

Delft University of Technology

Why are features deprecated?
An investigation into the motivation behind deprecation
Sawant, Anand Ashok; Huang, Guangzhe ; Vilen, Gabriel; Stojkovski, Stefan ; Bacchelli, Alberto

DOI
10.1109/ICSME.2018.00011
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings - 2018 IEEE International Conference on Software Maintenance and Evolution, ICSME 2018

Citation (APA)
Sawant, A. A., Huang, G., Vilen, G., Stojkovski, S., & Bacchelli, A. (2018). Why are features deprecated? An
investigation into the motivation behind deprecation. In L. O'Conner (Ed.), Proceedings - 2018 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2018 (pp. 13-24). IEEE.
https://doi.org/10.1109/ICSME.2018.00011
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME.2018.00011
https://doi.org/10.1109/ICSME.2018.00011

Why are features deprecated? An investigation into
the motivation behind deprecation

Anand Ashok Sawant
Delft University of Technology

Delft, The Netherlands
A.A.Sawant@tudelft.nl

Guangzhe Huang, Gabriel Vilen, Stefan Stojkovski
Delft University of Technology

Delft, The Netherlands
(G.Huang-1, H.G.Vilen, S.Stojkovski)@student.tudelft.nl

Alberto Bacchelli
University of Zurich
Zurich, Switzerland
bacchelli@uzh.ifi.ch

Abstract—In this study, we investigate why API producers
deprecate features. Previous work has shown us that knowing
the rationale behind deprecation of an API aids a consumer
in deciding to react, thus hinting at a diversity of deprecation
reasons. We manually analyze the Javadoc of 374 deprecated
methods pertaining four mainstream Java APIs to see whether
the reason behind deprecation is mentioned. We find that
understanding the rationale from just the Javadoc is insufficient;
hence we add other data sources such as the source code, issue
tracker data and commit history. We observe 12 reasons that
trigger API producers to deprecate a feature. We evaluate an
automated approach to classify these motivations.

I. INTRODUCTION

An Application Programming Interface (API) is a set of
defined functionalities provided by a programming library
or framework.1 APIs promote the reuse of existing software
components [2]. By integrating a third-party API in a code
base, a developer can save development time and effort and
use a well-tested system.

To remain useful in a mutating environment [3], most APIs
evolve by introducing new features, removing older ones,
and changing existing features. Some of the changes due to
API’s evolution can be breaking in nature and can have an
adverse impact on the API consumers [4]. One way for API
producers to avoid directly introducing a breaking change in
their API first to deprecate the feature, thus communicating
a warning to the consumers. Deprecation is available in most
mainstream languages such as C#, PHP, and Java. Regarding
a definition of deprecation, the official Java documentation
states: “A program element annotated @Deprecated is one that
programmers are discouraged from using, typically because it
is dangerous, or because a better alternative exists” [5].

API deprecations are commonplace [6], however, to what
extent is their motivation clear? Recent research has reported
that API consumers decide on whether to react to API depreca-
tion, based on the reason behind the deprecation [7], thus hint-
ing at the several possible purposes for deprecating a feature.
Indeed, deprecation is a convenient way for API producers
to make sure that both popular IDEs and compiler inform
API consumers that something is not right—deprecation is a
unique communication mechanism and, as such, can be used
for conveying different messages.

1In this paper, with the term API we refer only to local APIs (e.g.,
frameworks and libraries), as opposed to web-APIs [1].

The goal of this study is investigating the reasons behind
feature deprecation. The critical motivations for pursuing this
goal include: (1) gaining a deeper understanding of a popular
language feature, from a new angle, (2) discovering unmet
developers’ communication needs, by uncovering unorthodox
usages of deprecation,2 which may signal those needs, (3)
investigating what deprecation says regarding APIs’ evolution.
The results can inform and guide practitioners’ practices as
well as future academic studies on this and similar mecha-
nisms, and on developers’ communication.

To this aim, we conduct an in-depth analysis of 374 depre-
cated features in four popular Java APIs: Spring [9] (15,086
users), Hibernate [10] (8,143 users), Guava [11] (9,542 users),
and Easymock [12] (1,484 users). Our study is exploratory
and we answer three research questions: why are API features
deprecated, what is the frequency of deprecation rationales,
and how well can we automatically classify the reason for a
deprecation from software repositories.

To uncover the various rationales for a deprecation we man-
ually analyze over 1,100 documents relating to 374 deprecated
features. Three authors conducted this analysis and a fourth
validated it. This effort results in the creation of a taxonomy
of 12 rationales behind deprecation. We then investigate what
rationales have been used most frequently across the consid-
ered APIs. Finally, we employ a supervised machine learning
approach [13] to create an automated approach to infer the
rationale behind a deprecation. We evaluate the performance
by using different cross validation [14] techniques.

We found that determining the reason for deprecating a fea-
ture is far from trivial: The motivation is rarely mentioned in
the accompanying Javadoc. Nevertheless, through the analysis
of software repositories (mainly, code versioning and issue
tracking systems) we could define a taxonomy of 12 high-level
reasons. Of these, two are unorthodox uses of deprecation (for
temporary features and for incomplete implementations), thus
indicating unmet developers’ communication needs. Finally,
we found that an automated approach to classify the depre-
cation reasons based on machine learning reaches promising
results, but only if trained on project-specific instances.

2In the opinion of the Java language designers, developers often misuse the
deprecation mechanism [8].

findMergedAnnotation

@Deprecated
public static <A extends
Annotation> A findMergedAnnotation(AnnotatedElement element,
String annotationName)

Deprecated. As of Spring Framework 4.2.3,
use findMergedAnnotation(AnnotatedElement, Class) instead.

Find the first annotation of the specified annotationName within the annotation
hierarchy above the supplied element, merge that annotation's attributes
with matching attributes from annotations in lower levels of the annotation hierarchy, and
synthesize the result back into an annotation of the specified annotationName.

@AliasFor semantics are fully supported, both within a single annotation and within the
annotation hierarchy.

This method delegates to findMergedAnnotationAttributes(AnnotatedElement,
String, boolean,
boolean) (supplying false for classValuesAsString and nestedAnnotationsAsMap)
and AnnotationUtils.synthesizeAnnotation(Map, Class, AnnotatedElement).

This method follows find semantics as described in the class-level javadoc.

Since:
4.2

Figure 1. Javadoc of a deprecated API feature from the Spring API [15].

Figure 2. The commit deprecating the feature, pointing to the JIRA issue [16].

II. MOTIVATION

Figure 1 shows an example deprecation message from
the Spring framework. We see that the API producers have
deprecated the feature in version 4.2.3 of the API and they
recommend that the consumer use an alternative feature. The
Javadoc does not explain the rationale behind this change. By
recovering the commit (seen in Figure 2) in which this feature
was deprecated, we find that it contains no rationale behind
the deprecation; hence, we have to refer to the JIRA issue
ID mentioned in the commit. From the Spring issue tracker
post (seen in Figure 3), we see that there is a performance
slowdown when using specific methods from the Annotation
class. To rectify this, Spring introduced a replacement feature
to fix the issue and deprecated the original element.

