𝑓 ≥ 0 positivity

5. 𝑆𝑡1 = 1 normalization

6. ||𝑠𝑡𝑓(𝑥)||∞ = sup𝑥 |𝑆𝑡𝑓(𝑥)| ≤ sup𝑥 |𝑓(𝑥)| contraction
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Proof. (corresponds to numbers)
1.

𝑆0𝑓(𝑥) = 𝔼(𝑓(𝑋0)|𝑋0 = 𝑥) = 𝔼(𝑓(𝑥)) = 𝑓(𝑥) (2.18)
2. Take 𝑌, 𝑍 ∈ Ω. First we will show lim𝛿↓0 𝑃𝛿(𝑍, 𝑌) = 𝐼.
If 𝑌 ≠ 𝑍, 𝑃𝛿(𝑍, 𝑌) = 𝜆 ∗ 𝛿 = 𝒪(𝛿2)(because of exponential property). Thus lim𝛿↓0 𝑃𝛿(𝑍, 𝑌) = 0.
And similarly 𝑃𝛿(𝑌, 𝑌) = 1𝑂(𝑡)
Thus lim↓0 𝑃𝛿(𝑍, 𝑌) = 𝐼
Now to show right continuity

lim
𝛿↓0

𝑆𝑡+𝛿𝑓(𝑥) = lim
𝛿↓0

𝔼(𝑓(𝑋𝑡+𝛿)|𝑋0 = 𝑥) = lim
𝛿↓0

∑
𝑦∈Ω

𝑓(𝑦)𝑃𝑡+𝛿(𝑥, 𝑦) (2.19)

= lim
𝛿↓0

∑
𝑦∈Ω

𝑓(𝑦)∑
𝑧∈Ω

𝑃𝑡(𝑥, 𝑧) ∗ 𝑃𝛿(𝑧, 𝑦) = ∑
𝑦∈Ω

𝑓(𝑦)∑
𝑧∈Ω

𝑃𝑡(𝑥, 𝑧) ∗ lim𝛿↓0 𝑃𝛿(𝑧, 𝑦) = 𝑆𝑡𝑓(𝑥) (2.20)

3. From Chapman­Kolmogorov

𝑆𝑡+𝑠𝑓(𝑥) = ∑
𝑦∈Ω

𝑃𝑡+𝑠(𝑥, 𝑦)𝑓(𝑦) = ∑
𝑦∈Ω

∑
𝑧∈Ω

𝑃𝑡(𝑥, 𝑧)𝑃𝑠(𝑧, 𝑦)𝑓(𝑦) = 𝑆𝑡(𝑆𝑠𝑓(𝑥)) (2.21)

4. Take 𝑓 such that ∀𝑥 ∈ Ω 𝑓(𝑥) ≥ 0.

𝑆𝑡𝑓(𝑥) = 𝔼(𝑓(𝑋𝑡)|𝑋0 = 𝑥) = ∑
𝑦∈Ω

𝑃(𝑋𝑡 = 𝑦|𝑋0 = 𝑥)𝑓(𝑦) (2.22)

Since 𝑃(𝑋𝑡 = 𝑦|𝑋0 = 𝑥) ≥ 0 because it is a probability and we said 𝑓(𝑦) ≥ 0 we sum over positive
things. Therefore it must be that 𝑆𝑡𝑓 ≥ 0

5. Take 𝑓(𝑥) = 1 for all 𝑥 ∈ Ω. Now for 𝑦 ∈ Ω, 𝑆𝑡𝑓(𝑦) = 𝔼(𝑓(𝑋𝑡)|𝑋0 = 𝑥) = 1

6. Take 𝑥 ∈ Ω, 𝑆𝑡𝑓(𝑥) = 𝔼(𝑓(𝑋𝑡)|𝑋0 = 𝑥) = ∑𝑦∈Ω 𝑃(𝑋𝑡 = 𝑦|𝑋0 = 𝑥) ∗ 𝑓(𝑦) ≤ ∑𝑦∈Ω 𝑃(𝑋𝑡 = 𝑦|𝑋0 =
𝑥) sup𝑥∈Ω |𝑓(𝑥)| = 1 ∗ sup𝑥∈Ω |𝑓(𝑥)| = sup𝑥 ∈ Ω|𝑓(𝑥)|
If one has a spaceΩ, and 𝑆𝑡 , 𝑡 ≥ 0 is a family of operators C(Ω) satisfying the 6 properties of semigroups.
Then this is called a Markov semigroup. This corresponds to a Markov process with formula 2.17
Example 2.3.1. In example 2.1.1 we calculated the probability to be in state 𝐴 at time 𝑡 given 𝑋0 = 𝐴
(Noted as 𝑃𝑡(𝐴, 𝐴)). From that we can easily determine 𝑃𝑡(𝐵, 𝐴) = 1 − 𝑃𝑡(𝐴, 𝐴). We can also take
𝑃𝑡(𝐵, 𝐵) = 𝑃𝑡(𝐴, 𝐴), as the problem is symmetric and 𝑃𝑡(𝐴, 𝐵) = 1 − 𝑃𝑡(𝐵, 𝐵). With these transition
probabilities we can determine the corresponding semigroup as a matrix.

𝑆𝑡 = [
𝑃𝑡(𝐴, 𝐴) 𝑃𝑡(𝐵, 𝐴)
𝑃𝑡(𝐴, 𝐵) 𝑃𝑡(𝐵, 𝐵)] =

1
2 [
1 + 𝑒−2𝑡 1 − 𝑒−2𝑡
1 − 𝑒−2𝑡 1 + 𝑒−2𝑡] (2.23)

Take some function 𝑓 ∶ Ω ⟶ ℝ. Now 𝑆𝑡𝑓(𝐴) = 𝔼(𝑓(𝑋𝑡)|𝑋0 = 𝐴) = 𝑃(𝑋𝑡 = 𝐴|𝑋0 = 𝐴)𝑓(𝐴) + 𝑃(𝑋𝑡 =
𝐵|𝑋0 = 𝐴)𝑓(𝐵). We can see this as we multiply 𝑆𝑡 with the function 𝑓 written in vector form. And we
get

𝑆𝑡𝑓 = [
𝑃𝑡(𝐴, 𝐴) 𝑃𝑡(𝐵, 𝐴)
𝑃𝑡(𝐴, 𝐵) 𝑃𝑡(𝐵, 𝐵)] [

𝑓(𝐴)
𝑓(𝐵)] = [

𝑃𝑡(𝐴, 𝐴)𝑓(𝐴) + 𝑃𝑡(𝐵, 𝐴)𝑓(𝐵)
𝑃𝑡(𝐴, 𝐵)𝑓(𝐴) + 𝑃𝑡(𝐵, 𝐵)𝑓(𝐵)] (2.24)

which is a vector of semigroup values for different initial states.

2.3.2. Generator
In any random process the probability to transition form one state to another must depend on something.
A Markov process this transition probability cannot depend on the state at any other time, therefore it
must depend on the current state of the system and nothing else.

This dependency will be modeled using generator 𝐿. The change in state can be interpreted as the
rate of change of the system, and therefore as the small time limit of semigroup over the time. Like a
”derivative” of a random process. The generator is defined as
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Definition 2.3.1. For some semigroup 𝑆𝑡 define 𝐿 such that

𝐿𝑓(𝑥) = lim
𝑡→0

𝑆𝑡𝑓(𝑥) − 𝑓(𝑥)
𝑡 = lim

𝑡→0
𝑓(𝑥 + 𝑡) − 𝑓(𝑥)

𝑡 (2.25)

and therefore we get L itself is

𝐿 = lim
𝑡→0

𝑆𝑡𝑓 − 𝑓
𝑡 (2.26)

2.3.3. Properties of the generator
Presume 𝐿 to be a #Ω by #Ωmatrix. The diagonal must contain only numbers≤ 0. Anything of diagonal
must be ≥ 0. (both obvious when multiply with the corresponding state) also the columns must sum to
0. (in order for the system to be found in 1 state at a time).

If these properties are met the generator can be reversed to semigroup with all the properties as­
sociated with 2.17. And therefore be reversed to a unique Markov process.

Proof. Take L a square matrix with columns sum to 0 and non­positive diagonal values, non­negative
other values. Take 𝑆𝑡 = 𝑒𝑡𝐿, clearly this semigroup is uniquely defined by L. Also 𝑙𝑖𝑚𝑡⟶0

𝑆𝑡𝑓−𝑓
𝑡 = 𝐿.

Now to the propperties:
1. 𝑆0 = 𝑒0 = 𝐼
2. 𝑒𝑡𝐿 is a right continuous function
3. 𝑒(𝑡+𝑠)𝐿 = 𝑒𝑡𝐿 ∗ 𝑒𝑠𝐿
4. tr(−𝑡𝐿) ≥ 0 ⟶ det 𝑒−𝑡𝐿 > 0)
5. 𝑒𝑡𝐿1 = columns L sum to 0 thus S to 1? thus normalization
6. 𝑒−𝑡𝐿𝑓(𝑥) = ....

2.3.4. Transition rates and generators
The generator can be interpreted as the change in state. However if we want to look into specific states
and how they change we do not need information about all the states. We can also just look at the
speed from one specific state to another. Therefore we introduce the transition rates.

Definition 2.3.2 (transition rates). The transition rate from state 𝜂 ∈ Ω to state 𝜉 ∈ Ω for 𝜂 ≠ 𝑦 is defined
as.

𝑐(𝜂, 𝜉) = lim
𝑡→0

𝑃(𝑋𝑡 = 𝜉|𝑋0 = 𝜂)
𝑡 (2.27)

And it is easy to see that.

𝐿𝑓(𝜂) = ∑
𝑦𝜖Ω
(𝑐(𝜂, 𝜉)(𝑓(𝜉) − 𝑓(𝜂)) (2.28)

Example 2.3.2. Take 2.3.2. Now we want to calculate the transition rates.

𝑐(𝐴, 𝐵) = lim
𝑡⟶0

1 − 𝑒−2𝑡
2𝑡 = 1 (2.29)

𝑐(𝐵, 𝐴) = lim
𝑡⟶0

1 + 𝑒−2𝑡
2𝑡 = 1 (2.30)

In this case 𝐿 = [−∑𝛼≠𝐴 𝑐(𝐴, 𝛼) 𝑐(𝐵, 𝐴)
𝑐(𝐴, 𝐵) −∑𝛽≠𝐵 𝑐(𝐵, 𝛽)

] [−1 1
1 −1]
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2.4. Invariant measures
In this section first the concept of a stationary measure is introduced. Later a formal definition will be
shown. In the end the concept of Detailed balance will be introduced.

Example 2.4.1. In 2.3.2 it is clear we get to an equilibrium since from whatever state we start, whatever
𝑓 ∶ Ω ⟶ ℝ we take, for 𝑡 ⟶ ∞ we get

𝔼(𝑓(𝑋𝑡)) =
𝑐(𝐴, 𝐵) ∗ 𝑓(𝐵) + 𝑐(𝐵, 𝐴) ∗ 𝑓(𝐴)

𝑐(𝐴, 𝐵) + 𝑐(𝐵, 𝐴) (2.31)

This means that the probability for the system to be in state 𝐴 is constant, and equal to 𝐶(𝐵,𝐴)
𝑐(𝐴,𝑏)+𝐶(𝐵,𝐴) .

Definition 2.4.1. Take a Markov process on a measurable compact space Ω, and a semigroup 𝑆𝑡, 𝑡 > 0
corresponding to the Markov process. Take 𝜇 a probability measure on Ω, 𝜇 is an invariant measure if
for all 𝑓𝜖𝐶(Ω), ∀𝑡 ≥ 0

∫𝑆𝑡𝑓𝑑𝜇 = ∫𝑓𝑑𝜇 (2.32)

If now 2.3.1 is applied to a probability measure we get

∫𝐿𝑓𝑑𝜇 = 0 (2.33)

For Ω countable it is possible to write 𝑆𝑡 and 𝐿 as linear operators on 𝜇. In that case the integral can be
replaced with a sum.

∑
𝜂𝜖Ω

𝑆𝑡𝑓(𝜂)𝜇𝜂 = ∑
𝜂𝜖Ω

𝑓(𝜂)𝜇𝜂 (2.34)

And thus 𝜇 can be interpreted as a vector corresponding to a probability for all states of Ω to be in when
the system is in equilibrium. So if the system stabilizes after a certain time the resulting distribution is
a stationary measure

The generator can also be calculated, we get for countable Ω because the intergral over a finite space
can be replaced with a sum we get

∑
𝜂𝜖Ω
(𝐿)𝜂,𝜉𝑓(𝜉)𝜇(𝜂) = 0 (2.35)

Since 𝑓(𝜉) can be any function with 𝑓 ∶ Ω ⟶ ℝ it must be true that

∑
𝜂𝜖Ω
(𝐿)𝜂,𝜉𝜇(𝜂) = 0 (2.36)

And thus we can write this as a matrix multiplication.

�̄� ∗ 𝐿 = 0̄ (2.37)

The fact that the semigroup action on the stationary measure results in the stationary measure, can be
interpreted as the stationary measure does not change when the Markov process works on it.

Similarly the generator acting on the stationary measure results in a zero vector or integral. Because
of the definition 2.3.1 the generator can be tough of similar as the derivative but for a random process.

A Markov process homogeneous in time has a similar link to a first order homogeneous differential
equation. However we still do not talk about deterministic values but about probabilistic densities.
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2.4.1. Detailed balance
In this subsection a more specific set of stationary measures will be explored. First reversibility will
be defined, and see it is equivalent to a system in detailed balance. Than a proof that a system in
detailed balance is a system in a stationary measure. Than theMarkov processes that have a stationary
measure that is also in detailed balance will be explored.

Definition 2.4.2 (Reversibility). A probability measure 𝜇 is in reversible if ∀𝑓, 𝑔, ∀𝑡 ≥ 0

∑
𝜂
𝜇(𝜂)𝑆𝑡𝑓(𝜂)𝑔(𝜂) =∑

𝜂
𝜇(𝜂)𝑆𝑡(𝑔(𝜂))𝑓(𝜂) (2.38)

or equivalent is
∑𝐿𝑓(𝜂)𝑔(𝜂)𝜇(𝜂) =∑𝑔(𝜂)𝐿𝑓(𝜂)𝜇(𝜂 (2.39)

The generator is self adjunct in 𝐿2(𝜇)
If we will in 𝑓 = 𝛿𝜂,𝜉 and 𝑔 = 𝛿𝜉,𝜂 we get

𝜇(𝜂)𝑐(𝜂, 𝜉) = 𝜇(𝜉)𝑐(𝜉, 𝜂) (2.40)

This we call detailed balance.

