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Wave Forces and Structural Response
of Placed Block Revetments on Inclined Structures

K.W. Pilarczyk?, M. Klein Breteler? and A. Bezuijen®

Abstract

A summary of the theoretical and empirical knowledge of the stability of
block-revetment structures under wave attack is given. This has been
accomplished by selecting the very essence of the design formulas from
(CUR/TAW, 1992/1994) and completing it afterwards with a database of results
of large-scale model studies from all over the world.

Furthermore, the additional filter criteria and geotechnical criteria will be
presented. For each of these mechanisms easy to use design formulas are given.

Finally, the specific design considerations related to block revetments will be
discussed.

1 Introduction

Revetments of placed blocks or block-mats are often used as a protection of
slopes of various coastal structures against wave attack. Extensive studies have
been performed during the last decade on the stability of placed block-revetments,
mainly in the Netherlands, but also abroad. The studies in the Netherlands have
been carried out by DELFT HYDRAULICS and DELFT GEOTECHNICS in
cooperation with and commissioned by the Netherlands Ministry of Transport and
Public Works (Rijkswaterstaat). It has led to the establishment of a large database
with results of model and prototype studies, and to the development of a set of
design formulas. In addition, it also resulted in a practical design handbook
(CUR/TAW, 1992/1994). Some of these results are also incorporated in the
PIANC-report (1992).
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Examples of the structures considered in this paper are shown in Figure 1.
Such structures are found on banks of rivers and lakes, sloping seawalls and
seadikes, jetties, and in harbours. The main cause of damage of structures in this
application is wave attack. Damage by current is only found when applied in
spillways, steep canals, etc., but these are not considered here.

WAVE
ATTACK

0\' - subsoil

subsoil

Figure 1. Examples of block-revetment structures (cross-sections)

Basalt columns are an example of natural stone that can be applied as placed
blocks to form the cover layer of a revetment. Prefabrication of concrete blocks,
however, is often a very common alternative for natural blocks.

The advantage of blocks precast on or close to the site is the independence of
stone supply. This holds in particular when supply has to be arranged from
distant sources. Other advantages are that specifications on material size, shape
and density can be met easily through the fabrication process. By choosing the
right aggregates the material characteristics can also be influenced (density,
porosity, surface roughness).
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Figure 2. Examples of revetment blocks
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Artificial blocks are often designed to provide for additional strength. This
additional strength allows for reduction of the weight or size of the stones. The
fabrication of specified elements permits the application of cables to connect
individual elements, which improves the stability. These cables can be steel wires
or polymer fibres. Even without special measures a mutual friction between
(closely) placed blocks will provide for an extra stability against uplifting. In the
design often no account is taken of frictional forces, which leads to a conserva-

tive design. However, in recently developed methods some friction can be taken
into account.

Placed blocks can be applied together with appropriate sublayers. In case of
repair a certain area has usually to be replaced. The placement of preconnected
blocks or blockmats usually requires special, though rather simple, equipment.
Working from floating equipment is limited due to wave-induced movements.

In general, a revetment system will consist of a number of layers, the principal
of which are the cover layer, filter layer(s) and, as far as necessary, comple-
mentary sublayer(s). In the following it will be shown that a revetment system
must be designed as an integrated system of cover layer, sublayers and subsoil
(Figure 1) (PIANC, 1992 and CUR/TAW, 1992/94).

The failure mechanisms, which should be considered in designing block revet-
ments, are among others:
1°  uplifting of blocks
2°  migration of subsoil particles through the granular filter and/or cover layer
3° geotechnical instability of sublayers/subsoil
4°  sliding of the revetment

The cover or armour layer is the major protection of the structure and should

resist external and internal loadings. The strength against external loadings can
primarily be provided for by a sufficient weight of the armour elements.
The internal loadings depend to a large extent on the permeability ratio of cover-
and filter layer. Further on, the permeability of the core may affect the stability
of the cover layer as far as the phreatic level inside the structure is concerned.
Additional stability of the cover layer can be obtained by friction, interlocking or
tensile forces. These forces may act between the elements of the armour layer
and between the armour elements and the underlayers. Most of the artificial
systems have been designed deliberately to mobilize these additional forces. The
strength and the capacity of load reduction are often used interchangeably.

To determine the stability of the cover layer the H/AD ratio versus the
breaker index Eop (surf-similarity parameter) can be used, with:

E = tanc
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A theory concerning the uplift of individual blocks (1°) will be presented
briefly in the following sections, resulting in a formula including all significant
parameters that influence the stability. This theory will be simplified for practical
application and then fitted to the results of large-scale model studies. Then, the
additional filter criteria (2°) and geotechnical criteria (3°) and (4°) will be

presented. Finally, the specific design considerations related to block revetments
will be discussed.

2 Cover layer stability

2.1 External wave loading

Upon breaking on a slope, regular waves exert cyclic hydraulic loads. On the
basis of physical model tests in wave tanks good knowledge has been obtained of
the relevant load phenomena within a wave cycle. For different types of
revetments, different moments or periods from the wave cycle are decisive for
the stability of the cover layer.

The external loads can be quantified by way of physical model tests and with
numerical methods (Petit et al. 1994; Van Gent et al. 1994). The practical use of
the numerical simulations is still very limited, especially regarding the wave-
induced pressure distribution on a slope (in space and time).

presure potential on slope

pressure potential in filter

subsoil

Figure 3. Schematized damage-mechanism caused by pressure potential
(piezometric head) over the cover layer

A much simpler approach towards a computation of the relevant wave loads is
to abandon a full description of time and place dependent wave pressures on the
slope, and to concentrate only on the instant of critical wave loads. For placed
block revetments the most critical load situation occurs at the moment of
maximum wave run-down. This proved to have general validity for the structures
considered here. The critical pressure front is schematized sufficiently by the
parameters 6 (maximum gradient), ¢, (maximum piezometric head) and d as
shown in Figure 3. Empirical formulas for ¢, and 8, based on wave pressure
measurements in a small-scale model with slopes between 1/2 < tana < 1/4 and

wave steepness between 0.01 < H/L, < 0.07 (regular waves), are given in
(Burger et al., 1990):
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Model tests have shown that the same formulas can be applied with reasonable
accuracy for oblique wave attack up to 45° as for perpendicular wave attack.

2.2 Internal loading

The internal hydraulic loading on the revetment can be split up into two items:
1) The pressure under the cover layer, relative to the pressure on top of the cover
layer, causing uplift of the blocks.
2) The hydraulic gradients under the cover layer (mainly parallel along the
slope), which can cause the migration of subsoil particles.

