
Delft Center for Systems and Control

Decentralized coordination for
area surveillance purposes

Kyriakos Demetriou

M
as

te
ro

fS
cie

nc
e

Th
es

is

Decentralized coordination for area
surveillance purposes

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Kyriakos Demetriou

March 29, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Decentralized coordination for area surveillance purposes

by
Kyriakos Demetriou

in partial fulfillment of the requirements for the degree of
Master of Science Systems and Control

Dated: March 29, 2019

Supervisor(s):
dr.ir. Joris Sijs

ir. Jeroen Fransman

Reader(s):
prof.dr.ir. Bart De Schutter

dr. Riccardo Ferrari

Abstract

The area surveillance problem is the problem of surveying a known or an unknown area
with the main purpose of detecting objects. This thesis will tackle the problem of how to
employ a group of mobile-sensors for surveying an unobstructed area in an optimal manner.
The mobile-sensors should make use of their onboard computers and they should iteratively
compute their waypoints until they successfully surveyed the area.
To solve the area surveillance problem in an optimal manner, the mobile-sensors should be
able to coordinate their actions. The Distributed Constraint Optimization Problem (DCOP)
framework will be employed to define the area surveillance problem. In the DCOP, the mobile-
sensors can define their optimal position for the next discrete time step by communicating
with the other mobile-sensors that participate in the problem.
For solving this DCOP, the Distributed Pseudo-tree Optimization Procedure (DPOP) will
be utilized. The DPOP is a complete solver that can find the optimal solution of a DCOP
in a decentralized manner. However, the main limitation of DPOP is that the size of the
largest message that the mobile-sensors will have to exchange is space-exponential in the
induced width of the pseudo-tree. Considering that the mobile-sensors have to use their
onboard computers for solving the problem, exchanging huge size of messages is not desired.
To overcome this limitation of DPOP, a new extension, known as the MST-DPOP will be
presented in this Thesis.
The MST-DPOP makes use of the Maximum Spanning Tree (MST) algorithm to reduce the
size of the largest message that the mobile-sensors have to exchange. Employing MST along
with DPOP can bound the size of the largest message and the required computations for
constructing the utility messages. However, the new extension cannot guarantee that its
solution will be the optimal. The experimental results shows that the MST-DPOP is able
to define a solution with an average error less than 2%. Moreover, the MST-DPOP requires
on average around 1 discrete time step more than the DPOP to solve the area surveillance
problem. Consequently, given that the MST-DPOP overcomes the high memory requirements
of DPOP, it is preferred for solving the area surveillance problem.

Master of Science Thesis Kyriakos Demetriou

ii

Kyriakos Demetriou Master of Science Thesis

Table of Contents

Acknowledgements xiii

1 Introduction 1
1-1 Area surveillance . 1
1-2 Problem formulation . 3

1-2-1 Environment model . 4
1-2-2 Sensing constraint . 5
1-2-3 Mobility constraint . 5
1-2-4 Interaction model . 7
1-2-5 Utility constraint . 8
1-2-6 One-step ahead optimization . 10

1-3 Thesis goal . 13

2 Distributed constraint optimization problem 15
2-1 DCOP definition . 16

2-1-1 DCOP model . 16
2-1-2 DCOP outcome . 17
2-1-3 Representation . 17

2-2 Area surveillance as DCOP . 18
2-3 Dynamic DCOP . 19
2-4 Conclusion . 20

3 DCOP solvers 21
3-1 Complete solvers . 22

3-1-1 Inference-based solvers . 26
3-1-2 Search-based solvers . 27
3-1-3 Comparison . 29

3-2 Incomplete solvers . 30

Master of Science Thesis Kyriakos Demetriou

iv Table of Contents

3-2-1 Incomplete inference-based solver . 30
3-2-2 Local search solvers . 31
3-2-3 Comparison . 32

3-3 Solver requirements . 32
3-4 Conclusion . 34

4 DPOP for area surveillance 37
4-1 Pseudo-tree construction . 37
4-2 Utility propagation . 39

4-2-1 Utility message . 40
4-2-2 Utility message for area surveillance . 41
4-2-3 Incorporate the utility messages . 42
4-2-4 Utility message for parent . 43
4-2-5 End of utility propagation phase . 44