Theorem 2.4.1. If 𝜇 is reversible, 𝜇 is a stationary measure

Proof. Take 𝜇 reversible, thus 𝜇(𝜂)𝑐(𝜂, 𝜉) = 𝜇(𝜉)𝑐(𝜉, 𝜂). Because a stationary measure is equiva­
lent to a generator action on the measure equal to zero proving �̄� ∗ 𝐿 = 0 is enough. Take any 𝜉𝜖Ω
now calculate ∑𝜂𝜖Ω(𝐿)𝜂,𝜉𝜇(𝜂). It is known that (𝐿)𝜉,𝜉 = −∑𝑥𝜖Ω\{𝜉} 𝑐(𝜉, 𝑥)𝜇(𝜉) but because for 𝑥 ≠ 𝑦
(𝐿)𝑥,𝑦 = 𝑐(𝑥, 𝑦) we get:

∑
𝜂𝜖Ω
(𝐿)𝜂,𝜉𝜇(𝜂) = ∑

𝜂𝜖Ω\{𝜉}
(𝐿)𝜂,𝜉𝜇(𝜂) + (𝐿)𝜉,𝜉 = ∑

𝜂𝜖Ω\{𝜉}
𝑐(𝜂, 𝜉)𝜇(𝜂) − ∑

𝜂𝜖Ω\{𝜉}
𝑐(𝜉, 𝜂)𝜇(𝜉)

= ∑
𝜂𝜖Ω\{𝜉}

𝑐(𝜂, 𝜉)𝜇(𝜂) − 𝑐(𝜉, 𝜂)𝜇(𝜉) = ∑
𝜂𝜖Ω\{𝜉}

0 = 0 (2.41)

This is independent in 𝜉 thus �̄� ∗ 𝐿 = 0

Thus a reversible measure is always stationary, but a stationary measure is not necessarily reversible.

Example 2.4.2. Take a random process with Ω = {𝐴, 𝐵, 𝐶} and 𝐿 = [
−1 0 1
1 −1 0
0 1 −1

] 𝜇 = [

1
31
31
3

] is a

stationary measure as 𝐿𝜇 = 0 but 𝜇(𝐴)𝐿(𝐴, 𝐵) = 1
3 ≠ 0 = 𝜇(𝐵)𝐿(𝐵, 𝐴) Thus 𝜇 is a stationary measure

but not in detailed balance.



3
Zero­range process

In this section the zero range process introduced. This is based on [1]. Later some aspects of statistical
physics will be compared to the properties of the zero range process.

In [1] a system is described as a set of particles and a set of sites. We will use the therm state as
one distribution of particles over the sites. This means when we have finite particles 𝑛 and sites 𝑙 the
number of states #Ω = (𝑛+𝑙𝑙 ). A zero range process will be a Markov process with this many states.
However the number of states grows fast compared to the number of sites and particles

3.1. Introduction Zero­range process
Before we formalize the Zero­range process let us visualize what it is.

Example 3.1.1. Let us take a system with 10 sites and 12 particles. A possible distribution of these
particles is represented in 6.1. Here the sites are numbered 0, 1, ..., 9 and the particles are represented
as a circle.

Figure 3.1: Example of particles at sites

In this state the number of particles at site 0 is 3, the number of particles at site 1 is 0, and so on.

As we assume the particles to be indistinguishable. Now if we know how many particles there are
at each site we know everything there is to know about the system. Therefore we can describe the

11
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state as

𝜂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
0
0
2
1
0
2
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.1)

The values of this vector must be natural numbers as it is not possible to find half a particle in a state.
Now one particles hops from site 3 to site 2. Now after this hop the system is in state 𝜂′ as this is

Figure 3.2: One particle hops from site 3 to site 2

equal to state 𝜂 but with where one particle hopped from state 3 to state 2 we notate 𝜂′ = 𝜂3,2

𝜂′ = 𝜂3,2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
0

0 + 1
2 − 1
1
0
2
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
0
1
1
1
0
2
0
1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.2)

Now for the system to be Zero­range, it must be true that the rate to hop from site 𝑖 to site 𝑗 only depends
on the number of particles at site 𝑖, which is notated as 𝜂𝑖. Thus

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝐶𝑖,𝑗(𝜂𝑖) (3.3)

And in this example 𝑖 = 3 and 𝑗 = 2 and thus the rate to go from site 3 to site 2 only depends on the
number of particles at site 3.

Definition 3.1.1. A Zero range process is a Markov process where Ω = ℕ𝐿0 where 𝐿 ∈ ℕ ∪ ∞ Now the
transition rates are

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝐶𝑖,𝑗(𝜂𝑖) (3.4)

and if there exist no 𝑖, 𝑗 ∈ {0, 1, ..., 𝐿 − 1} such that 𝜂𝑖,𝑗 = 𝜉 the rate 𝑐(𝜂, 𝜉) = 0.

Example 3.1.2. Take a system with 2 particles in 2 sites (site 0 and site 1. The possible states are

{ [20] , [
1
1] , [

0
2] } If the system is a Zero range process, the rate 𝑐( [20] , [

0
2] ) = 0 because there is no

direct transition between the two.
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If we take 𝐶0,1(𝑛) = 𝐶1,0(𝑛) = 𝑛 we can calculate all the transition rates:

𝑐( [20] , [
1
1] ) = 𝑐( [

0
2] , [

1
1] ) = 2 (3.5)

𝑐( [11] , [
2
0] ) = 𝑐( [

1
1] , [

0
2] ) = 1 (3.6)

The process is in detailed balance for 𝜇( [20] ) = 𝜇( [
0
2] ) =

1
4 and 𝜇( [11] ) =

1
2

Example 3.1.3. Take the same system as 3.1.2 but now 𝐶0,1(𝑛) = 𝑐1,0(𝑛) = 𝑐𝟙>0(𝑛), where 𝟙>0(𝑛) the
indicator function equal to 1 if 𝑛 > 0, 0 otherwise. Now

𝑐( [20] , [
1
1] ) = 𝑐( [

0
2] , [

1
1] ) = 𝑐( [

1
1] , [

2
0] ) = 𝑐( [

1
1] , [

0
2] ) = 𝑐 (3.7)

This process is in detailed balance for 𝜇( [20] ) = 𝜇( [
1
1] ) = 𝜇( [

0
2] ) =

1
3

Because for a lot of Zero­range systems the number of states grows fast with system size (more than
exponentially). We want to find a way to compute the expected number of particles at sites without the
need to compute the invariant measures.

3.2. Grand canonical reversible product measures
One of the most use full characteristics of Zero­range processes is that when the transition rates can
be written as 3.8 the stationary measure can be constructed as a product of factors that only dependent
on one site each. i.e, it is a product measure.

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝐶𝑖,𝑗(𝜂𝑖) = 𝑊𝑖,𝑗𝑢𝑖(𝜂𝑖) (3.8)

Note that 𝑊𝑖,𝑗 does not depend on 𝜂𝑖. This is a necessary if we want to write the stationary measure
as a product.

Example 3.2.1. Take zero range process with sites {0, 1, ..., 𝐿} and with𝑊𝑖,𝑗 =
1
𝐿 for 𝑖 ≠ 𝑗.

Now two possible distributions of 𝑁 particles, 𝜂, 𝜂𝑖,𝑗 where 𝜂𝑖 = 𝜂𝑖,𝑗𝑖 −1 and 𝜂𝑗 = 𝜂
𝑖,𝑗
𝑗 +1 and at all other

sites they are equal. Now say 𝜇 ∶ Ω ⟶ ℝ is an invariant measure. Now tor any 𝑓 ∶ Ω ⟶ ℝ

∑
𝜂′
𝑊𝑖,𝑗𝑢𝑖(𝜂𝑖)𝑓(𝜂)𝜇(𝜂𝑖,𝑗) = 0 (3.9)

because all other factors of 𝐿 must be zero as it is a zero range process. Because of our simplified𝑊
we get to the equation

∑𝑖≠𝑗 𝑢𝑖(𝜂𝑖)𝜇(𝜂𝑖,𝑗)
𝐿 = 𝑢𝑗(𝜂𝑗) (3.10)

For every site 𝑖 of the process there is a function 𝑓𝑖(𝜂𝑖), where 𝜂𝑖 is the number of particles at site 𝑖
when the system is in state 𝜂.

𝜇(𝜂) =
∏𝑖∈𝕃 𝑓𝑖(𝜂𝑖)

∑𝜂∈Ω∏𝑖∈𝕃 𝑓𝑖(𝜂𝑖)
(3.11)

where 𝕃 is the set of sites of the system.

In Example 3.11 the denominator is simply to normalize 𝜇 because it is a probability measure and
therefore must sum to one.
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If we take

𝑓𝑖(𝜂𝑖) =
𝜂𝑖
∏
𝑘=1

[ 𝑠𝑖
𝑢𝑖(𝑘)

] (3.12)

where 𝑠𝑖 is such that
𝑠𝑖 =∑

𝑗∈𝕃
𝑠𝑗𝑊𝑖,𝑗 (3.13)

Where 𝑢𝑖(𝜂𝑖) = ∑𝑗≠𝑖 𝐶𝑖,𝑗(𝜂𝑖), and𝑊𝑖,𝑗(𝜂𝑖) =
𝐶𝑖,𝑗(𝜂𝑖)
𝑢𝑖(𝜂𝑖).

From now on all systems considered will have𝑊𝑖,𝑗(𝜂𝑖) = 𝑊𝑗,𝑖(𝜂𝑗). This means the distribution of parti­
cles leaving site i only depends on the number of particles at site i.

Theorem 3.2.1. The measure in detailed balance can be written as 𝜇(𝜂) = ∏𝑖 𝜇𝑖(𝜂𝑖) with 𝜇𝑖(𝑛) =
𝑧𝑛

Ψ𝑖(𝑧)∏𝑛𝑘=1 𝑢𝑖(𝑘)
and Ψ𝑖(𝐶)∑

∞
𝑛=0

𝐶𝑛
∏𝑛𝑘=1

Proof. Take 𝜇(𝜂) to be a probability measure in detailed balance. Now it must be true that for 𝜂, 𝜉 ∈ Ω
if 𝜂𝑖 = 𝜉𝑖 that

𝜇(𝜂)
𝜇(𝜂𝑖,𝑗) =

𝜇(𝜉)
𝜇(𝜉𝑖,𝑗) because these two must have the same rate to one another. Therefore

the detailed balance must have the same difference in probability.

This property goes for every site. Therefore we can introduce a product measure, such that

𝜇(𝜂) =
𝐿

∏
𝑖=0

𝜇𝑖(𝜂𝑖) (3.14)

Now because of reversibility
𝑐(𝜂, 𝜂′)𝜇(𝜂) = 𝑐(𝜂′, 𝜂)𝜇(𝜂′) (3.15)

this is a zero range system so the only rates that are none­zero correspond to a hop from one site to
another. Thus we can write

𝑐(𝜂, 𝜂𝑖,𝑗)𝜇(𝜂) = 𝑐(𝜂𝑖,𝑗 , 𝜂)𝜇(𝜂𝑖,𝑗) (3.16)

and thus
𝑊𝑖,𝑗𝑢(𝜂𝑖)𝜇(𝜂) = 𝑊𝑗,𝑖𝑢(𝜂𝑗 + 1)𝜇(𝜂𝑖,𝑗) (3.17)

And if we fill in𝑊𝑖,𝑗 = 𝑊𝑗,𝑖 we get

𝑢𝑖(𝜂𝑖)
𝐿

∏
𝑘=0

𝜇𝑘(𝜂𝑘) = 𝑢𝑗(𝜂𝑗 + 1)
𝐿

∏
𝑘=0

𝜇𝑘(𝜂𝑖,𝑗𝑘 ) (3.18)

These products have all but the terms 𝑖, 𝑗 in common. The equation can be divided by all the other
therms.

𝑢𝑖(𝜂𝑖) ∗ 𝜇𝑖(𝜂𝑖)𝜇𝑗(𝜂𝑗) = 𝑢𝑗(𝜂𝑗 + 1)𝜇𝑖(𝜂𝑖 − 1)𝜇𝑗(𝜂𝑗 + 1) (3.19)

Now take all therms depending on 𝜂𝑖 to the left side of the equation and all therms depending on 𝜂𝑗 to
the right side of the equation.

𝑢𝑖(𝜂𝑖)𝜇𝑖(𝜂𝑖)
𝜇𝑖(𝜂𝑖 − 1)

=
𝑢𝑗(𝜂𝑗 + 1)𝜇𝑗(𝜂𝑗 + 1)

𝜇𝑗(𝜂𝑗)
(3.20)

Because both sides of this equation strictly depend on different variables they must be equal to a
constant 𝐶.

𝜇𝑖(𝜂𝑖)
𝜇𝑖(𝜂𝑖 − 1)

= 𝐶
𝑢𝑖(𝜂𝑖)

(3.21)
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This must be true for all sites 𝑖. Therefore in a stationary measure all sites must obey this equation
with the same constant 𝐶. With this value we now can calculate the values for 𝜇𝑖 using equation 3.21
𝑛 times we get

𝜇𝑖(𝑛) =
𝐶𝑛

∏𝑛𝑘=1 𝑢𝑖(𝑘)
𝜇𝑖(0) (3.22)

but because 𝜇𝑖 is a probability measure, all possible 𝜇𝑖 must be equal to one.
∞

∑
𝑘=0

𝜇𝑖(𝑘) = 1 (3.23)

thus

𝜇𝑖(0)
∞

∑
𝑛=0

𝐶𝑛
∏𝑛𝑘=1 𝑢𝑖(𝑘)

= 1 (3.24)

Now take 𝜇𝑖(0) =
1

Ψ𝑖(𝐶)
and we get

Ψ𝑖(𝐶) =
∞

∑
𝑛=0

𝐶𝑛
∏𝑛𝑘=1 𝑢𝑖(𝑘)

(3.25)

Ψ𝑖(𝑐) is used as the normalisation of the probability measure.

Now because this 𝐶 is constant over all sites, the stationary measure over all can be calculated. The
probability measure over different sites only depend on 𝐶 therefore the combination is a multiplication
over the sites.

𝜇(𝜂) =∏
𝑖
𝜇𝑖(𝜂𝑖) (3.26)

where
𝜇𝑖(𝑛) =

𝑧𝑛
∏𝑛𝑘=1 𝑢𝑖(𝑘)

1
Ψ𝑖(𝑧)

(3.27)

Now taking 𝑧 = 𝐶 because it is a ’constant’ for all sites. But now it is a choice thus a variable.

Example 3.2.2. Take a Zero range system where for all sites 𝑢𝑖(𝑛) = 𝑛 and also assume uniform
redistribution. Now calculate Ψ(𝑧)

Ψ𝑖(𝑧) =
∞

∑
𝑛=0

𝑧𝑛
∏𝑛𝑘=1 𝑘

=
∞

∑
𝑛=0

𝑧𝑛
𝑛! = 𝑒

𝑧 (3.28)

Now calculating 𝜇𝑖(𝑛)
𝜇𝑖(𝑛) =

𝑧𝑛
∏𝑛𝑘=1 𝑘

𝑒−𝑧 = 𝑧𝑛
𝑛! 𝑒

−𝑧 (3.29)

And thus 𝜇𝑖 is Poisson distributed.

Example 3.2.3. Take the same system as 3.2.2 but with 𝑢𝑖(𝑛) = 𝑐𝑖𝑛.

Ψ𝑖(𝑧) =
∞

∑
𝑛=0

𝑧𝑛
𝑐𝑛𝑖 𝑧!