We consider two main types of structures: (1) with granular filter between the
cover layer and subsoil, and (2) without granular filter.
Quite often a placed-block revetment has a configuration as shown in Figure 1. A
cover layer is placed on a filter layer of limited thickness lying on the base
material. Usually the permeability of the filter layer is much larger than the
permeability of both the base and the cover layer. The situation of a cover layer
which is less permeable than the underlying filter layer can also be present in
revetment structures with a block mattress, gabions, sand bags or gravel-filled
geotextile cover layers.

The hydraulic loading on this type of structure can be quantified analytically.

The internal loading of revetments without granular filter has to be described
with more sophisticated solution methods. For example, the STEENZET/2
program of the Delft Geotechnics, a finite element program specially developed
to calculate the pore pressure response in the filter layer(s) and subsoil below a
placed block revetment. This program can use measured wave pressures as a

boundary condition and it can handle laminar as well as turbulent flow (Hjortnzs-
Pedersen et al., 1987).

In the following we will first consider revetments on a granular filter and
secondly extent the derived formula to revetments without granular filter.

REVETMENTS WITH GRANULAR FILTER

During the wave rundown there is a large piezometric head gradient on top of
the revetment (see Figure 3), caused by the simultaneous occurrence of rundown
of the preceding wave and the arrival of the present wave. The piezometric head



underneath the cover layer is 2 damped representation of the potential on top of
the revetment, causing an uplift pressure at the location of maximum wave
rundown. The extend of the damping is influenced by the permeability ratio of
the cover layer and the filter layer and aiso by the compressibility of the air/-
water-mixture in the filter. The latter is important for very fine granular filters

(Dsg < 3 mm) and will not be considered here (see for example Bezuijen et al.,
1986).

The piezometric head over the cover layer during wave rundown can be

quantified by considering the mass balance of the water in the filter and the
Darcy flow equation (Fig. 4).

Figure 4. Mass balance in filter

The flow in the filter layer is quasi-static. In the filter layer a mean potential ¢
can be derived in a plane perpendicular to the slope assuming the flow in the
filter layer parallel to the slope. Further the flow in the cover layer is assumed to
be perpendicular to the slope. The differential equation can then be written as:

2 ¢ -¢

d*¢ _ T (5)
dy2 AZ

The leakage length A is defined as the length of a piece of protection, in which
the flow resistance through cover layer and filter layer are the same. This

parameter is a measure of the pressure head difference on the cover layer for
given wave forces:

A= |BDF o A (DK ©)
kl D Dkl

A solution of equation (5) for schematized boundary conditions (Figure 3
and 4) was presented by Wolsink (see Burger et at., 1990):

_ | 1A cose -tan6 {1 - exp|- 2 L psine|[1 - exp| 24
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The resulting formula for the maximum gradient in the filter layer is:
1) Maximum downward gradient:

i = sina ()
2) Maximum upward gradient:

i = cosatanf|1 -exp P - Sihe exp %
2Acos’otanf 2 2Acos®atan®

)
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Equation (7) and (9) are presented in Figure 5 and 6. It is clear that the uplift
pressure over the cover layer increases as the leakage length (A) increases and

the steepnes of the wave front (6) increases. But the larger A, the smaller is the
maximum upward gradient in the filter (i).
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The above formulas for the loads are derived for regular wave attack. Unfor-
tunately, little is known about the load ratio of regular and irregular waves.
Experiments show that especially the large waves cause instability and that the
number of waves during a storm plays a minor role. On comparing the piezo-
metric head on the slope under regular and irregular wave attack the following is
concluded for the wave height at threshold of damage:

H

a - 14

(H] (10)
S5/ damage

The displacement of a block occurs if the uplift pressure exceeds the weight of
the block added with the additional forces, such as friction and inertia. The limit
state is:
¢, = I'ADcosa (i1

Introducing the coefficient for irregutar wave attack, H/H; = 1.4, into

formula (7) yields a complicated stability formula, that can be approximated by
(Klein Breteler, 1991):

0.3
e :f(QE] g0 (12)
AD bk) %

The formulas work properly for placed/pitched block revetments and
blockmats within the following range: 0.01 < k'/k < t and 0.1 <D/b < 10.
Moreover, when D/A > 1 use D/A = 1, and when D/A < 0.01 use D/A =
0.01. The range of stability coefficient is: 5 < f < 15; the higher values refer to
presence of high friction and/or interlocking of a system.

From these equations, assuming by approximation that f is constant, it appears
that;

- An increase in the volumetric mass, A, produces a proportional increase in the
critical wave height. If p, is increased from 2300 to 2600 kg/m?, H
increased by about 23%,

- The breaker parameter, Eop, comprises the slope angle (tanc) and the wave
steepness (Hy/L). If the slope angle is reduced from 1:3 to 1:4, H
increased by about 20%,

- An increase of 20% in the thickness of the cover layer, D, increases H by
about 27%,

- A 30% reduction in the leakage length ,A, increases H,, by about 20%. This
can generally be achieved by halving the thickness of the filter layer or by
doubling the k'/k value. The latter can be achieved by approximation, by:

* reducing the grain size of the filter by about 50%, or

* by doubling the number of holes in (between) the blocks, or

* by making hole sizes 1.5 times larger,or

¢ by doubling joint-width between blocks.

Changing the structural parameters changes the coefficient f slightly; the effect
of these parameters can only be evaluated by approximation. It should be noted

that changing the structural geometry can mean that failure mechanisms other
than blocks being lifted out may govern the stability.

SCr IS
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This stability formula contains all our theoretical understanding of the physical

phenomena involved. However, the practical applicability is limited:

- it is only useful for block-revetments with a granular filter layer underneath
the blocks.

- the permeability of the cover layer can be calculated with the formulas in
Kiein Breteler et al. (1988), but they are very complicated.

- a lower boundary for I" has been given by Burger et al. (1990), but a good
quantification is still not possible.

- the theoretical and empirical bases for the assumption H/H; = 1.4 is poor.