This example shows that the deprecation of a feature itself
does not necessarily carry its reason, but uncovering (although
complicated, as in this case) and understanding the possible
types of deprecation reasons is relevant from many perspec-
tives, including those we describe in the following.
(1) To guide practitioners and research tools. API con-
sumers have indicated that knowing the motivation behind
deprecation is critical to decide whether to react [7]. Em-
pirically uncovering the possible reasons for deprecation can
suggest to practitioners whether they should respond to a
deprecation in principle, as well as whether the motivations
are project-specific or can be mostly generalized. Knowing
deprecation reasons can inform the design of tools to better
support the replacement of a deprecated feature, by exploiting

Figure 3. Issue detailing the need for changing the deprecated method [17].

the deprecation reason.
(2) To uncover unmet communication needs. When Java
was in the process of changing its deprecation mechanism for
Java 9, a motivation was that API producers were misusing
the deprecation mechanism. This misusage may signal that
deprecation is used to fulfill a communication need that is
unmet by any other tool. Knowing the various reasons behind
deprecation allows us to understand how many different cases
of misuse of the deprecation mechanism have taken place and
may let us discover what needs future research should address
to devise a more appropriate communication tool.
(3) Understand how an API evolves. APIs evolve and replace
old features with new ones. The older features are deprecated
and not directly removed from the API to minimize the number
of breaking changes introduced. Knowing what reasons an API
uses most popularly can aid researchers in gaining a deeper
understanding as to how and why APIs evolve [18].
(4) Understanding to what extent API documentation is
lacking. API documentation is an essential tool that aids
API consumers in effectively and accurately using an API’s
features [19]. API producers must invest in the documentation
for their API so that they ease the burden of adoption of
API features [20]. In the case of deprecated API features,
giving the consumers an indication as to what new feature
should be used and how, is essential [21], [22]. In addition
to that, explaining the rationale behind the deprecation and
providing a timeline for the removal of the deprecated feature
have been found to be essential to an API consumer. We
see in Figure 1 that the rationale is impossible to infer, a
consumer has to read the JIRA issue on the subject (seen in
Figure 3). In this study, we get an indication to what extent
API documentation indicates the reason behind deprecation
and conveys the same to the consumer, or where it can be
found, thus informing practitioners, as well as researchers
investigating tools to support API documentation.

III. METHODOLOGY

The goal of the study is to empirically investigate and
classify the reasons that triggered the deprecation of features

in popular APIs. The perspective is of researchers and practi-
tioners, interested in an empirical understanding of the reasons
behind deprecation, to guide practice and future research.

Our study revolves around three research questions:
RQ1: How can reasons for deprecating features be cat-

egorized? With the first research question, we seek to
investigate and classify the diversity of reasons that triggered
API producers to deprecate a feature in their systems.
We do this by manually analyzing the information about
these features and their deprecation as they are available in
software repositories.

RQ2: How often does every reason for deprecation occur?
After having categorized the reasons triggering deprecation,
we analyze their frequency to quantify the different purposes
of API producers.

RQ3: How effective is an automated approach in classify-
ing the reason behind a deprecation? Finally, we exploit
the set of manually categorized reasons to investigate how
effectively we can automatically classify the rationale via
standard machine learning techniques, using the relevant
data from the software repositories. Should the results of this
automatic classification be promising, future research could
investigate tools to automatically augment existing API
documentation with the rationale behind the deprecation,
thus providing useful information [7] to the API consumers.

A. Subjects: Systems and Deprecated Features

In this study, we focus primarily on the Java ecosys-
tem, because (1) Java is the most popular programming
language [23], (2) this ecosystem has a large number of
popular and mature APIs for study, and (3) the deprecation
mechanism in Java is very prominent and widely used by API
producers [6].

Systems. From the Java ecosystem, we select four third-
party open-source software APIs.3 Our goal and research
methods dictate the choice of limiting ourselves to four APIs.
On the one hand, we strive to collect as many diverse reasons
as possible to increase our empirical understanding of this
phenomenon; on the other hand, we can realistically investi-
gate no more than a few hundred deprecated features, because
understanding the reason of deprecation requires perusing a
possibly large number of documents per feature (as seen
in the example in Figures 1–2). Given these requirements,
investigating a large number of systems is suboptimal: Keeping
the number of features we can analyze equal, it is reasonable
to think that we are more likely to find a smaller diversity of
reasons in more systems (i.e., we find only the most occurring
reasons per system), than in fewer systems but studied more
in-depth. Hence we limit ourselves to four systems.

As criteria for the choice of the four systems, we consider
popularity (as defined by the number of Java projects on
GitHub that use the system; we use the dataset by Sawant

3We do not consider the Java JDK API for our analysis because uncovering
the rationale behind deprecation is not always possible as tracing alternative
sources of information (e.g., issue trackers and developers’ communication)
is hindered by the closed nature of the Oracle JDK.

Table I
OVERVIEW OF SELECTED APIS

API Description Considered
Release

Number
of Consumers

Easymock Java object mocking framework 3.5.1 1,484
Guava Google’s collections library 23.0 9,542
Hibernate Object/relational mapping framework 5.2.12 8,143
Spring Dependency injection framework 5.0.0 15,086

and Bacchelli to benchmark the popularity [24], [25]), size,
length of history, number of deprecated features, availability
of software repositories, and diversity in producers (e.g., we
would not consider two APIs from Google) as well as domain.
Table I describes the APIs we eventually selected (i.e., Guava,
Spring, Easymock, and Hibernate).

Deprecated features. We focus on the latest available
version of each API. Since these are all Java-based projects,
we use the Eclipse JDT AST parser [26] to identify all
the deprecated features. The resulting dataset contains almost
2,300 deprecated methods from the four APIs. We randomly
select the methods from each of the APIs to create our
sample investigation set. Considering that we want to estimate
proportions of reasons for RQ2, we choose a sample set size
that leads to a 95% confidence level and a margin error of no
more than 5% on the computed proportions [27]; this resulted
in a sample of 374 deprecated features to manually investigate,
together with information from other relevant data sources.

B. RQ1. Manually determining the reasons for a deprecation

To answer RQ1, we follow a three-step method. Three
authors of this paper conducted the first (S1) and second
(S2) steps, while the fourth conducted the third step (S3).
S1 regards the determination of the rationale behind the
deprecation of an individual feature, S2 regards the grouping
of individual deprecation reasons into high-level categories to
create a taxonomy of reasons, S3 validates the results of the
first two steps. In the following, we detail each step.

S1. Determining the reason of an individual deprecation.
This step is conducted by three authors of this paper together.
For each feature, they start by inspecting the documentation
that is supposed to contain the rationale and replacement for
the deprecation [5]: The Javadoc associated with the feature.

They found that (1) most Javadoc messages include the
annotation @link that links to the alternative feature that
should be used instead of the deprecated feature, but (2) the
message seldom includes the rationale behind the deprecation.
This lack of rationale made it unfeasible to understand the
reason from only the Javadoc. Thus, the investigation is
expanded to include data from other software repositories,
which are then inspected by the three authors:

1) Commit history. The commit message for a change can
contain the rationale behind it and the nature of the change.
Thus, we use the JGit project to traverse the history of each
file in the master branch of the API. We then isolate the
commit wherein one of the deprecated entities was first

deprecated. We, thus, inspect the accompanying commit
message.

2) Source code. Source code comments (not Javadoc) can of-
ten contain the rationale behind changes made to a method.
These comments are usually for the benefit of the subsequent
contributor to this method or file. For each of the deprecated
methods, we isolate the entire source code of the method.