4-3 Value propagation . 44
4-4 Example of area surveillance problem . 45
4-5 Memory requirements . 46
4-6 Conclusion . 47

5 DPOP extension 49
5-1 Available extensions of DPOP . 49
5-2 Insight of the new extension . 51
5-3 Maximum spanning tree . 52
5-4 Apply MST to the area surveillance problem . 53

5-4-1 Weighting procedure . 53
5-4-2 Edge elimination procedure . 54

5-5 MST-DPOP . 56
5-6 MST-DPOP benefits . 58

5-6-1 Proof of upper bound for the message size 58
5-6-2 Proof of improvement on computational complexity 59
5-6-3 Proof of error bound on the solution . 59

5-7 Conclusion . 60

6 Results 63
6-1 Performance analysis of MST-DPOP . 64
6-2 Area surveillance problem . 67
6-3 Scalability analysis . 71
6-4 Discussion . 72

7 Conclusions and future work 75
7-1 Conclusions . 75
7-2 Future work . 78

Bibliography 79

Kyriakos Demetriou Master of Science Thesis

List of Figures

1-1 Example of mobile-sensors. 2
1-2 Example of sensing range domain. 5
1-3 Example of a unicycle mobile robot. 6
1-4 Example of the mobility range. 7
1-5 The distance (di,κ) and the angle (θi,κ) of a grid point i with respect to the

mobile-sensor κ. 7
1-6 Example of a mobility domain. 8
1-7 Example of active domain where the blue grid points represents the current sensing

domain, the red correspond to the mobility domain and the green to the active
domain. 9

1-8 Example of the active domain of two different mobile-sensors where the purple grid
points show the overlapping area of the two mobile-sensors. 10

2-1 An example of a constraint graph. 17
2-2 An example of a factor graph. 17
2-3 Left: Represents the current formation of the mobile-sensors. Black dots represent

their position. The contour lines represent their active domains. Right: A con-
straint graph for the given formation where nodes are the agents and edges are the
utility constraints. 20

3-1 DCOP solvers categories. The squares show the solvers categories and the circles
indicate some of the available solvers. 22

3-2 An example of deriving the pseudo-tree from the given constraint graph. The
constraint graph is shown on the left and the pseudo-tree can be seen on the right. 25

3-3 An example of the utility propagation phase. In this example, both agents α1
and α2 starts at the same time to create the utility message for their parents.
The two matrices represent the utility messages before agents α1 and α2 follow
the projection operation. The shaded colors in the matrices represent the optimum
utility that the agents can achieve based on the utility constraints with their parents.
Finally, the two tables on the right represent the utility messages that agents α1
and α2 send to their parent agent α0. 27

Master of Science Thesis Kyriakos Demetriou

vi List of Figures

3-4 The communication structure of ADOPT solver [1]. 28
3-5 An example of a cyclic factor graph from [2]. 31

4-1 An example of 7 mobile-sensors where they create two constraint graphs. The green
and yellow grid points represent the active domain, the red grid points correspond
to the mobility domains and the blue grid points are the current sensing domains. 38

4-2 A) The constraint graphs of the formation shown in Figure 4-2. The edges (lines)
represent the utility constraints and the nodes (circles) correspond to the agents.
Two constraint graphs exist since there is no coupling between the two groups.
B) The pseudo-trees of the constraint graphs shown in A. Solid lines indicate a
parent-child relation and dashed lines show pseudo-parent - pseudo-child relation. 39

4-3 Combining the utility message upκ of agent ακ with the utility message uκρ from
its child agent αρ. The resulting utility message is shown on the right where the
agent αq has been added to the utility message upκ. 43

4-4 An area surveillance example with three mobile-sensors where the number in the
grid points represent the likelihood that an object exist in the corresponding gird
point. In this example, for every mobile-sensor, the sensing range is shown with the
orange circle, the heading with the blue arrow, and the mobility-range with the red
sector. The red, blue and yellow grid-points represent the active domains of mobile-
sensors α0, α1 and α2, respectively. Moreover, the green grid points represent the
grid points that the active domain of mobile-sensor α0 has in common with the
active domains of mobile-sensors α1 and α2. 45