Most of these problems can be avoided by the application of only the most
essential parts of the stability formula and to complete it with empirical data from

large-scale model studies. Partly based on the general trends in the results of
model tests, we have selected the very essence of eq. 12:

ser . E—0.67

AD ®

The value of F depends on the type of structure, characterised:
a) Low stability: (k'/k)-(D/b) < 0.05 - 0.1
b) Normal stability: 0.5 - 1 > (k'/k)-(D/b) > 0.05 - 0.1
c) High stability: (k'/k)-(D/b) > 0.5 -1

(13)

The conditions for high stability are very difficult to meet and it turns out that
there are no model studies performed with this type of structure. Therefore, it
has been left out in the following, leaving only two types of structures. With the
formulas from Klein Breteler et al. (1988) they can be defined as follows (D5 =
grain size of filter exceeded by 85% of weight, (m)):

- low stability, if:

* thick filter layer, namely : /b > 0.5 and

* course filter material, namely : D;5 > 4 mm and

* closed cover layer, namely:

solid blocks with small joints: open area } < 2%

blocks with holes with a spacing less than 0.3 m: < 5%

blocks with holes with a spacing wider than 0.3 m: < 10%
- normal stability (structures other than defined as "low stability™)

EXTENSION TO OTHER TYPES OF REVETMENTS WITH MODEL TESTS

Up to now we have dealt with block revetments on a granular filter layer only.
However, there are also structures with a cover layer directly placed on clay, or
with a geotextile on sand. Furthermore there are block-mats and interlocking
cover layers. For these structures there is no such a theory as for the blocks on a
granular filter. Therefore, we can merely assume that eq. (13) also is valid for

these structures. In the next chapter this assumption proves not to be
contradictory to the available test results.



We can conclude that the theory has led to a simple stability formula (eq. 13)
and a subdivision into 8 types of structures:
a) cover layer with loose blocks (without linkage or interlocking):
al) cover layer on granular filter, low stability
a2) cover layer on granular filter, normal stability
a3) cover layer on geotextile on sand
a4) cover layer on clay
b) cover layer with linked blocks (for example with cables or interlocking, such
as block-mattresses):
bl) cover layer on granular filter, low stability
b2) cover layer on granular filter, normal stability
b3) cover layer on geotextile on sand
b4) cover layer on clay

The theory presented in the previous chapter is fitted to the results of a large
collection of results of model studies from all over the world. Only large-scale
studies are used because both the waves and the wave induced flow in the filter
should be well represented in the model.

In the following Data of all available tests are summarised in Figures and for
each type of structure a lower and upper boundary for the value of F is given.
The lower boundary gives with eq. (13) a stability curve, below which stability is
guaranteed. Between the upper and lower boundary the stability is uncertain. It
depends on various unpredictable influences if the structure will be stable or not.
The upper boundary gives a curve above which instability is (almost) certain.

In some of the reports the exact information about cover layer or filter was
lacking. In those cases the open area percentage, {2, and/or the characteristic
grain size was estimated from photos, drawings or descriptions.
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Comment to the figures and discussion:

1°  Most of the tests have been performed without a berm in the slope, except
the studies reported in Oesterdam (1982) and Tekmarine (1982) and most of
Tekmarine (1985).

2° The studies concerning structure type b2 and b3 were very scarce.
Therefore, also the tests with a rather small scale are used.

3° 'There are no test data available on structures with linked blocks on clay
(b4).

4°  The results for structure type a3 and b3 (blocks on geotextile on sand) may
only be applied if H; < 1 - 1.5 m or to structures with course sand (dsq >
0.3 mm) and gentile slope (tana < 0.25), because the uplift of blocks is
assumed to be the dominant damage-mechanism (instead of soil mechanical
failure),

5°  The resuits for structure type a4 can be applied on the condition that clay of
high quality is used (erosion resistant). If there is no such clay present, then
a geotextile is recommended to prevent erosion during (lengthy) wave
loading. The stability is than equal to that of structure type a3.

The combination of the stability formula, that was derived from theory,
together with the results of many large-scale model studies from all over the
world has produced a reliable design tool for the preliminary design of placed
block-revetments. Its reliability is only influenced by the fact that most tests have
been performed with regular waves. An inaccuracy is introduced by the transfor-
mation of the regular wave load to an equivalent irregular wave load. Further
studies are undertaken to improve the transformation method.

3 Migration of subsoil through filter or cover laver

The migration of the subsoil particles through the filter layer or through the
cover layer leads to local erosion of the subsoil near the water level and will
result in a local settlement of the filter and cover layer. This damage mechanism
shows as some stones that are sunk compared to adjacent stones, or as a
gradually increasing S-profile develops. Some minor settlement is hardly effecting
the stability against wave action, but it must warn us that it will get worse every
serious wave attack (storm). Loss of coherence of the cover layer is the final
stage and then failure is at hand.

No problems will arise if the granular filter or geotextile on the subsoil is
geometrically sandtight (D, is grain size of filter and d, that of subsoil):

- granular filters on sand: D;s/dgg < 5 (14)
- geotextiles on sand: Ogy/dgg < 1 (15)
- geotextiles on clay or silt: Ogg/dgy < 1 and Ogg < 100um (16)

Unfortunately these criteria are often difficult to meet.

12



A more advanced requirement is based on hydrodynamic sandtightness, viz.
the internal flow must not be capable of washing out the subsoil material (even
though the openings of the geotextile are much larger than the subsoil grains).
This arises from:

- the hydrodynamic forces on the subsoil are greatly reduced by the geotextile.

- the cohesion forces of the particles do not allow small particles to be washed
away.

The hydrodynamical sandtightness criteria can be applied in the majority of
structures because hydraulic loads usually are low in the vicinity of the subsoil
(see Figure 15). Only in some cases, in which the geotextile or subsoil-filter
interface is very close to the surface of the structure and, provided the hydraulic
loads are heavy (for example breaking waves), the geotextiles or filter should be
geometrically sandtight (see Figure 14).

QQ&— geotextiie
Q' s 8@0
QQQQ_"_ _-— B " sand /@ﬁ . geaterida
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Figure 14. Examples of structures in which geometrically sandtight geotextiles
are necessary

Y
qaclexiie

iy Aow attock

wave ottack

—
BENTTLY, oot

1and

Figure 15. Examples of structures in which hydrodynamically sandtight
geotextiles can be applied

The critical hydraulic gradient for granular filters on a sand subsoil can be
read from Figure 16.

The following criteria for geotextiles with Ogy between 100 and 300 pm on
clay or sand are applicable (Klein Breteler et al. 1994).
- Good clay (colloid content = 39%; dsq = 9 pm; dgg = 80 um):

0.03 (17)
n’D

cr

15
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- Medium and poor clay (colloid content = 20%; 42 ym < dgy < 130 pm; 100
pm < dgg < 400 pm):

- 0.01 (18)
n’D,q
- Fine sand (dsy = 90 pm; dgy = 130 pm):
- 0.001 (19)
n’D

15
Where n is the porosity of the filter layer (usually 0.3 < n < 0.4) and D5 is

the grain size of the granular material on the geotextile (m).

The value of i can be calculated with formula (8) and (9).

