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Abstract: Air traffic controller workload is an important impediment to air transport growth.
Several approaches exist that aim to better understand the causes for workload, and models
have been derived to predict workload in new operational settings. These methods often relate
workload to the difficulty, or complexity, that an average controller would have to safely manage
all traffic in a sector with a particular traffic demand. In this paper, several of these complexity-
based metrics for workload will be compared. Of special interest is whether the complexity
measures transfer from one sector design to another. That is, does a metric that is well-tuned
to predict workload for controllers working in one sector, also predict the workload for another
group of controllers active in a different sector? Results from a human-in-the-loop experiment
show that a solution space-based metric, which requires no tuning or weighing at all, has the
highest correlations with subjectively reported workload, and also yields the best workload
predictions across different controller groups and sectors. Copyright c©2016 IFAC
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1. INTRODUCTION

Safety, efficiency and orderly flow of air traffic are the three
main Air Traffic Controller (ATCO) responsibilities in
managing traffic. Current Air Traffic Control (ATC) prac-
tice primarily uses conventional technology (e.g., radar and
radio telephony communication), with only little automa-
tion support for the operators involved, which renders the
task of supervising air traffic heavily constrained by hu-
man performance limits (Costa, 1993). Without counter-
measures, the rise in projected air traffic would inevitably
result in a further increase in the workload of ATCOs,
often cited as one of the main impediments to air transport
growth (Janic, 1997, Hilburn, 2004, Koros et al., 2004).

The ability to understand what causes workload, and pre-
dict ATCO workload in future scenarios, is an important
avenue of research. In this paper we use the term taskload
to refer to the objective demands of a task, and workload
to address the subjective demand as experienced by an
operator (Stassen et al., 1990). Several approaches exist
to determine ATC taskload, such as simply counting the
number of aircraft that need to be managed simultane-
ously in a sector. Although this technique works quite
satisfactorily, it does not include any knowledge regarding
how these aircraft fly through the sector. Figure 1 illus-
trates that a situation where all aircraft fly parallel routes
is very likely to be much easier for an operator to supervise
and control than a situation where the same number of
aircraft fly random routes.

More recent techniques relate task demand load to met-
rics of sector complexity (Laudeman et al., 1998, Sridhar
et al., 1998, Chatterji and Sridhar, 2001, Kopardekar and
Magyarits, 2002, Masalonis et al., 2003). An important
example is the dynamic density (DD) metric, which in-
cludes aircraft dynamic behavior in the sector, by taking
into account “the collective effort of all factors or variables
that contribute to sector-level ATC complexity or difficulty
at any point of time” (Kopardekar and Magyarits, 2002).
The DD calculation is based on weights that are gathered
from applying regression methods on samples of traffic
data and comparing these to subjective workload ratings.
The DD metric therefore includes both objective as well
as subjective measurements and could be less suitable to
predict the workload of different controllers working in
another sector.

In the solution space (SSD)-based approach, taskload is
related to the difficulty of the ATC control problem,
where the “solution space” captures the geometrical and

Fig. 1. Two traffic situations, with the same number of
aircraft, one easy and the other difficult to control.
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kinematic constraints that limit (and therefore, guide)
ATCO control actions (Hermes et al., 2009, Mercado-
Velasco et al., 2010, D’Engelbronner et al., 2015). Previous
studies found high correlations between workload ratings
and the area of the available SSD control space.

This paper discusses a comparison of several sector com-
plexity measures regarding their ability to match the sub-
jective workload ratings obtained in a human-in-the-loop
experiment. We will evaluate the Static Density (SD),
which equals the number of aircraft flying in a sector,
the Dynamic Density (DD) as proposed by NASA, and
a solution space-based (SSD) approach developed by TU
Delft. We will focus in particular on the performance of
these metrics in predicting workload ratings across differ-
ent sectors and across different groups of operators, i.e.,
their ability to transfer between sectors and controllers.

