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Abstract

Quantum thermodynamics is a research field that aims at fleshing out the ultimate limits of
thermodynamic processes in the deep quantum regime. A complete picture of thermodynamical
processes naturally allows for auxiliary systems dubbed ‘catalysts’, i.e., any physical systems facilitating
state transformations while remaining essentially intact in their state, like an auxiliary system, a clock, or
an actual catalyst. In this work, we present a comprehensive analysis of the power and limitation of such
thermal catalysis. Specifically, we provide a family of optimal catalysts that can be returned with minimal
trace distance error after facilitating a state transformation process. To incorporate the genuine physical
role of a catalyst, we identify very significant restrictions on arbitrary state transformations under
dimension or mean energy bounds, using methods of convex relaxations. We discuss the implication of
these findings on possible thermodynamic state transformations in the quantum regime.

1. Introduction

In chemical reactions, it is common that a certain reaction should in principle be allowed, but in reality cannot
take place (or occurs at extremely low rates) because of the presence of some large energy barrier. Fortunately,
the situation is sometimes redeemed by the presence of certain chemical substances, referred to as catalysts,
which effectively lower the energy barrier across the transformation. That is to say, catalysts significantly increase
the reaction rates. Importantly, these catalysts can remain unchanged after the occurrence of the reaction, and
hence a small amount of catalytic substance could be used repeatedly and is sufficient to facilitate the chemical
reaction of interest.

The basic principles of chemical reactions are governed by thermodynamic considerations such as the
second law. There have specifically been a number of recent advances in the quest of understanding the
fundamental laws of thermodynamics [1-6]. These efforts are especially focused on the quantum nano-regime,
where finite size effects—either induced by system of interest, environment [7], or external fields used to govern
time dependent interactions [8]—and quantum coherences are becoming increasingly relevant. One
particularly insightful approach is to cast thermodynamics as a resource theory [2, 3, 9, 10], reminiscent of
notions in entanglement theory [11-13]. In this framework, thermodynamics can be seen as the theory that
describes conditions for state transformation p; — o from some quantum state to another under thermal
operations (TO). The notion of TO means allowing for the full set of global unitaries which are energy preserving
in the presence of some thermal bath. This is a healthy and fruitful standpoint, and allows the application of
many concepts and powerful tools derived from information theory [14—16]. This class specifically entails all
those thermodynamic processes that one can realistically physically implement in the presence of thermal baths,
when encompassing real-world situations [17]. This seems a most natural view particularly in light of the
emerging limitations”.

> Since Gibbs preserving maps in [ 1] induce the same pre-order structure in the state space as thermal operations for this classical regime
(block-diagonal states), our results would apply to the paradigm of Gibbs preserving maps [28] as well.

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In the context of thermal operations, catalysts emerge as ancillatory systems that facilitate state transformation
processes: there are cases where py — o5 is not possible, but there exists a state w¢ such that ¢ ® p; = wc ® o
is possible. The metaphor of catalysis is appropriate indeed: by using such a catalyst w, one is enabled to perform
the thermodynamic transformation pg — o5, while returning the catalyst back in its exact original form. This is
called exact catalysis. The inclusion of catalyst states in thermal operations serves as an important step in an eventual
complete picture of quantum thermodynamics; it allows us to describe transformations in the full picture, where the
system is interacting with an experimental apparatus, for example a clock system. The mathematical conditions for
catalytic transformations have been studied [ 18, 19] in the context of majorization [20]. These works were extended
to the thermodynamic setting in [ 1] by showing that one can obtain necessary and sufficient conditions for exact
catalysis in terms of a whole family of generalized free energies [1]. The ordinary second law of ever-decreasing free
energy is but a constraint on one of these free energies.

Naturally, for physically realistic scenarios inexact catalysis is anticipated, where the catalyst is returned
except for a slight degradation. The loss of catalytic ability over time is often observed in chemical reactions,
suggesting that catalytic substances often undergo slight changes in thermodynamic processes. In the quantum
nano-regime, uncertainties such as in the initial state, imperfections in implementation of quantum operations,
or fluctuations induced by quantum noise can serve to induce small changes in the catalyst. On physical
grounds, it is unreasonable to suggest that the catalyst is returned in exactly the same way. Surprisingly, it has
been shown [1] that in some cases, the conditions for catalytic transformations are highly non-robust against
small errors induced in the catalyst. The form of the second law thus depends crucially on the measure used to
quantify inexactness. In particular, if inexactness is defined in terms of small trace distance, then there is no
second law atall: for any e > 0, there exists a state w¢ such that for any two states p; and o5, starting from
wc @ pg, one can get to some o @ o5 via thermal operations, where @ is e-close in terms of trace distance to
wc. We refer to this effect as thermal embezzling: instead of merely catalyzing the reaction, energy/purity has
possibly been extracted from the catalyst and used to facilitate thermodynamic transformations, while leaving
the catalyst state arbitrarily close to being intact [21]. On physical grounds, such a setting seems implausible,
even though it is formally legitimate. A clarification of this puzzle seems very much warranted.

A first hint towards a resolution may be provided by looking at how the error depends on the system size. The
trace distance error ¢ depends on the dimension of the catalyst states dim (w¢) = n; nevertheless one can find
examples of catalysts where ¢ — 0 as n approaches infinity. While examples show that in principle thermal
embezzling may occur [1], hardly anything else is known otherwise. Indeed, it would be interesting to
understand the crucial properties that distinguish between a catalyst and a non-thermal resource in
thermodynamics. From a physical perspective, it seems highly desirable to understand to what extent the effect
of embezzling can even occur for physically plausible systems.

In this work, we highlight both the power and limitations of thermal catalysis, by providing comprehensive
answers to the questions raised above. Our first result is derived in the regime where both the Hamiltonians of
the system and catalyst are trivial, in other words, proportional to the identity operator. This result concerns the
analytical construction of universal catalyst states, which are able to facilitate any state transition on the system S
(with some fixed dimension m). We show that for a catalyst to be universal, it is equivalent to facilitating a
specific state transition, intuitively speaking, the hardest possible transition on system S. By analyzing such a
problem, we then construct a family of universal catalyst states depending on catalyst dimension n, that achieves
the optimal trace distance error.

The second part of our results is derived for general Hamiltonians of the system and catalyst Hs, Hc. We
identify two reasonable constraints on the catalyst such that once these constraints are satisfied, thermal
embezzling cannot happen: (1) when the dimension of the catalyst is bounded, and (2) when the expectation
value of energy of the catalyst state is finite. For both cases, we are able to derive non-zero bounds on the trace
distance error, therefore showing that € cannot be arbitrarily small. These bounds were derived under the
assumption that the catalyst states are diagonal in the energy eigenbasis. Case 2 is especially interesting, since it
holds for catalyst Hamiltonians with unbounded energy eigenvalues, as long as the partition function Z is finite.
These results have been derived by making use of splitting techniques to simplify the optimization problems of
interest. The techniques can also be used to obtain more specific results: not only can we prevent thermal
embezzling (which makes a statement about the ability of a catalyst to facilitate any state transition), but given a
pair of states pg, os, one can obtain state-dependent lower bounds on the trace distance error as well.

2. Results

2.1. The power of thermal embezzling
We begin by exploring the case for trivial Hamiltonians, where it is known that thermal embezzling can occur.
This is also the simplest case of thermodynamics in resource theory [1], when all energy levels are fully

2



10P Publishing

NewJ. Phys. 17 (2015) 085004 NHY Ngetal

degenerate, and the Hamiltonian is simply proportional to the identity operator. In this regime, thermal states
are simply maximally mixed states, and all unitary operations are allowed, a setting otherwise known as noisy
operations. Entropy and information, instead of energy, become the main quantity that measures the usefulness
of resources. In such cases, the sole conditions governing a transition from some quantum state p to o is that the
eigenvalue vector of p majorizes that of 6 [2]. Majorization is commonly denoted as p > o; it also implies that
entropy can never decrease under noisy operations [1].