If gradients larger than i, can be expected (structures like in Figure 14), then
a geometrically sandtight geotextile or filter is recommended.
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Figure 16. Diagram for critical gradient for granular filter on sand

4 Geotechnical stability

4.1 Introduction

Apart from instability of the cover layer (chapter 2) and migration of fines
(chapter 3) instability of the subsoil (Kohler and Schulz 1986, Bezuijen et al.
1990) is also a failure mechanism. An example of such a failure is shown in
photo in Figure 17. The cover layer (in this case a blockmattress) did not fail,
but the deformation of the subsoil lead to damage of the revetment.

14



Figure 17/Photo 1. Block mattress being damaged by subsoil failure

This failure mechanism can be the dominant failure mechanism in case of a
permeable revetment (rip-rap revetment, block mattresses with holes in the
blocks) on a granular subsoil. In case of a relatively impermeable revetment like
asphalt revetments, or placed blocks on a highly permeable filter layer, lifting of
the cover layer will precede geotechnical instability. As a result a design method

based on lifting of the blocks, as described in chapter 2, has to be used for an
impermeable revetments.

Firstly a qualitative description of the wave induced pore pressures is given
and the influence on the stability of the revetment is discussed. Thereafter

stability formulas are derived and examples are presented.

Comparison with the results of large scale model tests have shown that there is
reasonable agreement; the calculated results are on the safe side.

4.2 Pore pressures in the subsoil

The general structure of a revetment is shown schematically in figure 1.
A permeable revetment means that going from the subsoil to the cover layer the
permeability of each layer increases. The failure mechanism of such a revetment
is governed by the water movement caused by wave attack.

15
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Figure 18. Pore pressures during wave run-down

The overall loading on the revetment by the wave action and the pore
pressures in both the revetment layers as well as the subsoil is elucidated in
figure 18. At the outside of the revetment there is a fluctuating water level caused
by the wave attack. Deep down in the subsoil the phreatic surface is hardly
influenced by the fluctuations in wave action. This surface is located somewhat
higher than the mean water level (SWL). During wave run-down the water
pressure on the revetment is reduced. This reduction in water pressure on the
revetment would not induce any loading on the revetment if the pore pressures
were equal to the hydrostatic pressures corresponding with the reduced water
level (line I in figure 18). However, somewhere in the subsoil (e.g. at point A
and deeper inside the subsoil) the fluctuations of the wave attack are damped and
the pore pressure remains nearly constant. At that location the pore pressures will
be equal to a hydrostatic pressure distribution corresponding to the phreatic
surface (line II in figure 18). From point A upwards to the top of the revetment
the real pore pressure will be somewhere in between these two lines. This leads
to a pressure difference over the revetment (cover layer and sublayer) as is shown
in figure 18 by the hatched area. The total loading on the revetment is the
pressure difference (py-p;). This pressure difference can cause instability of the
revetment resulting in lifting or sliding of parts of the revetment. As can be seen
in figure 18 this pressure difference is proportional to the difference between the
nearly constant phreatic surface and the maximum run-down.

At the location where a revetment has to be built the design wave is known.
The only way to influence the total load on the revetment is to minimize wave
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run-down. This can be done by changing the slope of the revetment.

When the wave run-down is fixed, the total load on the revetment is also fixed,
because this is simply the pressure difference caused by the difference in water
head in- and outside. Therefore the total loading (py-p,) is independent of the
design of the structure. However, the distribution of the load can be influenced
by the designer. A small permeability of the cover layer will lead to a large
pressure difference over the cover layer and thus a considerable loading over that

layer. On the other hand, for permeable revetment the loading will be
concentrated on the subsoil.

In this chapter it is concentrated on the loading on and the strength of the
subsoil.

4.3 Strength of subsoil

To analyse the strength of the subsoil it is assumed that the subsoil consists of
granular material that can be described as a friction material. Stability is

guarantced as long as the ratio between shear stress and normal stress is smaller
than the tangent of the friction angle, &:

L < tan® (20)
o

Without any water movement the calculation of the normal and shear stress in
a plane parallel to a slope is straight forward, leading to the well known relation
that the slope angle cannot exceed the friction angle. In case of water movement
in the subsoil and thus a non-hydrostatic pressure distribution, the influence of
the pore pressure on the normal and shear stress has to be included in the
calculation. This can lead to a failure surface that is different from the plane
parallel to the slope. Therefore generally the stability has to be evaluated by a
slip circle analysis or finite element calculation.

Generally the pore pressure distribution in the subsoil underneath a revetment
under wave attack has to be calculated by numerical methods. For example
Hjortnzs-Pedersen et al. (1987), have described a finite element method to
simulate the pore pressure distribution underneath a placed block revetment. In
this method it is possible to use measured wave pressures as a boundary
condition. The advantage of a finite element method is that the influence of layers
with different permeabilities and different geometries can be evaluated. A
disadvantage is that such methods are generally rather complicated.

Bezuijen (1991) has develloped a simplified procedure for permeable
revetments that leads to a minimum revetment weight per square meter to prevent
subsoil instability, including the influence of the pore pressure distribution. This
method will be described in the next section.
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4.4 Stability calculations

In the stability calculation a slip surface parallel to the slope is assumed at a
depth z in the subsoil, see figure 18. The value of z will be determined later.
Two different situations have been taken into account:

1. the cover layer has a good toe structure or anchoring (in case of a block
mattress) giving only normal forces to the slope. If also the filter layer (if
present) is locked up in a way that this will cause no shearing forces, then the
only shear stress that can exist is caused by the subsoil layer with thickness z,

2. there is no adequate toe structure or anchoring. In that case the revetment

(cover layer and the filter layer if present) will also contribute to the shear
stress at z = Z,,.

From the calculations presented by Bezuijen (1991) it appears that the revet-
ment thickness will be impractically high in the latter case (up to I m thickness
for cover layer and filter layer for a 1:3 slope loaded with a 1 m significant wave
height) and therefore in this paper it is concentrated on the situation with an
adequate toe structure or anchoring.

The normal stress on a slip surface in the subsoil is composed of the weight of
the revetment and the weight of the subsoil with a thickness z, above the slip
surface (for both the weight under water). This stress has to be reduced by

the difference in piezometric head at depth z, and just below the revetment
(Figure 19).

In this calculation method the water flow in the subsoil is supposed to be
perpendicular to the slope of the revetment. Finite element calculations has shown
that this is a reasonable assumption in case of a permeable revetment placed on a
relatively impermeable subsoil. Such a flow does not influence the shear stress.
The revetment does not contribute to the shear stress because the component of
the weight parallel to the slope is counter balanced by the toe structure.