2. EXPERIMENT

Our study relies on computing the correlation between
ATCO workload ratings and a number of complexity met-
rics: SD, SSD and DD. A human-in-the-loop experiment
was conducted in which eight participants, who all received
an extensive ATC introductory course and has worked
closely in the ATC domain, but none of them were op-
erational ATCOs, managed the air traffic in two sectors
(Abdul Rahman, 2014). While managing the air traffic,
every minute the subject was requested to indicate the
workload on a scale between 0 and 100, yielding a workload
profile for each controller. After each run, based on the
recorded aircraft parameters (their position, speed, and
heading), the complexity metrics were computed, and for
the DD metrics the weightings were determined through
linear regression techniques. When all data were available,
the correlation analysis was conducted.

2.1 Method

Independent variables The experiment had two inde-
pendent variables: (i) two different sector designs were
used, Figure 2, and (ii) four different traffic sequences
were simulated. The latter were varied to avoid scenario
recognition during the course of the experiment.

The two sectors differed in the number of crossing points,
combinations of the intercept angle of traffic routes, the
clustering of crossing points, different entry and exit
points, differences in sector shape and sector area. The
four traffic patterns did not differ in the total number of
aircraft simulated, but rather in their distribution in time.

In addition, we divided the eight participants in two groups
of four subjects each, to allow us to study the effects of
using the metrics across groups of participants.

Subject instructions Subjects were instructed to guide
all aircraft safely through the sector and have them exit
the sector at their pre-defined exit point. All aircraft were
of the same type, so had the same constraints in velocity
and heading; altitude was fixed to one flight level.

Procedure All subjects were briefed on the nature of
the experiment, the goals to be achieved and the sim-
ulator used. Each participant completed two blocks of

(a) Sector 1

(b) Sector 2

Fig. 2. Sector design and traffic flows.

four scenarios that lasted 25 minutes each. Each block
was preceded with a training scenario that lasted for ten
minutes. Subjects were asked to indicate their workload
using a scale that appeared on top of the plan view display.
The workload rating, measured on a zero to 100 scale, was
provided by the subject every 60 seconds during the exper-
iment run. In order to correct for inter-subject differences,
Z-scores of the subjective ratings were used in the subse-
quent data exploration. This correction was performed by
calculating the Z-scores for every test subject.

The experiment was run at four times real-time, similar to
what was done in previous research (Hermes et al., 2009,
d’Engelbronner et al., 2010, Mercado Velasco et al., 2010).
The rationale behind this was to create more variability
in traffic situations (and thus workload) within relatively
short experimental scenarios.

Dependent measures Many variables have been col-
lected, but here only the workload ratings, and the com-
plexity metrics introduced above will be briefly discussed;
see (Abdul Rahman, 2014) for details. Note that to rule
out any ‘fade in’ and ‘fade out’ effects, the first 3 min-
utes and the last 2 minutes of each 25 minutes run were
excluded, Figure 3.

The SD metric is equal to the total number of aircraft
(Nac) that fly through the sector, computed every minute.
The SSD metric used was the mean area of the SSD of
all aircraft in the sector, computed every minute (Hermes
et al., 2009). Two DD metrics were computed: the NASA1
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Fig. 3. Period where data is gathered in the experiment.

and NASA2 metrics introduced in (Chatterji and Sridhar,
2001) and (Laudeman et al., 1998, Sridhar et al., 1998),
respectively:

DDNASA1
=
∑

WiDVi, and DDNASA2
=
∑

WiDVi + TD,

with Wi the weights, DVi the so-called dynamic variables
used in the two metrics, and TD the traffic density (Nac

divided by the sector area).

The main difference between the NASA1 and NASA2

metrics lies in the choice of the DVs: for NASA1 the DVs
included the number of aircraft, the horizontal proximity,
etc., whereas for NASA2 the DVs included the number of
heading changes, speed changes, etc. See (Chatterji and
Sridhar, 2001) and (Laudeman et al., 1998, Sridhar et al.,
1998) for more details.

The DD metrics were used in two different ways: (1)
all weights Wi were set to ‘1’, yielding the ‘unweighted’
DD metrics, and (2) the weights were calculated through
a linear regression that fitted the DD to the subjective
workload ratings, resulting in the ‘weighted’ DD metrics.

Every minute, we obtain the workload rating, and values
for the SD, SSD area and the two unweighted and two
weighted DD metrics. The workload ratings were first
(on a per-subject basis) transformed to Z-scores. Then
the correlation coefficients were computed between the Z-
scores time series and the individual SD, SSD and DD
metrics, using Kendall’s tau (test statistic R).