= 𝑒
𝑧
𝑐𝑖 (3.30)

𝜇𝑖(𝑛) =
𝑧𝑛
𝑐𝑛𝑖 𝑛

𝑒−
𝑧
𝑐𝑖 (3.31)

This is similar to the example 3.2.2 but now 𝑐𝑖 can change for different sites. Thus in this case different
rates from sites do not change the sort of distribution of one site
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Example 3.2.4 (Homogeneous geometric). Take a zero range system but now all sites have rates
𝜇𝑖(𝑛) = 𝟙(𝑛 > 0) the indicator function.

𝜓𝑖(𝑧) =
∞

∑
𝑛=0

𝑧𝑛
1 = 1

1 − 𝑧 for 0 < 𝑧 < 1 (3.32)

and thus we get
𝜇𝑖(𝑛) = 𝑧𝑛 ∗ (1 − 𝑧) (3.33)

Example 3.2.5 (Homogeneous geometric with a single slow site). Take the same system as 3.2.4 but
now take 𝑢0(𝑛) = 𝑐𝟙(𝑛 > 0) where 0 < 𝑐 < 1. Now 𝜇𝑖 for 𝑖 > 0 is the same as 3.2.4 thus only calculate
𝜇0(𝑛)

Ψ0(𝑧) =
𝑧𝑛
𝑐𝑛 =

1
1 − 𝑧

𝑐
for 0 < 𝑧 < 𝑐 (3.34)

𝜇0(𝑛) = (
𝑧
𝑐 )

𝑛
(1 − 𝑧𝑐 ) for 0 < 𝑧 < 𝑐 (3.35)

Now we have different restrictions for the value of 𝑧. Because 𝑧 is the same for the entire system when
in equilibrium, 𝑧 must satisfy all restrictions put on it. In the next section this will be talked about more.

3.2.1. Grand canonical ensemble
If one takes the sites as individual distributions and prescribe a 𝑧 for the entire system the total distri­
bution function is known as the grand canonical distribution function. However as the grand canonical
distribution will be used for large systems the one does not introduce the number of sites and the
number of particles, but rather the density of particles.

𝜇𝑧(𝜂) =
∏𝑁𝑖=1Ψ𝑖(𝑧)

𝒵𝑧
(3.36)

where

𝒵𝑧 =∑
𝜂

𝑁

∏
𝑖=1

Ψ𝑖(𝑧) (3.37)

This distribution is known as the grand canonical ensemble. This distribution does not limit the number
of particles in the total system. The relative likely hood for the system to be in a state with a set number
of particles is right however. The next section is about correcting this.

3.3. The canonical invariant measure
The Grand canonical ensemble does not require the number of particles to be set. Whereas the zero
range process does require the number of particles to be fixed. To make this clear we start with an
example.

Example 3.3.1. we start with the system as in 3.1.3, we calculate the distribution according to the
grand canonical ensemble and the canonical ensemble.

𝜇𝑖(𝑛) = 𝑧𝑛 ∗ 1 − 𝑧 (3.38)

for 𝑖 = 0, 1 Now we need to chose 𝑧 such that ∑𝑖=0,1 ∑
∞
𝑛=1 𝑛 ∗ 𝜇𝑖(𝑛) = 2.

∑
𝑖=0,1

∞

∑
𝑛=1

𝑛 ∗ 𝜇𝑖(𝑛) = 2 ∗
𝑧

1 − 𝑧 (3.39)

This is equal to 2 for 𝑧 = 1
2

Now notice that the probability to be in [00] is ∏𝑖=1,2 𝜇𝑖(0) =
1
2 ∗

1
2 =

1
4 . This is becouse the Grand

canonical ensemble does not constrain the number of particles.
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The number of particles cannot change. But the product measures are correct but we need to make
sure the only states taken into account are those with the correct number of particles.

This distribution will be called 𝜈.

𝜈𝐿,𝑁 (𝜂 |
𝐿

∑
𝑖=0
𝜂𝑖 = 𝑁) =

∏𝑖 𝜇𝑖(𝜂𝑖) ∗ 𝟙(∑
𝐿
1=0 𝜂𝑖 = 𝑁)

∑𝜂′∶∑𝑖 𝜂′𝑖 = 𝑁∏𝑖 𝜇𝑖(𝜂𝑖)
(3.40)

Thus when the only valid configurations have exactly N particles, simply take those distributions and
normalize only counting those.

Now fill in 𝜇𝑖(𝑛) from 3.27 and we get

𝜈𝐿,𝑁 (𝜂 |
𝐿

∑
𝑖=0
𝜂𝑖 = 𝑁) =

∏𝑖
𝑧𝜂𝑖

∏𝜂𝑖𝑖=1 𝑢𝑖(𝑘)
1

Ψ𝑖(𝑧)
𝟙(∑𝐿1=0 𝜂𝑖 = 𝑁)

∑𝜂′∶∑𝑖 𝜂′𝑖 = 𝑁∏𝑖
𝑧𝜂
′
𝑖

∏𝜂
′
𝑖
𝑖=1 𝑢𝑖(𝑘)

1
Ψ𝑖(𝑧)

(3.41)

In order to simplify this take

𝐻𝑖(𝑛) =
𝑛

∏
𝑗=1

𝑢𝑖(𝑗) (3.42)

and we get

𝜈𝐿,𝑁 (𝜂 |
𝐿

∑
𝑖=0
𝜂𝑖 = 𝑁) =

𝟙(∑𝐿1=0 𝜂𝑖 = 𝑁)∏𝑖
1

𝐻𝑖(𝜂𝑖)
∑𝜂′∶∑𝑖 𝜂′𝑖 = 𝑁∏𝑖

1
𝐻𝑖(𝜂′𝑖 )

(3.43)

Now the canonical ensemble 𝑍𝐿,𝑁 is defined as

𝑍𝐿,𝑁 = ∑
𝜂′∶∑𝑖 𝜂′𝑖 = 𝑁

∏
𝑖

1
𝐻𝑖(𝜂′𝑖)

(3.44)

and the canonical invariant measure 𝜈𝐿,𝑁(𝜂) is

𝜈𝐿,𝑁(𝜂) =
𝟙(∑𝐿1=0 𝜂𝑖 = 𝑁)∏𝑖

1
𝐻𝑖(𝜂𝑖)

𝑍𝐿,𝑁
(3.45)

Example 3.3.2. We will compute 𝜈𝐿,𝑁 from example 3.3.1. In this case 𝐿 = 2 and 𝑁 = 2. First we need
to compute 𝑍2,2. In order to do this we need to determine all states of the system 𝜂, such that ∑𝑖 𝜂𝑖 = 𝑁.

In this case { [20] , [
1
1] , [

0
2] }.

𝑍2,2 = ∑

𝜂=[
2
0],[
1
1],[
0
2]

∏
𝑖=0,1

1
∏𝑛𝑗=1 𝑢𝑖(𝑗)

= ∑

𝜂=[
2
0],[
1
1],[
0
2]

1
𝑐2 =

3
𝑐2 (3.46)

now 𝜈𝐿,𝑁(𝜂) =
1
3 for 𝜂 ∈ { [20] , [

1
1] , [

0
2] } just like example 3.1.3.

3.4. Particle density under grand Canonical ensemble
The density of particles 𝜌 can be easily determined for the canonical distribution 𝜌 = 𝑁

𝐿 . The grand
canonical ensemble only has the factor 𝑧 determining the density of particles. Here we calculate the
relation between the density of particles and 𝑧 for the system as in example 3.2.5.

𝜇𝑧(𝜂) =∏
𝑖
𝜇𝑖(𝜂𝑖) =∏

𝑖

𝑧𝜂𝑖
𝐻𝑖(𝜂𝑖)Ψ𝑖(𝑧)

(3.47)



18 3. Zero­range process

here the expected number of particles at one site is

𝔼𝜇𝑧(𝜂𝑖) =
∞

∑
𝑛=0

𝑛 𝑧𝑛
𝐻𝑖(𝑛)Ψ𝑖(𝑧)

= 𝑧Ψ′𝑖 (𝑧)
Ψ𝑖(𝑧)

(3.48)

where Ψ𝑖 is

Ψ𝑖(𝑧) =
∞

∑
𝑛=0

𝑧𝑛
𝐻𝑖(𝑛)

(3.49)

Because we have only a single slow site and all other sites are equal we can presume as 𝐿 ⟶ ∞ the
single slow site does not influence the average density. (unless the number of particles in that site also
grows to infinity). Therefore

𝜌 = 𝔼[𝜇𝑖(𝜂𝑖)] (3.50)

Now to calculate the expectation of the total number of particles in the system per state 𝔼𝜇𝑧(
1
𝐿 ∑

𝐿
𝑖=1 𝜂𝑖).

Here the slow site is not taken into account. This is because later the limit for large systems will be
made, and therefore one site will be insignificant.

𝜌 = 𝔼𝜇𝑧(
1
𝐿

𝐿

∑
𝑖=1
𝜂𝑖) =

1
𝐿

𝐿

∑
𝑖=1

𝑧Ψ′𝑖 (𝑧)
Ψ𝑖(𝑧)

for 𝑧 = 𝑧(𝜌) (3.51)

Now using that all sites that are not the slow site are equal, thus

Ψ𝑖(𝑧) = Ψ𝑗(𝑧) = Ψ1(𝑧) for 𝑖, 𝑗𝜖{1, 2, ..., 𝐿} (3.52)

However in examples 3.2.5 we see that there can be restrictions on 𝑧.
Now define 𝜌𝐿(𝑧) like

𝔼𝜇𝑧(
1
𝐿

𝐿

∑
𝑖=1
𝜂𝑖) = 𝜌𝐿(𝑧) (3.53)

Thus 𝜌 is the average number of particles in sites 1, 2, ..., 𝐿 also

lim
𝐿⟶∞

𝜌𝐿(𝑧) = 𝜌(𝑧) (3.54)

𝜌(𝑧𝑐) = 𝜌𝑐 (3.55)

where 𝑧𝑐 = sup{𝑧 such that ∀𝑖𝜖{0, 1, ..., 𝐿}, Ψ𝑖(𝑧) is a valid function}.

3.4.1. Equivalence of ensembles
Since both 𝜇𝑧 and 𝜈𝐿,𝑁 are the same size and use the same reversible product measures we would
expect them to be similar if the expected number of particles is the same. The difference between
the ensembles is the normalization. The canonical ensemble normalizes the total number of particles
where the grand canonical ensemble normalizes the expectation value of all sites. (we set 𝑧 such that
the total expected number of particles is correct).

That would mean that for a zero range process the grand canonical distribution 𝜇𝑧 for 𝑧 such that
𝜌 = 𝑁

𝐿 and canonical distribution 𝜈𝐿,𝑁 for any site 𝑖 are equivalent if 𝑃𝜇𝑧[𝜂𝑖 = 𝑛] = 𝑃𝜈𝐿,𝑁[𝜂𝑖 = 𝑛]. For
𝑛 ∈ ℕ.

The canonical and grand canonical ensemble are equivalent if ∀𝑖 lim𝑁⟶∞
𝔼𝜇𝑧 [𝜂𝑖]
𝑁 = 0

We will not prove this statement, but we can see how this works. We have the reversible product
measures those are constructed such that when the inflow of particles to a site is constant these be­
comes the probability density function for that site.
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When we have a site that has a substantial part of the total particles the number of particles at that
site influences the number of particles that can hop to other sites. The canonical ensemble compen­
sates for this by only taking the states that have the correct number of particles. When the number
of particles at any site cannot change that of the others because the expected number of particles at
that site compared to the total is insignificant the canonical ensemble does nothing else than the grand
canonical ensemble.

For a lot of system this means that for an infinite system size the grand canonical and canonical en­
semble have the same distribution if 𝑧 is such that 𝜌(𝑧) = 𝑁

𝐿 . This however is not for all zero range
systems the case. It is possible that when 𝜌 increases there is one site that gets infinite particles. Here
condensation occurs. We call the lowest density such that condensation happens 𝜌0.

For systems where the hopping rates are equal for all non zero occupations, for 𝑁 ⟶ ∞ we can set
for 𝜌 > 𝜌0 that the equilibrium distribution is the grand canonical ensemble for z such that 𝜌 = 𝜌0 thus
𝜇𝑧(𝜌0). Where all the other particles are at the condensed site such that the total density 𝜌 is satisfied.





4
Single slow site

This thesis is about the change in properties of a Bose­Einstein condensate when at random particles
are removed from the system. In this chapter a very specific zero range model is used to get a grip on
the action of annihilating particles in a condensate.

4.1. Single­Slow site with uniform rates
Take a zero range process with uniform rates. Thus all have rate 𝑢𝑗 = 1, and jump to a uniformly
chosen target site. At site 0 the rate will be 𝑐 > 0.

Now for 0 < 𝑐 < 1 we get a system where all rates are equal those leaving one specific site. That
is the slow site.

Intuitively one could understand that condensation occurs when the number of particles becomes large
with the following reasoning;
If more particles get into the system the average number of particles per site should rise. Therefore the
rate at which particles hop from one site to another should rise.
Because all sites get particles at the same rate in order to be in equilibrium they need to leave all at
the same rate.
However the sites have a maximum rate at which they lose particles this is 𝑐 < 1 for the slow site, and 1
for all other sites. There is one site that reaches its limit of departing particles first, the slow site. At that
point all particles added to the system will get into this site. This is because if other particles get higher
occupation the rate departing these sites rises and therefore rate to slow site rises, and the system is
not yet in equilibrium.

Now to make this idea more formal:
Definition 4.1.1. Take a Zero­Range process with 𝐿+1 sites labeled (0, 1, ..., 𝐿). The rate 𝑢𝑖,𝑗 from site
𝑖 to site 𝑗 is defined via

𝑢𝑖𝑗 = {
𝟙(𝜂𝑖) if 𝑖 ≠ 0
𝑐𝟙(𝜂𝑖) if 𝑖 = 0

where 0 < 𝑐 < 1.

4.2. Equilibrium
As in example 3.2.5 these rates can be written down as

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑊𝑖,𝑗𝑢𝑖(𝜂𝑖) (4.1)

where
𝑊𝑖,𝑗 =

1
𝐿 for all 𝑖, 𝑗𝜖{0, 1, 2, ..., 𝐿} and 𝑖 ≠ 𝑗 (4.2)
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𝑊𝑖,𝑖 = 0 for all 𝑖𝜖{0, 1, 2, ..., 𝐿} (4.3)
and the total rates

𝑢𝑖 = {
𝐿 ∗ 𝟙(𝜂𝑖) if 𝑖 ≠ 0
𝐿 ∗ 𝑐𝟙(𝜂𝑖) if 𝑖 = 0

4.3. Annihilation on a single slow site
In this section the dynamic situation of the single slow site system with an annihilation therm will be dis­
cussed. Because of the annihilation the equilibrium distribution will always be that there are no particles
left. Therefore in order to know something about the system we need to start in a specific distribution
𝜂.

First the system with an annihilation therm is defined. For this thesis the annihilation probability is
equal for all particles and times. This speed will be called 𝛼.