The shear stress is difficult to determine exactly. The weight component
parallel to the slope leads to a shear stress in the plane of the slip surf ace, but
this component can also be partly balanced by the friction between the cover
layer and the subsoil. Since the friction coefficient between the revetment and the
subsoil is unknown and since it depends on the material just above the subsoil, it
was decided to neglect this influence. This means that in figure 19 the shear
stress along the slip surface has to balance the weight component of the subsoil
parallel to the slope. With these assumptions the following relations for the
normal and vertical stress at the slip surface z, are found:

c = ["b + (1 —ns)(ps—p)gzo]cosa -pgAd (21)
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T = [(1 *ns)(ps—p)gzo]sina (22)

% = {pc-0) D+ [1-n)p,- )b} @)

1o
-1
depth{m)
-1

Figure 19. Definition sketch for stability calculation

4.5 Stability criterion

It is now possible with equations (20) and (21) and (22) to derive a minimum
value of the weight of the revetment and filter layer (g,) necessary to achieve a
stable revetment. With a toe protection or anchoring this is:

pg-Ad tane
o, > —=—= - (1-n)(p.-p)gz-|1- 24
g cose (=) (ps=p) 8% ( tantI)) @
To use this relation it is necessary to define A¢ and the critical depth (zy) at
which the slip surface occurs,

In this paper A¢ is assumed to be equal to the run-down value. According to
CUR/CIRIA (1991} the following relation can be used for the run-down (Ry,q)
for irregular waves:

R
;;"" = 033§, forE, <45
s 25)
Rd.Z% (
' -1.50 Jor £, > 45

Zy can be determined with consolidation theory, see (Bezuijen, 1991):

2 - %-L“*\/m 26)
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The permeability of the subsoil is most accurately determined from
permeability tests. A first approximation can be obtained, based on the grainsize
and porosity of the soil (den Adel, 1989):

nl-d?
p-_8 . Ms 27
160 v (1-;,3)2

As relation for w’ can be used (Verruijt, 1969):

wi=w i 2 (28)
P,

Equations (24), (25) and (26) are used to prepare the plots shown in figure 20,
and 21. The following parameters are used in the calculations for these plots:

p, = 2650 kg/m’ p = 1000 kg/m?
n, = 0.45 & = 35°
s = 10%

The air content in the water, s, is seldom known. From simulations of large
scale experiments values between 5 and 10% were found. Lindenberg (1986), has
measured this value in fine densified sand (135 um) and found a value of 6% and
in very loose sand 12%. In a normal situation with some compaction 10% is
assumed to be a safe value (the larger the air content, the lower the stability)

Figure 20 shows the calculated weight as a function of the wave height for
different slope angles, and grain sizes. The difference in the figures is the wave
steepness, which has a significant influence on the result. From the results it is
clear that for steep slopes with a subsoil of small grains geotechnical instability
becomes a dangerous failure mechanism.

The results of this calculation method have been compared with the results of
large scale model tests. Measurements on the pore pressure distribution in the
sand has shown that this is comparable to the assumed pore pressure distribution
for a block revetment placed on sand (Bezuijen, 1991). Since the method neglects
friction and clamping forces between the blocks, the resulting block thickness
appeared to be conservative.
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2 grain size subsoil: e = 02mm

—— 04 mm .

20 o

Necassary revstment weight (kPa)
0=
1

Significant wave height (m)

Figure 20. Result of stability calculation. Weight necessary to prevent instability
of the subsoil for different slopes and grain sizes of the subsoil as a
function of the wave height (wave steepness 5%)

28 grain size subseil: - -- 0.2mm -
— 04mm -7
26 —

Necassary revetmant weight (kPa)

Significant wave height (m)

Figure 21. Result of stability calculation. Weight necessary to prevent instability

of the subsoil for different slopes and grain sizes of the subsoil as a
function of the wave height (wave steepness 3%)
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4.6 Sliding of a revetment

Apart from lifting of parts of the cover layer and geotechnical instability, also
sliding of the cover layer can be a dangerous failure mechanism, especially on
steep slopes and for cover layers which give only little horizontal support (for
example, rip-rap revetments or revetments with bags), and for cover layers with a
poor toe structure or anchoring. As for lifting of the blocks, sliding is most likely
in case of an impermeable cover layer placed on a permeable filter layer. A
situation which lead to a flow in the filter layer as is shown in figure 4.

For the revetments with little horizontal support only the stability of a single
element from the cover layer against sliding has to be evaluated. For revetments
with horizontal support the sliding forces and stabilizing forces of a larger part of
the cover layer have to be evaluated. This section presents a simple procedure for
the stability of a part of a block revetment against sliding.

The loading on the revetment by wave attack can cause sliding of the cover
layer. Assume a revetment without any toe protection or anchoring of the blocks.
Stability of such a revetment has to be guaranteed by the friction force between
the revetment and the subsoil. The maximum friction force is assumed to be
related to the normal force between the soil and the subsoil. A linear relation
without cohesion is assumed:

F, - F,tan®’ (29)

Without wave attack F, is determined by the underwater weight of a block
multiplied by the cosine of the slope angle. The driving force for sliding is the
sine component of the block weight. The driving force will be smaller than the
maximum friction force; otherwise it would be impossible to build the revetment
without toe structure or anchoring.

During wave attack the driving force remains the same. The normal stress
changes due to the uplift pressures. The situation for a placed block revetment is
shown in Figure 22. The distribution of the difference in piezometric head over
the revetment is sketched during wave run-down. At the upper end of the
revetment the difference is negative, meaning that there are no hydrostatic uplift
pressures. The weight of the block is still nearly the weight above water and the
normal stress between blocks and subsoil is hardly influenced by the wave attack.
Lower on the revetment there is a positive difference in piezometric head which
reduces the grain stress and can lead to sliding of the revetment. Below the wave
front there is again a negative difference in piezometric head. The blocks are
pushed on the subsoil and have an apparent weight larger than the weight below
the water line, but the driving force is reduced (compared with the situation
without wave attack), because the blocks are situated below the water line. These

blocks will even have more stability against sliding than in the situation without
wave attack.
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Suppose sliding of the blocks just before the wave front occurs. Then this will
not influence the blocks on the upper part of the revetment unless there is some
connection by cables or interlocking, but it will influence the lower blocks.

Sliding will only occur when the total driving force of all the blocks, below
the highest block for which the driving force exceeds the friction force, is higher
than the total maximum possible friction force.

In the case of a block mattress connected with cables the situation will be the
other way around. When there is a large joint between the blocks, the blocks in
the most heavily loaded area cannot be stabilized by the blocks lower on the
revetment and should be stabilized by the cables between the blocks. The cable
forces are transmitted to the blocks higher on the revetment. This means that for
the lower part, or the upper part of the revetment (depending on the type of
revetment, placed blocks or block mattresses) the maximum possible friction
force has to be summed and compared with the maximum driving force. If the
driving force is higher than the maximum possible friction force then stability has

to be guaranteed by a sufficiently strong toe structure or anchorage of a block
mattress.