To investigate thermal embezzling in this setting, one asks if given fixed m, n, what is the smallest € such that
there exists a catalyst state w¢ that satisfies

[
wc @ E>wé® 10) (01, (1)

where the trace distance d (w¢, @¢) between the initial catalyst wc and final catalyst @ is not greater than e.
This trace distance is used as a measure of catalytic error throughout our analysis. If some catalyst pair (w¢c, @)
satisfies the condition in equation (1) with trace distance ¢, then it also facilitates wc ® p — @’ ® o for any m-
dimensional states p, o. This is because a pure state majorizes any other state, while the maximally mixed state
1/m is majorized by any other state.

Since majorization conditions depend solely on the eigenvalues of the density matrices wc and ¢, one can
phrase this problem of state transformation in terms of a linear minimization program over the catalyst states,
diagonal and ordered in the same basis (see appendix). In fact, the eigenvalues of w¢, @ which give rise to the
optimal trace distance error can be solved by such a linear program, although for general values of n and m, these
eigenvalues are non-unique, and it is harder to construct an analytical solution. Whenever m > 2and n = m?
where a > 1isan integer, we provide an analytic construction of catalyst states, which we later show to be
optimal for the state transformation in equation (1). Let the initial catalyst state be wc = Zj_l w;|7)(i|, where

w, = m/(1 + (m — 1)a),and

w; = wlm_[logmi] if 2 < 1 < n/m, (2)
0 ifi > n/m.

Note that our catalyst state @ does not have full rank, and this is crucial for the majorization condition in
equation (1) to hold, since p > ¢ implies that rank (p) < rank(s), and the joint state o’ ® |0) (0| can have at
most rank . The final state of the catalyst @/ can be obtained from wc, by subtracting a small value & from the
largest eigenvalue w; and distributing the amount ¢ equally over the indices i > n/m. This causes (. to be a state
of full rank n. We show that this family achieves trace distance error

m—1

A = >
1+ (m— 1)log,n

>

(3)

which we prove by mathematical induction to be optimal, given fixed m, n where n = m*“ (see section B.1 of the
appendix). The scenario n = m“ can be seen as follows: if the system is a particle in an m-dimensional Hilbert
space, the catalyst consists of a number of such particles. The optimal error as presented in equation (3) scales
with the number of particles a in the catalyst.

Figure 1 compares our final catalyst state with the state

1 w1
vc = —— ) =N {l (4)
@c com jzl]IJWI

with C(n) = zn Y j being the normalization constant. The family @¢ was proposed in [21] for embezzling in
i=

the LOCC setting. In figure 2, we compare the trace distance error achieved by catalyst @¢ from [21] with the
error achieved by our catalyst w¢. We see that for small dimensions, our catalyst outperforms @, however
asymptotically the error scales with log 7 for both catalysts.

2.2. The limits of thermal embezzling

In this section, we are interested in finding additional physical restrictions which prevent thermal embezzling.
To do so, welook at general Hamiltonians Hs, Hc of both the system and catalyst, where the energy of the
system comes into play. The total Hamiltonian is simply H; = Hs + Hc, without any interaction terms. In [1], it
is shown that the monotonicity of quantum Rényi divergences [22] (for @ > 0) form the necessary conditions
for state transformations. More precisely, for arbitrary psand pg, if p; — pg is possible via catalytic thermal
operations, then forall @ > 0,

D (s 11 75) > Da (4 Il 7s) (5)

holds, where 7 is the thermal state of system S, at temperature T of the thermal bath.
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Figure 1. The eigenvalues of our final catalyst state (- (blue) versus those of @¢ proposed in [21] (red, dashed), for (a) m = 2, n =8
and (b) m = 3, n = 27. Similarities can be observed in the structure of both constructions.

Trace Distance Error

00F . . L
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Figure 2. The comparison of trace distance error for our state (blue, solid) and the catalyst state in figure 1 (red, dashed), for the case
wherem=2.

Equation (5) implies that one can use the monotonicity of Rényi divergences to find lower bounds on
thermal embezzling error for state transformation between arbitrary states pgand py. For simplicity, we present

the case where pg and pg are diagonal (in the energy eigenbasis of Hs). The case for arbitrary states can be treated
similarly, and details are given in appendices C.2 and D.2.

For the case where two states p and o are diagonal, the Rényi divergences are defined as

1 -
Du(p Il 0) = ——log >plel™, (6)
i
where {p;}, {0;} are the eigenvalues of p, and o.
Again, for states pg and p¢ diagonal, it suffices to look at a single transformation

max >

wc ® 75— of @ T (7)

where ITS .. = |ES . Y(ES .. |isthe pure energy eigenstate with energy E> , the maximum energy eigenvalue
of system S. Note that both zgand I3, are diagonal in the energy eigenbasis. Simila to the case of trivial
Hamiltonians, the process in equation (7) is a sufficient condition for arbitrary diagonal state conversions. More
precisely, if equation (7) holds, then for any pg and p¢ diagonal in the same energy eigenbasis,

wc ® ps — wc @ pgisalso possible. This is stated formally and proven inlemma A.3, found in the appendix.

We also assume wc and o/ to be diagonal in the energy eigenbasis of Hc [1]. This can be written as the following
minimization problem

1 ,
e=min —lloc - ot Il

5. t. Va>0,D,(0c® sl 7cs) > De @ ® My Nl 7cs), 0 < e, ¢ <1, (8)
where 7¢s = 7¢ ® 75 is the thermal state of the catalyst and system. The system Hamiltonian Hg is assumed to be
finite.
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A first step towards solving equation (8) is to relax the problem to consider only a fixed a.

1 ,
€a = min > | oc — @¢ I

/N

s. t. Da(wc ® s || Tcs) = Da(wé ® My |l Tcs), 0< we, o <1 9)

Weknow that any (w¢, () feasible for equation (8) is also feasible for equation (9). Therefore, forany a > 0,
€ 2 &,. By choosing a one can arrive at much simpler optimization problems that provide lower bounds for the
trace distance error. We apply this to study two cases, detailed as below.

1. Bounded dimension: Consider the case where both the system Hgand catalyst Hamiltonians H have fixed
dimensions, and denote the maximum energy eigenvalues as ES_, ES  respectively. By choosing @ — oo, we

max >

can obtain a lower bound for € in equation (8) based on these parameters. For @ — o0, Dy, (p || 6) = logmax; b

where p., g; are eigenvalues of the states p, o respectively. Recall that we have assumed that w¢c and o’ are ™
diagonal in the same basis, which we take to be the energy eigenbasis. equation (9) can be rewritten as

! ,
eoo=m1n52|a)i—a)i|

1
’

o; Z ; , . ,
s. t. max — > S max —, wjw >0Vi Zw,— = Za)i =1, (10)
i i

= S
i Ti e_ﬂEmax i Ti

where 7; = Z-~lePEC are the probabilities defined by the thermal state of the catalyst Hamiltonian, and Zg, Z¢
are partition functions of the system and catalyst respectively. To solve this problem, we note that the optimal
strategy to maximize the quantity max;w;/z; within the ¢ — ball of @, is to increase one of the eigenvalues by ¢,
so that the quantity max;(w; + €)/7; is maximized. With further details in the appendix, we show that the trace
distance error can therefore be lower bounded by

(11)

Z e_ﬁEnC‘nax
dopt(HS> Hc) =E>( >~ 1) .

ePEhax Zc

The bound in equation (11) depends on both the minimal population of the thermal state for system and
catalyst. Although this bound is valid for arbitrary finite-dimensional Hamiltonians, it is not tight. Indeed, in the
case of trivial Hamiltonians where all states have constant energy value, normalized to 0, the partition functions
Zs, Zc reduce to the dimension 1, n of the system and catalyst. This bound then yields
dopt (05, Oc) > (m — 1)/n, which is much weaker than the optimal trace distance (which scales with log #) that
we derived in equation (3).

2. Hamiltonians with unbounded energy levels: A more general result holds for unbounded dimension and
energy levels where the partition function Z is finite. More precisely, for such cases, we show that setting an
upper bound on the average energy of the catalyst state limits thermal embezzling.