The generator ℒ corresponding to such as system will be over a state space Ω = ℕ𝐿+10 , for arbitrary
functions 𝑓 ∶ Ω ⟶ ℝ we get:

ℒ𝑓(𝜂) =
𝐿

∑
𝑥=1

𝐿

∑
𝑦=0

𝟙𝜂𝑥>0[𝑓(𝜂−𝛿𝑥+𝛿𝑦)−𝑓(𝜂)]+𝑐
𝐿

∑
𝑦=1

𝟙𝜂0>0[𝑓(𝜂−𝛿0+𝛿𝑦)−𝑓(𝜂)]+𝛼
𝐿

∑
𝑥=0

𝜂𝑥[𝑓(𝜂−𝛿𝑥)−𝑓(𝜂)]

(4.4)
Now we want to find what happens to the number of particles in the slow site and the non slow sites in
this system.

Theorem 4.3.1. For the zero range process with 𝜂 ∈ Ω defined via the generator ℒ in equation 4.4 for

the functions 𝐺𝐿(𝜂(𝑡)) =
∑𝐿𝑥=1 𝜂𝑥(𝑡)

𝐿 and 𝐻𝐿(𝜂(𝑡)) =
𝜂0(𝑡)
𝐿 when 𝐿 ⟶ ∞ the pair (𝐺𝐿(𝜂(𝑡)), 𝐻𝐿(𝜂(𝑡))) ⟶

(𝑔(𝑡), 𝐻(𝑡)) where 𝑔(𝑡) and ℎ(𝑡) are deterministic and satisfy the differential equations:

𝑑
𝑑𝑡𝑔(𝑡) = −

𝑔(𝑡)
1 + 𝑔(𝑡) + 𝑐𝟙ℎ(𝑡)>0 − 𝛼𝑔(𝑡) (4.5)

𝑑
𝑑𝑡ℎ(𝑡) =

𝑔(𝑡)
1 + 𝑔(𝑡) − 𝑐𝟙ℎ(𝑡)>0 − 𝛼ℎ(𝑡) (4.6)

Proof. In order to show (𝐺𝐿 , 𝐻𝐿) ⟶ (𝑔, ℎ) we need to show 𝔼(𝐺𝐿) ⟶ 𝑔, 𝔼(𝐻𝐿) ⟶ ℎ and that Var(𝐺𝐿) ⟶
0, Var(𝐻𝐿) ⟶ 0. This proof is in 3 parts, first we show the expectation value is good.
Than we determine for a general Markov process a relation for the variance of any function. Than we
use this to show that this variance of 𝐺𝐿and 𝐻𝐿 go to zero when the system size increases.

First we want to show 𝔼(𝐺𝐿) ⟶ 𝑔, 𝔼(𝐻𝐿) ⟶ ℎ
We calculate the effect of the generator 4.4 on the functions 𝐺𝐿 and 𝐻𝐿.

ℒ𝐺𝐿(𝜂) =
𝐿

∑
𝑥=1
[𝟙𝜂𝑥>0

−1
𝐿 ] + 𝑐𝕀𝜂0>0

1
𝐿𝐿 + 𝛼

𝐿

∑
𝑥=1
[𝜂𝑥

−1
𝐿 ] = −

1
𝐿#>0(𝜂) + 𝑐𝟙𝜂0>0 − 𝛼𝐺𝐿(𝜂) (4.7)

and similar
ℒ𝐻𝐿(𝜂) =

1
𝐿#>0(𝜂) − 𝑐𝟙𝜂0>0 − 𝛼𝐻𝐿(𝜂) (4.8)

where #>0 ∶ Ω ⟶ ℝ is the number of bulk sites with at least one particle. Thus #>0(𝜂) = ∑
𝐿
𝑥=1 1(𝜂𝑥 > 0)

For a Markov process represented by the generator ℒ and ∀𝑓 ∶ Ω ⟶ ℝ.

𝑑
𝑑𝑡𝔼[𝑓(𝜂(𝑡))] = 𝔼[ℒ𝑓(𝜂(𝑡))] (4.9)
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Make 𝑔𝐿(𝑡) ∶= 𝜂0[𝐺(𝜂(𝑡))] and ℎ𝐿(𝑡) ∶= 𝔼𝜂0[𝐻(𝜂(𝑡))] Now using equations (4.7).

𝑑
𝑑𝑡𝑔𝐿(𝑡) = 𝔼𝜂0[𝐿𝐺(𝜂(𝑡))] = −

1
𝐿𝔼𝜂0[#>0] + 𝑐𝔼𝜂0[𝟙𝜂0>0] − 𝛼𝑔𝐿(𝑡) (4.10)

𝑑
𝑑𝑡ℎ𝐿(𝑡) = 𝔼𝜂0[𝐿𝐻(𝜂(𝑡))] =

1
𝐿𝔼𝜂0[#>0] − 𝑐𝔼𝜂0[𝟙𝜂0>0] − 𝛼ℎ𝐿(𝑡) (4.11)

One can show that as 𝐿 ⟶ ∞ that
𝔼[#>0(𝜂(𝑡))]

𝐿 = Φ(𝑔(𝑡)) (4.12)

Where Φ can be approximated using the equilibrium distribution for the non slow sites without the an­
nihilation, as the rate from one site to any other is large compared to the annihilation rate as 𝐿 ⟶ ∞.

In section 3.2 we can see that for a transition rates ∝ 𝟙(𝜂𝑖 > 0) we can see that the grand canoni­
cal reversible product measures are a geometric distribution for the product measure:

𝜇𝑖(𝑛) = 𝜆𝑛(1 − 𝜆) (4.13)

and for a lot of these states the average number of particles in those states.

𝜌 = 𝔼𝜇𝑖(𝑛)[𝑛] =
∞

∑
0
𝜆𝑛(1 − 𝜆) = 𝜆

1 − 𝜆 (4.14)

where 𝜆 is the part of the sites with at least one particle, and thus we can write

𝜆 = 𝜌
1 + 𝜌 (4.15)

Using the replacement lemma in [4] we can use this to fill int Φ(𝜌) = 𝜌
1+𝜌 .

If we now Implement this in equations 4.10 and 4.11 as we take the functions 𝑔, ℎ where 𝑔(𝑡) =
lim𝐿⟶∞ 𝑔𝐿(𝑡) and ℎ(𝑡) = lim𝐿⟶∞ ℎ𝐿(𝑡)

𝑑
𝑑𝑡𝑔(𝑡) = −

𝑔(𝑡)
1 + 𝑔(𝑡) + 𝑐𝟙ℎ(𝑡)>0 − 𝛼𝑔(𝑡) (4.16)

𝑑
𝑑𝑡ℎ(𝑡) =

𝑔(𝑡)
1 + 𝑔(𝑡) − 𝑐𝟙ℎ(𝑡)>0 − 𝛼ℎ(𝑡) (4.17)

This is a description for the limit large number of sites of the expectation, however in order to get con­
vergence the variance should also go to zero when the system gets large.

First we want to show that for a Markov process (𝜂(𝑡), 𝑡 ≥ 0) with rates 𝑐(𝜂, 𝜉) and generator ℒ𝑓(𝜂)
and a function from that statespace 𝑓 the Dynkin­Martingale

𝑀𝑓
𝑡 = 𝑓(𝜂(𝑡)) − 𝑓(𝜂(0)) − ∫

𝑡

0
𝐿𝑓(𝜂(𝑠))𝑑𝑠 (4.18)

we want to show that 𝔼[𝑀𝑓
𝑡 ] = 0, as 𝑀𝑓

0 = 0 we can see that

𝔼[𝑀𝑓
𝑡 |𝜂(𝑟), 0 ≤ 𝑟 ≤ 𝑠] = 𝑀𝑡𝑠 , 0 ≤ 𝑠 ≤ 𝑡 (4.19)

with 𝑠 = 0 has the same result, but this equivalent to

𝔼[𝑀𝑓
𝑡 −𝑀𝑓

𝑠 |ℱ𝑠] = 0, > 𝑠 (4.20)

we start with

𝔼[𝑀𝑓
𝑡 −𝑀𝑓

𝑠 |ℱ𝑠] = 𝔼[𝑓(𝜂(𝑡) − 𝑓(𝜂(𝑠) − ∫
𝑡

𝑠
ℒ𝑓(𝜂(𝑟)𝑑𝑟|ℱ𝑠]

= 𝑆𝑡−𝑠𝑓(𝜂(𝑠)) − 𝑓(𝜂(𝑠)) − ∫
𝑡

𝑠
𝑆𝑟−𝑠ℒ𝑓(𝜂(𝑠))

(4.21)
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Here we use that

𝔼(𝑓(𝜂(𝑡))|ℱ𝑠) = 𝔼(𝑓(𝜂(𝑡))|𝜂𝑠)
= 𝔼𝜂𝑠(𝑓(𝜂(𝑡 − 𝑠)))
= 𝑆𝑡−𝑠𝑓(𝜂(𝑠))

(4.22)

We also have that
𝑆𝑟−𝑠ℒ𝑓(𝜂(𝑠)) =

𝑑
𝑑𝑟𝑆𝑟−𝑠𝑓(𝜂(𝑠)) (4.23)

Therefore we fill that into the integral

𝔼[𝑀𝑓
𝑡 −𝑀𝑓

𝑠 |ℱ𝑠] = 𝑆𝑡−𝑠𝑓(𝜂(𝑠)) − 𝑓(𝜂(𝑠)) − (𝑆𝑡−𝑠𝑓(𝜂(𝑠)) − 𝑓(𝜂(𝑠))) = 0 (4.24)

and we have shown that 𝑀𝑓
𝑡 has expectation value 0 for all 𝑡 and therefore is a Martingale.

Now we define [𝑀𝑡 , 𝑀𝑡] as the unique increasing process such that

𝑀2𝑡 − [𝑀𝑡 , 𝑀𝑡] = �̃�𝑡 (4.25)

where �̃�𝑡 is a martingale.

This results in
Var(𝑀𝑡) = 𝔼[𝑀2𝑡 ] = 𝔼([𝑀𝑡 , 𝑀𝑡]) (4.26)

the quadratic variation of martingale 𝑀𝑓
𝑡 can be computed as follows

[𝑀𝑓
𝑡 , 𝑀𝑓

𝑡 ] = ∫
𝑡

0
Γ(𝑓)[𝜂𝑠]𝑑𝑠 (4.27)

where
Γ(𝑓) = ℒ𝑓2 − 2𝑓ℒ𝑓 =∑

𝜉
(𝑓(𝜂) − 𝑓(𝜉))2𝑐(𝜂, 𝜉) (4.28)

Now one can fill in for 𝑓𝐿 both 𝐺𝐿 and 𝐻𝐿, and prove 𝑀𝐺𝐿𝑡 , 𝑀𝐻𝐿𝑡 ⟶ 0

For 𝐺𝐿 we get

Γ(𝐺𝐿) =∑
𝜂′
𝑐(𝜂, 𝜂′) 1𝐿2

𝐿

∑
𝑥=1
[𝜂𝑥 − 𝜂′𝑥] ≤∑

𝜂′

2
𝐿2 = 𝒪(

1
𝐿) (4.29)

Where we use that there are only 2 sites 𝑥 where 𝜂𝑥 ≠ 𝜂′𝑥 and 𝑐 ≠ 0. Also 𝑐(𝜂, 𝜂′) ≤ 1.

This means that for 𝐿 ⟶ ∞, Var(𝐺𝐿(𝑡)) ⟶ 0. And therefore 𝐺𝐿 ⟶ 𝑔(𝑡).

Now for 𝐻𝐿 we have

Γ(𝐺𝐿) =∑
𝜂′
𝑐(𝜂, 𝜂′)[𝐻(𝜂) − 𝐻(𝜂′)]2 =∑

𝜂′
𝑐(𝜂, 𝜂′) 1𝐿2 [𝜂0 − 𝜂

′
0]2 = 𝒪(

1
𝐿) (4.30)

This means that for 𝐿 ⟶ ∞, Var(𝐻𝐿(𝑡)) ⟶ 0. And therefore 𝐻𝐿 ⟶ ℎ(𝑡).



5
Relation between zero range processes

and statistical physics
In this chapter some parts of statistical physics is explained and connected to the mathematical models
of previous chapters.

5.1. Counting states for different types of particles
In statistical physics, the number of quantum states a single particle can be in is countable. We pre­
sume they are finite now. In this thesis we will call a quantum state of a single particle a spin­orbital.
This means quantum mechanically indistinguishable including spin degeneracy. Initially we presume
all spin­orbitals have equal energy. In section 5.3 we will show what happens when the energy is not
the same.

When multiple particles that do not interact with one another, and have the same forces act upon
them, we can consider the combined state. The combined state of multiple particles is a linear combi­
nation of product of single particle states.
For fermions we have that there is no possible way to combine the single particle wave becouse of their
asymmetric wave function. This means fermions can never be in the same state as another identical
fermion.
For identical bosons the wave function is symmetrical and this makes that the wave function to be the
same under exchange of particles in states, and therefore the combined state of multiple particles has
no multiplicity. We will not go into the quantum mechanics but just use these results.

5.1.1. Classic particles
Classic particles are particles that are distinguishable from one another. Therefore if we have the state
of each particle as a random variable (equal to probability for set particle to be at a certain site), the
combined probability distribution is the multiplication of the random variables.

Example 5.1.1. Take 2 particles and two sites they can be at. (in physics these sites are unique
quantum mechanic solutions).
­classic particles: If the particles are classic particles i.e. they can be distinguished from one another.
There are 22 possible states the system can be in.

5.1.2. Fermions
Fermions are particles that have odd eigenfunctions of the Schrödinger equation. As a result of this
they do not have a quantum solution with 2 of the exact same spin­orbital. In practice this means there
is no way 2 fermions are in the exact same quantum state and therefore not in the same spin­orbital.

Example 5.1.2. If we have 2 fermions that can occupy two orbitals, when these orbits are quantum
mechanical identical for both particles there is only one way these particles can distribute, one in each
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spin­orbital.

5.1.3. Bosons
Bosons, like fermions are indistinguishable particles. Therefore one cannot simply multiply the individ­
ual probability densities. There is no difference between the order of the particles as they all are equal.
Therefore when we describe a state of the system it is a combination of each orbital and how many
particles are in that orbital. This also corresponds to all states of the system possible.

Example 5.1.3. If we take two Bosons that can occupy any combination of two sites (quantum states
of the single particle) there are 3 ways that the particles can be distributed:
­ two particles at site A
­ two particles at site B
­ one particles at site A and one at site B
It turns out that when there is no interaction between the particles and the sites are distinguishable, but
otherwise equal the probability for the location of the particles is uniform and therefore in this example
when we look at the state of the system there is a 1/3 chance to find the system in one of the states
enumerated above.

When we assume all states have the same energy in theory all possible states of the system have the
same probability in equilibrium. However different particle types have different states that are valid as
discussed above. Therefore the equilibrium probability distribution is constant for all states.

We can take the set of these states as Ω for a zero range process and in order to model particle
movement design Zero range processes such that their detailed balance is equal to the equilibrium of
a system of particles in quantum states.