2.2 Hypotheses

Based on our previous work, we hypothesized that, overall,
the SSD metric would result in the highest correlations
with ATCO subjective workload ratings. The weighted DD
ratings, however, could surpass the SSD correlation quality
as here the linear regression could optimize the weightings
Wi for the measured DV’s for the sector and group of
participants being analyzed. However, when using exactly
these weightings then for another sector, and/or another
group of participants, we expect that the correlations
would be lower again, revealing that the SSD-based metric
is a less scenario- and subject-dependent metric.

3. RESULTS

3.1 Effects of the four traffic sequences

Figure 4 shows the mean number of aircraft (the SD)
in the two sectors, as a function of simulation time,
for the four traffic sequences. The figure shows that, on
average, the traffic density in the sectors was independent
of the traffic sequence; traffic density is higher in Sector
2. Statistical tests showed that none of the dependent
measures were significantly affected by the traffic sequence.
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1 3 5 7 9 11 31 51 71 91

M
ea

n 
N

um
be

r o
f A

irc
ra

ft  
[-]

14

12

10

8

1 3 5 7 9 11 31 51 71 91

4
3
2
1

Traffic Sequence

4
3
2
1

ecneuqeS  ciffarT
Sector 1 Sector 2

Fig. 4. Traffic density in the two sectors.

In the following, we can therefore focus on examining
the differences between the two sectors, taking all traffic
sequences together.

3.2 Effects of the two sectors

To analyze the transferability of our metrics from one sec-
tor to another, it is important that both sectors represent
different levels of complexity. Figure 5 shows the total
number of the three possible ATCO commands (speed,
heading, speed+heading) and the number of times an
aircraft was selected, for both sectors. Overall, more com-
mands were given in Sector 1, which on average had a
smaller number of aircraft (see Figure 6), a significant
effect (p=0.012), but which had a more complex design.
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Fig. 5. Sum of the number of commands.

Indeed, the average workload ratings for Sector 2 were
lower, Figure 7(a), a significant effect (p=0.0125). Fig-
ure 7(b), Figure 8(a) and Figure 8(b) show the averages
of the SSD area metric and both NASA DD metrics,
respectively. Clearly, these metrics were lower for Sector 2
(all significant at p=0.012). From this analysis we conclude
that Sector 2 was indeed significantly easier to control than
Sector 1. It illustrates that our intention to create a sector
with more aircraft, but which was easier to control because
of a lower complex sector design, was indeed successful.
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This will be a good test for the transferability of the
metrics, discussed next.
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3.3 Unweighted correlation analysis

Sector-based analysis Results of a correlation analysis
between the number of aircraft, the unweighted NASA
DD and the SSD metrics with respect to the ATCO
workload ratings is summarized in Table 1. The SSD
metric yields the highest correlations, for both sectors,
of all metrics. There is a striking difference between the
performance of NASA1 and NASA2 for Sector 2. NASA1

appears to be more sensitive to a change in sector layout
and traffic structure than the other metrics (see also
Figure 9). However, whereas NASA2 and traffic density
seems unaffected by sector changes, the SSD metric results
in a better correlation with workload for Sector 1. This
suggests that the SSD would be better in predicting
workload when traffic streams are “less organized” with
crossing points close together.

Group-based analysis A similar result was observed
when looking at different groups of controllers, where the
SSD showed the highest correlation with the workload
ratings and less sensitivity to a change in controller group
(see Table 2). Again, NASA1 has a poor correlation with

Table 1. Correlations between workload ratings
and complexity metrics, grouped by sector.

Sector Complexity Measures: A Comparison 129

Figure 6.8b and 6.9 show the SSD and DD behavior towards different sector designs,
respectively. Based on the figures, both sector complexity measures showed a
similar pattern with Sector 2 consistently showing lower values than Sector 1 (p =
0.012 for both SSD and DD metrics), corresponding to the workload rating results
presented earlier. It is concluded that both sectors indeed represent different levels
of sector complexity. Thus, based on that fact, it is deemed possible to investigate
the sensitivity of sector complexity measures towards different sector designs.