Let us now explain the proof of our results. Consider some catalyst Hamiltonian H¢ with unbounded energy
levels {ch }. For simplicity, we restrict ourselves to the case where the catalyst states are diagonal in the energy
eigenbasis, and assume the system Hamiltonian to be trivial with dimension m = 2. The resulting bound is found
in equations (19) and (22). A more general derivation involving arbitrary system Hamiltonians may be found in
the appendix.

A) Formulation of the problem: Consider the minimization of catalytic error under the relaxed constraint that
monotonicity for the a-Rényi divergence is satisfied. Using equation (9) with @ = 1/2, for diagonal states p, o
with eigenvalues p;, g;, equation (6) can be evaluated as D, (p || 6) = —2 log Zi /P;4;- By substituting
Hs = 0y, the first constraint can be simplified as follows

I 1 , 1
D1/2(wc ® > Il 7c ® 5) > D1/2(60c ® 10){0ll 7c ® 5)> (12)
, [
Dl/z(wc I Tc) > Dl/Z(wC [ Tc) + Di2| 10){0]]| > (13)
2 Ewil/ze—/}Eﬁ/z < Zwlﬂ/ze—ﬁE,@‘/z' (14)
i i

Equation (13) follows by the additivity of all Rényi divergences, and equation (14) is obtained by evaluating all
D, , terms. Furthermore, we want that the initial catalyst state to have an expectation value of energy no larger
than some finite E. In summary, we now look at the minimization of trace distance under the following
constraints
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o1 ,
£ := min E;la)i_wil
st Y ol r5 2 V2 Yy, w020 Vi, Y Efw <E (15)
i i i

where y = e#/2 € (0, 1). As such, thisis an intricate problem, as it is a non-convex problem both in @; and /.
In the subsequent steps, our goal is to show that ¢ is lower bounded by a non-zero constant, by making use of the
techniques of convex relaxations of optimization problems.

B) Splitting a relaxed minimization problem: The key idea to proceed is to suitably split the problem into two
independent optimization problems in a relaxation, which can be individually assessed. The starting point of this
approach is rooted in the observation that for any w;, @ € [0, 1], the following inequality holds true,

172
o/'? — 20 € ‘w{ - a)i| - a)i/S. (16)

Since requiring the rhs of equation (16) to be positive is less stringent compared to the lhs, one can now further
use it to obtain a lower bound for the minimization in equation (15). By defining a new variable x; = |w; — @/ |,
we can define a new minimization problem

= min Zx,
s. tZJ_y i 2\/51;/ i xp, w; =0 Vi, ZEij,-SE, (17)
i

and note that £ > {. One can see now that the variables Xi» ;are independent from each other. This allows us to
first perform a minimization of the function z J@iyE for constraints involving w; only.

C) Invoking energy constraints to provide lower bound: The energy constraint on ¢ plays a crucial role in
lower bounding ¢. Intuitively, when such a constraint is placed for some finite E, it implies that the probability of
populating some relatively low energy levels cannot be vanishingly small. We prove this with more rigour in the
appendix. Along this line of reasoning, one concludes that for the minimization

. C
€ :*= min za/wiyEi
i

s.t. w20V, ZEfwi<E, (18)

& > 0 has to be strictly positive. More precisely,

£ = max WyEfctm, (19)
Wwe(0,1)

where j (W) = min {j: Eﬁrl > E / (1 — W)}. Aderivation of this expression can be found in the appendix.
D) Merging both problems: After obtaining a lower bound for the problem in equation (18), we recombine
the two problems into equation (17) to obtain

min  — ) x;
i
c_ 1 .
s. t. Z\/x_iyEf > gsl, x>0 Vi (20)
This is a quadratic optimization problem in the variables ./x;, hence it is easy to obtain the Lagrange dual of this
problem, which takes on a very simple form
1 c
min - —A2 ) y*E + e s.t. 120, (21)
1 ;7 1 Z
involving the simple minimization of a quadratic function w.r.t. . Solving this we arrive at a lower bound

11
s>§>—-—€—1>o (22)

where Z¢ = Z y2E = Z e PE{ is the partition function of Hc. We summarize our findings in table 1.
1 1

3. Discussion and conclusion

In summary, we have carefully investigated the power and limitations of thermal embezzling under different
physical scenarios, a setting that should be taken into account when considering the ultimate limits of

6
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Table 1. The occurrence of thermal embezzling (inducing any arbitrary state transitions) with arbitrary precision, under different settings.
For regimes labeled ‘No’, explicit bounds on the trace distance error (in the catalyst) can be found in equations (3), (11) and (22), where
these bounds are derived for the case where initial/final states of the system are diagonal.

Dimension of catalyst
Energy oflevels of Hc Bounded Unbounded
Fully degenerate No Yes
Bounded No Probably, true at least for fully degenerate Hamiltonians
Unbounded N/A No, if average energy and partition function is finite

thermodynamic transformations and work extraction under any physical mechanism. While in the fully
degenerate Hamiltonian case, we have seen that the effect can be powerful, under physically ubiquitously
common settings, it is very much limited. Based on very physical considerations, i.e. that catalysts have
Hamiltonians, we resolve the puzzle of thermal embezzling, for all catalysts diagonal in the energy eigenbasis. In
this way, we make a significant contribution to the quest for achieving a complete understanding of
thermodynamic laws in the quantum world.

The bounds on dimensionality are closely related to energy restrictions. While placing an upper bound on
the dimension directly implies an upper bound on the average energy, the reverse statement is not generally true.
However, if one restricts not only the expectation value of the energy distribution, but also its variance to be
finite, then this is almost equivalent to placing a dimension restriction. For example, given any non-degenerate
Hamiltonian H¢ with unbounded eigenvalues, consider the set of catalyst states such that the average energy and
variance of a given catalyst is finite. Then by the Chebyshev inequality one can understand that this is equivalent
to introducing a cut-off on the maximum energy eigenvalue (and therefore on the dimension). We note thatitis
easy to see that e.g. for the harmonic oscillator the variance is not always bounded whenever the mean energy is
bounded.

In the case of infinite-dimensional Hamiltonians, we have also shown that for certain classes of catalyst
Hamiltonians, explicit bounds can be derived on the trace distance error of a catalyst when the average energy is
finite. Our results have covered a large range of Hamiltonians which are commonly found in physical systems,
including the important case of the Harmonic oscillator in free systems, with the minimal assumption that
partition function Z is finite, which holds for all systems for which the canonical ensemble is well-defined.
However, we know that thermal embezzling can be arbitrarily accurate as the dimension grows, at least in the
simplest case of the trivial Hamiltonian. This implies that there will be specific cases of infinite-dimensional
Hamiltonians where simple bounds on average energy do not give explicit bounds on the thermal embezzling
error. We suspect that this may be true for systems with unbounded dimension, but bounded Hamiltonians. The
reason is that if dimension is unbounded, then there must exist an accumulation point in the energy spectrum.
The subspace of this accumulation point will be very similar to the trivial Hamiltonian.
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Appendix

In these appendices we fully elaborate our findings on thermal catalysis. We begin in section A.1 by explaining
the similarities and subtle differences between thermal embezzling and embezzling in the LOCC setting. The
Rényi divergences and their relation to thermal operations are detailed in section A.2. Proceeding to section B,
we focus on thermal embezzling for trivial Hamiltonians with fixed dimensions. On the one hand, we investigate
the problem of finding a catalyst which allows us to perform thermal embezzling with minimum possible error
in trace distance. We detail the proofs on our construction of a catalyst family (given dimension parameters for
both system of interest and catalyst), and prove that our construction achieves the optimal embezzling error.
On the other hand, by placing restrictions on the dimension, we derive non-zero lower bounds for the
embezzling error, considering the arbitrary system and catalyst Hamiltonians. The proofs are detailed in
section C. Some technical background on a— Rényi divergences and their relation to thermodynamic
operations are given. Lastly, in section D we focus on infinite-dimensional Hamiltonians, with unbounded
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energy levels (and finite partition function). We show that as long as the average energy of the catalyst is finite,
explicit lower bounds on accuracy of embezzling can be obtained.