The method described here can be used qualitatively with different methods to
calculate the uplift pressure. Bakker & Meijers (1988) have elaborated this
method for the calculation method described in section 2.2. They suggested a
value for the friction angle: ¢’ = 2/3 &, with &; the friction angle of the filter
material. Further they concluded on the basis of their results that toe structures
and/or anchorages will often be indispensable.

BLOCKS

PIEZOMETRIC HEAD ON REVETMENT BY WAVE ATTACK
- DIFFERENCE IN PIEZOMETRIC HEAD, OVER COVER LAYER
+ INDICATES THE POSSIBLILITY OF LIFTING

SWL.

ARBITRARY UNITS

Figure 22. Possible distribution of piezometric head just before a breaking wave

and its influence on the direction of the resuttant force of block on the
subsoil
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Bezuijen et al. (1990) presented a simple method to get a first indication how
large the forces on toe structures can be. In this method it was assumed that over
the height equal to one wave height there is no friction between the cover layer
and the subsoil, see Figure 22. This is be a pessimistic assumption for a
revetment with a short leakage length. On the other parts of the revetment the
maximum possible friction force is comparable with the situation without wave
attack. Additional strength due to a negative pressure gradient below the water

line 1s neglected. Above the area of wave attack it is assumed that the influence
of the water can be neglected.

Each block in the area of wave attack (area I in Figure 22) contributed to the
total driving force for sliding:

F,=L-B-D-p_g sina (30)

A block in the area without wave attack will be stable, even if it is loaded to
some extent with the driving force from the area with wave attack. With F, the
driving force for sliding and F; the friction force, the maximum possible loading
from area I and III (F) on the area without wave attack (area II in Figure 22)
before sliding occurs can be written as :

F, = F,-F, = L;BD -(p,-p)g[cosatan®’ -sina] (31)
and above the water line (area III in Figure 22) :
F, = F;-F, = LyBD - p_g[cosa tan®’ -sine] (32)

With these relations the force on a toe structure or anchorage can be calculated
as will be done in the following example.

A placed block revetment on a slope 1:3 is loaded with a wave height of 1 m.
The toe structure is placed 1.5 m below the area of wave attack. The revetment
consists of blocks with a dimension of 0.5 x 0.5 x 0.25 m. The friction angle
between the blocks and the filter layer is 25°.

In the loaded area each block contributes with a loading force of 445 N (using
a value of 2300 kg/m3 for the density of concrete). The stabilizing area is below
the water line, therefore Equation 31 has to be used leading to a stabilizing force
of 100 N for each block. There are approximately 6 blocks in the loaded area and
9 blocks in the area without wave attack. The total force that will load the toe
structure is therefore 1770 N for each row of blocks. Since the length of the
blocks is 0.5 m this result leads to a loading of the toe structure of 3540 N/m.
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5 Design considerations

The review of the key elements that must be considered in the design
(dimensioning) of revetment structures is illustrated in Figure 23. More detailed
design methods for these structures are discussed in (PIANC 1992 and
CUR/TAW 1992/1994).

The most critical structural design elements are :
(1) the stability of the cover layer,

(2) the security of the foundation,

(3) the minimization of settlement and sliding

(4) the toe protection to prevent undermining.

All of these are potential causes of failure of coastal structures.

width of [1at ares

. l width of top elevation
K ’pl Ill.sh ' I. /_-(————— slope
<

Lloe elevation
structural design ™,

of spiash arex . 7 - structural design

< | of loe
foundation
structurad desigs of revetment

typical revetment

Figure 23. Design components of typical revetment structure

The usual steps needed to develop an adequate structure design are :
1. General aspects
1.1 Formulate purpose of the project
1.2 Formulate functional requirements
1.3 Formulate project restraints (materials, labour, equipment, financing,
time, risk, etc)
1.4 Formulate global description of boundary conditions.

2. Alternative general solutions
(items 2 and 3 are reversible)

3. Boundary conditions
3.1 Determine hydraulic boundary conditions and loads (water levels, wave
climate, currents, morphology, beach variations, etc)
3.2 Determine geotechnical boundary conditions (soil types and relevant
parameters)
3.3 Determine other relevant conditions and loads (ice, earthquake,
vegetation, etc).
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4. Feasibility studies for generated alternatives

4.1 Determine suitable structure configurations (geometry), crest, toe and/or
berm elevation related to the allowed run-up and overtopping

4.2 Review the possible failure mechanisms

4.3 Select a suitable armour alternative and size of armour units

4.4 Make a preliminary feasibility analysis of alternatives
- develop cost estimate for each alternative
- evaluate possible construction requirements and limitations for the

alternative solutions
4.5 Select the final solution.

5. Final design

5.1 Consider the use of models (improving boundary conditions)

5.2 Consider the probabilistic approach

5.3 Make final estimation and evaluation of the structure geometry (slope,
berm, crest, toe) and check the allowable figures on run-up and/or
overtopping

5.4 Design the final dimensions of the revetment ; cover layer, filter and/or
underlayers

5.5 Make prediction of scour and design toe protection

5.6 Design transitions and crest protection (splash area}

5.7 Design other structure-related elements
- drainage features (if required)
- surface run-off and overtopping run-off facilities
- flanking of the structure

5.8 Check for possible failure mechanisms of the final design and corres-
ponding damage and risk level

5.9 Go through the overall project and checklist and finally decide whether
alternative geometries should be considered

5.10 Prepare specifications for materials, equipment, execution and cost,
including quality control and motivation of choices.

The primary function of any slope protection, flexible or not, is to protect the
edge of land and water against hydraulic loads by waves, tides and currents. The
determination of the hydraulic design conditions is the result of a quantification of
the local conditions in combination with a certain level of safety. In this way the
design conditions are defined and presented in the form of a water level, a wave
height and a wave period, usually completed with some expectation for the form

of the energy density spectrum and sometimes even completed with an estimate
for the duration of the selected design condition.

However, the fact that the design conditions are fixed does not at all mean that
the loads on the slope revetment structure are also fixed. Within certain limits, of
course, it is possible for the designer to influence and consequently to choose the
size, the sort and the place of attack of the hydraulic loads, by a proper selection
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of the geometry, lay-out and materials for the structure. In previous sections the
mathematical formulas for the calculation of external and internal hydraulic loads
were presented. The parameters in the formulas can be manipulated by the
designer to control the performance and effectiveness of structures.