4-5 On the left side the pseudo-tree of the DCOP problem can be seen. On the right
side, the message flow during the DPOP is depicted. First, agents α1 and α2
constructs their utility messages using the utility propagation phase (Section 4-2).
Then, they follow the projection operation (∗) where they define the optimum
utility for every value assignment of their parent(shaded colors). Finally, they send
the utility message to their parent agent α0. Agent α0, after receiving the utility
messages, determines its optimal position and it sends it as a value message to its
children. Finally, agents α1 and α2 compute their optimal position using the value
message of agent α0 . 46

4-6 An instance of a pseudo-tree with high induced width. The agents are the cir-
cles where two agents are connected with an edge (line) if they share a utility
constraint. The solid lines represent a parent-child relationship and the dashed
lines indicate a pseudo-parent - pseudo-child relation. The induced width of this
pseudo-tree is equal to 6 since the separator of agent α6 consists of the agents
{α0, α1, α2, α3, α4, α5}. 48

5-1 Apply the MST algorithm to the constraint graph in (a). The MST of the constraint
graph is depicted in (b) . 53

5-2 The effect of the edge elimination procedure. Orange and blue colors represent the
active domains of the agents and green color represents the shared utility. After
the edge elimination procedure, the active domain of the mobile-sensor α2 does
not include the grid points of the share domain. 55

5-3 Pseudo-tree arrangement before (left) and after (right) applying the MST approach. 58

6-1 Quality experiments: Comparison between the error bound and the real error of the
MST-DPOP solution compared to the DPOP solution. The error bound shows the
estimate of the error of the MST-DPOP solution. The error shows the true error of
the solution of the MST-DPOP. These results are the average of 100 experiments
where they differ on the mobility and sensing range. 65

Kyriakos Demetriou Master of Science Thesis

List of Figures vii

6-2 The percentage of coverage of the total area at every discrete time step. The
blue colour represents the total coverage for the DPOP and the orange colour
corresponds to the total coverage for the MST-DPOP. 67

6-3 The percentage of coverage for both MST-DPOP and DPOP solver after the 69th
discrete time step. The blue colour represents the percentage of coverage for the
DPOP and the orange colour corresponds to the percentage of coverage for the
MST-DPOP. 68

6-4 The maximum message size that the mobile-sensors exchanged at every discrete
time step. The blue colour represents the maximum message size for the DPOP
and the orange colour corresponds to the maximum message size for the MST-DPOP. 69

6-5 The number of edges that the MST-DPOP had to remove from the DCOP at
every discrete time step so the resulting pseudo-tree had an induced-width of 1.
The maximum number of edges that the MST-DPOP could remove is 10 since 6
mobile-sensors are utilized for this experiment. 69

6-6 A simple area surveillance example where the dots represent the mobile-sensors,
the green grid points represent the unobserved grid points and the blue grid points
represent the observed ones. The mobile-sensors have a sensing range equal to 1
and a mobility range equal to 2. This will result in an instant area surveillance
problem where every mobile-sensor shares a utility constraint with every other
mobile-sensor. 70

6-7 The solution for the next discrete time step of the area surveillance problem de-
picted in Figure 6-6. The dots represent the mobile-sensors, the green grid points
represent the unobserved grid points and the blue grid points represent the ob-
served ones. On the left side is the solution of the problem using the DPOP solver
and on the right side is the solution using the MST-DPOP. 70

6-8 Scalability analysis for MST-DPOP and DPOP solvers. This analysis shows the
number of discrete time steps that both solvers required to solve the area surveil-
lance problem, based on the number of mobile-sensors (agents) that were utilized.
The DPOP was not able to execute with more than 9 mobile-sensors due to the
fact that the size of the largest message was larger than the available memory. . 71