5.1.4. Equilibrium positions for different particle types
To make the different particle types even more clear we will calculate the equilibrium probability distri­
bution for N particles that can be at L different sites in case the particles behave classical, fermion like
or boson like.

Classical particles
The number of (micro)states is 𝐿𝑁 every particle has 𝐿 places it can be. Every combination is valid as
the particles are distinguishable.

Fermions
The number of (micro) states for fermions is (𝐿𝑁) since there can be only one particle per site it is any
group of size N out of L possibilities. Note that the number of sites must be larger than the number of
particles.

Bosons
Now for bosons it is (𝑁+𝐿−1𝑁 ). In order to see this think of a line of N+L­1 sites and pick L­1 of them
random. The ones picked indicate a next orbital, the length of connected not chosen sites is the number
of particles at that site. This is a bijection between the set of states and 𝐿 − 1 choices out of a set of
𝑁 + 𝐿 − 1 and therefore the number of possible distributions of 𝑁 bosons over 𝐿 sites is (𝑁+𝐿−1𝐿−1 ) =
(𝑁+𝐿−1𝑁 ).

5.2. Equal rates and counting states
5.2.1. Classic particles
In the previous section the states are counted. In this section we will show how we can make a zero
range process with the same probability distribution.



5.3. Probability and energy 27

Presume all rates of a system of a set number of particles 𝑁 in set number of sites 𝐿 is the same
for all sites. Take this rate 𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑐 ∗ 𝜂𝑖 now we calculate the equilibrium position.

𝜈𝐿,𝑁(𝜂) =
∏𝐿−1𝑖=0

1
∏𝜂𝑖𝑗=1 𝑐∗𝜂𝑗
𝑍𝐿,𝑁

=
1
𝜂𝑖!

∑𝜂′∶∑𝐿−1𝑖=0 𝜂′𝑖=𝑁
1
𝜂′𝑖 !

(5.1)

Now we calculate Δ the number of ways one can have 𝑁 unique particles distributed as 𝜂 over 𝐿 sites.

Δ𝜂 =
𝑁!

∏𝐿−1𝑖=0 𝜂𝑖
(5.2)

If now we want to know the equilibrium distribution of 𝑁 independent walks over length 𝐿 we have to
normalize Δ

Δ𝜂
∑𝜂′∶∑𝐿−1𝑖=0 𝜂′𝑖=𝑁

Δ′𝜂
=

1
𝜂𝑖!

∑𝜂′∶∑𝐿−1𝑖=0 𝜂′𝑖=𝑁
1
𝜂′𝑖 !

(5.3)

And thus Δ𝜂 and 𝜈𝐿,𝑁(𝜂) have the same equilibrium distribution.

5.2.2. Bosons
Now when we take a system where 𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑐 ∗ 𝟙(𝜂𝑖)

𝜈𝐿,𝑁(𝜂) =
∏𝐿−1𝑖=0

1
∏𝜂𝑖𝑗=1 𝑐

𝑍𝐿,𝑁
=

1
𝑁

∑𝜂′∶∑𝐿−1𝑖=0 𝜂′𝑖=𝑁
1
𝑁

(5.4)

and we get the result that all distributions of particles are equally likely in equilibrium, this is the boson
behaviour from the previous section.

But we can describe more zero range processes such that they have the same distribution as a boson
gas with all states equally likely. If we have all states equally likely and we have detailed balance it
must be true that

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑐(𝜂𝑖,𝑗 , 𝜂) (5.5)

But this can change for any pair 𝑖, 𝑗. We can make a symmetric matrix 𝐶 of size 𝐿 × 𝐿 where

𝐶𝑖,𝑗𝟙𝜂𝑖>0(𝜂𝑖) = 𝑐(𝜂, 𝜂𝑖,𝑗) (5.6)

Here the symmetry of the matrix guarantees symmetry in the rates, 𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑐(𝜂𝑖,𝑗 , 𝜂). This is be­
cause the indication function is symmetric for 𝜂𝑖 ≠ 0 and 𝜂𝑖,𝑗𝑗 ≠ 0. If 𝜂𝑖 = 0 we get 𝜂𝑖,𝑗𝑖 = −1 and this is
not a valid state. 𝜂𝑖,𝑗𝑗 cannot be zero as it is the state where we have one particle hop from i to j.

In summary, for two states 𝜂, 𝜉 in a zero range system, if there are 𝑖, 𝑗 ≤ 𝐿 such that 𝜉 = 𝜂𝑖 , 𝑗 than
we have 𝑐(𝜂, 𝜉) = 𝑐(𝜉, 𝜂) = 𝐶𝑖,𝑗 and if there are not such 𝑖, 𝑗 ≤ 𝐿 we have 𝑐(𝜂, 𝜉) = 𝑐(𝜉, 𝜂) = 0. This
results in an equilibrium position where all states of the system are equally likely.

5.3. Probability and energy
In statistical physics, however, the equilibrium distribution is influenced by the energy of that state. In
this thesis we will presume every particle has an energy corresponding to the site it belongs to. The
total energy 𝐸 of a state 𝜂 is the sum of the energy 𝐸𝑖 of each site 𝑖 times the number of particles in set
site 𝜂𝑖.

𝐸(𝜂) =
𝐿−1

∑
𝑖=0
𝐸𝑖 ∗ 𝜂𝑖 (5.7)
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Now for the equilibrium distribution 𝜇 depends on the temperature according to

𝜇(𝜂) ∝ 𝑒−
𝐸(𝜂)
𝑘𝑏𝑇 (5.8)

where 𝑇 is the temperature in Kelvin, and 𝑘𝑏 is the Boltzmann constant. This needs to be normalized
so that ∑𝜂∈Ω 𝜇(𝜂) = 1.

Thus comparing the equilibrium probability density 𝜇 of a state �̂� with energy �̂�, and state �̆� with energy
�̆� we know

𝜇(�̂�)
𝜇(�̆�) = 𝑒

�̆�−�̂�
𝑘𝑏𝑇 (5.9)

If we now take some 𝜂 such that 𝜂𝑖 ≠ 0 and 𝜂𝑖,𝑗 (𝜂𝑖,𝑗𝑗 ≠ 0 is guaranteed as 𝜂𝑖,𝑗𝑗 = 0 ⟹ 𝜂𝑗 = −1 is not
possible). Take the energy of these sites as defined in 5.7. Now𝐸(𝜂) = ∑𝑖 𝜂𝑖∗𝐸𝑖 and𝐸(𝜂𝑖,𝑗) = ∑𝑖 𝜂

𝑖,𝑗
𝑖 ∗𝐸𝑖.

𝜇(𝜂)
𝜇(𝜂𝑖,𝑗) = 𝑒

∑(𝜂𝑖−𝜂
𝑖,𝑗
𝑖 )𝐸𝑖

𝑘𝑏𝑇 = 𝑒
𝐸𝑖−𝐸𝑗
𝑘𝑏𝑇 (5.10)

Take rates such that

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝑐(𝜂𝑖,𝑗 , 𝜂)𝑒
𝐸𝑖−𝐸𝑗
𝑘𝑏𝑇 (5.11)

and the system will be in equilibrium for bosons with the energy of the states as prescribed.

A more explicit method to express the rates is obtained using the matrix 𝐶 as in equation 5.6. Now the
rates

𝑐(𝜂, 𝜂𝑖,𝑗) = 𝐶𝑖,𝑗𝑒
𝐸𝑖−𝐸𝑗
2𝑘𝑏𝑇 (5.12)

satisfies equation 5.10 and therefore is in detailed balance for 𝜇 that satisfies equation 5.8.

Example 5.3.1. Lets take a 2 particle 2 site system but now for 𝐸2 − 𝐸1 = 𝑘𝑏𝑇. Now we calculate the
equilibrium distribution. Notate [2, 0] the state where there are 2 particles in state 1 and 0 particles in
state 2.

𝜇([2, 0]) = 𝜇([1, 1])𝑒−1 = 𝜇([0, 2])𝑒−2 (5.13)

As these are all possible states and we get the canonical ensemble

𝑍2,2 = 1 + 𝑒−1 + 𝑒−2 (5.14)

and we get

𝜇([2, 0]) = 1
1 + 𝑒−1 + 𝑒−2

𝜇([1, 1]) = 𝑒−1
1 + 𝑒−1 + 𝑒−2

𝜇([0, 2]) = 𝑒−2
1 + 𝑒−1 + 𝑒−2

(5.15)

5.4. Bose­Einstein condensation
5.4.1. States of matter
Bose Einstein condensate is a state of matter. The most commonly known states of matter are solid,
liquid and gas. In solids particles have a set place, in liquids particles can move, but the particles stay
together and therefore occupy a non variable volume. gasses have particles that are free to move apart
from one another.

However in solids, fluids and gasses particles have a distinct place, and therefore behave as clas­
sical particles. In all these cases an increase in particles means that in constant volume the pressure
increases and at constant pressure the volume increases.
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When thematter becomes a Bose Einstein condensate themaximum pressure of the system is reached
and adding more particles in the same volume will not increase pressure.

In statistical physics we have a chemical potential �̂� that has a relation to the expected number of
particles at a site. In this thesis we use �̂� for the chemical potential to prevent confusion with 𝜇 the
probability density function.
For bosons the expected number of particles at a site is given by the Bose Einstein distribution as we
will show in 5.4.2

�̂�(𝐸𝑖) =
1

𝑒
𝐸𝑖−�̂�
𝑘𝑏𝑇 − 1

(5.16)

When the chemical potential goes to the the energy of the state the number of particles in that state
goes to infinity.

This asymptotic behaviour makes it problematic that when the chemical potential �̂� ⟶ 𝐸0 where
𝐸0 = min(𝐸𝑖), the total number of particles in the system is limited. At this point the equivalence
of ensembles holds no more. For the particles added the entropy of being in a higher energy state is
equal to the increase in energy to get to these states at that temperature. Therefore the likelihood of
being in these higher energy states does not increase while the density of particles does increase.

For classical particles this does not happen because they all have independent multiplicity. Fermions
simply cannot be at the same site. Therefore this can only happen with bosons.

5.4.2. Bose Einstein distribution
For systems where the energies are distributed as in section 5.3 the grand canonical ensemble be­
comes [5].

𝒵 = ∏
𝑗=site

∞

∑
𝑛𝑗=0

𝑒𝛽(�̂�−𝐸𝑗)𝑛𝑗 (5.17)

This leads to a converging probability distribution when the chemical potential �̂� ≤ 𝐸𝑖 for all sites 𝑖. This
probability distribution is known as the Bose Einstein distribution

𝑛𝑖 =
1

𝑒𝛽(𝐸𝑖−�̂�) − 1 (5.18)

5.4.3. Infinite BEC
In section 9.3 in[StatPhys] it is shown that a 3D ideal Bose gas that is dense enough at a certain fixed
temperature T creates a Bose Einstein condensate. For such a system the energy of a free particle is
𝐸kin =

𝑝2
2𝑚 = ℏ2𝑘2

2𝑚 , and we get

𝑁 =∑
𝑘

1

𝑒𝛽(
ℏ2𝑘2
2𝑚 −�̂�) − 1

≃ 𝑉
(2𝜋)3 ∫

∞

0

1

𝑒𝛽(
ℏ2𝑘2
2𝑚 −�̂�) − 1

4𝜋𝑘2𝑑𝑘, (5.19)

where 𝑁 is the total number of particles and 𝛽 = 1
𝑘𝑏𝑇

, 𝑘𝑏 the Boltzmann constant and 𝑇 the absolute
temperature.

This integral can be rewritten so that we get

𝑁
𝑉 =

4(2𝑚𝜋𝑘𝑏𝑇)
3
2

√𝜋 ℎ3
∫
∞

0

𝑥2
𝑒𝑥2−𝛽�̂� − 1𝑑𝑥 (5.20)

This integral is finite, and when 𝛽�̂� ⟶ 0 we have 4
√𝜋 ∫

∞
0

𝑥2
𝑒𝑥2−𝛽�̂�−1𝑑𝑥 ≃ 2.61.

This means there is only a set number of particles that can be in this distribution. However there
is no such limitation on the physical system, as any orbital has no limit on the number of particles.
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What will happen is that the chemical potential reaches the lowest energy orbital as the number of
particles increases. Here the ≃ symbol in equation 5.19 will not be valid and the first term of this sum
must be taken separately. As �̂� ⟶ 0 we have 𝑛0 ⟶ ∞. For all other orbitals the chemical potential
stays the same and occupation of those orbitals does not change and we get

𝑁 = 𝑁0 +
4(2𝑚𝑘𝑏𝑇)

3
2

√𝜋ℎ3
𝑉∫

∞

0

𝑥2
𝑒𝑥2 − 1𝑑𝑥 (5.21)

The result is a system with 2 regimes. If the particle density is low enough all orbitals get extra particles.
As the particle density increases then at some density all particles added by increasing the density go
to the orbit with the lowest energy. The state where all particles go to the lowest energy site is known
as a Bose­Einstein condensate.

This also happens for other systems. We will explore the case of harmonic oscillators in 1D and 3D.
To do this we use we use that the total number of particles

𝑁 = ∫
∞

0

𝑔(𝐸)
𝑒𝛽(𝐸−�̂�) − 1𝑑𝐸 (5.22)

where 𝑔(𝐸) is the density of states over energy for particles. For any systems, if we change all the
energies of the orbitals by the same amount, and change the chemical potential by the same amount
we will have the exact same system. Therefore we can make the systems such that the lowest energy
orbital has energy 0. Therefore we also have �̂� ≤ 0.

Example 5.4.1 (1D harmonic oscillator). Wehave an oscillator that has energy levels [12ℏ𝜔,
3
2ℏ𝜔,

5
2ℏ𝜔, ..., ∞].

But we can compensate all with −12ℏ𝜔 and we have energy levels [0, 1, 2, ..., ∞] ∗ ℏ𝜔.

Unlike the free boson gas this does not have a set volume 𝑉, however we can make the system larger
by taking a wider potential energy function because a wider potential energy function, i.e. the spatial
distribution becomes larger, creates higher density spacing of energy levels. So we have a set density
𝜌 = 𝑁 ∗ ℏ𝜔.

For this system when 𝑁 ⟶ ∞ we have 𝑔(𝐸) = 1
ℏ𝜔 therefore.

𝑁 = 1
ℏ𝜔 ∫

∞

0

1
𝑒𝛽(𝐸−�̂�) − 1𝑑𝐸 (5.23)

However this integral does not converge. As explained in [3] for finite numbers of bosons particles a
transition to the BEC phase occurs. It is well known that the thermodynamic limit predicts that a Bose
Einstein Condensate is not possible for this 1D harmonic oscillator system.

Example 5.4.2. Now the sites correspond to those of a 3D harmonic potential, thus we have the same
energy levels as 5.4.1 but now the levels have multiplicity (𝑛+1)(𝑛+2)

2 for energy 𝐸𝑛 = 𝑛ℏ𝜔. Also the
volume is 3 dimensional thus we get 𝜌 = 𝑁(ℏ𝜔)3.