Appendix A. Embezzling and catalysis

A.1. Thermodynamics as a resource theory

Resource theories are frameworks useful in identifying states which are valuable, under specific classes of
allowed operations and states given for free. A state is a valuable resource if one can use it to create many other
states under the set of allowed operations. Thermodynamics can be viewed as a resource theory [2, 3], where the
allowed operations are the so-called thermal operations. They are summarized as follows: considering a system S,
given astate pg and the Hamiltonian Hg, one can

1. For any bath system B with Hamiltonian Hp, attach any thermal state 7z = e #f/tr[e 5] to pg, where
p = 1/kT is the inverse temperature,

2. Perform any unitary U over the global system SB that commutes with the total Hamiltonian, i.e.
[U, HS + HB] =0,

3. Trace outthebath B.
Recently, the framework of thermal operations was used to prove a second law [1] by including catalytic
effects. This is because there exist certain states p and o such that via thermal operations p » ¢, but
P ® wc = 6 @ wc forsome state wc. More precisely, catalytic effects can be accounted for by adding a
fourth rule, i.e.

4. forany catalyst system C with Hamiltonian H, attach any additional catalyst state wc, as long as the returned
state w(: is e-close to its original state ¢,

to the set of allowed operations. One can now ask, given pg, what are the states p such that pg — p(is
possible via inexact catalytic thermal operations? More precisely, do there exist w¢, @ which are -close to each
other, such that wc ® ps — o¢ ® pe?

Depending on £ and the measure of closeness used, the conditions for p; — p to occur can vary. For
example, if € is required to be zero, i.e. the catalyst must be returned in its exact form, then [1] shows for any pg
and p; such that p; — p is possible via catalytic thermal operations, a whole set of Rényi divergences must
necessarily decrease. In the next section A.2, we define the Rényi divergences and state the results of [ 1] in detail.
On the other hand, if € is measured in terms of trace distance between the initial and final catalyst only, [1] also
proves that for any € > 0, the state transformation conditions are trivial, i.e. any pg can be transformed to any
p;- We denote thermal embezzling as the phenomenon wherein by requiring only the initial and final catalyst to
be close in terms of trace distance, one can achieve p; — p; forany pg, p;.

Another well-studied example of a resource theory is entanglement theory, where the allowed operations are
those that can be implemented using local operations and classical communiaction (LOCC), while free states are
the set of separable states. The interconversion of resource states in entanglement theory has been studied
intensively, and has also provided insight into the resource theory of thermodynamics.

Embezzling states were originally introduced for the LOCC setting in [21]. An entangled state
|v(n))ap € C" ® C"shared between two parties A and B can be used as a resource to prepare some other state
(of much smaller dimension),

lv (1) )ap =1-¢ lv(1))ap|W)ass (A.1)

where dim(A”B") <« dim(AB) and dim(A’B’) ~ dim(AB). The fidelity between the actual final state with

|v (1) )arp |w)arpr is denoted by 1 — &, such that & goes to zero when 7 goes to infinity. This enables the
approximate preparation of the state |y )5, while the embezzling resource state is also left close to its original
state. Such a preparation can even be achieved simply via local operations (LO). The family |v (1) )45 is called a
universal embezzling state if it enables the preparation of any |y) o-p. While this seemingly violates entanglement
monotonicity under LOCC operations, one quickly realizes that it is really because the closeness in entanglement
content of [v (1) )ap, |v (1) )a 5 depend not only on the fidelity, but also the dimension. Hence entanglement is
exhausted to prepare |y) 45/, while |v) 45 remains close to intact on the whole. However, there is also something
special about embezzling states, in the sense that a maximally entangled state does not serve as a good embezzling
state. In [13], a comprehensive study about the general characteristics of embezzling states was conducted,
providing insight into the necessary structure of a state to be a good embezzler. The power of embezzling in
LOCC has been applied in several areas of quantum information, such as coherent state exchange protocols [ 12],
projection games [23], or as a theoretical tool in proving the quantum reverse Shannon theorem [24].
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Table Al. An overview of differences between LOCC and thermal embezzling.

LOCC embezzling Thermal embezzling
State conversion conditions Related to majorization
Phenomena The usage of a catalyst state of large dimension/energy while tolerating slight degradation allows
the preparation of any desired target state to arbitrary precision
Hamiltonians Not of interest Of much physical significance
States (catalyst and system) Pure, multipartite states Mixed states in general
Commonly used measure of Fidelity of global state (system and embezzling Trace distance between initial and final
closeness state) catalyst state
Allowed operations Catalytic LOCC/LO operations Catalytic thermal operations
Accuracy limited by Dimension of catalyst Dimension and energy

There are some similarities between thermal embezzling and LOCC embezzling; however, also many
distinctive features exist. Most significantly, in thermodynamic systems, the Hamiltonian which determines the
evolution of the system plays an important role in state conversion conditions [25]. This feature is absent in
LOCC embezzling. We summarize the similarities and differences of LOCC and thermal embezzling in
table Al .

A.2.Rényi divergences as thermal monotones

In this section we detail the conditions for state transformation under catalytic thermal operations, which are
closely related to the Rényi divergences. The simplest case of catalytic thermal operations is when all
Hamiltonians Hs, H are trivial. For arbitrary states pand o, p — o is possibleifand onlyif p > ¢ [2]. In the
case where H or Hcare generally non-trivial, state conversion conditions are affected by the involved
Hamiltonians. More precisely, instead of majorization, we need to consider the monotonicity of Rényi
divergences as a (necessary) condition for state transformations. These conditions are used later in sections C
and D to investigate the limits of thermal embezzling. Let us first define these quantities in definition A.1.

Definition A.1 (Rényi divergences [22]). Given arbitrary states p, ¢ > 0, for @ € [0, oo], the Rényi divergence
of p relative to o is defined as

Dy(p |l 0) =

log [tr (plz_aa aplz_aa )a] (A.2)

For p, ¢ diagonal in the same basis, let p = (p,, p, ,...,p,) and g = (q;, 4, »..., q,) denote the eigenvalue vectors
of the p, o respectively. Then the Rényi divergences reduce to the form

a—1

1

a—1

n
Da(p ll 6) = Da(p Il 9) = log Y pfq ™" (A3)
i
It has been shown that for diagonal states p, the quantities D, (p || 7) are thermal monotones forall @ > 0,
where 7 is the thermal state of the system of interest. For arbitrary quantum states, D, (p || 7) are thermal
monotones for @ > 1/2 as well. Intuitively, this implies that thermal operations can only bring the system of
interest closer to its thermal state with the same temperature T as the bath [1]. We detail this in lemma A.2.

Lemma A.2 (Monotonicity under thermal operations [1]). Given some Hamiltonian H,, consider arbitrary
states p,, p,, where p, — p, is possible via catalytic thermal operations. Denote by 7, the thermal state of system A.
Then forany a € [1/2, o),

Da(pu l24) 2 Da(p) I 24). (A4)

Furthermore, for any p,, p, diagonalin Hy, equation (A.4) holds for all @ > 0 ifand only if p, — p, is possible via
catalytic thermal operations.

In essence, lemma A.2 implies that the monotonicity of Rényi divergences are necessary conditions for
arbitrary state transformation, and for the case of states diagonal (in the energy eigenbasis), they are also
sufficient. Let us also use a notation which was introduced in [25] for diagonal states: we say that there exists a
catalyst w such that wc ® ps >r wc ® pg,if p — o via catalytic thermal operations. We refer to the notion >r
as thermo-majorization.

Now, let us consider the scenario of preparing a pure excited state of maximum energy
= |ES, Y(ES.  |fromathermal state 7. Intuitively, if we concern ourselves only with diagonal state

S
II max

max

transformations, then this is the hardest thermal embezzling scenario possible. This is because IT3,, > ps>r 7
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is possible for any diagonal pg. Therefore, whenever we investigate the case where involved states are diagonal, it
suffices to analyze the preparation of such a pure excited state. The necessary and sufficient conditions are

wc @ 15 > a)é 03 anax . (AS)

In the next lemma, we show that given fixed Hamiltonians and dimensions, any catalyst state that succeeds in
preparing such a state can also be used to facilitate any other state transformation.