3) Issue tracker. Issue trackers contain discussions among
developers and information on issues in the API. The ratio-
nale behind a change can be understood from the discussions
and issues posted in the issue tracker if they pertain to the
method under investigation. We manually isolate the issues
(from JIRA or the GitHub issue tracker) mentioned in the
commit messages that deprecated a feature.

4) Other sources. We perform a cursory investigation of
sources such as StackOverflow, the Google search engine,
developer blogs and mailing lists specific to each API. Each
of these sources, for example email [28], [29], contains API
consumer-/producer-driven content that can contain infor-
mation on the rationale behind the deprecation of a feature.
However, we found that sources are not always consistent
and do not contain the information that we require.
Through the analysis of the aforementioned sources, the

three authors determine a precise reason for the deprecation
of each feature.

S2. A taxonomy of deprecation reasons. In the second
step, the same three authors conduct three iterative content
analysis sessions [30] to group the individual rationales used
into higher level reasons. Iteratively, for each rationale found
in the previous step, the involved authors verify whether they
have previously identified a reason of this nature to which
this rationale can be assigned or whether they need to create
a new reason. This iterative process resulted in a taxonomy of
12 reasons for the deprecation of features.

S3. Validation. As the third and last step, another author
independently repeats the analysis to verify both (i) the un-
derstandability of the category descriptions in the taxonomy
from the second step and (ii) the assignment of deprecated
features to these categories. The resulting inter-rater agree-
ment between the two classifications was 93%; the authors
discussed the 7% that was not agreed upon until they reached
a consensus. In Section IV we present the final taxonomy.

C. RQ2. Frequency of the deprecation reasons

In this research question, we aim at analyzing how fre-
quently each category of our taxonomy appears. To this aim,
we compute the frequency with which each high-level category
of deprecation reason is assigned to an individual deprecated
feature during the iterative content analysis. In Section V we
present and discuss the results, overall and by API.

D. RQ3. Automatic classification of deprecation reasons

In our third research question, we investigate standard ma-
chine learning techniques to automatically classify the reasons
of a deprecation into the taxonomy identified in RQ1. While

employing a sophisticated method such as deep learning goes
beyond the scope of the current work we aim to create an
automatic classification technique with a fair level of accuracy.

Machine learning approaches. We employ a supervised
machine learning approach [13] to create our automated
inference approach. With this approach, a set of features
are used to predict the value of a variable (in our case,
the classification of the reason) using a machine learning
classifier (e.g., Naive Bayes [13]). The role of the classifier
is to determine the importance and role of each feature in
predicting the classification by learning from already classified
examples. In particular, we consider two different kinds of
supervised classifiers: (1) probabilistic classifier (specifically,
naive Bayes multinomial) and (2) decision tree algorithm
(specifically, random forest).These classifiers make different
assumptions on the underlying data, as well as have distinct
advantages/drawbacks for execution speed and overfitting.

Features. To classify the reason for deprecation, we have
the textual data (Javadoc comment, commit message, and
issue tracker data) that describes the deprecated feature at
our disposal. For this reason, we reduce our task to a text
classification problem [13], which we tackle adapting the
widespread Vector Space Model (VSM) [31]. VSM considers
each document (i.e., the deprecated feature and all the relevant
text) as a vector of identifiers (i.e., in our case, all the
terms that appear in the whole set of available texts in our
dataset) whose value is determined by the normalized number
of occurrences of each identifier in the document (e.g., 0 if
the term never occurs). The identifiers given as output from
VSM represent the features for the machine learner and the
normalized word counts are the corresponding values.

To determine the terms to consider for VSM, we create
a vocabulary by tokenizing each textual resource. We split
tokens on whitespace, special characters, and punctuation;
moreover, we split variable names that are CamelCased into
individual entities. Finally, we do not alter Javadoc tags such
as ‘@deprecated’ and ‘@link’.

Dataset and Evaluation. To train and test the performance
of the proposed machine learning approach, we use the dataset
produced in RQ1 and RQ2; then we mainly adopt n-Fold
Cross Validation [14]. This strategy randomly partitions (using
stratified sampling to maintain the proportion of classes) the
data into n folds of equal size, then n-1 folds are used as
training and the last as testing. The process is repeated n times,
using each time a different fold as a test set. The performance
of the experimented models is computed using widespread
classification metrics such as precision and recall; in our
paper, for space reasons, we report the percentage of correctly
classified instances, while the full results are available in the
accompanying replication package [32].

E. Threats to validity

Construct validity. In the manual analysis of the rationale
behind deprecating specific features, we may have misclassi-
fied or missed out on certain motivations behind deprecation.

We ensure the accuracy of our classification by having three
authors simultaneously manually analyze all the samples in
our dataset and create an initial categorization of the rationale,
followed by another author repeating the manual classification
process to ensure accuracy. To ensure that we uncover most
motivations behind deprecation, we limit ourselves to 4 main-
stream Java APIs that pertain to different domains and have
different developers and characteristics.

Generalizability. Having focused only on the Java ecosystem,
the rationales that we have uncovered may apply only to
the Java-based APIs and not to APIs in other languages. We
mitigate this by trying to ensure that the rationale we discover
is not Java specific, rather as abstract as possible. Further-
more, Java is the most popular language with a deprecation
mechanism and other object-oriented languages share similar
development practices.

IV. RQ1 RESULTS: DIVERSITY OF REASONS

We describe each category in the taxonomy that resulted
from our analysis, reporting examples from our dataset.

BC. AVOID BAD CODING PRACTICES

/**
 * Allow injection of the dialect to use.
 * @deprecated The intention is that Dialect should be required to be
 * specified up-front and it would then get ctor injected.
 * @param dialect The dialect
 */
 @Deprecated public void setDialect(Dialect dialect)

Example Javadoc

One of the principal goals of APIs is to provide a set
of features to a consumer that can be integrated without
introducing issues or bad coding practices in the consumers’
code base. There are certain cases where the API does not
always achieve this goal. In the example above, it is preferred
that the Dialect should be specified up front as that would
allow the Dialect object to be injected directly in the
constructor. Using a setter method of a class implicitly means
that the dependency is optional, constructor injection instead
is used when the class cannot function without the dependency.

DP. DESIGN PATTERN

/**
 * Creates a mock object that extends the given class, order checking is
 * enabled by default.
 * @param < T > the class that the mock object should extend.
 * @param name the name of the mock object.
 * @param toMock the class that the mock object should extend.
 * @param constructorArgs constructor and parameters used to instantiate the
 * mock.
 * @param mockedMethods methods that will be mocked, other methods will
 * behave normally
 * @return the mock object.
 * @deprecated Use {@link #createMockBuilder(Class)} instead
 */
 @Deprecated public <T>T createStrictMock(final String name,final Class<T>
 toMock,final ConstructorArgs constructorArgs,final Method...mockedMethods)

Example Javadoc

Partial mocking is a very nice feature, but having to use the reflection API
directly to get the constructor and methods is less than ideal, so we created a
MockBuilder which we've been using for this.

Example commit message

We find cases in which API producers deprecate the
old feature and slowly phase them out as consumers are
encouraged to use the new version of the functionality that
makes use of a design pattern. In the example above, the

project moved from accessing a feature through reflection to
using the design pattern named Builder.