Now we have

[3𝐷ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟]𝑔(𝐸) =
( 𝐸ℏ𝜔 + 1)(

𝐸
ℏ𝜔 + 2)

2ℏ𝜔 (5.24)

note here that this is the density of states, as we have that there is an energy level every ℏ𝜔 this is
compensated for in the denominator.

Now as we have the limit ℏ𝜔 ⟶ 0 we get 𝑔(𝐸) ⟶ 𝐸2
2(ℏ𝜔)3 and therefore

𝑁 = 1
2(ℏ𝜔)3 ∫

∞

0

𝐸2
𝑒𝛽(𝐸−�̂�) − 1𝑑𝐸 =

(𝑘𝑏𝑇)3
2(ℏ𝜔)3 ∫

∞

0

𝑥2
𝑒𝑥−𝛽𝜇 − 1𝑑𝑥 ≃

(𝑘𝑏𝑇)3
2(ℏ𝜔)3 ∗ 2.404 (5.25)
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Now at a certain temperature the density in the system is finite. This is when 𝜌 = 1, 202(𝑘𝑏𝑇)3 [5]. If
the density becomes any larger the excess particles all go to the ground level. For the infinite sized
system this will mean that there is an infinite amount of particles in the state with the lowest energy.

In a more general sense for systems of infinite size we can determine a density of particles. We can
compute the resulting chemical potential. If there is a point where the chemical potential has to become
higher than the lowest energy state that is not possible as the equilibrium will always want to put more
particles in that state.

Therefore we have a system where if 𝜌 ≤ 𝜌0 for some 𝜌0 such that �̂� = min𝑖{𝐸𝑖}, then we have
for any orbital 𝑖 with energy 𝐸𝑖, the expected number of particles in that site is given by equation 5.18,
where �̂� is such that the density of the system is correct. When 𝜌 > 𝜌0 we get in a new regime where
the number of particles in the lowest energy becomes macroscopic. Here for the limit of large systems
we have 𝑁 ⟶ ∞, and 𝑁0

𝑁 > 0 and thus 𝑁0 ⟶ ∞ which means that �̂� ⟶ 𝐸0 and thus that in the limit
the chemical potential becomes equal to the lowest energy of sites. The expected number of particles
in any orbital other than the lowest energy one will be determined with equation 5.18 again. For the
lowest energy site infinitely many particles will be present. We can determine the part of the total par­
ticles by 1− 𝜌0

𝜌 , as
𝜌0
𝜌 will be the fraction of particles in the non condensed states. This is because the

Bose­Einstein distribution for �̂� =min𝑖{𝐸𝑖} this will be the number of particles in the excited sites.

5.4.4. Finite BEC
In the previous subsection we presume the system size to be infinite. However in chapter 6 we do
simulations and we can only do simulations on finite systems. Also a Bose Einstein condensate made
out of particles that spontaneous disappear will probably be relatively small for a system. Therefore we
explore how Bose­Einstein condensation changes when the system is not infinitely large.

For this section we will presume the system is large enough that the grand canonical ensemble is
a good approximation [3]. However, the system is not so large that we can presume that the sum over
all states becomes an integral over energy.

We take the sum of the expected number of particles over all sites with 𝑥 = 𝑒−𝛽ℏ𝜔 and the fugac­
ity 𝑧 = 𝑒𝛽�̂� that is related to the chemical potential.

In [3] this procedure is used to compute the total number of particles in a 3D harmonic potential with
energy levels 𝑛ℏ𝜔 to be.

𝑁 =
∞

∑
𝑗=1

𝑧𝑗
(1 − 𝑥𝑗)3 (5.26)

Now one can numerically determine the fraction of particles at energy 0 from the number of particles
and the temperature. In [3] this is done for 𝑁 = [100, 1000, 10000] and also computed analytically for
the infinite system. In chapter 6 we will compare the 𝑁 = 100 results from [3] to the results of the
computations done in that chapter based on a Zero Range process.

5.5. Annihilating particles BEC
A condensate of particles that annihilate quickly, for example positronium atoms, is not realized in phys­
ical experiments yet. In this section we have seen that a zero range process has the same equilibrium
distribution as the known systems, and can be used to get a theory about what happens if we have
BEC with particles that annihilate. In section 5.3 we have seen that bosons in equilibrium have the
same probability distribution as a zero range process with rates as in equation 5.12. In these models
we can add an annihilation term like we did in chapter 4 for a system with a single slow site.

In this thesis we will not analytically compute the differential equations for these systems, as it is a
more complicated than the single slow site problem. Therefore we will approximate these differential
equations and then numerically calculate the results of those equations.





6
Simulations

In this chapter some simulations will be discussed. There are two concepts that are verified with these
simulations. First we will do some realizations of the system in chapter 4. After that we will introduce
an approximation of a zero range process designed to imitate a 3D harmonic oscillator in its equilibrium
distribution. Then this model is compared to the results of [3]. Then we can take the same model but
add an annihilation rate and see how this changes the system.

6.1. Single slow site simulation
In chapter 4 we computed the dynamics in the limit of large systems for a system with a single slow site
and uniform transitions. In this section we will do a simulations of such systems, but finite in size. The
simulations will be done for a range of system sizes so we should see the simulations will look more
similar to the system the larger of a system we simulate.

The simulations are realizations of a stochastic system that has a state space that increases exponen­
tially with system size, i.e. #Ω = 𝒪(𝑒𝐿). Therefore it makes no sense to analyze every site combined.
We can however compute the expected number of particles in the slow site and use statistics on that.

The goal of these simulations is to show how the simulations converge on the results of equations
4.16 and 4.17 when the system size increases.

6.1.1. Method
The simulations are done using python. The exact code can be found in the appendix A. This code is
based on a code by Stefan Grosskinsky

We start with a range of number of sites of the set [64, 128, 256, 512, 1024, 2048]. For each of these
the simulation is executed.

We create an array of length equal to the number of sites, where each element of the array corre­
spond to the number of particles in that site. The time until the next jump is a random value, however
the time it takes to have a certain number of jumps is Poisson distributed. In the simulations this is not
taken into account. What we do compute is the total rate at which any hop or annihilation happens and
take the time step.

Initial condition
This simulation is a random process. In this simulation the initial state is the equilibrium position of the
system without annihilation. We need a realization of the equilibrium distribution as we need a specific
state 𝜂 for the system to be in.

We have for 𝐿 ⟶ ∞ that the probability to have 0 particles in the slow site 𝑃(𝜂0 = 0) ⟶ 0. For
detailed balance we need rate 𝑐 from the slow site to any other site and rate 1 from any other site 𝑖 to
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the slow site that
𝑐 ∗ 𝑃(𝜂0 ≠ 0) = 1 ∗ 𝑃(𝜂𝑖 ≠ 0) (6.1)

To compute the non­annihilation equilibrium for every non­slow site we take example 3.2.4 as this has
the indication function for transition rates. So 𝜇𝑖 is a geometric distribution, and as 𝑃(𝜂0 ≠ 0) ⟶ 1
we get 𝑃(𝜂𝑖 ≠ 0) = 𝑐 we have a geometric distribution function with probability 𝑐 to have at least one
particle:

for 𝑖 ∈ {1, ..., 𝐿} we have 𝑃(𝜂𝑖 = 𝑛) = (1 − 𝑐)𝑐𝑛 (6.2)

Now we simply take a realization of this probability distribution as our initial condition.

The slow site has condensation and therefore we cannot use the product measure as the number
of particles at this site. We do know the total number of particles in the system, and the number of
particles in all other sites.

∑𝐿−1𝑖=0 𝜂𝑖
𝐿 = 𝜌 (6.3)

and therefore

𝜂0 = 𝐿 ∗ 𝜌 −
𝐿−1

∑
𝑖=1
𝜂𝑖 (6.4)

Here it is important that the system forms a condensate for these values of 𝜌, 𝑐, and that we have the
limit 𝐿 ⟶ ∞. In this thesis we are only interested in cases where the initial condition has condensation,
and we estimate the limit 𝐿 ⟶ ∞ with these simulations.

A single iteration
Now we have an initial state of the system 𝜂, we are going to simulate how the state evolves at random
in accordance to the transition and annihilation rates.

In this simulation we take uniform transition rates to hop out of every non­slow site to any other site to
be 1, and the annihilation rate to be 0.5. However in the code we divide every rate by a factor 𝐿, and
later re scale the time by a factor 1/𝐿 to end with the same system.

We define ’rate’ as the sum of all transition rates and annihilation rates that are possible. Now we
take a random number between 0 and ’rate’. If this is smaller than the sum over all transition rates we
make a transition, if not we make an annihilation step.

For a transition step we take a random site to jump from. If this site happens not to have a parti­
cle in it we do nothing. If there is a particle at this site we check whether it is the slow site, if this is the
case we need to compensate the transition rate from 1 to c and therefore we need to take a chance c
for a random transition to happen. For any other site we simply take a random site to hop to.

If we have an annihilation step we have to randomly pick one particle where all particles are equal.
Next we have a lower resulting annihilation rate as there is one less particle. To compensate for this
the total rate needs to decrease by the rate of a particle to annihilate.

The simulation is executed for slow site rate 𝑐 = 0.5, an initial density of particles 𝜌 = 5 and the
annihilation rate 𝑎 = 0.5. We continue evolving 𝜂 this way until there are no more particles in the sys­
tem.

This system evolves over time, however we never specified time. We do have rates. All rates must be
expressed over the same time unit. This is the time 𝑡 we have in graph 6.1.
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6.1.2. Results
We want to compare the results to the result of equation 𝑔(𝑡)(corresponds to non­slow sites) and ℎ(𝑡)
(corresponds to the slow site), from equations 4.16 and 4.17. As no analytical solution to this set of dif­
ferential equations is known we approximate the solution of this initial value ordinary partial differential
equation with the python odeint function from the scripy.intergrate library.

We plot the graphs 𝑔(𝑡) and ℎ(𝑡) in a plot with the number of particles in the slow site divided by

𝐿, 𝐻𝐿(𝑡) = 𝜂0(𝑡)
𝐿 and the number of particles in all other sites combined divided by 𝐿, 𝐺𝐿(𝑡) = ∑𝐿𝑖=1 𝜂𝑖(𝑡)

𝐿
for 𝐿 ∈ [64, 128, 265, 512, 1024, 2048]. This is shown in figure 6.1.

Figure 6.1: 𝐺𝐿(𝑡) and 𝐻𝐿(𝑡) realizations for 𝐿 ∈ [64, 128, 256, 512, 1024, 2048], together with 𝑔(𝑡) and ℎ(𝑡), for a slow site
system with uniform transition rate 1 exempt for the slow site rates 0.5 and an annihilation rate 0.5

This graph is a little cluttered, but we can see that both 𝐺𝐿(𝑡) ⟶ 𝑔(𝑡) for 𝐿 ⟶ ∞ and 𝐻𝐿(𝑡) ⟶ ℎ(𝑡) for
𝐿 ⟶ ∞. We did prove this in chapter 4, but here we gain some intuition on how this happens.

It seems the function 𝑔(𝑡) goes to some form of equilibrium at 0.5 until the condensate ends. Then
it becomes just an exponential decay. Intuitive this can be understood. The condensate guarantees
that particles from the slow site keep going to the other sites as it will always have rate 𝑐 from the slow
site to any other site. The system will go to the equilibrium where the rates going in and out of a site are
equal. When we introduce an annihilation term we add an outgoing therm for every site. This means
the equilibrium changes.

Also 𝑔(𝑡) + ℎ(𝑡) must be exponential decay as it is the sum over all states divided by 𝐿 as

𝑑
𝑑𝑡 (𝑔(𝑡)+ℎ(𝑡)) = −

𝑔(𝑡)
1 + 𝑔(𝑡) +𝑐𝟙ℎ(𝑡)>0−𝛼𝑔(𝑡)+

𝑔(𝑡)
1 + 𝑔(𝑡) −𝑐𝟙ℎ(𝑡)>0−𝛼ℎ(𝑡) = −𝛼(𝑔(𝑡)+ℎ(𝑡)) (6.5)

We can check this for the simulations in figure 6.1 by adding up 𝐺𝐿 + 𝐻𝐿 for all simulated L.
In figure 6.2 we see that in the log plot the number of particles behaves linear, thus the number of
particles decays exponentially. When the number of particles left in the system becomes small, the
variance increases.
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Figure 6.2: 𝐿𝑛(𝐺𝐿(𝑡)+𝐻𝐿(𝑡)) realizations for 𝐿 ∈ [32, 64, 128, 256, 512, 1024, 2048], for a slow site systemwith uniform transition
rate 1 exempt for the slow site rates 0.5 and an annihilation rate 0.5

6.2. Annihilating bosons in 3­Dimensional harmonic potential
In this section we will not make a realization of the random process, but rather approximate the prob­
ability distribution for set times. Because #Ω = 𝒪(𝑒𝐿) computing every state is too time intensive.
Therefore we presume the probability distribution 𝜇 to be a product of the probability distribution 𝜇𝑖 of
each site 𝑖. Each 𝜇𝑖 is a probability distribution that is a function of time.

In order to test if this is a reasonable assumption we can make the annihilation rate 0 and compare the
equilibrium distribution to the results of [3].

6.2.1. Sites and their energy
First we need to set the energy of the sites the same as [3]. In order to do that we take

𝑁 =
∞

∑
𝑗=1

𝑧𝑗
(1 − 𝑥𝑗)3 (6.6)

where 𝑥 = 𝑒−𝛽ℏ𝜔, and 𝑧 = 𝑒𝛽�̂�. Now for an i times excited state the energy of that state is 𝑖ℏ𝜔. This
state will have multiplicity (𝑖+1)(𝑖+2)

2 .

We want to simulate a system that has infinite sites as it is a set of harmonic oscillator that has in­
finite eigenfunctions. The number of particles at those sites combined however is finite.

We can only simulate finite site systems, as the number of particles is finite there must be a finite
set of sites that contain the vast majority of particles. The expected number of particles at a site at set
temperature depends on the energy of that site. The higher the energy of the site the lower the number
of particles in those sites. Therefore we take only 𝑚 sites into account where according to the Bose
Einstein distribution the probability to have 0 particles at that site is less than 99%. This is roughly equal
to taking the expected number of particles in this site to be equal to 0.01.

We will use the same energy of states as in section 5.4.4. From here we can know 𝛽ℏ𝜔. For the highest
energy site 𝑚 taken into account and 𝑃𝑚 the expected number of particles at that site, 𝐸𝑚 = 𝑚𝛽ℏ𝜔 is
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the energy of the highest energy site. When 𝐸𝑚𝛽 >> 0, �̂� ⟶ 0 we get

𝑃𝑚 =
1

𝑒𝐸𝑚𝛽 − 1 ≃ 𝑒
−𝐸𝑚𝛽 (6.7)

Which leads us to

𝑚 ≃
ln( 1𝑃𝑚 )
𝛽ℏ𝜔 (6.8)

and we pick 𝑚 to be an integer such that the probability is about 0.01 to find a particle at a site with
energy 𝑚ℏ𝜔 at a certain temperature. Now 𝑚 is the highest energy state number that we include in
our computation.