6.3.1 Unweighted Correlation Analysis

In current practice, air traffic complexity is generally based on the number of
aircraft (Hilburn, 2004, Sridhar et al., 1998). However, to investigate whether either
the number of aircraft or the NASA or the SSD metric would best represent controller
workload, a correlation analysis between the number of aircraft, the unweighted
NASA DD and the SSD metrics with respect to subjective workload ratings were
performed. The analysis was conducted using the Kendall’s tau correlation analysis
(test statistic R) based on data gathered during a 20 minutes experiment run.

Sector-based analysis

The analysis of unweighted NASA DD metrics was made based on the assump-
tion that all DV weighting coefficient are equal and were all assigned as 1. The
unweighted NASA DD metrics in this section were calculated using Equation (6.1)
and (6.2).

Table 6.2: Correlation coefficient between workload rating and sector complexity
measures based on different sector.

NASA1 NASA2 SSD Nsum Nmean

Sector 1 R 0.170 0.256 0.337 0.215 0.297
p <0.001 <0.001 <0.001 <0.001 <0.001

Sector 2 R -0.015 0.256 0.290 0.215 0.276
p 0.564 <0.001 <0.001 <0.001 <0.001

Table 6.2 showed results of the correlation analysis between workload rating and
sector complexity measures. Based on the results, SSD showed the highest correlation
with workload rating (highest correlation in bold). Nmean is second in line as a good
sector complexity measure which demonstrates that indeed the number of aircraft
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Figure 6.12: SSD area properties based on different sectors.

Controller group analysis

The same result was observed when looking at different group of controllers with
SSD showing highest correlation with workload rating (highest correlation in bold).
Table 6.3 shows the results of unweighted NASA DD, number of aircraft and SSD
metric.

Table 6.3: Correlation coefficient between workload rating and sector complexity
measures based on different group.

NASA1
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.178 0.010 -0.069 0.090
p <0.001 0.785 0.066 0.016

NASA2
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.269 0.261 0.306 0.204
p <0.001 <0.001 <0.001 <0.001

Nsum
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.233 0.214 0.265 0.162
p <0.001 <0.001 <0.001 <0.001

Nmean
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.335 0.284 0.336 0.209
p <0.001 <0.001 <0.001 <0.001

SSD
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.362 0.335 0.341 0.232
p <0.001 <0.001 <0.001 <0.001

To investigate the effect of before and after regression analysis on NASA DD metric,
Figure 6.13 to 6.16 were illustrated to demonstrate the behavior of unweighted
NASA DD metrics in comparison with workload rating. Figure 6.17 and 6.18 were
illustrated to demonstrate the behavior of SSD metrics in comparison with workload
rating.

(b) SSD, Sector 2

Fig. 9. Correlation of NASA1 and SSD for Sector 2.

workload and is also most affected by controller group.
Interestingly, the remaining metrics all have a relatively
lower correlation coefficient for controller Group 2, who
were working with Sector 2. There is, however, no clear
explanation for this result.

Table 2. Correlations between workload ratings
and complexity metrics per controller group.
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Figure 6.12: SSD area properties based on different sectors.

Controller group analysis

The same result was observed when looking at different group of controllers with
SSD showing highest correlation with workload rating (highest correlation in bold).
Table 6.3 shows the results of unweighted NASA DD, number of aircraft and SSD
metric.

Table 6.3: Correlation coefficient between workload rating and sector complexity
measures based on different group.

NASA1
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.178 0.010 -0.069 0.090
p <0.001 0.785 0.066 0.016

NASA2
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.269 0.261 0.306 0.204
p <0.001 <0.001 <0.001 <0.001

Nsum
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.233 0.214 0.265 0.162
p <0.001 <0.001 <0.001 <0.001

Nmean
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.335 0.284 0.336 0.209
p <0.001 <0.001 <0.001 <0.001

SSD
Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2

R 0.362 0.335 0.341 0.232
p <0.001 <0.001 <0.001 <0.001

To investigate the effect of before and after regression analysis on NASA DD metric,
Figure 6.13 to 6.16 were illustrated to demonstrate the behavior of unweighted
NASA DD metrics in comparison with workload rating. Figure 6.17 and 6.18 were
illustrated to demonstrate the behavior of SSD metrics in comparison with workload
rating.