With reference to the design of block revetments as one of various other
alternatives and in view of design optimization the following design considerati-
ons can be used during the design process:

(1) Steeper or milder slope gradient.

Steeper slope makes the protective length (revetment) shorter ; as a first
approximation, the slope length (L) is related to the height of slope to be
protected (h) by L = h/sinc.

For breaking waves (Eop < 2.5) the run-up (R;4) on the steeper slope
will increase proportionally to tana, namely: R,y = 8H tano; this
yields a higher crest position and eventually, a larger volume of the dike.
The run-down on the steeper slopes also increases, possibly leading to
higher overpressures and thus, thicker protective elements.

For steeper slopes of loosely placed blocks, the friction between the
blocks increases with since. However, it is difficult to quantify the
consequences of this effect exactly.

For steeper slopes the internal gradients increase, leading to more severe
requirements concerning the sublayers.

A steeper slope imposes more severe requirements for the support by a
toe-protection.

The damage progress after an initial damage is more rapid for the steep
slopes, thus providing more dangers of scouring.

Steep slopes are more easily damaged by ice, especially when using
slopes steeper than 1 on 3, the above considerations should be taken into
account for a proper design.

For steeper slopes the risk of geotechnical instability increases.

(2) Berm or no berm.

Application of a berm reduces the run-up, making possible a lower crest
elevation.

A berm can serve as a maintenance road.

A berm creates a discontinuity in a protection (weak point).

A berm reduces the phreatic level in a dike with a positive effect in case
of low permeable or impermeable revetments.

A berm reduces ice ride-up.

(3) High or low permeability of the cover layer.

High permeability, in combination with a proper sublayer, reduces the
uplift pressure and leads to thinner units. It is however important that the
permeability does not decrease during the life time (aging).
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- When the high permeability is created by large openings in or between
blocks, washing out of the sublayers can take place ; to avoid this the
following measures can be taken:

(a) coarser filter; however this sometimes leads to increase of the
hydraulic gradients across the cover layer and thus to thicker units,

(b) geotextile underneath the cover layer elements. Attention should be
paid to a sufficiently low hydraulic resistance normal to the slope,
which should not increase the uplift pressure again.

(c) another solution can be the use of bounded filters (sand-bitumen,
sand-cement, etc).

* To reduce these disadvantages the permeability should be
distributed over the units instead of being concentrated (e.g. in
one big hole).

High permeability of the cover layer may increase the hydraulic gradients at

the sublayer-subsoil interface or in the subsoil, proper care should be

exercised in adequate sublayer design.

High permeability of cover layer reduces the run-up somewhat.

In the case of a very high permeability of block revetments created by large

holes the drag forces along the slope may increase considerably, leading to

large forces on the units and thus larger dimensions.

Rough or smooth surface.

- A rough surface (can also be obtained by using blocks of various height)
reduces the run-up and thus it reduces the crest elevation and eventually
the volume of a dike. This effect is evident mainly when the whole run-
up zone is equipped with roughness elements. When the upper slope is
protected by a grass-mat the application of the roughness elements on the
lower part of a slope will have a limited effect.

- High roughness elements introduce high drag-forces which should be
incorporated in the stability calculations.

- Rough surface is unfavourable under ice conditions.

High or low permeability of sublayers (filter).

- Decreasing of sublayer-permeability reduces the uplift forces on the
cover layer. In the case of a cover layer of low permeability this may
lead to reduction of the thickness of the cover layer. However, it should
be checked whether this lower permeability of the sublayer and the
corresponding reduction of weight is acceptable with respect to the
stability of the sublayers.

- For non-cohesive (granular) materials a decrease of the permeability can
be obtained by :

* finer granular material (however, washing out through the cover layer
should be avoided and the geotechnical (in-) stability should be
checked),

wide-graded material (the internal stability should be examined).
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- Applying clay as a cohesive sublayer needs formulation of proper specifi-

cations on clay properties to avoid erosion, piping or shrinkage.
However, it should be checked whether an impermeable sublayer might
cause other problems, e.g. malfunctioning of the toe.

Lower permeability of sublayer/filter increases the hydraulic gradients at
the interface with the subsoil or inside it. This can be coped with by
increasing the thickness of the sublayer/filter or by applying a geotextile
on top of the subsoil. Besides, the geotechnical stability should be
evaluated.

Shape of sublayer/filter-material.
- Rounded material is often cheaper than broken material ; however, in the

case of insufficiently compacted grains, a slightly lower angle of internal
friction may lead to geotechnical instability, more settlement, and forces
on the toe-structure.

Thick or thin sublayer/filter.
- In the case of block revetments of low permeability, reduction of the

thickness of sublayer/filter leads to reduction of the up-lift forces but
simultaneously it leads to increase of the hydraulic gradients along the
interface with the subsoil or inside it.

(8) Shape of blocks.

&)

Rectangular blocks Columns of irregular shape
good alignment/joining mostly nicer appearance

low permeability higher permeability

easy mechanical placing less easy mechanical placing
problems in bends easier with bends

difficult to repair easier repair

washing in grouting quite difficult washing in/grouting possible
often cheaper often more expensive

more rapid progress of damage slower progress of damage

Nore: In the case of blocks, the self-healing tendency as for riprap is

absent; therefore the stability of blocks should be guaranteed under all
design conditions.

Concrete (or other artificial material) or natural stone.
- Natural stone, if available in respect to the required quality and quantity

can often be a favourite solution.

- Concrete blocks (or asphaltic revetments) can often be a good alternative

(especiaily when the natural stone is not locally available) because of:
* often lower cost

* good/constant quality
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* uniform size

* mechanical execution

* more choice regarding composition, size, etc.

Note: The economical optimization including the availability of materials,
equipment and skills is mostly decisive for the choice.

(10) Effect of ageing and/or wearing/fatigue.
During the lifetime of revetment structures their original specifications can
change due to climatological effects (wind, rain, frost, abrasion, sedimen-
tation due to waves, marine growth , etc). As far as possible the course of
time should be taken into account in the design process.
However, it is not easy to quantify these effects. Some qualitative descrip-
tion is given below:
- Ageing of the cover layer
* Due to the wave attack at various water levels the permeability and
the interlocking may change with time. For small interspaces between
the blocks the permeability can decrease due to siltation of sediment
while the friction between the blocks may increase.
Vegetation in the interspaces may also increase the friction/inter-
locking; however, it is possible that in the case of a heavy wave
attack, the silted and/or vegetated interspaces will be cleaned up
again, thus providing no additional strength at the moment of design
loading on the protective units.
- Ageing of the sublayers
* In the case of alternative materials used as sublayers (minestone,
slags, silex, etc) special attention should be paid to the changes of the
physical properties of these materials under influence of air, wave
shocks, varying humidity, frost, etc.