DU. DISSUADE USAGE

/**

 * Not supported. Use {@link

 * ImmutableSortedMultiset#toImmutableSortedMultiset} instead.

 * This method exists only to hide {@link

 * ImmutableMultiset#toImmutableMultiset} from consumers of {@code

 * ImmutableSortedMultiset}.

 * @throws UnsupportedOperationException always

 * @deprecated Use {@link ImmutableSortedMultiset#toImmutableSortedMultiset}.

 * @since 21.0

 */

 @Deprecated public static <E>Collector<E,?,ImmutableMultiset<E>>

 toImmutableMultiset(){

 throw new UnsupportedOperationException();

 }

Example Javadoc

We find cases where API producers implement an interface
in a class, without implementing all of its methods. The
un-implemented methods are marked as deprecated so that
the consumer is given an indication (as a compiler warning)
that this feature should not be used. In the example above,
the Javadoc also recommends a replacement.

FD. FUNCTIONAL DEFECTS

/**
 * Compare 2 arrays only at the first level
 * @deprecated Use {@link java.util.Arrays#equals(char[],char[])} instead
 */
 @Deprecated public static boolean isEquals(char[] o1, char[] o2)

Example Javadoc

org.hibernate.internal.util.compare.EqualsHelper doesn't consider arrays when
comparing objects for equality. Since EqualsHelper is used in many places, such as
dirty checking, this problem results in unexpected behavior, such as array type fields
always being considered dirty.

Issues related to this problem include:
 HHH-4110 CLOSED
 HHH-2482 CLOSED
 HHH-7810 OPEN
 HHH-3009 CLOSED
 HHH-7496 CLOSED (probably)

Example issue tracker message

The introduction of flaws in API features is inevitable. We
find that, at times, API producers deprecate features with
defects instead of removing them. We see an example in
the deprecated method above where the implementation of
the equals method does not consider arrays when comparing
objects for equality, which in turn causes issues in other parts
of the API, as seen in the extract from the related issue report.

ME. MERGED TO EXISTING METHOD

/**

 * Returns an equivalence that delegates to {@link Object#equals} and {@link

 * Object#hashCode}. {@link Equivalence#equivalent} returns {@code true} if

 * both values are null, or if neither value is null and

 * {@link Object#equals} returns {@code true}. {@link Equivalence#hash}

 * returns{@code 0} if passed a null value.

 * @deprecated use {@link Equivalences#equals}, which now has the null-aware

 * behavior

 */

 @Deprecated public static Equivalence<Object> nullAwareEquals()

Example Javadoc

We found instances in which an API provides two features
achieving the same end goal, but one has more nuance
associated with it and performs extra checks. Over time,
the API producer decides to combine these different checks
into the same feature, thus resulting in the other being
deprecated. In the above example, the equals method in
the Equivalences class now performs a null check, thus
rendering the nullAwareEquals obsolete.

NF. NEW FEATURE INTRODUCED
/**

 * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method

 * will be removed in late 2017.

 */

 @Deprecated public static boolean equivalent(@Nullable ValueGraph<?,?>

 graphA,@Nullable ValueGraph<?,?> graphB)

Example Javadoc

Now that ValueGraph no longer extends Graph, change all the
common.graph interfaces to handle equals()/hashCode() "normally". Deprecate
Graphs.equivalent().

Example commit message

Sometimes, when API producers introduce a new feature,
the design of the project is also changed. In these cases, the
producers deprecate the older, superseded features.

ND. NO DEPENDENCY SUPPORT
/**
 * Expect any boolean but captures it for later use.
 * @param captured Where the parameter is captured
 * @return 0
 * @deprecated Because of harder erasure enforcement, doesn't compile in
 * Java 7
 */
 @Deprecated public static boolean capture(final Capture<Boolean> captured)

Example Javadoc

Over time APIs upgrade the dependencies on which they
depend. With these upgrades, specific features in the API
can no longer be supported and need to be removed and
replaced with modern functionality. In the cases we analyzed,
upgrades in the Java version often cause the incompatibilities.
In the example above we see that the capture method is
not supported in Java 7 and becomes deprecated.

RD. REDUNDANT METHODS
/**
 * @deprecated since 5.2, to be removed in 6.0 with no replacement.
 */
 @Deprecated public ModificationStore getStore()

Example Javadoc

From a discussion with Adam, there was supposed to be another value, DIFF that
would store the diff of String-based value fields. It was never implemented and
isn't … needed, so [it’s] safe to deprecate and remove.

Example commit message

Redundant is code that is neither required nor essential and
need not be executed. The negative consequence of redundant
code is that it results in bloated source code and reduced
maintainability. We found cases in which the API producers
deprecated a feature when it is useless or no longer necessary.

RN. RENAMING OF FEATURE
/**
 * Old name of {@link #getHost}.
 * @deprecated Use {@link #getHost()} instead. This method is scheduled for
 * removal in Guava 22.0.
 */
 @Deprecated public String getHostText()

Example Javadoc

The considered APIs have been developed over a long time
by multiple developers, thus contain inconsistencies in the
naming convention. These inconsistencies might have been
introduced due to a lack of foresight or a change in the API’s
nomenclature convention. Just renaming a feature to adhere to
new norms would break consumer code and hence would not
be backward compatible. The existing name is kept in place.
In fact, we notice in the cases that we manually analyze that
the original name is intended to be left in the API indefinitely,
i.e., there are no plans to remove such features. However, API
producers do deprecate the feature with the incorrect name and
encourage consumers to adopt the new feature that adheres to
the naming convention of the project.

SF. SECURITY FLAWS
/**

 * Returns a hash function implementing the MD5 hash algorithm (128 hash

 * bits).

 * @deprecated If you must interoperate with a system that requires MD5, then

 * use this method, despite its deprecation. But if you can choose your hash

 * function, avoid MD5, which is neither fast nor secure. As of January 2017,

 * we suggest: For security: {@link Hashing#sha256} or a higher-level

 * API. For speed: {@link Hashing#goodFastHash}, though see its docs for

 * caveats.

 */

 @Deprecated public static HashFunction md5()

Example Javadoc

A security vulnerability might have been inadvertently intro-
duced in a feature of an API at its inception or over time,
thus requiring the immediate action of the API producers to
address the issue. The producer deprecates the flawed feature
and replaced it with one which does not suffer from the same
flaw. In this way, the producer warned the consumer in the
documentation that usage of such a feature is unsafe.

SC. SEPARATION OF CONCERNS
/**
 * @deprecated Use {@link #setImplicitNamingStrategy} or {@link
 * #setPhysicalNamingStrategy} instead
 */
 @Deprecated public void setNamingStrategy(String namingStrategy)

Example Javadoc

In object-oriented programming, each class or module is sup-
posed to have its responsibilities. Sometimes an API feature
can do too many things simultaneously, i.e., it has too many
responsibilities. To fix this, we found cases in which the API
producer decided to split a single feature into multiple ones,
also deprecating the original feature and creating a transition
guide.

TF. TEMPORARY FEATURE
/**
 * @deprecated (since 5.2.1), while actually added in 5.2.1, this was added
 * to cleanup the audit strategy interface temporarily.
 */
 @Deprecated public EnversService getEnversService()

Example Javadoc

An API producer might introduce a feature only for a tempo-
rary purpose to aid consumers in using certain functionality.
Once, this is no longer needed, the temporary feature might be
deprecated. We see that such temporary features are planned to
be removed almost instantly from the API so that no consumer
actually has the opportunity to use it in a future version.