3.4 Weighted correlation analysis

Sector-based analysis In general, the NASA DD metrics
should improve their correlations with subjective workload
when the weights (per dynamic variable) are determined
through regression analysis. In Table 3 it can indeed be
seen that especially the NASA1 metric improved consid-
erably compared to the unweighted version (see Table 1)
and has even a higher correlation than the SSD metric,
for Sector 1. Surprisingly, NASA2 slightly deteriorates in
its performance as a workload predictor for Sector 1 as
compared to the unweighted case.

Group-based analysis The weighted NASA1 metric sur-
passes the SSD metric in its correlation with subjective
workload for Group 1 and Sector 1 (see Table 4). NASA2

is more similar to the SSD correlations over all groups,
except for Group 2 working with Sector 1. Here, NASA2

has a slightly higher correlation coefficient compared to the
SSD metric. Overall, it is clear that the two DD variants
improve on their ability to predict workload when the
complexity factors are weighted, where the weights are
based upon regression analysis with subjective workload.



Table 3. Correlations between workload ratings
and weighted DD metrics, grouped by sector.

Sector Complexity Measures: A Comparison 135

For both sectors, the NASA1 DD metric are defined as having different significant
DV, which are included in the end DD equation. In Sector 1, the significant DV are
focused more to the variables related to aircraft horizontal proximity (DV6), speed
(DV14 and DV15) and intercept angle (DV16), whereas in Sector 2, only variable
concerning horizontal proximity (DV5 to DV7) are found to be significant. It is also
concluded that the number of aircraft has shown a significant effect for Sector 1, but
not in Sector 2.

For the NASA2 DD metric, the speed change variable (DV2) showed to be significant
in Sector 1, but not in Sector 2. However, in both sectors, variable concerning
heading change (DV1) and horizontal proximity (DV5) were found to be significant.
Differences in variables that influences the NASA DD model for both sector showed
that different sector design demand for different weighted NASA DD metric.

The correlation between the resulting weighted DD and workload rating were
gathered again using Kendall’s tau correlation coefficient. Results are gathered and
presented in Table 6.4. For SSD correlation data refer to Table 6.2. Based on the
result, NASA1 for Sector 1 and NASA2 for Sector 2 have higher correlation than
SSD (highest correlation in bold). It is observed that weighted NASA1 showed an
increases in correlation on both sector if compared to unweighted NASA1. However
weighted NASA2 showed a lower correlation in Sector 1 and a higher correlation in
Sector 2 compared to unweighted NASA2.

Table 6.4: Correlation coefficient between workload rating and weighted NASA DD
metric (sector-based analysis).

NASA1 NASA2
Sector 1 Sector 2 Sector 1 Sector 2

R 0.375 0.266 0.190* 0.296
p <0.001 <0.001 <0.001 <0.001
*correlation at a lower level than unweighted NASA DD metric
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Figure 6.19: Weighted NASA1 based on different sectors.

Table 4. Correlations between workload ratings
and weighted DD, per controller group.
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3) Sector 2 and group 1:

NASA1 = −0.702 ∗ DV3 + 2.463 ∗ DV7

NASA2 = −0.899 + 0.100 ∗ DV1 + 0.051 ∗ DV5 + 0.030 ∗ DV6 + TD

4) Sector 2 and group 2:

NASA1 = 0.270 ∗ DV1 − 0.808 ∗ DV3

NASA2 = −0.844 + 0.142 ∗ DV1 + 0.134 ∗ DV2 + 0.019 ∗ DV5

− 0.024 ∗ DV7 + TD

For the NASA1 DD metric, in Sector 1, both groups showed a significant effect
towards DVs which are related to the aircraft horizontal proximity (DV5 to DV7)
and speed (DV14 and DV15). However, DVs which are related to the time-to-go to
conflict (DV11 to DV13) and aircraft intercept angle (DV16) also played a role in
the end DD metric for group 1, but not for group 2. In Sector 2, significant effect
were found for aircraft horizontal proximity variables (DV5 to DV7), but only for
group 1.