6.2.2. Rates from energy
This simulation will be done using the transition rates explored in section 5.3. We take the elements
𝑐𝑖,𝑗 of matrix 𝐶 from equation 5.12 equal to 1

(|𝑖−𝑗|)3 .

Because this simulation does not consider the general number of particles to be given, it results in
states that are not possible. This effect can be compared to a grand canonical product measure that
has nonzero entries for any number of particles. Only when we take the canonical ensemble these are
multiplied by 0 for finite systems.

Because it is not possible to normalize the total distribution to the states that have 𝑁 particles with­
out a lot of computations, in this approximation the probability distribution of each site is computed.
This approximation is similar to taking the grand canonical ensemble, we prescribe the total expected
number of particles, but do not prohibit states that do not have the exact number of particles. With this
approximation for every site we will end up with an equilibrium from the product measures. However
in [3] the distribution of particles is presumed to follow the Bose­Einstein distribution, this by itself is a
result of the grand canonical ensemble. In practice when we work with the expectation of the number
of particles in the ground state this is not much of a problem as the probability for 0 particles to be in
the ground orbit is small in both canonical and grand canonical ensemble.

This simplification does mean that the number of particles in states is not limited to the total num­
ber of particles set before, only their expectation. Therefore we have to consider 𝜇𝑖(𝑘) ≠ 0 for 𝑘 > 𝑁.
These 𝜇𝑖 have to be considered. The highest number of particles taken into account is 2𝑁. The prob­
ability to have more than 2𝑁 particles in one state according to the grand canonical ensemble must be
insignificant for a system with 100 particles.

6.2.3. Differential equation
Now we have the rates, we can make the probability density functions change over time according to
those rates, and therefore satisfy a set of differential equations. Every 𝜇𝑖 is 2𝑁 dimensional. Therefore
on the matrix 𝜇 we can apply the Forward Euler method [2]. In order for the Forward Euler method to
be stable we need an amplification factor that is sufficiently small.

𝑑𝜇𝑘𝑖
𝑑𝑡 = −∑

𝑗≠𝑖
𝑐𝑖,𝑗𝜇𝑘𝑖 𝟙(𝑘 > 0) +∑

𝑗≠𝑖
𝑐𝑖,𝑗𝜇𝑘+1𝑖 +∑

𝑗≠𝑖

2𝑁

∑
𝑙=1
𝑐𝑗,𝑖𝜇𝑙𝑗(𝜇𝑘−1𝑖 ∗ 𝟙(𝑘 > 0) − 𝜇𝑘𝑖 ) (6.9)

where 𝜇𝑘𝑖 is the probability to have 𝑘 particles at site 𝑖. Now for stability it is not realistic to compute all
eigenvalues of this problem but we can use that 𝑑𝜇𝑘𝑖 << 𝜇𝑘𝑖 for all 𝑖, 𝑘 will probably be stable. We take
𝑐𝑖,𝑗 =

1
𝐿 − 𝑒

𝛽(𝐸𝑖−𝐸𝑗) and we get

∑
𝑗≠𝑖
𝑐𝑖,𝑗 ≤ 𝑒𝑚 ≤ 100 = 𝒪(1) (6.10)

and because every 𝜇𝑖 is a probability distribution
2𝑁

∑
𝑙=1
𝜇𝑙𝑖 ≤ 1 (6.11)
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and thus we need 𝑑𝑡 ≤ 1
400 . This is not a prove of stability, but rather an estimation for 𝑑𝑡 needed for

stability.

6.2.4. Computation
The Python code is presented in appendix B. Here we will explain the steps taken.

We start from the initial condition with all 100 particles in the ground orbit. Thismeans 𝜇𝑡=0([100, 0, ..., 0]) =
1.
First we establish a function called ’redis’, this function has arguments: the matrix 𝐶, the energies 𝐸𝑖
and the number of sites. It returns a matrix of transition rates, so 𝑐𝑖,𝑗 as its entries.

Now we set the number of particles ’Np’ to be 100. The temperature to be a range in terms of the
condensation temperature of the infinite system to be an element of the array [0.1, 0.2, ..., 1.2] using a
for loop.

We compute from [3] that the energy density corrected for temperature, 𝛽ℏ𝜔, in the code notated
as ’bhw’, to be

𝛽ℏ𝜔 = 1
𝑇
𝑇𝑐
𝑁
1
3 ∗ 𝑔3(1)

(6.12)

we define the highest energy site 𝑚 to be considered ’Nsmac’ from the Bose­Einstein distribution. We
presume condensation and therefore �̂� ≃ 0. Now for the i’th excited state we get the expected number
of particles in that state:

𝔼(𝜇𝑖(𝛽ℏ𝜔)) ≃
𝑒−𝛽𝑖ℏ𝜔

1 − 𝑒−𝛽𝑖ℏ𝜔 (6.13)

Now for 𝔼(𝜇𝑖max) = 0.01, we use 6.8 to compute ’Nsmac’. Now take 𝑖max = 𝑚 the closest integer to
ln(100)
𝛽ℏ𝜔 . This is how many energy levels we consider. The multiplicity of energy level 𝑖 = (𝑖+1)(𝑖+2)

2 . this
needs to be taken into account.

Now for every site we first compute:

∑
𝑗≠𝑖
𝑐𝑖,𝑗 (6.14)

and

∑
𝑗≠𝑖

2𝑁

∑
𝑙=1
𝑐𝑗,𝑖𝜇𝑙𝑗 (6.15)

because these are common factors in every difference equation. Than we change every 𝜇𝑘𝑖 with

𝜇𝑘𝑖 (𝑡 + Δ𝑡) = 𝜇𝑘𝑖 (𝑡) +
𝑑𝜇𝑘𝑖 (𝑡)
𝑑𝑡 ∗ Δ𝑡 (6.16)

We repeat this for every site. Than we iterate 25000 times. We compute the average number of par­
ticles in the slow site ℰ(𝜇0) = ∑𝑘 𝜇𝑘0𝑘, divide that by the total number of particles and compare the
resulting distribution to the graph in [3] figure 1. Here we see that the two graphs for 100 particles
behave similar, However when 𝑇 ⟶ 𝑇𝑐 we see the number of particles in the ground orbit becomes
smaller than the results of [3]. This is because we do not change the chemical potential. This means
the probability density function, we keep the same orbits and just increase the temperature.
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Figure 6.3: The number of particles in the ground state for a 100 particle 3D harmonic oscillator using [3] (left) and with the
numerical approximation done in this thesis (right).

6.2.5. Annihilation
Now we have a model of this system, we can add an annihilation term to the numerical method. This
factor will only apply to a single site probability density function 𝜇𝑖 which has elements 𝜇𝑘𝑖 where 𝑘 is
the number of particles in state 𝑖.

In this thesis we presume annihilation affects every particle individually. This means that annihila­
tion rate 𝑟 ∝ 𝑘. This is problematic to model with forward Euler for high 𝑘. However if we have a certain
probability distribution one can compute the probability distribution a certain time later using that the
particles behave as independent particles.

The probability for one particle to annihilate is known, simply the annihilation rate 𝑟 times the Δ𝑡 (for
small Δ𝑡). If we have k particles we have 𝑘 independent variables all with probability 𝑟Δ𝑡 to annihilate
from this we get a binomial distribution:

[𝜇𝑙𝑖(𝑡 = 𝑡0 + Δ𝑡)|𝜇𝑘𝑖 (𝑡 = 𝑡0) = 1] = (
𝑘
𝑙)(𝑟Δ𝑡)

𝑘−𝑙(1 − 𝑟Δ𝑡)𝑙 (6.17)

This is from one specific occupation. However we can simply sum over the initial probabilities and we
have the general case as this is a Markov process.

[𝜇𝑙𝑖(𝑡 = 𝑡0 + Δ𝑡)|𝜇𝑖(𝑡 = 𝑡0)] =∑
𝑘
𝜇𝑘𝑖 (𝑡 = 𝑡0)(

𝑘
𝑙)(𝑟Δ𝑡)

𝑘−𝑙(1 − 𝑟Δ𝑡)𝑙 (6.18)

Implementation in code

Now we take the equilibrium of the 3D harmonic potential at temperature 𝑇
𝑇𝑐
= 0.5 as computed before.

This will be the initial condition for the next simulation.

Nowwe keep evolving the same system but we take an annihilation rate in the series [0.001, 0.013 , 0.01,
0.1
3 , 0.1,

1
3 , 1]

times the redistribution rate of states with equal energy 𝑐. Now we plot the number of particles in the
slow site vs the total number of particles in the system, as well as the number of particles in the first
excited state vs the total number of particles.

For annihilation rates much slower than the redistribution rates 𝑟 << 𝑐 the redistribution is done for so
many times that the annihilation term is 0.03 times the redistribution rate. So for 𝑟 = 0.001𝑐 we do 30
re distributions without annihilation, than a annihilation step with 30 times the annihilation speed. This
is done to reduce computations.
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Figure 6.4: Number of particles in the ground state 𝑁0 (left) and all excited states 𝑁ex (right) for different annihilation rates all
starting from the equilibrium of the system without annihilation and 100 particles at temperature 𝑇

𝑇𝑐
= 0.5

Note here that 𝑁 ∝ 𝑒−𝛼𝑡 we use 𝑁 as the x­axis because this makes all graphs comparable. Because
the annihilation rates differ a factor 103 and therefore a graph with time as the x­axis would not be use
full.

On the right hand side of figure 6.4 we see that the slowest annihilation has the highest fraction of
its particles in the excited states. This is because this system is closest to the equilibrium. As there is
a condensate and we have fewer particles in the system they must come out of the ground orbit, since
when we add them they would also go there.
The same can be observed in reverse in the number of particles in the ground state. The more time
the system has to go to equilibrium means there are less particles left in the ground orbit.

Also like in section 6.1.2 the number of particles in the first excited site in figure 6.4(right) seems to
stabilize as long as there is a condensate if we have a not too fast annihilation rate. As the annihilation
rate increases the system has no time to form this semi equilibrium. At this point the annihilation is so
much faster than the redistribution.
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Discussion and conclusion

7.1. Conclusions
For a single slow site zero range process with uniform rates we have shown what the effect is of anni­
hilating particles.

Also we have a working model of a 3 dimensional harmonic oscillator that reasonably behaves as
the system described in [3]. However this is not exactly the same.

7.2. Discussion
7.2.1. Preservation of number of particles
In [3] it is presumed that the number of particles in the lowest energy state can be computed using the
grand canonical ensemble and chose �̂� so that the total number of particles is correct. However as we
see in this thesis, for boson particles that are in a zero range process have a geometric distribution for
the number of particles in the grand canonical ensemble. However when there is condensation prob­
ability distribution of particles at that site would behave like the canonical distribution and be more like
normal distribution all round the expected number of particles, as it is equal to the total number of parti­
cles minus the number of particles in the other states that each on their own are geometrical distributed.

In this report we do not explore whether the model used for the 3D harmonic potential in this the­
sis behaves like the method in [3]. However the distribution for the condensed site had a probability
distribution with a maximum probability close to the expected number of particles for the graphs used
in this thesis. This distribution is not explored in this thesis, but can be done in future research.

It is possible that this because we started with all particles in the condensation site, and is not yet
at the equilibrium of the differential equations in 6.2.3 but that this takes a longer time, and therefore
the realizations are closer to the canonical ensemble. It makes sense that as the rates as a function of
the number of particles in sites hardly change when the probability distribution of particles in the exited
sites is correct, as the condensation site is almost in all distributions has at least one particle. Therefore
the expectation of the number of particles in any sites does not change.

This effect however does not matter for annihilating particle systems as the particles in the system
have annihilated before it can go to this geometric distribution.

7.2.2. Recommendations
A possible way to improve the approximation of the 3 dimensional harmonic oscillator is that the higher
energy states are left out. But it is possible to make a term of classical behaving particles that also
have interaction with the system. As all these sites have low occupation it is possible to model them
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as classical particles. This would make it a lot less computationally intensive to estimate systems that
are larger.

Also as discussed in the introduction in practice a BEC formed from positronium would probably be
cooled using lasers. These lasers have an interaction with the positronium. We did not model anything
like this.

In order to find out whether the assumptions done in this thesis about dense positronium cannot be
verified as there is not yet an experiment where positronium is made dense and cold enough to be in
a BEC. This means we can only see if this model is a good approximation when such an experiment is
realized.

It might also be possible that annihilation’s for bosons in a particular site would not increase when
more than 1 particles is at this site, just like the transition rates. It is possible to implement this for the
3D harmonic oscillator computations in the future.

The system as simulated here requires there to be no interactions between particles. When one would
need to take any interactions between particles in different sites it cannot be modeled as a Zero range
process. For example a hard sphere interaction is not possible with a Zero range process as the rates
between states would depend on the occupation of other states.
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A
Python code used to simulate the single

slow site system with annihilation
# Load some packages (if you get an error, you need to install the package in the terminal)
import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg as lg
from scipy.stats import uniform
import time
from scipy.integrate import odeint
from cycler import cycler
monochrome = (cycler(’color’, [’k’]) * cycler(’marker’,[’’, ’.’, ’o’]))* cycler(’linestyle’, [’­
’, ’­­’, ’:’, ’­.’])
plt.rc(’axes’, prop_cycle = monochrome)
markn = 100
reps = 1

### Parameters ###

n = 8

Li=[32, 64, 128, 256]#, 512, 1024, 2048] ## of sites
tau = []
slow = []
non_slow = []

c=0.5 #rate for slow site
rho = 5

for i in range(len(Li)):
for r in range(reps):

L = Li[i]

lattice=np.arange(0,L)

a=.5/L #removal rate
nn=rho*L ##initial number of particles
lc=L­1.+c/c ##total

rate=lc+a*nn ##total jump rate
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N = nn+0 ## reset number of particles

wait=1./rate ##average waiting time
deltat=L*N*wait/500

conf=np.array([],dtype=int) ##output list

####### Initialize ##########

eta = np.random.geometric(p=c, size=L)­1 ##geometric initial condition
total = np.sum(eta) ##number of bulk particles

if (total<nn): ##rest on condensate, condensed initial condition
eta[0]+=(nn­total)
N=nn

else:
N=total

conf=np.array([eta]) ##storing full particle configurations (not necessary)

bulk=np.array([N­eta[0]]) ##number of bulk particles, condensate, and times list for plot
cond=np.array([eta[0]])
times=np.array([0])

t=0.0
nextout=deltat
sample = 0

while (N>0): # loop until done
while (t<nextout and N>0):

# wait=np.random.exponential(meanwait) # random holding time

if (uniform.rvs(0,rate) < lc): ##jump dynamics, choose a site
pos=np.random.randint(L)