Lemma A.3 (Universal embezzlers for diagonal states). Suppose there exists wc, (. diagonal (in Hc) such that
wc ® 75> wt @ IS holds, and || oc — ol ||| = e. Then for any states Ps» P diagonal (in Hy),
wc ® pg>1 o @ pgholds as well.

Proof. This can be proven by noting that
wc ® 15 >1 0)(,: ® anax (A.6)

is equivalent to the existence a thermal operation denoted by M, such that M (¢ ® 75) = @l ® TI5,, . It
remains to show that for any pg, py, there exists a thermal operation M’ such that M’ (¢ ® pg) = ol ® pg.
Since the thermal state pg > 75 is thermo-majorized by any state pg, and TS, >7 p; thermo-majorizes any

other state p;, there exist thermal operations N, N, such that N (pg) = zgand N; (pg) = Tlyex. Finally,
consider

M = (Ic ® Ny) o Mo(lc ® M), (A.7)

then one sees that M’ (¢ ® pg) = ol ® pg. Thisimplies that wc ® ps >1 w¢ ® p;. O

Appendix B. Optimal thermal catalyst for trivial Hamiltonians

In this section we look at a specific thermodynamic transformation involving system (S) and catalyst (C) states of
any dimension m and n = m*“ respectively. For the trivial Hamiltonian where all states have same energy, the
thermal state of the system is simply the fully mixed state %, while any pure state corresponds to ITS _ , so we

simply pick |0) (0| without loss of generality. Note that thermo-majorization conditions are reduced to the
simplest form, i.e. that

1 /
wc ® Zﬂs - w¢c ® [0){0[s (B.1)
is possible if and only if the initial state majorizes the latter, i.e.

1
wc @ ;ﬂs > we ® [0)(0]s. (B.2)

In this section we give a construction of catalyst states which allow this transformation, and prove that our
construction achieves the optimal trace distance d (w¢, o) = % || wc — @¢ ||y inany fixed dimension 1 = m*“.

Furthermore, these states are universal embezzlers, since any catalyst which successfully creates |0) (0[5 from
lIs/m would also allow to obtain any p; from any pg, as shown in lemma A.3.

Definition B.1. Consider integers m > 2 and n = m® where a > 1. Let S,,, , be the set of n-dimensional catalyst
state pairs (wc, w(-) enabling the transformation

1
wc ® ;[Im - w¢ ® 10)(0]. (B.3)
Let dm,n = mln{d (wC) wé) | (Cl)c, wé) € Sm,n}~

B.1. A family of catalyst states

Lemma B.2. Consider a system S such that dim(S) = m, and a catalyst C such that dim (C) = n = m® for some
integer a > 1. Consider the following catalyst state pair (wc, w(:): the state wl = Zn 1 ;] |i)(i|, where
i

1 ;
0w = ——— and o/ = w{ml—flogm’]. (B.4)
1+ (m—1)a
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On the other hand, wc = Zwi [1) (i, where

i=1 .
w/m ifi=1,

=40 f2<i<, (B.5)
0 ifi > =,
m
Then the pair (wc, w)) € Sy, , as defined in definition B.1, and therefore
m—1
dpn<dloc, w) = ——. B.6
mn X ( C C) 1+(m_1)a ( )

Proof. Before we begin the proof, it might be helpful to gain some intuition of what the structure of w¢, ¢ looks
like. For @(,, a simple way to visualize this is as follows: for the first m elements, the distribution is uniform with
some probability @; for the next m + 1up to m” elements the distribution is uniform again, with probability
wi/m;and so on up to n = m*?. The initial @, is then chosen so that the full distribution is normalized. As for wc,
such a state is obtained from @ by setting all the probabilities for i > #/m to be zero, while renormalizing by
increasing the largest peak of the probability distribution.

Here, we prove that wc ® %ﬂ > wi ® |0)(0], the majorization relation as stated in definition B.1. Itis very
easy to see that this is true, once the eigenvalues of w¢ and w(- are compared

w- =
a)/ a)/ a)/ w/ a)/ a)/ a)/ a)/
. / ;W 1 1 1 1 1 1 1
dlag wl’ ......... s a)l, —_ ey, —, _2, (LT _2) ...... s —5» ey P — ey — (B.7)
m m m m m m m
A J . J A v . 7
m ' ' ' '
m(m-1) m(mz—m) m(m“’z—m“’3) m(m“’l—m“’z)
wc =
w, o, o w, W, w
. ’ ’ ’ 1 1 1 1 1 1
dlag mwl’ a)l, ey (1)1 Y Tyttt —, _2’ (LT _2’ ...... s 5 s 5> 0’ ............ s O s (B.S)
——— m m m m m m
e O\ _ —_—— _
m—1 "' v m*—m*~!
m—m mP—m? me—!—ma-2
where we have written this by making use of the fact that mF — m*=1 = m (m*=! — mk=2).

Firstly, one can observe that since |0) (0| is a pure state with a single eigenvalue 1, @’ ® |0) (0| has the same
eigenvalues as w(. On the other hand, for any two eigenvalues in wc, if one is greater than the other, then it is greater

by at least a factor of #. This implies that when we consider wc ® i[l, the order of these eigenvalues will not change.

One can obtain the eigenvalues of wc ® %[I simply by dividing each eigenvalue of w by a factor 1, while increasing

its multiplicity also by a factor of m. However, by doing so using equation (B.8), one sees that we obtain a set of

eigenvalues exactly equal to those in equation (B.7). Since any vector majorizes itself, we conclude that /- @ [0) (0.
Note that w; > w, while w; < w/ forall i > 2. The trace distance between w¢ and w(: can be calculated to be

n
d(COC) Cl)é) = %;lwz - w{l = Z ((Ui - 0){) = w; — 0)1, = % (B9)

iwi>w]

This shows that

m—1
m,n X > (B. 1 O)
1+ (m—1)a
since we have constructed a specific state pair achieving this trace distance. In the next section we will see that for
catalysts satisfying equation (B.2), smaller values of trace distance cannot be achieved, which implies that
equation (B.10) is true with equality, and the family presented above is optimal. O

B.2. Optimal catalysis
In this section we show by induction that

m—1

2 m. (B.11)

m,n

Recall that our problem is to minimize over states w¢, @ the trace distance d (wc, w/>) such that equation (B.2)
is satisfied. We first show that it suffices to minimize over states which are diagonal in the same basis.
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Lemma B.3 (States diagonal in the same basis). Consider fixed n-tuples of eigenvalues (w1, +++, @,) and
(@], -+, w,), such that wc = Z w;i|e;){e;|and w/ = Z o] |f.) {f,| are diagonal in two different bases
{len }, {If) ) If (wc, () satisfies equation (B.2), then there exists d¢c = Z @;|e;) (e;| such that

d(wc, o-) = d(wc, dc)andthat (wc, @c) also satisfies equation (B.2).

Proof. There are two steps in this proof: firstly, we construct @c from @¢ and show that the trace distance
decreases by invoking data processing inequality. Then, we use Schur’s theorem to show that majorization holds.
Let ¢ = N (w(), where N (p) = z le;) (e;|p|e;)(e;]is the fully dephasing channel in the basis {|e;) }. Note

1
that since @ is already diagonalin {|e;) }, M (w¢c) = w¢. Because the trace distance is non-increasing under
quantum operations [26], we have

d(a)c, wé) Zd(./\/'(a)c),./\/(wé)) :d(a)c, cbc>. (B.12)

On the other hand, we will show that w(: > @c. For any matrix M, let A (M) be the vector ofits eigenvalues. We
want to show that 4 (w(;) > 1 (@¢). Recall that @c = N (w(:) and, from the definition of N, observe that the
eigenvalues A (@¢ ) are precisely the diagonal elements of (. in the basis {|e;) }. Schur’s theorem ([27], chapter 9,
theorem B.1) says that for any Hermitian matrix M, the diagonal elements of M are majorized by 1 (M).
Therefore, A (w) > A (@¢) and thus w(: > @¢. Making use of the initial assumption

wc ® ls/m > o/ ® [0)(0]s, we now see that

1
wc @ Zﬂs >w¢ @ [0)(0]s > dc @ 0)(0]s, (B.13)

which concludes the proof. O

We are now ready to establish our lower bound on d,,, , fort n = m*®, we will use fact established in
lemma B.3, i.e. that we can take both states to be diagonal in the same basis. For the case of general m, 1, optimal
initial/final catalyst and the corresponding trace distance can be found numerically.