For the NASA2 metric, in Sector 1, both groups display the same behavior, but in
Sector 2, the speed change variable (DV2) is a significant factor in determining the
end DD, but only for group 2. Differences in variables that influence the NASA
DD model for both groups, showed that different group of controllers, demand for
different weighted NASA DD metric as a result of differences in controllers behavior
towards a particular sector. Workload addresses the subjective demand experienced
by the operator in the performance of a task. It is influenced by operator-centered
factors like skill, strategy, and experience. In the experiment sequence, group 1 has
initially started with Sector 1, followed by Sector 2. Whereas group 2 has experienced
the opposite situation. Thus, the difference in level of experience will effect the
controller’s strategy. This can be seen through the weighted NASA DD metric.

Table 6.5: Correlation coefficient between workload rating and weighted NASA DD
metric (controller group-based analysis).

NASA1 NASA2
Sector 1 Sector 2 Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

R 0.429 0.229 0.217 0.111 0.358 0.352 0.348 0.312
p <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001

The correlation between the end weighted NASA DD and workload rating were
re-analyzed using Kendall’s tau correlation coefficient and the results are presented
in Table 6.5. Based on the results, only NASA1 in Group 1 for Sector 1 has higher

3.5 Transferability analysis

Cross-sector analysis To analyze the sensitivity of the
weighted DD metrics in terms of correlation to workload,
a cross analysis between the two sectors was carried out.
That is, the NASA1 weights gathered for Sector 1 were
applied to Sector 2 and vice versa. The same was done
for the NASA2 metric and the results are summarized
in Table 5. From this table it can be seen that the
correlation slightly deteriorates from the values listed in
Table 1, except for NASA2 in Sector 1. There is no logical
explanation for this apparent increase in correlation for
this case. To assess the SSD’s sensitivity to sector changes,
Figure 10 shows that the distribution of data points for all
participants in Sector 1 and Sector 2 are almost identical,
implying a relatively low sensitivity to sector changes.

Table 5. Correlations between workload ratings
and cross-sector weighted DD metric.
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value. Others showed lower correlation level. However, both NASA1 and NASA2
showed lower correlation than SSD metric sector complexity measure.

Table 6.6: Correlation coefficient between workload rating and cross-sector weighted
NASA DD metric.

NASA1 NASA2
Sector 1 Sector 2 Sector 1 Sector 2

R 0.230 0.231 0.317* 0.245
p <0.001 <0.001 <0.001 <0.001
*correlation at a higher level than weighted NASA DD metric

As observed in Table 6.6, the NASA2 DD metric for Sector 1 showed a higher
correlation level than the original correlation value that can be observed in Table 6.4.
However, it should also be made aware that for Sector 1, the weighted NASA2 DD
metric (Table 6.4) showed a lower correlation compared to the unweighted NASA2
(Table 6.2). As speed change variable (DV2) was present in NASA2 DD metric
for Sector 1 but not in Sector 2, outliers within the variable might have changed
the output that the linear regression analysis produces and reduces the predictive
accuracy of the weighted NASA2 DD metric. However, the speed change variable
was not removed from the weighted NASA2 DD metric equation as it can also
represent a result of different control strategy for different sector designs.
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Figure 6.25: Difference of weighted NASA1 and cross-sector weighted NASA1.

To illustrate how different weighting coefficients influence the weighted NASA DD
value, plots of original NASA DD metric value towards number of aircraft were
shown together with the cross-sector NASA DD metric value at the same scale. This
is illustrated in Figure 6.25 and 6.26. The fact that differences between original
and cross-sector value are evident shows that regression analysis needs to be done
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for each corresponding sector before the NASA DD metric can be used as a sector
complexity measure efficiently.
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Figure 6.26: Difference of weighted NASA2 and cross-sector weighted NASA2.

To assess SSD metric sensitivity towards different sector and compare its behavior
with NASA DD metric’s, a scatter plot of workload rating towards sector complexity
measure were illustrated in Figure 6.27. Based on Figure 6.27 the distribution of
data based on all subjects for both Sector 1 and Sector 2 in SSD is almost identical.
It is also observed that Sector 1 has a higher workload rating. However, this is
accompanied by higher SSD area properties. Thus, showing that differences between
sectors do not result in differences in how the SSD behaves towards workload rating.
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Figure 6.27: Scatter plot of workload rating and SSD area properties based on
different sectors.