# ll=len(��[pos])
if (eta[pos]>0):

if (pos==0):
if (uniform.rvs() < c):

eta[pos]­=1
pp=np.random.randint(1, L)
target=(pos+pp)%L
eta[target]+=1

else:
eta[pos]­=1
pp=np.random.randint(L)
target=(pos+pp)%L
eta[target]+=1

else: ##evaporation dynamics, choose a particle
pos=np.random.choice(lattice,1,p=(eta/N))
eta[pos]­=1
N­=1
rate ­=a
wait = 1./rate
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t+=wait

conf=np.append(conf,[eta],axis=0)
nextout+=deltat
bulk=np.append(bulk,N­eta[0])
cond=np.append(cond,eta[0])
times=np.append(times,t)

tau.append(times/L)
slow.append(cond/L)
non_slow.append(bulk/L)

#slove numerically pdv
def firstorder(g,t):

dgdt = c/L ­ (g/(g+1))/L ­ a*g
return dgdt

markf = int(len(slow[len(Li)­1]))
t = np.linspace(0, 10*L, 10001)
g = odeint(firstorder,1,t)
f = np.zeros(len(t))
for i in range(len(t)):

f[i] = rho*np.exp(­a*t[i]) ­g[i]
if f[i] < 0:

f[i] = 0
flipvalue = g[i]
flipnumber = i
break

for i in range(flipnumber, len(t)):
g[i] = flipvalue * np.exp(­a*t[(i­flipnumber)])

for x in range(len(Li)):
Lt = Li[x]
plt.plot(tau[x], slow[x], markevery=markf, label = ’s ’ + str(Lt))

plt.plot(t/L, f, markevery=markf, label=(’h(t)’))

for x in range(len(Li)):
Lt = Li[x]
plt.plot(tau[x], non_slow[x], markevery=markf, label = ’b ’ + str(Lt))

plt.plot(t/L, g, markevery=markf, label=(’g(t)’))

plt.legend()

plt.show()

and with another plot to make the second graph

for x in range(len(Li)):
Lt = Li[x]

plt.plot(tau[x], np.log(slow[x] + non_slow[x]) , markevery=markf, label = ’G+H’ + str(Lt))
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plt.legend()
plt.show()



B
Python code to simulate annihilating
bosons in a 3D harmonic potential

These approximations are done using several sections of code for graph ??:

import numpy as npy
import math as m
import matplotlib.pyplot as mpl
import pip

def redis(rates, energies, n):
dis = npy.zeros(len(energies))
for s in range(len(energies)):

if n != s:
dis[s] = rates[n][s]*npy.exp((energies[n]­energies[s])/2)

return(dis)

presO = 100 # order of magnetude to witch the higest energy state has to be non­
occupied
dtnorm = 0.004 #timestep relative to temperature = timestep at T=Tc0
Nps = [100] # number of particles
Tre = npy.arange(0.1, 1.4 ,0.05)
gamma = 0.9404989725 #=g3(1)^­(1/3)
parts = npy.zeros(len(Tre))

#first determine some parameters
for alpha in range(len(Tre)):

dt = dtnorm #* 1/npy.exp((1/Tre[alpha]))
Np = 100 #Nps[alpha]
bhw = 1/(Tre[alpha]*(Np**(1/3))*gamma) #=beta h_ omega

Nsmac = int(npy.log(presO)/bhw)+1 # highest energy step taken into account
Ns = Nsmac
El = npy.zeros(Ns)
Mult = npy.zeros(Ns)
for x in range(Ns):

Mult[x] = (x+1)*(x+2)/2
El[x] = 2.404*x*bhw # Define energy levenls of the states with respect to temperature. We use \rho_0 = 2.404
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# Define the transfer rates between different states (symetrisch)
transR = npy.zeros([Ns, Ns])
for i in range(Ns):

for j in range(Ns):
if i == j:

transR[i][i] = 0
else:

transR[i][j] = dt/abs(i­j)**3

# Transisions if state occupied
transstep = npy.zeros([Ns, Ns])
for i in range(Ns):

transstep[i] = redis(transR,El,i)

#we build an initial occupation of the system as a matrix
#the likelyhood of a certain amount f particles to be in a state is represented using a matrix
ppins = npy.zeros([Ns, max([20, 2*Np])])
ppins [0][Np] = 1
for i in range(1,Ns):

ppins[i][0] = 1

equi = True
loop = 0
while equi:

for k in range(25000):
pold = ppins
pnew = ppins
for i in range(Ns):

Pless = 0
Pmore = 0
for j in range(Ns):

Pmore = Pmore + (transstep[j][i] * (1 ­
ppins[j][0]))*(Mult[j]/Mult[i])

Pless = Pless + transstep[i][j]*(Mult[j]/Mult[i])
x = npy.append(ppins[i][1:], 0)
y = npy.insert(ppins[i][:­1],0,0)

if True: #else:
pnew[i][1:­1] = (1­Pless­Pmore)*ppins[i][1:­1] + Pless*x[1:­

1] + Pmore*y[1:­1]
pnew[i][0] = (1­Pmore)*ppins[i][0] + Pless*x[0] + Pmore*y[0]

pnew[i][­1] = (1­Pless)*ppins[i][­1] + Pless*x[­
1] + Pmore*y[­1]

ppins = pnew

equi = False
loop = loop +1

print(loop)

end = npy.zeros(Ns)
for i in range(Ns):

end[i] = sum(ppins[i])
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mean = npy.zeros(Ns)
for i in range(Ns):

ave = 0
for j in range(2*Np):

ave = ave + j * ppins[i][j]
mean[i]= ave

parts[alpha] = mean[0]/Np
print(alpha)

mpl.plot(Tre, parts)

Tres = npy.arange(0, 1.5, 0.01)
Nres = npy.zeros(len(Tres))
for i in range(len(Tres)):

Nres[i] = max(0, 1 ­ Tres[i]**3)

mpl.plot(Tres, Nres)

mpl.show()

Next the annihilation plot 3 sections of code are used so one step can be performed and checked at a
time.

import numpy as npy
import math as m
import matplotlib.pyplot as mpl
import pip
#import concurrent.futures as cf
#from numba import cuda, jit, njit, vectorize

#@cuda.jit(target = ’gpu’)
def redis(rates, energies, n):

dis = npy.zeros(len(energies))
for s in range(len(energies)):

if n != s:
dis[s] = rates[n][s]*npy.exp((energies[n]­energies[s])/2)

return(dis)

presO = 100 # order of magnetude to witch the higest energy state has to be non­
occupied
dtnorm = 0.004 #timestep relative to temperature = timestep at T=Tc0
Nps = [100] #[1, 3, 5, 10, 20, 40, 60, 100, 200, 300] # number of particles
Tre = [0.5]
DeltaE = 1/3 #difference between energy levels equivalent to particle density
gamma = 0.9404989725 #=g3(1)^­(1/3)
parts = npy.zeros(len(Tre))
acu = 100 #controls how many times the loop is run

#first determine some parameters
for alpha in range(len(Tre)):

dt = dtnorm #* 1/npy.exp((1/Tre[alpha]))
Np = 100 #Nps[alpha]
bhw = 1/(Tre[alpha]*(Np**(1/3))*gamma) #=beta h_ omega
Nsmac = int(npy.log(presO)/bhw) # highest energy step taken into account
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Ns = Nsmac

# Define the transfer rates between different states (symetrisch)
transR = npy.zeros([Ns, Ns])
for i in range(Ns):

for j in range(Ns):
if i == j:

transR[i][i] = 0
else:

transR[i][j] = dt/abs(i­j)**1

El = npy.zeros(Ns)
Mult = npy.zeros(Ns)
for x in range(Ns):

Mult[x] = (x+1)*(x+2)/2
El[x] = 2.404*x*bhw # Define energy levenls of the states with respect to temperature. We use \rho_0 = 2.404

# Transisions if state occupied
transstep = npy.zeros([Ns, Ns])
for i in range(Ns):

transstep[i] = redis(transR,El,i)

#we build an initial occupation of the system as a matrix
#the likelyhood of a certain amount f particles to be in a state is represented using a matrix
ppins = npy.zeros([Ns, max([20, 2*Np])])
ppins [0][Np] = 1
for i in range(1,Ns):

ppins[i][0] = 1

equi = True
loop = 0
while equi:

for k in range(30000):
pold = ppins
pnew = ppins
for i in range(Ns):

Pless = 0
Pmore = 0
for j in range(Ns):

Pmore = Pmore + (transstep[j][i] * (1 ­
ppins[j][0]))*(Mult[j]/Mult[i])

Pless = Pless + transstep[i][j]*(Mult[j]/Mult[i])
x = npy.append(ppins[i][1:], 0)
y = npy.insert(ppins[i][:­1],0,0)

if True: #else:
pnew[i][1:­1] = (1­Pless­Pmore)*ppins[i][1:­1] + Pless*x[1:­

1] + Pmore*y[1:­1]
pnew[i][0] = (1­Pmore)*ppins[i][0] + Pless*x[0] + Pmore*y[0]

pnew[i][­1] = (1­Pless)*ppins[i][­1] + Pless*x[­
1] + Pmore*y[­1]

ppins = pnew
equi = False

npy.save(’quiTdTc0,5.npy’, ppins)
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_________________________________________________________________

import numpy as npy
import math as m
import matplotlib.pyplot as mpl
import pip

#import concurrent.futures as cf
#from numba import cuda, jit, njit, vectorize

#@cuda.jit(target = ’gpu’)
def redis(rates, energies, n):

dis = npy.zeros(len(energies))
for s in range(len(energies)):

if n != s:
dis[s] = rates[n][s]*npy.exp((energies[n]­energies[s])/2)

return(dis)

presO = 100 # order of magnetude to witch the higest energy state has to be non­
occupied
dtnorm = 0.004 #timestep relative to temperature = timestep at T=Tc0
Nps = [100] #[1, 3, 5, 10, 20, 40, 60, 100, 200, 300] # number of particles
Tre = [0.5] #npy.arange(0.1, 1.2 ,0.1)
DeltaE = 1/3 #difference between energy levels equivalent to particle density
gamma = 0.9404989725 #=g3(1)^­(1/3)
parts = npy.zeros(len(Tre))
acu = 100 #controls how many times the loop is run

# add an anhillation therm with speed over exponential range compared to the speed at witch particles leave the ground orbit
anhir = [0.001, 0.01/3, 0.01, 0.1/3, 0.1, 1/3, 1]
internloops = [30, 10, 3, 1, 1, 1, 1] #anhilation is only used every so many loops to reduce computing time for small anhilation rates
anhi = npy.zeros(len(anhir))
for i in range(len(anhir)):

anhi[i] = anhir[i] * internloops[i]

Np = 100
bhw = 1/(Tre[0]*(Np**(1/3))*gamma) #=beta h_ omega
Nsmac = int(npy.log(presO)/bhw) # highest energy step taken into account
Ns = Nsmac
means = npy.zeros([len(anhi), Ns])

#first determine some parameters
for alpha in range(len(anhi)):

dt = dtnorm #* 1/npy.exp((1/Tre[alpha]))
Np = 100 #Nps[alpha]

# Define energy levenls of the states with respect to temperature, El = E/2KbT

# Define the transfer rates between different states (symetrisch)
transR = npy.zeros([Ns, Ns])
for i in range(Ns):

for j in range(Ns):
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if i == j:
transR[i][i] = 0

else:
transR[i][j] = dt/abs(i­j)**1

El = npy.zeros(Ns)
Mult = npy.zeros(Ns)
for x in range(Ns):

Mult[x] = (x+1)*(x+2)/2
El[x] = 2.404*x*bhw # Define energy levenls of the states with respect to temperature. We use \rho_0 = 2.404

# Transisions if state occupied
transstep = npy.zeros([Ns, Ns])
for i in range(Ns):

transstep[i] = redis(transR,El,i)

#we build an initial occupation of the system as a matrix
#the likelyhood of a certain amount f particles to be in a state is represented using a matrix now import fom other code the ppins
maxp = max([20, 2*Np])
ppins = npy.load(’quiTdTc0,5.npy’)

anhil = anhi[alpha]*sum(transstep[0]) #calculating actual anhilation rates
# anhilation first build a matrix 2Np such that for a number of particles in an orbit with anhilation propabilty the right amount gets anhilated
anhredis = npy.zeros([maxp, maxp])
for i in range(maxp):

for j in range (i+1):
anhredis[i][j] = (m.comb(i,j))*((1­anhil)**j) * (anhil**(i­j))

loop = 0
means = npy.zeros([350, Ns])
for time in range(350):

loop = loop +1
for k in range(int(1/anhi[alpha])):

for sub in range(internloops[alpha]):
pnew = ppins +0
for i in range(Ns):

Pless = 0
Pmore = 0
for j in range(Ns):

Pmore = Pmore + (transstep[j][i] * (1 ­
ppins[j][0]))*(Mult[j]/Mult[i])

Pless = Pless + transstep[i][j]*(Mult[j]/Mult[i])
x = npy.append(ppins[i][1:], 0)
y = npy.insert(ppins[i][:­1],0,0)

if True: #else:
pnew[i][1:­1] = (1­Pless­Pmore)*ppins[i][1:­

1] + Pless*x[1:­1] + Pmore*y[1:­1]
pnew[i][0] = (1­Pmore)*ppins[i][0] + Pless*x[0] + Pmore*y[0]

pnew[i][­1] = (1­Pless)*ppins[i][­1] + Pless*x[­
1] + Pmore*y[­1]

pold = ppins +0
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ppins = pnew+0

#anhilation
for n in range(Ns):

if ppins[n][0]> 0.9:
for j in range (maxp­1):

pnew[n][j] = ppins[n][j]*(1­ min(1, anhil*j) ) + ppins[n][j+1] * min(1, anhil*(j+1))
else:

for j in range (maxp):
newlist = 0
for k in range (maxp):

newlist = newlist + ppins[n][k]*anhredis[k][j]
pnew[n][j] = newlist

ppins = pnew+0
print(loop)

for i in range(Ns):
ave = 0
for j in range(2*Np):

ave = ave + (j * pold[i][j])*Mult[i]
means[time][i]= ave

#save means for this anhilation rate
data = npy.asarray(means)

npy.save(’anhilationrange_from_equi0.5’ + str(int(1/anhir[alpha])) + ’.npy’, data)

___________________________________________________________________

import numpy as npy
import matplotlib as mpl
import matplotlib.pyplot as plt

#list all the files we want to plot

rates = [0.001, 0.01/3, 0.01, 0.1/3, 0.1, 1/3, 1]

for alpha in range(len(rates)):
rates[alpha] = str(int(1/rates[alpha]))

fig, (ax1, ax2) = plt.subplots(1, 2)

for alpha in range(len(rates)):
means = npy.load(’anhilationrange_from_equi0.5’ + rates[alpha] + ’.npy’)
means2 = npy.zeros([350,10])
for i in range(350):

for j in range(10):
means2[i][j] = means[i][j]* (j+1)*(j+2)/2

N0 = npy.zeros(len(means2))
N1 = npy.zeros(len(means2))
Ntot = npy.zeros(len(means2))
for t in range(len(means)):

N0[t] = means2[t][0]
N1[t] = sum(means2[t])­means2[t][0]
Ntot[t] = sum(means2[t])
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ax1.plot(Ntot, N0)
ax2.plot(Ntot, N1)

ax1.set_ylim(0,100)
ax1.set_xlim(100,0)
ax2.set_xlim(100,0)

plt.show()
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