Finding 1. The analysis of 374 deprecated features
and over 1,100 accompanying documents yielded 12
rationales that API producers have used to deprecate a
feature, thus showing a sizeable diversity of purposes.

V. RQ2 RESULTS: FREQUENCY OF REASONS

After having categorized and described the diversity of
reasons that led API producers to deprecate one of their API
features, we now focus on determining how each of these
reasons is prevalent in our dataset. Figure 4 reports the results
by reasons in overall decreasing frequency (left-hand side) and
by API (right-hand side). Overall, introducing a new feature
(NF), the presence of functional defects (FD), the replacement
with a design pattern (DP) account for the majority of reasons
(268 cases out of 374 or 72%). The most frequent reason (NF)
is the only one that appears in all the systems in our dataset,

(d) Deprecation reasons in Hibernate (e) Deprecation reasons in Spring

(b) Deprecation reasons in Easymock (c) Deprecation Reasons in Guava

(a) Distribution of reasons across APIs

SC
TF

ME

BC

SF

RN
ND

RD

DU

DP

FD

NF
SC

TF

ME

BC

SF

RN
ND

RD

DU

DP

FD

NF

SC
TF

ME

BC

SF

RN
ND

RD

DU

DP

FD

NF
SC

TF

ME

BC

SF

RN
ND

RD

DU

DP

FD

NF

Separation of concerns (SC)

Temporary feature (TF)

Merged to existing method (ME)

Avoid bad coding practices (BC)

Security flaws (SF)

Renaming of feature (RN)

No dependency support (ND)

Redundant methods (RD)

Dissuade usage (DU)

Design pattern (DP)

Functional defects (FD)

New feature introduced (NF)

Easymock
Guava
Hibernate
Spring

0 20 40 60 80 100 120 140

Figure 4. Frequencies of reasons for deprecating features, by API

while the others have a more project-specific prevalence. We
now describe the results by API.

Easymock. The most frequent reason for deprecation in
Easymock is the implementation of a new design pattern that
required a change in the interface. There are also 7 cases
where the feature in their API was not supported by a newer
version of Java. In 16 cases a better implementation of the
same feature was superseding the existing one. Overall, we
see that in Easymock most deprecations are not of a grave
nature: A consumer could safely continue using a deprecated
feature from this API.

Guava. Developers in Guava predominantly introduce new
features to replace existing ones, hence use the deprecation
mechanism. There are also some cases where there were
functional defects in the feature and some instances of having
security flaws. There is one feature that has been deprecated
due to it being introduced as a temporary feature. In 36 cases,
Guava deprecates a feature to dissuade usage of it due to an
incomplete implementation of an interface; this is a case of
misuse of the deprecation mechanism. Here the feature was
not deprecated due to it being superseded by a new feature
or because the feature had become obsolete. In most cases,
it may be safe to continue using a deprecated feature from
Guava, but the reasons for deprecation are diverse and one
needs to verify them first.

Hibernate. In the case of Hibernate, developers have dep-
recated almost 50% of the deprecated functions due to the
presence of functional issues in the features. This means
that when Hibernate deprecates a feature it is usually to fix
major issues in the API. In the other cases, the features are
deprecated due to new functionality being introduced, because
of redundancy, or because it encourages bad coding practices.

Spring. In 41 cases Spring has replaced an existing feature
with a better implementation. Although Spring is an old and
well-tested API, there have been 32 functional flaws to fix and

2 security issues as well. Spring also has deprecated features
due to incompatibilities with newer versions of Java. Overall,
there seems to be some danger to using deprecated features
from Spring and, in many cases, a consumer needs to replace
a deprecated feature with its successor.

Finding 2. Introducing a new feature, the presence of a
functional defect, and change of interfaces are the most
frequent reasons for deprecating an API. However, only
the first is shared across all projects.

VI. RQ3 RESULTS: AUTOMATIC REASON CLASSIFICATION

Our RQ3 investigates to what extent a machine learning
approach can automatically classify the reason for deprecation.

A. Methodological details

Although we always use VSM (Section III-D), we progres-
sively add more information sources to evaluate their effect on
the classification. In the first stage, we only use tokens from
Javadoc comments to classify the rationale, in the second we
add commit messages, in the third, we add issue tracker data.

We evaluate three training/testing conditions: (1) 10-fold
cross validation within the same API (i.e., we evaluate each
system separately), (2) overall 10-fold cross validation (i.e., we
merge all the instances in a single dataset), (3) cross-project
validation (i.e., we use the instances from three systems for
training and test the resulting model on the last system; we
rotate the test system each time).

B. Results

Since random forest always outperformed the naive Bayes
multinomial classifier, we only report results for the former.

Within system validation. The first four groups in Table II
report the results of the classifier when tested within the same

Table II
CLASSIFICATION RESULTS, USING 10-FOLD CROSS VALIDATION WITHIN

THE SAME SYSTEM AND ACROSS ALL SYSTEMS.

% correct
instances K

weighted avg.

recall ROC

Guava

JD 0.883 0.843 0.883 0.963

JD+CM 0.893 0.855 0.893 0.956

JD+CM+IT 0.903 0.868 0.903 0.963

Easymock

JD 1.000 1.000 1.000 1.000

JD+CM 0.986 0.970 0.986 1.000

JD+CM+IT NA NA NA NA

Hibernate

JD 0.610 0.334 0.610 0.777

JD+CM 0.740 0.559 0.740 0.862

JD+CM+IT 0.720 0.526 0.720 0.866

Spring

JD 0.640 0.477 0.640 0.794

JD+CM 0.850 0.780 0.850 0.956

JD+CM+IT 0.880 0.824 0.880 0.962

All

JD 0.759 0.686 0.759 0.915

JD+CM 0.853 0.808 0.853 0.959

JD+CM+IT 0.866 0.825 0.866 0.962

system using 10-fold cross-validation. For Guava, the classifier
performs well on just Javadoc data. For Easymock, the clas-
sifier achieves 100% correct instances with just the Javadoc.
This result is probably due to most deprecations being caused
by the refactoring of a feature to use design patterns: Since
Easymock always uses the same pattern (builder pattern), the
terminology is the same. With more data, the accuracy of
the classification decreases, probably due to added noise. For
both Spring and Hibernate the classification accuracy is below
65% with only Javadoc data. With the addition of commit
message data, the accuracy increases. In the case of Spring,
when we add issue tracker data, the accuracy increases to 88%.
However, in the case of Hibernate, the accuracy suffers slightly
with issue tracker data, again probably due to added noise.

Mixed-system validation. We combine the data for all the
APIs and treat this combined dataset as our singular vocabu-
lary; Table II in the group named ‘All’ shows the results. With
only Javadoc data, the classifier correctly classifies almost 76%
of the cases. This might be due to all the Easymock instances,
which the algorithm can easily classify with only Javadoc data.
Adding commit message data improves the classification by
almost 10%. Issue tracker data yields a minor improvement.