Master of Science Thesis Kyriakos Demetriou

viii List of Figures

Kyriakos Demetriou Master of Science Thesis

List of Tables

1-1 Formal notation for area surveillance problem. 4

2-1 Description of every set in DCOP. 16
2-2 Formulate the area surveillance as a DCOP. 19

3-1 Overview of the DCOP solvers presented in this chapter. 35

6-1 Average difference of discrete time steps that the MST-DPOP requires to solve
the area surveillance compared to the DPOP solver. 66

Master of Science Thesis Kyriakos Demetriou

x List of Tables

Kyriakos Demetriou Master of Science Thesis

List of Acronyms

MMRS Multi Mobile Robot System
FoV Field of View
UAV Unmanned Aerial Vehicles
DoF Degrees of Freedom
COP Constraint Optimization Problem
DCOP Distributed Constraint Optimization Problem
DPOP Distributed Pseudo-tree Optimization
ADOPT Asynchronous Distributed OPTimization
DFS Depth-First Search
MGM Maximum Gain Message
DSA Distributed Stochastic Algorithm
BFS Breadth-First Search
MST Maximum Spanning Tree

Master of Science Thesis Kyriakos Demetriou

Acknowledgements

I would first like to express my sincere gratitude to my supervisors dr.ir. Joris Sijs and ir.
Jeroen Fransman for the continuous support of my Master thesis research, for their patience,
motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time
of research and writing of this thesis. I could not have imagined having better advisors and
mentors for my Mater thesis study.

Besides my advisors, I wish to thank the members of my dissertation committee prof.dr.ir.
Bart De Schutter and dr. Riccardo Ferrari for generously offering their time, support and
good will throughout the preparation and review of this document.

I want to express my very profound appreciation to my wonderful parents, my brothers and to
my friends for providing me with unfailing support and continuous encouragement throughout
my years of study and through the process of researching and writing this Master thesis. This
accomplishment would not have been possible without them. Thank you.

Finally, I would like to thank my friend Gavriella for being so supportive while I was working
on my thesis. Thanks for your emotional support for being so understanding and for being
such a great friend.

Delft, University of Technology Kyriakos Demetriou
March 29, 2019

Master of Science Thesis Kyriakos Demetriou

xiv Acknowledgements

Kyriakos Demetriou Master of Science Thesis

Chapter 1

Introduction

Area surveillance is the problem of surveying a known or an unknown area with the main
purpose of detecting objects. Depending on the problem, the objects that have to be discov-
ered may differ in type. For example, after a physical disaster, like an earthquake or a flood,
a rescue and resource team is searching for survivors. Moreover, under a war situation, the
military wants to protect its base station from intruders.
Currently, this operation is executed by humans. Humans can explore the environment and
detect the corresponding objects. However, this operation might be time-consuming and the
result may not be sufficient. That is, the objects may not be detected. Furthermore, it could
be that this operation is of high risk for humans. Consequently, an alternative solution is
needed, such as the use of mobile-sensors.
Mobile-sensors are robots equipped with sensors, as can be seen in Figure 1-1. They are
applicable to a variety of real-world applications due to their ease of use and their low cost.
By employing mobile-sensors for the area surveillance problem, the required surveillance time
can be reduced and the performance can be enhanced. Yet, a single mobile-sensor will not be
able to reduce the surveillance time and to improve the quality of object detection, especially
if the environment that has to be explored is large. As a result, several mobile-sensors have
to be used to perform the surveillance in parallel, where their actions must be coordinated.
These systems are known as Multi Mobile Robot Systems (MMRSs). MMRSs consist of
several intelligent robots, where each robot has the ability to perform certain tasks given its
observations of the environment [3]. This thesis will make use of the MMRS to solve the area
surveillance problem.