Fig. 10. Workload ratings versus the SSD metric.

Cross-group analysis Similar to the cross-sector sensi-
tivity analysis, a cross-group analysis was performed by
applying the weights gathered for Group 1 to Group 2 and
vice versa. The results as summarized in Table 6 reveal
similar findings as the cross-sector results, namely that
in certain conditions (i.e., group and sector) the correla-
tions improve and in others the correlations worsen. This
random behavior clearly indicates the DD’s sensitivity to
a change in controller group. Note that the randomness
in correlation coefficients could be caused by outliers in

the data distribution. In general, outliers can significantly
affect the goodness of fit. Figure 11 shows little differ-
ence between the workload-SSD relationship per controller
group within a specific sector, whereas the data points are
more distributed for Sector 1.

Table 6. Correlations between workload ratings
and cross-grouped weighted DD metric.
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Cross-group transferability

Secondly, the effect of using weighting coefficient of different group of controllers
towards another group of controllers were investigated. Correlation analysis were
conducted and based on the result in Table 6.7, several cross-group weighted NASA
DD value have correlation at a higher level than SSD and are highlighted in bold.
Cross-group weighted NASA DD which has correlation at a higher level than its
original weighted NASA DD value are highlighted with a ‘*’.

Table 6.7: Correlation coefficient between workload rating and cross-group weighted
NASA DD metric.

NASA1 NASA2
Sector 1 Sector 2 Sector 1 Sector 2

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

R 0.366 0.264* 0.114 0.136* 0.358 0.343 0.129 0.241
p <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001
*correlation at a higher level than weighted NASA DD metric
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Figure 6.28: Difference of weighted NASA1 and cross-group weighted NASA1
based on different group of controllers and sectors.
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Figure 6.28 and 6.29 showed how both NASA1 and NASA2 can be different when
the weighting value of different group of controllers were used on a group of
controllers.

It is also observed that NASA1 showed a bigger difference in Sector 1 when the
weighting factor of one group is transferred to another. This can be traced back
to the end NASA DD equation in previous section with Sector 1 having more DV
which are considered significant for group 1. For NASA2, the opposite occurs with
Sector 2 showed to have a bigger difference when the equation is transferred. The
same rationale present for NASA2.

The cross-group analysis reveals that overall, both NASA DD metric is sensitive
towards different group of controllers. The effect of different group is more apparent
in Sector 1 for NASA1 DD metric, and in Sector 2 for NASA2 DD metric. However,
it is also observed that for Sector 1, the NASA2 metric showed to be less sensitive
towards different groups of controllers than Sector 2. This has shown that both
NASA DD metric response differently to differences in sector design.
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Figure 6.30: Scatter plot of workload rating and SSD area properties based on
different group of controllers and sectors.

Figure 6.30 illustrates the relation between workload rating and the SSD metric
as sector complexity measures. Based on the plots, it is observed that SSD metric
showed little differences on the distribution of SSD data between groups for both
sectors.
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Figure 6.28 and 6.29 showed how both NASA1 and NASA2 can be different when
the weighting value of different group of controllers were used on a group of
controllers.

It is also observed that NASA1 showed a bigger difference in Sector 1 when the
weighting factor of one group is transferred to another. This can be traced back
to the end NASA DD equation in previous section with Sector 1 having more DV
which are considered significant for group 1. For NASA2, the opposite occurs with
Sector 2 showed to have a bigger difference when the equation is transferred. The
same rationale present for NASA2.

The cross-group analysis reveals that overall, both NASA DD metric is sensitive
towards different group of controllers. The effect of different group is more apparent
in Sector 1 for NASA1 DD metric, and in Sector 2 for NASA2 DD metric. However,
it is also observed that for Sector 1, the NASA2 metric showed to be less sensitive
towards different groups of controllers than Sector 2. This has shown that both
NASA DD metric response differently to differences in sector design.