Cross-project validation. Given that the results are promis-
ing at project level, we tried to perform cross-project valida-
tion. However, results were consistently lower than 30% in the
number of correctly classified instances. For example, in the
case of Easymock, the method only reaches 24%. This result
seems to indicate that there is project specific terminology
that helps the machine learner to discern the different reasons.
We also conducted cross-project classification for only one
category (binary classification). We choose the addition of a
new feature (NF) as our test category since we expect project-

specific terms to be minimal. Although the number of correctly
classified instances is 54%, this is still poor in comparison to
project level classification. This result leads us to conclude
that automated classification techniques work best at a project
level due to project-specific terminology.

Finding 3. An automatic classification approach can
correctly classify more than 85% of deprecation rea-
sons in three systems and 74% in the fourth. However,
to achieve these results, data from commit messages
and issue reports is often necessary and the classifier
must be trained with project-specific instances.

VII. DISCUSSION

We discuss how our results lead to implications for future
research and recommendation for practitioners.

A. Unmet developers’ communication needs

Programming languages provide API producers with depre-
cation mechanisms to allow them to communicate with the
API consumers, in a way that is recognized and rendered
distinctively by popular IDEs and compilers. In Java, by
marking a feature as deprecated, a compiler warning is thrown
and the IDEs render the element as struck-through.

Recently, the Java language designers stated that the depre-
cation mechanism has been used not only for communicating
about obsolete features but also for alternative purposes, which
they labeled as “misuses” [8].4 Previous work indeed found
one case where the API producer has used the deprecation
mechanism for an unorthodox purpose [7]. In this case,
the JUnit API marked beta features as deprecated to warn
consumers about these features’ beta nature, which may lead
to unanticipated future changes.

In our study, we uncover two additional cases in which API
producers use deprecation for unorthodox purposes: (1) to
indicate a temporary feature that is in place until a permanent
solution can be found (as done by Guava and Hibernate), and
(2) to indicate that a class only implements part of an interface
and the unimplemented methods are essentially just stubs (as
done in a widespread manner by Guava).

This finding raises the broader question of why API pro-
ducers use the deprecation mechanism for purposes besides
marking out obsolete features. It is reasonable to think that
these are cases of communication needs for an API producer
that are not being met by the Java language specification. For
example, while the Guava API producers do try also to throw
an exception to prevent the usage of specific features, they use
the deprecation mechanism to issue compiler warnings. As an
additional example, XWiki has introduced a workaround [33]
where the usage of an ‘@Unstable’ annotation in combination
with an Eclipse plugin issues a warning in the IDE about the
nature of the used feature.

4We consider these “misuses” from a more constructive perspective, that
is, as evidence of developers’ communication needs that are unmet by the
current mechanisms and can be basis for future research and improvements.

This finding leads us to question if Java should invest in
introducing a generic warning mechanism as a more flexible
communication mechanism that would not lead to misinter-
pretations. This mechanism would allow API producers to
throw a compiler warning for purposes other than deprecation,
thus possibly addressing the producers’ unmet communication
needs. In this vein, languages such as PHP and Ruby have
already set a precedent, where deprecation mechanisms and
warning mechanisms are simultaneously present. By perform-
ing a similar study to the one we present in this paper in the
API ecosystems of those two languages, researchers and the
Java language designers can better understand whether there
are benefits to having a generic warning mechanism and if
indeed the cases of misuse would be minimized while fulfilling
developers’ communication needs.

B. Different evolution strategies

API evolution has been studied by researchers to understand
how APIs evolve [34]. Researchers have also investigated the
decision process behind evolving the API and introducing
breaking changes in the API [18]. API evolution strategies
are generally based on what features they change and how it
affects the API consumer [6], [35], [36], [37], [4]. Significant
work has also gone into alleviating the burden of dealing with
API evolution [38], [39], [40], [41], [42].

In our study, we investigate the rationale used by API
producers to evolve and render specific features as obsolete
and introduce new features to replace them. We see that there
are 12 reasons behind deprecating a feature. The frequency
of usage of these rationales differs per API. For instance, we
see in the case of Easymock most deprecations are due to the
usage of design patterns, while for Spring, most changes are
due to functional defects or newly introduced features.

We found initial evidence that by understanding the ratio-
nale behind the deprecation, we also better understand the
evolution strategy adopted by an API and how it might affect
a consumer. With Spring and Hibernate we see that a large
number of deprecations are due to functional defect being
present in the API. However, with Easymock and Guava
other less important reasons such as redundancy of a method
or refactoring to use a design pattern. Based on this, we
can deduce that developers in Spring and Hibernate discover
issues in features on a regular basis. On the other hand
with Easymock and Guava, most of the changes are due to
maintaining the API on a regular basis, without introducing
several new features.

Further work can be conducted expanding on this line to see
whether knowing the rationale behind evolution—thanks to the
analysis of deprecation reasons—gives a better approximation
of the evolution strategy of an API. This work would help
informing tools to support practitioners keeping up with API
evolution.

C. API documentation completeness

API documentation is vital in teaching consumers to adopt
the API in a correct manner [19]. Incomplete documentation

is a considerable obstacle to API consumers [43]. This is the
primary reasons that API producers invest a lot of time in
documenting their API in a correct and detailed manner [20].

Much work has gone into augmenting current API docu-
mentation to aid an API consumer and reduce the documen-
tation burden on the API producer. Stylos et al. [44] have
looked at augmenting API documentation by including API
usage examples mined from open source repositories. Treude
and Robillard [45] seek to improve API documentation with
examples from community-driven documentation sources such
as StackOverflow.

In the context of documentation of deprecated features,
researchers have shown that recommending a replacement
feature in the deprecation message is helpful to API con-
sumers [21], [22]. In addition to that, informing the consumer
about the rationale behind deprecation and the version in
which the deprecated feature will be removed performs a vital
role in the consumer’s decision to react to deprecation [7].

We found overwhelming evidence that the Javadoc for
deprecated features seldom mentions the reasons behind dep-
recating features. In fact, to uncover the rationale behind
deprecation it is necessary to refer to the commit messages
and to the issue tracker data. Conducting such a thorough
search is error-prone and time consuming, thus impractical
in a real-world scenario.

We show the different sources needed to infer the rationale
behind deprecation. Research effort can be invested to be
able to effectively retrieve the traceability links across all
the different sources together, such that the justification for
deprecation is evident and existing documentation enhanced.

D. Automating the classification of rationale

We investigate how accurately the rationale behind depre-
cation of a feature can be classified based on its Javadoc, the
commit message that deprecates it and the issue tracker post
that discusses its deprecation (if present). At a project level,
we see that having this information allows us to classify the
rationale behind deprecation accurately.

The automated classification relies heavily on project-
specific terminology as is evidenced by the fact that cross-
project classification yields poor results. Not only does project-
specific terminology play a role, but also the specificity of
technical terms for each rationale play a role too. For example,
in the case of Easymock several deprecations took place due
to the refactoring of a feature to use the builder pattern. In
this case, the word “builder” is a specific case of refactoring
to use a design pattern. If the automated classifier learns on
other instances of refactoring to design pattern, such as the one
from the Spring API, we see that it decreases the accuracy for
the cases in Easymock.

Despite the specific circumstances under which an auto-
mated approach can work, the classifier performs promisingly
at a project level. API producers can run such an approach on
their documentation to automatically categorize the rationale
of a deprecated feature and use this categorization to augment
their existing documentation.