1-1 Area surveillance

During the last few decades, MMRSs have been used in a variety of applications, such as max-
imal area coverage [4, 5, 6, 7], resource allocation in disaster scenarios [8]. Thanks to their
high success on these problems, MMRSs can be considered as suitable systems that can be
utilized for performing area surveillance. In the area surveillance problem, the mobile-sensors

Master of Science Thesis Kyriakos Demetriou

2 Introduction

Figure 1-1: Example of mobile-sensors.

aim to survey an area as fast as possible. In this thesis, the focus is given only on how to
survey a given area and the detection of objects will not be further examined. Consequently,
the problem of employing mobile-sensors to survey a given area in an optimal manner will be
studied.
The area surveillance is assumed to take place in a 2D area, which is discretized into multiple
grid points. In order to successfully survey the given area, the mobile-sensors have to observe
every grid point that exists in the environment. In addition, depending on the type of the
sensor that the mobile-sensors carry and their current location, there are a certain number
of grid points that they can simultaneously perceive. Consequently, to scan every grid point
in the environment and solve the area surveillance problem, the mobile-sensors have to ad-
just their positions. However, to achieve this in an optimal manner, the mobile-sensors have
to cooperate with each other before adjusting their positions, otherwise, they may end up
surveiling the same grid points of the environment. This can be modeled as a constraint opti-
mization problem, where the solution of this optimization problem can be either a trajectory
or a single target position for every mobile sensor.

Trajectory vs target position

A trajectory is a set of target positions for every mobile-sensor that participate in the problem.
In the case of the area surveillance problem, a trajectory specifies a sequence of positions that
every mobile-sensor has to follow, such that they accomplish to survey every grid point of the
given area. The trajectory for a mobile-sensor is computed once, and then the mobile-sensor
has to follow the sequence of positions. Alternatively, a waypoint defines the position that ev-
ery mobile-sensor has to reach, assuming that it can take only one action. The mobile-sensors
iteratively determine new target positions until they successfully inspect every grid point.
Both approaches, trajectory or waypoint, can result in covering the whole area. Nevertheless,
both of them have their advantages and disadvantages.
The trajectory approach will be computationally expensive to determine the trajectory for all
of the mobile-sensors that participate in the area surveillance problem. In addition, since in
the MMRSs the mobile-sensors are equipped with onboard computers that have limited com-

Kyriakos Demetriou Master of Science Thesis

1-2 Problem formulation 3

putational resources, the onboard computers will not be able to perform such computations
for problems with large number of mobile-sensors. Hence, a computer is needed to compute
the trajectory for every mobile-sensor. Furthermore, if a failure occurs during the surveillance,
that is, a failure of a mobile-sensor or something changing in the area under surveillance, for
example a new object appeared, new trajectories need to be calculated again. That makes
the trajectory approach less suitable to dynamic behaviors, especially when a large number
of mobile-sensors is used.
On the contrary, the waypoint approach will result in surveying the given area step-by-step.
That is, at every step, the mobile-sensors have to define their optimum position, such that
they will observe the maximum number of unsurveilled grid points. This procedure is known
as a one-step-ahead optimization. In one-step-ahead optimization, the required computa-
tional power is less than the trajectory approach. This allows the mobile-sensors to use their
onboard computers for solving the one-step-ahead optimization. Therefore, this makes the
one-step-ahead approach more suitable for dynamic environments, since it can be run during
the surveillance. Nevertheless, one disadvantage for the one-step-ahead optimization is that
the mobile-sensors might require to take more actions to successfully survey the given area
since during the optimization procedure the mobile-sensors define their optimum position
considering only the next step.
Utilizing the one-step-ahead optimization, the mobile-sensors will be able to run all the re-
quired computations on their onboard computers. Therefore, the waypoint approach is pre-
ferred over the trajectory approach. Additionally, the available computation resources of the
onboard computers make centralized computation infeasible. Therefore, a decentralized ap-
proach will be derived for solving the area surveillance problem.
The rest of this thesis will tackle the problem of solving the area surveillance problem in
a decentralized manner using only the onboard computers of the mobile-sensors. In addi-
tion, the one-step-ahead optimization will be utilized for calculating the waypoints of the
mobile-sensors at every discrete time step.

1-2 Problem formulation

Regarding the area surveillance problem, the mobile-sensors have to cooperate and coordinate
their actions to survey the given area with an optimal manner. This implies that the mobile-
sensors have to communicate with each other before selecting their next waypoint. Before
getting into more details on how to formulate the area surveillance problem, the following
assumptions for the problem are defined.