Theorem B.4. Consider integers m > 2 andn = m® wherea > 1. Then

m—1

dpyn=—""—"—, B.14
T+ (m = 1)a (B.14)
where d,, ,, is defined in equation (B.1). Hence, the family of catalyst states from section B.1 is optimal.
Proof. The majorization condition
1 '
wc @ —ls > w¢ @ [0)(0]s (B.15)
m

only depends on the eigenvalues of @ and '. For fixed eigenvalues, the trace distance d (w, ') is minimized if

the two states share the same eigenbasis and the eigenvalues are ordered in the same way, e.g. in decreasing order,

as discussed in lemma B.3. Hence, from now on we consider only diagonal states @ = diag(w, ..., »,)and

o' = diag(w|, ..., ®,),wherew; > 0, > ... 2 w,and w{ > @, > ... > w,.Here, diag(-:-) denotes the

diagonal matrix with the corresponding diagonal elements. To prove the theorem we only need to show that
m—1

L — B.16
’/1+(m—1)a ( )

m

as the other inequality follows from the family of embezzling states exhibited in section B.1. We use induction on
the power a. For the base case a = 1, we need to show that d,,, ,, = 1 — 1/m. Consider any feasible solution
(w, @") in dimension n = m. From the majorization condition

1
08 11,0 @00 & (L D s (0] ), 0,00) (B17)
m m m m m

it follows that wi/m > @] and w; = O fori > 2. Hence, w; = 1and 1/m > /. Since w, is the largest of the m
values ], we get w; = 1/m for alli. Finally, a simple calculation reveals that d (w, @) = 1 — 1/m, which
establishes the base case.

For the inductive step, we assume that

m—1

T + (m—1)a (519

m,n
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Figure B1. A visual comparison between an example of states @, @’ and @, as defined in the proof of theorem B.4. We see that
whenever @ > o’ (yellow bar larger than brown), we can define @ (blue) such that @ = ®, and renormalize @ by increasing @;. Also
from this visualization one can observe that the trace distance as described in equation (B.22) does not change.

for some n = m“ and aim to show that

m—1
Dk = 77 (m—1@a+1) (B.19)

for k = m*!. The main idea is to consider an optimal catalyst pair (w, @) € S,, x and from it constructa
catalyst pair (o, ¢’) € S, ,in dimension #n = m“. Since our construction will allow us to relate d (6, ¢) > d, ,
tod(w, @) = d,, 1, we then obtain alower bound on d,,, ; in terms of d,,, ,, as in equation (B.18).

Let us start by using the state pair that satisfies equation (B.15) and achieves d,,, x, and from it derive some
useful properties. Firstly, pick (w, @) € S, x sothat d (@, @) = d,, k. As before, without loss of generality, we
assume that @ = diag(w, ..., wx)and o’ = diag(wy, ..., o) wherew; > ... > wyand w| > ... > wy.The
majorization condition

1
0® —l,>a ®[0)(0] = (ﬂ, U N S ﬂ) = (@/s oo 0 0, ..., 0) (B.20)
m m m m m
again implies that w; > w; and w; = 0fori > k/m = m®. To further simplify matters, we can also assume that
w; < wj foralli > 2. Thisis because we can always replace w with @ = diag(@, ..., @), where
& = w; if o >.a),-’, (B.21)
w; otherwise,

fori > 2 and @, is chosen so that Z @; = 1.Inessence, all the majorization advantage of @ against @’ can be

piled upon the first, largest elgenvalue of w. The reader is referred to figure B1 for a visual comparison. This
replacement is valid since (@, ') still satisfies the majorization condition. Furthermore,

d(a), a)/) = Z w; — w] = d(d), a)/) (B.22)

iwi>w]

implies that the distance is unchanged.

Subsequently, we proceed to bound d,,, ,. To do this, construct a catalyst pair (¢, ¢') € S, , in dimension
n = m® = k/m. Essentially, this is done by directly applying a cut to the dimension of the final catalyst state ’,
reducing it to having dimension k/m = n. Similarly, the same amount of probability is cut from the initial state,
and both states are renormalized.

Let us decribe this in more detail: denote § = z ®; and pick index s and value @; < @; so that

>k/m
w; + @ = 1 — 8. Note that s < k/m?, since the majorization condition equation (B.20) implies that

ZZ = Yo> Yo=1-0 (B.23)

i<k/m? j= 1 i<k/m? i<k/m

i<s

This inequality is obtained by summing up the first k/m elements of both distributions in the lhs and rhs of
equation (B.20). We now define

1
o= 5diag<a)1) sty Ws—1, d)S) 03 """ 5 0)3 (B24)

’

1 : ’ ! ’
o' = 5d1ag(w1, e W1, @, O 15 a)k/m). (B.25)

1 . AYp— ! = _ ’ . .
Since st w; + 0, = Zisk/m ] = 1 — ¢ thesstates cand ¢’ are properly normalized. To establish that

(0, 6') € S, ,» we need to show that the majorization condition holds true. We consider two separate cases:
when @, = w,,and when @, # w;.
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If &, = w,, then the inequalities in the majorization condition for (¢, ¢") have already been enforced by the
majorization condition of (@, @’). Hence, (o, ¢') is a valid catalyst pair in dimension n = k/m, i.e.
(0, 6') € S, k- Let us now make the following two observations.

1. d(w, @) > 6.Toseethis, recall that w; = 0 fori > k/m = n,and thus

d(w, w/) = Z 0 — w; = z w; = 6. (B.26)

] >wj i>k/m

2. dw, ®) = (1 — 8§)d (6, 6'). Tosee this, note that
d (a), w/)
1-6

’

1 , - ,
=1_5'Zwi—wi=%=d(a,o) (B.27)

iw>w]

since only the first diagonal element of o is strictly larger than the corresponding diagonal element of '

Combining observations 1 and 2 gives

dp=d(w, @) = (1~ 8)d(a,0) > [1 —d(w, w’)]d(o-, &) 2 (1= du)du (B.28)
since
) -1
d(0,0) > duu = H’(”m—_l)a (B.29)

Rearranging gives us

A o> dmn m—1
m,

> = (B.30)
l+dp, 1+m-1@@+1)

and we have completed the inductive step.
If @; # w, then the majorization inequalities involving @, might fail to hold. Therefore, instead of (¢, ¢") we
consider the following, slightly different, pair of states

1 )
(=0= - 5d1ag(w1, e @y, B, 0, oe, 0), (B.31)
/ . , ) o, /
= - 6d1ag(wl, s Oy b s @y Oy s wk/m>, (B.32)
where
1 , ,
I = Z(w(s_l)mﬂ +o @), (B.33)

The diagonal elements of {” are still in descending order, and the state is properly normalized. To argue that
(¢, ¢')isavalid pair of catalyst states, we need to verify the majorization inequalities that are not directly implied
by the majorization condition for (w, @'). Thatis, we need to verify that forall 1 < j < m,

c+ Lo+, (B.34)
m

(s=)m

s—1
where C = Zi:l w;and C" = zi:l ;.
We can see that this is true for the state pair ({, {’) because in this regime of equation (B.34), both sides
increase linearly with the indices j, and for the endpoints j = 0 and j = m, the lhs is higher than the rhs, which is

guaranteed by the majorization condition for (@, '),
C>2C and C+ ;> C + ml. (B.35)

Therefore, (1 — p)C + p(C+ @) = (1 — p)C" + p(C" + ml)forany 0 < p < 1. Taking p = j/m yields the
desired inequality (B.34) and hence ({, {’) is a valid catalyst pair. Lastly, note that reasoning similar to the one in
equation (B.27) can be used to deduce that

d (a), a)')
1-6
Therefore, d (£, {') = d (o, ¢") and we can use the argument from the previous case to complete the inductive

step. By this proof of induction we have shown that d,,, , > m — 1/(1 + (m — 1)a)forallm, n = m?and
a 2 1. This together with the conclusion inlemma B.2 that d,, , < m — 1/(1 + (m — 1)a) proves that