We see that there is a need for more than just the Javadoc to
classify the rationale of a deprecated feature. This result puts
into focus the need for the creation of a complete information
pipeline that stitches together the Javadoc, commit message,
and issues regarding a deprecated feature. This approach
would go a long way in aiding automating the classification
of the rationale of a deprecated feature.

Further research needs to be conducted in the area of
automating the classification of the rationale behind the depre-
cated feature. We show that a machine learning approach can
work and provide an initial baseline for future comparison.
More research is needed to investigate whether and how
the poor performances in cross-project classification can be
tackled, for example by considering further features and other
classification techniques such as deep learning.

VIII. RELATED WORK

We describe work in the related areas of API documentation
needs and improving documentation.

Studies on API evolution. Robbes et al. [46] analyze the
impact of deprecation of an API feature on the SmallTalk
ecosystem. They find that while the number of API consumers
affected is high, minimal reaction to deprecation takes place.
Sawant et al. [47], [6] mine 25,357 Java-based API consumers
from GitHub and a further 150,326 Maven central based JAR
files to see how many consumers are affected by deprecation
and their reactions. They observed that over 10% of deprecated
methods affect consumers, but consumers do not react. In
contrast to this, we look at the reasons behind deprecation
of the API from the API producer perspective.

Hou and Yao [48] investigate the intent behind API evo-
lution by studying release notes. They found that API fea-
tures were deprecated due to conformance to API naming
conventions, naming improvements, simplification of the API
and replacement of functionality. Sawant et al. [7] interview
17 API producers as to why they deprecate features and
catalog seven reasons behind deprecation. In this study, we
analyze documentation at a fine-grain (Javadoc, issue tracker
and commit messages) level to understand the reason behind
deprecation. This analysis leads us to uncover 12 rationales
behind deprecation. Moreover, we evaluate how well an auto-
mated technique can classify the reason for a deprecation.

Studies on API documentation needs. Robillard and Deline
show that API documentation is a vital resource for developers
who want to adopt a new API [19]. Myers and Stylos concur
with this view and provide evidence that API documentation
plays a significant role in making it usable [49]. Maalej
and Robillard show that API reference documentation should
complement the API by providing information that is not
obvious from the API syntax [50].

Uddin and Robillard uncover that consumers find it much
harder to understand the API producer’s intentions due to
inadequate documentation [43]. Monperrus et al. analyzed
API Javadoc to see what was being talked about and in what
cases there was an information shortfall [51]. They state that

a deprecation tag in Javadoc with no rationale or conditions
is an anti-pattern. Brito et al. find that in over 60% of the
cases the replacement for a deprecated feature is specified [21],
[22]. During Sawant et al.’s investigation into the deprecation
mechanism, they found that consumers miss is the rationale
behind the deprecation itself [7].

In this study, we find that deprecated API documentation
often does not document the reason behind the deprecation,
despite this being important for consumers.

Studies on improving API documentation. One of the
primary challenges with producing high-quality API documen-
tation is the large amount of time and effort that goes into
creating the documentation [20].

Dekel and Herbsleb improve API documentation by high-
lighting specific directives that are present in the documenta-
tion so that the consumer is made explicitly aware of particular
conditions that he has to be aware of [52]. Researchers
have investigated ways to improve existing documentation by
augmenting it with examples mined, for instance, from source
code repositories [44], [53], [54], [55] and StackOverflow [45].

Subramanian et al. create a tool to called Baker that links
source code examples to API documentation [56]. Baker
can do this in a real-time manner thus always keeping the
usage examples in the API documentation fresh. Dagenais and
Robillard look to recover the traceability links between APIs
and their learning resources [57]. This study aims to produce
a comprehensive set of documentation that is mined from a
variety of sources such as developer blogs, StackOverflow and
mailing lists, all in one place.

We found that the rationale behind deprecation can be auto-
matically classified but, more than one source of information
is required. This understanding can aid in providing consumers
with the rationale behind deprecation.

IX. CONCLUSION

We have presented an explorative study we conducted to
uncover the rationale behind the deprecation of an API feature.
We manually analyzed over 1,100 document artifacts relating
to 374 from 4 mainstream Java APIs deprecated features.
This analysis led to the creation of a taxonomy comprising
12 reasons for deprecation. We observe that there are several
cases of deprecation being used in an unexpected, unorthodox
manner, thus hinting at currently unmet communication needs.
Finally, we found that an automated approach to classifying
deprecation reasons can reach promising accuracy, but only
when it is trained on instances from the same project. We
discussed the results and their implications concerning unmet
communication needs, API evolution strategies, API documen-
tation completeness, and future work.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their thorough feedback. A. Bacchelli gratefully acknowl-
edges the support of the Swiss National Science Foundation
through the SNF Project No. PP00P2 170529.

REFERENCES

[1] R. T. Fielding and R. N. Taylor, Architectural styles and the design of
network-based software architectures, vol. 7. University of California,
Irvine Doctoral dissertation, 2000.

[2] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[3] M. M. Lehman and L. A. Belady, Program evolution: processes of
software change. Academic Press Professional, Inc., 1985.

[4] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: a
threat to the success of android apps,” in Proceedings of the 2013
9th joint meeting on foundations of software engineering, pp. 477–487,
ACM, 2013.

[5] J. R. Rose, “How and when to deprecate API.” http:
//www.oracle.com/technetwork/java/javasebusiness/downloads/
java-archive-downloads-javase11-419415.html#7122-jdk-1.
1-doc-oth-JPR, 1996. last accessed May 2017.

[6] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of clients of 4+1 popular Java APIs and the JDK,” Empirical
Software Engineering, pp. 1–40, 2017.

[7] A. A. Sawant, M. Aniche, A. van Deursen, and A. Bacchelli, “Un-
derstanding developers’ needs on deprecation as a language feature,”
in Proceedings of the 40th International Conference On Software
Engineering, ICSE 2018, pp. 181–190, IEEE/ACM, 2018.

[8] S. Marks, “JEP 277: Enhanced Deprecation.” http://openjdk.java.net/
jeps/277, 2014–2017. last accessed Aug 2017.

[9] “Spring API repository.” https://github.com/spring-projects/spring-
framework. accessed on April 2018.

[10] “Hibernate API repository.” https://github.com/hibernate/hibernate-orm.
accessed on April 2018.

[11] “Guava API repository.” https://github.com/google/guava. accessed on
April 2018.

[12] “Easymock API repository.” https://github.com/easymock/easymock. ac-
cessed on April 2018.

[13] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal
of electronic imaging, vol. 16, no. 4, p. 049901, 2007.

[14] M. Stone, “Cross-validatory choice and assessment of statistical predic-
tions,” Journal of the royal statistical society. Series B (Methodological),
pp. 111–147, 1974.

[15] “Javadoc for spring deprecation.” https://www.javadoc.io/doc/org.
springframework/spring-core/4.2.3.RELEASE, 2018. last accessed April
2018.

[16] “Commit that deprecates feature in spring.” https:
//github.com/spring-projects/spring-framework/commit/
e27df06f919a1f1ef53b0571e1a15dfc9e2f707f, 2018. last accessed
April 2018.

[17] “Spring issue tracker post.” https://jira.spring.io/browse/SPR-13621,
2018. last accessed April 2018.

[18] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API :
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 109–120, ACM, 2016.

[19] M. P. Robillard, “What makes APIs hard to learn? answers from
developers,” IEEE software, vol. 26, no. 6, 2009.