• N mobile-sensors are utilized, where N should be larger than 1.

• The area surveillance problem is a discrete time problem, where an iteration implies a
single discrete time step, k.

• Every mobile-sensor has computational resources to run onboard algorithms.

• Each mobile-sensor has a specific sensing range. That is, a mobile-sensor can observe
the area that is within its sensing range.

• Each mobile-sensor has a specific mobility range. Thus, a mobile-sensor can move within
this range in a single discrete time step.

Master of Science Thesis Kyriakos Demetriou

4 Introduction

• The current position of the mobile-sensor is always known by the mobile-sensor.

• Control of the position of the mobile-sensor is possible by assigning a target position.

• The mobile-sensors have to survey an unobstructed known area. This is a 2D rectangle
area.

Furthermore, there are several concepts that have to be introduced. First, the environment
that represents the area under surveillance has to be modeled. Moreover, mobile-sensors
have constraints based on their mobility and sensing abilities. Therefore, a description of
mobility and sensing constraint will be determined. Additionally, the model that describes
how a mobile-sensor can interact with the environment, known as interaction model, will be
defined. In addition, the communication structure has to be specified. Therefore, a definition
of the utility constraint will take place. Finally, since a one-step ahead optimization will be
used, the goal of the mobile-sensors for every discrete time step will be defined. Table 1-1
shows an overview of the notations that will be used.

Table 1-1: Formal notation for area surveillance problem.

Notation Description
N Number of mobile-sensors.
M Model of the environment.
pi Probability value of grid point i.
dκ Location of mobile-sensor κ.
θκ Heading of mobile-sensor κ.
DRκ Sensing range domain of mobile-sensor κ.
DMκ Mobility domain of mobile-sensor κ.
DAκ Active domain of mobile-sensor κ.
DSκρ Shared utility domain between mobile-sensor κ and ρ.
⊕ Minkowski sum.

1-2-1 Environment model

The map of the environment represents the area that the mobile-sensors should survey. In this
problem, the area is assumed to be rectangular. Furthermore, using the cell decomposition
approach, the map is decomposed into a finite number of grid points. Hence, the map consists
of several grid points, where each grid point has its own property. In the area surveillance
problem, this property is a probability value that expresses the likelihood that an object exists
in the corresponding grid point. The map of the environment has the following characteristics:

• Center location for each grid point i with respect to a global coordinate system di =
(xi, yi), where di ∈ R2.

• A probability that a grid point contains an object, pi(k), where pi(k) ∈ [0, 1].

Consequently, the model of the environment can be described by the following:

M := {x̄1, x̄2, ..., x̄n} (1-1)

where x̄i = [di, pi(k)], and n is the total number of grid points.

Kyriakos Demetriou Master of Science Thesis

1-2 Problem formulation 5

1-2-2 Sensing constraint

The sensing constraint depends on the type of the sensor that will be utilized. There are
several sensors that can be employed for surveying a given area. Some examples are lidar,
camera, ultra sound. Cameras have been used in a variety of applications for detecting objects
successfully [9, 10]. For that reason, the mobile-sensors are equipped with a camera that has
360o Field of View (FoV). The sensing constraint depends on the camera’s range rκ and the
location dκ of the camera. The sensing range domain is defined as the set of grid points that
the sensor of the mobile-sensor κ can survey if the sensor is at location dκ. It is defined as
a circle, where the center of the circle is the location of the mobile-sensor and its radius is
the camera’s range. Therefore, by using the location of each grid point di ∈M , the camera’s
range rκ and the current location of the mobile-sensor dκ, the sensing range domain DRκ

⊆ M can be derived. A grid point belongs in the DRκ if it is within the range rκ of the
mobile-sensor κ. Consequently, the domain DRκ is defined as Equation 1-2.

DRκ := {x̄i ∈M | |dκ − di|2 ≤ rκ} (1-2)

A 2D example of the sensing range domain can be seen in Figure 1-2.

Figure 1-2: Example of sensing range domain.