* In the case of geotextiles special attention should be paid to the
possibility of clogging and/or blocking (leading to drastic change of
permeabilities and, thus, increase of uplift pressures).

The siltation of the sublayers/filter has in general a positive effect;
due to the decrease of permeability the up-lift forces decrease.

(11) Residual strength of revetments.

Revetments should be designed in such a way that the chance of failure is

acceptably low. The quantification of a risk is related to the type of revet-

ment, especially regarding the progress of damage, for example:

- a very rough surface is more sensitive to damage than a smooth surface ;

- application of a strong geotextile retards the extension of damage to the
subsoil;

- cohesive-(clay) or bounded-sublayers are primary measures to increase
the secondary strength of revetment-structures if the permeability of
those materials is not a disadvantage for the total stability, and if the
cohesive material is of sufficient strength.
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Cost optimization

- The total costs of a revetment are related to :

capital costs (execution)

yearly maintenance

large/periodic maintenance

repair of damage
* demolition (after a life-time)

A total capitalization of the cost gives mostly the optimal result.

- In general, revetments with lower capital costs will be damaged more
frequently and will need more maintenance. Local subsidy regulations
may influence the choice. However, in case of sea-defences, especially
along low shores, higher capital costs (stronger protection) should be
preferred. In the case of land reclamation or bank protection the results
of the capitalization of the costs can be applied directly.

¥ ¥ ¥ %

Conclusions

1. The combination of the stability formula, that was derived from theory,
together with the results of many large-scale model studies from all over the
world has produced a reliable design tool for the preliminary design of placed
block-revetments. Its reliability is only influenced by the fact that most tests
have been performed with regular waves. An inaccuracy is introduced by the
transformation of the regular wave load to an equivalent irregular wave load.
Further studies are undertaken to improve the transformation method

2. Elaborating the geotechnical stability of the subsoil of granular material
underneath a revetment under wave attack, the following conclusions can be
made.

*

The calculation method developed in this paper can be used to investigate
whether geotechnical instability is a dangerous failure mechanism.

If geotechnical instability according to this method appears to be critical it
can be useful to apply more sophisticated (numerical) methods to analyse
the stability.

A revetment needs to have a certain weight to prevent geotechnical
instability of the subsoil. A very permeable cover layer (with respect to the
subsoil) can prevent lifting of parts of the cover layer, but then geotechnical
instability becomes a critical failure mechanism. This phenomenon should
be considered when in a design a granular filter (which always has a certain
weight) is replaced by a "weightless" geotextile.

In a revetment with a steep slope (I : 3 or more) it is absolutely necessary
to have an adequate toe structure or anchoring of the blocks (the latter in
case of a block mattress).

Geotechnical stability is most critical in case of a fine graded subsoil with a
large air content in the pore water. Comparison of the calculated results
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with the results of large scale model tests showed that the outcome of the
method is on the safe side.

3. A good tuning of the permeabilities of the cover layer and sublayers (including
geotextile) is an essential condition for balanced design. Geotextiles are only
one of the components of structural design and must be considered in
conjunction with, or as an alternative to granular filters/other options. The
replacement of a granular filter by a geotextile means a much smaller weight
on the subsoil and consequently a smaller stability against geotechnical failure.

4. Further prototype verification of developed dimensioning criteria is still
needed. Careful evaluation of prototype failure-cases may provide useful
information/data for verification purposes.

5. In ali cases, experience and sound engineering judgement play an important
role in applying these design rules, or else mathematical or physical testing
can provide an optimum solution.

List of symbols

B = width of the block (m),

b = thickness of filter layer (m)

c, = consolidation coefficient = k/(pg.n,w’) (m2/s)

d, = grain size of subsoil corresponding to x% by weight of finer
particles (m)

D = thickness of the cover layer [m]

D, = grain size of filter corresponding to0 x% by weight of finer particles (m)

f = coefficient, dependent on a, tane, friction, etc. (-)

F, = the driving force for sliding (N),

F; = the maximum friction force (N),

F, = the normal force between cover layer and subsoil (N),

g = acceleration due to gravity (m/s?),

H = incoming wave height of regular waves (m)

H; = incoming significant wave height of irregular waves (m)

H,., = significant wave height at which blocks are lifted (m)

maximum gradient in the filter (-)

permeability subsoil or filter (m/s)

permeability of the cover layer fm/s]

length of the block (m),

the length of area II (m)

the length of area III (m)

consolidation length = V/(T.c,) (m)

wave length of regular waves at deep water = gT2/21r (m)

= wave length of irregular waves at deep water = ng2/27r (m)
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the porosity of the filter layer (-)

the porosity of the subsoil (-)

average diameter of the standardized sand fraction, of which 90%
remains on the geotextile after a sieve test under defined conditions (m)
atmospheric pressure (1.10° N/m?)

wave run-down level (absolute value is exceeded by 2% of incoming
waves) (m)

wave run-up level of irregular waves, exceeded by 2% of incoming
waves (m)

= air content (normally between 1 and 10%)

wave period at peek of spectrum (s)

average wave period of regular waves (s)

the compressibility of pure water (5.10° m?/N)
compressibility of the pore water with air (m?/N)
length coordinate along the slope (m)

= phreatic level in filter relative to the point where the wave front meets

Il

I

1l

]

i

I

the revetment (m) (usually z; = ¢).
depth (m)

the slope angle (°).

angle between potential front of breaking wave and the verticle (°)
(p. - p)p = relative density of blocks (-)

the difference in piezometric head between the location at z = z, and
just above the subsoil (m)

coefficient representing friction, inertia etc. (-)

the shear stress on a plane in the subsoil (kN/m?)

leakage length (m)

kinematic viscosity (1.2 100 m?/s)

breaker parameter for regular waves = tana/V' (H/L,) ()
breaker parameter for irregular waves = tana/V/ (H/Lop) -)
density of water (kg/m3),

density of concrete (kg/m?),

density of filter grains (kg/m3),

the density of the grains of the subsoil (kg/m’)

the normal stress by the filter layer and/or cover layer (N/m?)
the normal stress on the same plane (kN/mZ)

steepness angle of potential front of breaking wave (°)
piezometric head in the filter layer (m)

piezometric head on the cover layer (m)

maximum piezometric head over cover layer (m)

the friction angle of the material (°)

the friction angle between the blocks and the filter layer (-).

Relative open area of the revetment (joints between the blocks and gaps
in the blocks) (-)
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