[20] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: understanding the decisions of open source contributors,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pp. 127–136, ACM, 2010.

[21] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate APIs with replacement messages? a large-scale analysis on
Java systems,” in Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, vol. 1, pp. 360–
369, IEEE, 2016.

[22] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in API deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306–321, 2018.

[23] “Tiobe index.” http://www.tiobe.com/tiobe index. last accessed on Apr
2018.

[24] A. A. Sawant and A. Bacchelli, “A dataset for API usage,” in Proceed-
ings of the 12th Working Conference on Mining Software Repositories,
MSR 2015, pp. 506–509, IEEE Press, 2015.

[25] A. A. Sawant and A. Bacchelli, “fine-GRAPE: fine-Grained APi usage
Extractor–An approach and dataset to investigate API usage,” Empirical
Software Engineering, vol. 22, no. 3, pp. 1348–1371, 2017.

[26] “Eclipse jdt ast parser.” http://help.eclipse.org/kepler/ntopic/org.eclipse.
jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html, 2018.
last accessed April 2018.

[27] M. Triola, Elementary Statistics. Addison-Wesley, 10th ed., 2006.
[28] A. Bacchelli, M. Lanza, and V. Humpa, “RTFM (Read The Factual

Mails) –augmenting program comprehension with REmail,” in Proceed-
ings of the 15th European Conference on Software Maintenance and
Reengineering, CSMR 2011, pp. 15–24, IEEE, 2011.

[29] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen,
“Communication in open source software development mailing lists,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR 2013, pp. 277–286, IEEE, 2013.

[30] W. Lidwell, K. Holden, and J. Butler, Universal principles of design,
revised and updated: 125 ways to enhance usability, influence percep-
tion, increase appeal, make better design decisions, and teach through
design. Rockport Pub, 2010.

[31] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11,
pp. 613–620, 1975.

[32] “Replication package.” https://www.dropbox.com/s/veef9j517okmf2d/
replication-package.zip?dl=0, 2018. last accessed April 2018.

[33] “Xwiki unstable annotation.” http://dev.xwiki.org/xwiki/bin/view/
Community/DevelopmentPractices#H40UnstableAnnotation, 2018. last
accessed April 2018.

[34] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
Journal of Software: Evolution and Process, vol. 18, no. 2, pp. 83–107,
2006.

[35] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommenda-
tion support for api evolution,” in Proceedings of the 31st International
Conference on Software Engineering, pp. 599–602, IEEE Computer
Society, 2009.

[36] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, p. 19, 2011.

[37] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
impact analysis of API breaking changes: A large-scale study,” in
Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, pp. 138–147, IEEE, 2017.

[38] Z. Xing and E. Stroulia, “API-evolution support with Diff-CatchUp,”
IEEE Transactions on Software Engineering, vol. 33, no. 12, pp. 818–
836, 2007.

[39] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a retroactive
study on the evolution and migration of software libraries,” in Pro-
ceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, p. 55, ACM, 2012.

[40] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in Proceedings of the 27th international
conference on Software engineering, pp. 274–283, ACM, 2005.

[41] P. Kapur, B. Cossette, and R. J. Walker, “Refactoring references for
library migration,” in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
OOPSLA 2010, pp. 726–738, ACM, 2010.

[42] I. Şavga and M. Rudolf, “Refactoring-based support for binary compat-
ibility in evolving frameworks,” in Proceedings of the 6th international
conference on Generative programming and component engineering,
pp. 175–184, ACM, 2007.

[43] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[44] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving API docu-
mentation using usage information,” in CHI’09 Extended Abstracts on
Human Factors in Computing Systems, pp. 4429–4434, ACM, 2009.

[45] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from stack overflow,” in Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, pp. 392–403, IEEE, 2016.

[46] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation?: the case of a Smalltalk ecosystem,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, p. 56, ACM, 2012.

[47] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+1 popular Java APIs,” in Proceedings

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase11-419415.html#7122-jdk-1.1-doc-oth-JPR
http://openjdk.java.net/jeps/277
http://openjdk.java.net/jeps/277
https://www.javadoc.io/doc/org.springframework/spring-core/4.2.3.RELEASE
https://www.javadoc.io/doc/org.springframework/spring-core/4.2.3.RELEASE
https://github.com/spring-projects/spring-framework/commit/e27df06f919a1f1ef53b0571e1a15dfc9e2f707f
https://github.com/spring-projects/spring-framework/commit/e27df06f919a1f1ef53b0571e1a15dfc9e2f707f
https://github.com/spring-projects/spring-framework/commit/e27df06f919a1f1ef53b0571e1a15dfc9e2f707f
http://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
http://help.eclipse.org/kepler/ntopic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/ASTParser.html
https://www.dropbox.com/s/veef9j517okmf2d/replication-package.zip?dl=0
https://www.dropbox.com/s/veef9j517okmf2d/replication-package.zip?dl=0
http://dev.xwiki.org/xwiki/bin/view/Community/DevelopmentPractices#H40UnstableAnnotation
http://dev.xwiki.org/xwiki/bin/view/Community/DevelopmentPractices#H40UnstableAnnotation

of the 32nd International Conference on Software Maintenance and
Evolution, ICSME 2016, pp. 400–410, IEEE, 2016.

[48] D. Hou and X. Yao, “Exploring the intent behind API evolution: A case
study,” in Reverse Engineering (WCRE), 2011 18th Working Conference
on, pp. 131–140, IEEE, 2011.

[49] B. A. Myers and J. Stylos, “Improving API usability,” Communications
of the ACM, vol. 59, no. 6, pp. 62–69, 2016.

[50] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, 2013.

[51] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of API doc-
umentation,” Empirical Software Engineering, vol. 17, no. 6, pp. 703–
737, 2012.

[52] U. Dekel and J. D. Herbsleb, “Improving API documentation usability
with knowledge pushing,” in Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on, pp. 320–330, IEEE, 2009.

[53] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente, “Documenting

APIs with examples: Lessons learned with the APIMiner platform,”
in 20th Working Conference on Reverse Engineering, WCRE 2013,
pp. 401–408, IEEE, 2013.

[54] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui, “Mining multi-
level API usage patterns,” in 22nd International Conference on Software
Analysis, Evolution and Reengineering, SANER 2015, pp. 23–32, IEEE,
2015.

[55] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
can i use this method?,” in 37th International Conference on Software
Engineering, vol. 1 of ICSE 2015, pp. 880–890, ACM/IEEE, 2015.

[56] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, pp. 643–652, ACM, 2014.

[57] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an API and its learning resources,” in Proceedings of the 34th Inter-
national Conference on Software Engineering, ICSE 2012, pp. 47–57,

IEEE, 2012.

	Introduction
	Motivation
	Methodology
	Subjects: Systems and Deprecated Features
	RQ1. Manually determining the reasons for a deprecation
	RQ2. Frequency of the deprecation reasons
	RQ3. Automatic classification of deprecation reasons
	Threats to validity

	RQ1 results: Diversity of Reasons
	RQ2 results: Frequency of reasons
	RQ3 results: Automatic reason classification
	Methodological details
	Results

	Discussion
	Unmet developers' communication needs
	Different evolution strategies
	API documentation completeness
	Automating the classification of rationale

	Related work
	Conclusion
	References