— d({, C/) (B.36)
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dyy= —2 =1 (B.37)
1+ (m—1)a
and the state pair described in equation (B.4) and (B.5) is optimal. O

Appendix C. Limits of thermal embezzling from constraints on dimension

C.1. Diagonal states
In our work, we use two particular quantities, which are the Rényi divergences for @ = 1/2 and @ = oo, which
for classical probability distributions have the following form:

Dia(p Il g) = =2log X pd;> De(p Il 9) = lim Dy(p || q) = log max% (C.1)

i
As mentioned in section A.2, given Hamiltonians Hgand Hg, it suffices to consider
wc ® 75— of @ Iy . (C.2)

Here, we prove whenever the dimensions of the catalyst (and system) are finite, there exists alower bound on the
accuracy of thermal embezzling. Such a bound is dependent on Hgand Hc. To do so, consider the problem

o1 ,
€ = mn 5” wc — wc |h
s.t. we®ts— oI, ,0<w o<l (C.3)

In [1], it was shown that for initial and target states commuting with the Hamiltonian Hj, it is sufficient to
consider catalyst states commuting with H. Therefore, since g and IT3,,. both commute with H, it is sufficient
to consider initial and final catalyst states which are diagonal in the basis of Hc. Since all @ Rényi divergences are
thermal monotones according tolemma A.2, in particular the min-relative entropy (D), for a — oo,

D(p Il ) = maxlog 2% (C4)

where p;and p! are the eigenvalues of p, p’ respectively. Therefore, satisfying the thermo-majorization
conditions in equation (C.3) implies that

Doo<60c ® s | Tcs) > Doo(wé ® My, |l Tcs)-

To further simplify this expression, note that 7cs = 7c ® 75 and that
D,(p ® p'll 6 ® 6') =D, (p || 6) + Dy (p’]| o). The additivity of Rényi divergences under tensor products
holds for all states. Furthermore, D, (p || p) = 0 for any p. Therefore, we arrive at the expression

Doo(a)c I rc) +0> Doo(a)é [l Tc) + log , (C.5)

s
e_ﬂExiax
where Zgis the partition function of the system. The spectral values of w¢ and @ are denoted as {w; } and {a)j’ 1
respectively. Using the definition of Dy, as shown in equation (C.1), we obtain

’

i ZS a)]
max — > —— max —,
i T; e_ﬁEmax ] Tj
where
C
e—PE;
Tj = (C6)
Z
C

are the eigenvalues of the thermal state for the catalyst, for the energy eigenstate with energy eigenvalue E<, with
normalization Z, the partition function of the catalyst. Since ¢ is the minimum trace distance between states
¢, wé,and Dy, depends only on the maximum of ;/7; across the distribution, the optimal strategy to increase
D,, while going from (- to wc is to increase a specific @; by an amount é. Therefore, we can consider a
relaxation of equation (C.3)

. . 1 ,
é=min | oc— o Il (c7)
w! + & Z w;
s.t. max — > SS max —Z, (C.8)
i T; e_ﬁEmax ] Tj
Vij0< w]f < 1. (C.9)
In the nextlemma, we show that e > ¢ > § > 0 whenever Encm, Erfm < o0.
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Lemma C.1 (lower bound to error in catalysis). Consider system and catalyst Hamiltonians which are finite-
dimensional, and denote {ES V., {EC VI to be the set of energy eigenvalues respectively. Then for some fixed
ES.., ES .., consider any probability distribution r (which corresponds to eigenvalues of a catalyst ®), and ¢ such

that

i+ & V4 T .
ax - > SS max—],V],0<rj$ 1, (C.10)
1 Ti e_ﬁEmax ] Tj

where T; = e‘ﬂEr’C/ Zc. Note that index i runs over all energy levels EiC. Then

X Zs e PEsax
&> (e—/’Efm - 1) Z #0. (C.11)

In other words, thermal embezzling of diagonal states with arbitrary accuracy is not possible.

Proof. Firstly, let 7, 7* indicate the pair such that r*/7* = max;r;/7;. Then

A

i é n+é 1t Z
max — + max — > max — > — Ss .

i T; i T i Tj T* e PEmax
The first term of lhs is equal to r*/7*, and therefore can be grouped with the rhs to form

A *

€ r Z Z

max — > — SS -112> SS -1,
i Ti T* e_ﬁEmax e_ﬂEmax

since we know that Dy, (1 || ) = log max;r;/z; = log r*/t* > 0, therefore r*/z* > 1. Finally, taking the
maximization of 1/7; over i gives 1/ Ty, recall that 7; corresponds to probabilities of the thermal state being in
the eigenstate with energy E;. Therefore, 7., = e PEmn / Zc,and we get

Z _ﬁErgax
¢ > ( S _ 1)e . (C.12)
e_ﬂEmax ZC

O

C.2. Arbitrary states

The case of arbitrary states are treated separately, since our lemma A.3 on universal embezzlers hold only for

diagonal states, where necessary and sufficient conditions are known for state transformations. Nevertheless,

since the monotonicity of D, is necessary for arbitrary state transformations p; — pq, one can use techniques

very similar to those in section C.1 to lower bound the embezzling error, if we minimize over diagonal catalysts.
More precisely, denote & (ps, p;) to be the solution of

. 1 ,
min > | wc = wc I
s. t. Dm(a)c ® ps |l TCS) > Doo(a)é ® ps |l Tcs), 0<w, okl (C.13)
Recall that 7o5 = 7¢ ® 75, and that D, is additive under tensor products. Therefore, by defining
«1(ps £5) = Do 1 75) = Das s I 7)) (C.14)
we can rearrange the first constraint in equation (C.13)
Doo(wc [I Tc) ZDm(a)C"TC) +K1(p5,ps’). (C.15)

Note that this is almost equivalent to equation (C.5), except the constant log Zg / e PEma previously is now
replaced with x; (ps, p; ). By following the same steps used to prove lemma C.1, we obtain a lower bound
depending on ps, p.

Lemma C.2. Consider system and catalyst Hamiltonians which are finite-dimensional, and denote {ES I, and
{EF YL, to be the set of energy eigenvalues respectively. Then for some fixed 0 < ES,., E3.. , consider any probability

max

distribution r (which corresponds to eigenvalues of a catalyst ), and é such that

. P , T
max nte > 2"1(”5>f’3) - max —J, Vi,0<r<l, (C.16)
i T; i T
where 7; = e‘ﬁEiC/ZC and K (ps, pg) = Da(p || 7s) — Dy (ps || 75). Note that index i runs over all energy levels EF.
Then

) e PEsiax
¢ > [2'<' (rsi) — 1] £0. (C.17)
Zc
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This implies thermal embezzling with arbitrary accuracy, using a diagonal catalyst is not possible.

Comparinglemmas C.1 and C.2, which are very similar, one sees that for non-diagonal states lemma C.2
gives a state-dependent lower bound on the embezzling error. However for diagonal states, the bound in
lemma C.1 can be made state-independent because of the existence of universal embezzlers.

C.3.Relation to energy constraints

Rather than bounding the dimension of the catalyst, one can ask if restrictions on other physical quantities such
as the average energy of the catalyst would indefinitely prevent accurate embezzling from occurring. While this
by itself is an independently interesting problem, we can first note that such restrictions are sometimes related to
restrictions on the dimension. In one direction this is straightforward: if the catalyst is finite-dimensional, then
the average energy and all other moments of energy distribution would be finite as well.

Here, we show that by restricting the first and second moments of the energy distribution of the catalyst to be
finite, this implies that the states involved are always close to finite-dimensional states. In other words, if we
consider the set of catalysts such that the average and variance of energy is finite, then for any such catalyst state
from this set, there always exists a finite-dimensional state -close to it. This can be shown by invoking a simple
theorem, namely the Chebyshev inequality which says that for given any finite non-zero error &, the support of
the energy distribution must be finite.