@�>���DHU$�ODWR7�IR�QDH0
�� �� �� �� �����

=�
6F
RU
H��
:
RU
NO
RD
G�
5D
WLQ
J�

�

�

�

�

��

��

�
�
�
�

*URXS

(a) Sector 1

0HDQ�RI�7RWDO�$UHD���>�@
�� �� �� �� �����

=�
6F
RU
H�
�:

RU
NO
RD
G�
5D
WLQ
J�

�

�

�

�

��

��

�
�
�
�

*URXS

(b) Sector 2

Figure 6.30: Scatter plot of workload rating and SSD area properties based on
different group of controllers and sectors.

Figure 6.30 illustrates the relation between workload rating and the SSD metric
as sector complexity measures. Based on the plots, it is observed that SSD metric
showed little differences on the distribution of SSD data between groups for both
sectors.

(b) Sector 2

Fig. 11. Workload ratings versus SSD area per group and
sector.

4. DISCUSSION

This paper compared the solution space-based SSD-metric
with established metrics such as the number of aircraft
(SD) and NASA’s dynamic density DD (Laudeman et al.,
1998, Sridhar et al., 1998, Chatterji and Sridhar, 2001).
Multiple scenarios with two different sectors and with
varying traffic sequences were presented to subjects.

First, an analysis with regards to the subjects’ overall
behavior and workload ratings was conducted, to observe
whether both sectors represent different complexity levels,
a necessary condition for our cross-sector transferability
investigation on workload metrics. The two sectors indeed
represented different complexity levels, with the sector
with the least aircraft to be in fact more complicated to
manage. All sector characteristics, such as its area, route
design and location of route intercept and sector entry/exit
points contributed to the effort needed to control it.
This is consistent with the current practice to define the
maximum number of aircraft on a per sector basis.

Initial correlation analyses were conducted to compare
the SSD-based metric and the unweighted DD metrics
towards the workload rating. The analysis aimed at having
a neutral comparison, that is, without the effects of post-
processing procedures such as weighting the DD coefficents
using linear regression. As hypothesized, the SSD metric
had the highest correlations with workload, relative to the
unweighted DD metrics and also the number of aircraft.
This is found for both sectors, and for both groups of
controllers.

Then, the DD metrics were ‘tuned’, through establishing
an optimal set of weighting coefficients to yield the best



relation between the DD and the workload ratings. Differ-
ent sets of DV weightings were used to tune the DD metric
for the two sectors and each individual group group of
controllers. It was found that the differences in controller’s
strategies lead to different weightings, showing that the
DD metric is affected by the controllers for which the
metric is tuned. Relative to the unweighted DD metrics,
overall the correlations with workload improved, and some
weighted metrics even got higher correlation values than
the SSD metric.

However, when transferring a particular DD model, op-
timized for one sector and one group of controllers, to a
different sector or different group of controllers, the cor-
relations were again lower. This clearly indicates that, in
contrast to the SSD-metric which is independent of sector
and controllers, the DD metric is sensitive and therefore
less suitable to predict ATCO workload in different sectors
and with different controllers as compared to the sector
and controllers for which the metric was obtained.

Note that the original DD metrics, however, were con-
structed based on three-dimensional airspace, with traffic
samples from 36 high and low sectors. The linear regression
analysis in this paper computed the DD metrics based
on a two-dimensional, rather simplified airspace, and also
using a low number of participants. Therefore, there could
have been the possibility that our DD ‘models’ were being
overfit; minor fluctuations in our data could have dete-
riorated the metrics’ performance. Nevertheless, the DD
metrics should not be too sensitive to a specific sample
size and should perform well on any sector design or group
of controllers.

5. CONCLUSIONS

This paper showed that the solution space-based com-
plexity metric (SSD) is a more reliable and objective
sector complexity measure, as compared to the static and
dynamic density metrics. It managed to show the same
high level of correlation with ATCO subjective workload
under various air traffic sector designs and for different
groups of controllers. The SSD metric can be used in real-
time without any post-processing procedures, potentially
allowing for a real-time prediction of ATCO workload. It
should be noted, however, that these results were gath-
ered with regards to specific assumptions and experiment
settings. To prove that the constraint-based method using
the SSD metric is the most suited metric in measuring
sector complexity construct in a real operational setting,
a more extensive research regarding its performance and
robustness should be done.
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