Lemma C.3 (Chebyshev inequality). Consider a random variable X with finite mean X and finite variance o3,
then forall k > 0,

[PUX—X| ;k]s—. (C.18)

Theorem C.4 (Chebyshev inequality applied to energy distributions). Consider a probability distribution p over
some non-degenerate energy values E, where both mean E = (E), and variance of = ([E — EJ?) arefinite. Then for
any € > 0, there exists Ep,y < oo suchthatP[E 2 Ep.] < e

Proof. Forany ¢ > 0,letsome k = 6z//€.Denote Ep,x = E + k. Thenbylemma C.3,

[P[E;Emax]<[P[|E—E| >k]<g. (C.19)

Appendix D. Limits of thermal embezzling from energy constraints

In this section we provide lower bounds for the error in catalysis, given constraints on the average energy of the
catalyst state. We do so by adding a constraint on the average energy of the catalyst to the problem stated in
equation (C.3). Bylooking at the Rényi divergence for @ = 1/2, we can show a non-zero lower bound on the
catalytic error, for cases where the partition function of the catalyst Hamiltonian Z¢ is finite. This minimal
assumption covers most physical scenarios, especially if we want the thermal state to be a trace class operator to
begin with. Again we start with diagonal states, then later generalize to arbitrary states.

D.1. Diagonal states

Firstly, let us recall the problem stated in equation (C.3). We aim at minimizing the trace distance between all
initial and final the catalyst states, such that the most significant thermal embezzlement of a smaller system S can
be achieved. We denote again the initial and final catalysts by w¢ and ¢ with spectral values {w;} and {wj’ 1.
Again, by restricting ourselves to look at the catalyst diagonal in the Hamiltonian basis, and by invoking only the
thermal monotone Dy, (. ||. ), one can find the alternative relaxed problem
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oo}

. 1 ,
min 5 lef - a)]-l,

j=1

[e+) o0 (o]
s.t. Z(a);”z - A”Za)}/z)yEJC >0, Za)f =1, ij =1,

j=1 j=1 j=1

), @; > 0 v],and}EE wj < E, (D.1)
j=1
where
Z
A= —25 (D.2)
e_ﬁEmax

and y = e™#? < 1. Furthermore, since A = 1/min; 7; with 7; forming a probability distribution (that of a
thermal state), one can deduce that whenever the dimension of system Sism > 2, A > m > 2 holds
as well.

The solution of this minimization problem serves as alower bound to the optimal trace distance error.
This problem can be relaxed to a convex optimization problem. We can arrive at a simple bound, however,
with rather non-technical means. In essence, we introduce split bounds, so that the optimization can be
written as two independent, individually significantly simpler optimization problems. We make use of the
inequality

X2 = gl2)12 x =y V2 = f(a)y, (D.3)

which holds true for x, y € [0, 1], a > 2 and with f: R* — R* defined as
a2

—— D.4
f@)= =" (D.4)
We can then relax the problem by replacing the first constraint in equation (D.1), with x; taking the role of
|o; — o], toarriveat
min 1 ix-
2 &7
=1
[se] o0
s.t. Z[ 172 f(A)a)] ~BE; /2 >0, Za)j =1,
j=1 j=1
xj, w; =20 V j, and ZE w; < E. (D.5)

j=1
These are now two independent optimization problems, by treating x;and w; as independent variables. Define
&¢ to be the solution of the simple linear problem involving only variables {w; }, which we explicitly write out in
corollary D.2. In this subproblem, one notes that the constraint on expectation value of the energy implies that
the total probability of having relatively low energy eigenvalues cannot be vanishingly small, which we prove
inlemma D.1. One can then use this fact to place a lower bound on the quantity ¢, which we detail in
corollary D.2.

Lemma D.1 (lower bound to sums of eigenvalues). Consider any probability distribution {w; } over ascendingly
ordered energy eigenvalues {ES }, with the property that the energy eigenvalues are unbounded, i.e. lim,,_, o, E€ = co.

Ifthe expectation value of energy z w;E; < E for some finite constant E, define forany 0 < W < 1
. E
W) = min ES > ——1. D.6
] (W) = {] j+1 - w } ( )
Then
jw)
Y wizW. (D.7)

Proof. One can easily prove this by contradiction. Assume that
jw)
Y i<W (D.8)
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and therefore Zoo — > 1 — W.This violates the energy constraint, since
i=j

E

Y wES>(1-W)
1-W

i=j(W)+1

= L. (D.9)

O

Corollary D.2 (lower bound to & ). For a set of unbounded energy eigenvalues {EF }, consider the minimization
problem

o0
. _arC
£c = min Z(uje PET,

=1
o0

w; =1, w; > 0V j, and ZEJ-Ca)j <E.

1 =1

Denotey = e# € (0, 1). Then for j (W) = min{j: EjCH > E/l - W},

ec > max WyBiw, (D.10)
we(0,1)

»
M

<.
I

Proof. This is a direct application of lemma D.1, since the first and second constraints are satisfied automatically
(W

by any probability distribution. Given some W € (0, 1), bylemma D.1 we know that Z]( . )a),» > W.The
i=

objective function then can be lower bounded as

i ](W) C C
Zwie‘/}E*’ > Z wie PEw > WyEiw), (D.11)
i=1 i=1
for any such W. To obtain the best lower bound, one maximizes overall W € (0, 1). O

Remark D.3 (temperature dependence). The bound obtained in corollary D.2 is dependent on temperature of
the bath, and goes to zero in the limit T — 0.

We have now solved the subproblem involving variables {w; }. Inserting the solution into the former
optimisation problem, we arrive at the lower bound for ¢,

1 - , ,
min — ij s.t. Zx]!/ze‘/“gfc/2 >f(Aec, xj =0 Vj.
j=1 j=1
The optimal solution for this minimization can easily be lower bounded by considering the Lagrange dual, which
is
1 oo
max — —A2 Y e E 4 if (A)ec, s.t. 4> 0.
4 “
In fact, this can obviously be immediately solved as a quadratic problem in one variable. Let
o)
g) = Ze‘ﬂEfc/lz + Aec, (D.12)
j=1

and consider the stationary point of the function by setting first derivative w.r.t. A to zero,

—%JZ€%+kaC=Q (D.13)

where the second derivative is negative, hence implying a maximum point. Substituting this into the objective
function gives f (A)e3/Zc, and hence we conclude that

5 Lf@red
Zc

(3]

In this way, we arrive at the main result.

Theorem D.4 (energy constraint limits the accuracy of thermal catalysis). Consider the transformation

, 1 . .
wc ® 75 = wf @ |Ep . Y(ES. |, where dopt = 5 | oc — &t | = Ee is the error induced on the catalyst. Then

for all catalyst states with finite average energy, dp is lower bounded by
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1 f(A)el
dopt 2 ETC)

where f (x) is defined in equation (D.4), A = Zg/ePEnsx, e = maxyye(o,) WyHw and
j(W) = min{j: Ef, > E/(1 = W)}.
In other words, thermal embezzling of diagonal states with arbitrary accuracy is not possible.

D.2. Arbitrary states
Similar to our previous discussions in section C.2 , when the states pg or p( are non-diagonal, we can still obtain a
state dependent lower bound for the embezzling error. For any state pg, pq, let us define the quantity

%2(ps» £§) = Dua (5 11 75) = Dua (s Il 7). (D.14)

Then alower bound can be obtained by following the steps as proved in section D.1, only now replacing the
constant A defined in equation (D.2) with a state-dependent function.

Lemma D.5. For arbitrary states ps and pg, consider the transformation wc ® ps — w¢c ® pg, where

1 I . . . .
dopt = 5 | oc — & | = Seis the error induced on the catalyst. Then for all catalyst states with finite average
energy, dop is lower bounded by
)2
f (zxz (ﬂs)ﬂs) ) gé

dopt =
pt = >
Zc

N | =

where f (x) is defined in equation (D.4), i (ps, ps) = D2 (p¢ || 7) — D2 (ps |l 75), €c = maXWe(O,l)Wij(M
and j (W) = min{j: Eﬁl >E / 1 — WY Thisimplies that thermal embezzling with arbitrary accuracy using a
diagonal catalyst is not possible.
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