1-2-3 Mobility constraint

The mobility constraint depends on the type of the mobile robot that will be used. Even
though there are numerous types of robots that have the ability to perform area surveillance,
the Unmanned Aerial Vehicles (UAVs) are best suited for this problem. This is because UAVs
are agile and able to fly on high speeds. Furthermore, UAVs are able to overcome obstacles
that ground robots cannot.

Master of Science Thesis Kyriakos Demetriou

6 Introduction

UAVs have in total six Degrees of Freedom (DoF). They have the ability to move in three
translation axes (x, y, z), and also to rotate around these axes (roll, pitch, yaw). Though, for
the area surveillance problem, it is reasonable to ignore some of these DoF. More specifically,
the pitch and the roll angles are not of high interest. They will not have a big effect on the
sensor’s FoV if they are kept close to zero. This is because of the fact that the camera can be
attached on the UAV such that it always looks downwards. Moreover, the z dimension can
be ignored too, by assuming that the UAVs fly at the same height during the surveillance.
The height can be selected such that is the optimum for detecting objects using the camera.
Consequently, the pose of the UAV will depend only to the x, y, and yaw angle. This is the
same with a unicycle mobile robot where it has 3DoF, Figure 1-3.

Figure 1-3: Example of a unicycle mobile robot.

Therefore, the discrete model of the unicycle mobile robot, Equation 1-3, will be utilized as
the model for the UAV.

x(k + 1) = x(k) + u cos(θ(k))
y(k + 1) = y(k) + u sin(θ(k))
θ(k + 1) = θ(k) + δθ (1-3)

where θ is the yaw angle of the UAV and δθ is the angular velocity.
The mobility domain of the UAV can be derived using the discrete model of Equation 1-3.
The mobility domain defines all the possible positions in the environment that the mobile-
sensor can reach in a single discrete time step. The mobility domain will be derived based on
the speed and the heading of the mobile sensor.
Every mobile-sensor is limited by its turn rate and its maximum speed. These limits are
known as maximum turn rate θmax and maximum speed umax. To be more precise, using the
maximum turn rate and the current heading of the mobile sensor, a maximum range for the
heading can be obtained. This range is defined using Equation 1-4.

Dθκ = [θminκ(k), θmaxκ(k)] = [θκ(k)− θmax, θκ(k) + θmax] (1-4)

Additionally, by utilizing the current speed and the maximum speed, a range for the speed
of the mobile robot (Duκ) can be derived in a similar manner. This range is defined using
Equation 1-5.

Duκ = [uminκ(k), umaxκ(k)] = [0, umax] (1-5)

Kyriakos Demetriou Master of Science Thesis

1-2 Problem formulation 7

Finally, by combining the heading range and the speed range, the mobility range can be
obtained. The mobility range forms a sector, where its radius is equal with the umaxκ(k), and
its central angle is equal to 2× θmax. Figure 1-4 shows an example of a mobility range.

Figure 1-4: Example of the mobility range.

Therefore, the mobility domain DMκ contains every grid point of the environment that falls
within the mobility range. These grid points represent the potential positions of the mobile-
sensor at the next discrete time step. To define whether a grid point belongs in the mobility
domain, its distance di,κ and its angle θi,κ with respect to the position and heading of the
mobile sensor have to be checked. Figure 1-5 gives an example of the distance and the angle
of a grid point.

Figure 1-5: The distance (di,κ) and the angle (θi,κ) of a grid point i with respect to the
mobile-sensor κ.

Finally, the mobility domain DMκ is defined as Equation 1-6.

DMκ := {x̄i ∈M | di,κ ≤ umaxκ(k)∆t, θi,κ ≤ θmax∆t} (1-6)

A 2D example of the mobility domain can be seen in Figure 1-6.

1-2-4 Interaction model

As previously mentioned, mobile-sensors aim to observe every grid point that exists in the
environment. Since every grid point in the environment has its own probability value, suc-
cessfully surveying the given area implies to set the probability value of every grid point to
zero. An interaction model is used to model the sensing of a grid point. The mobile-sensors

Master of Science Thesis Kyriakos Demetriou

8 Introduction

Figure 1-6: Example of a mobility domain.

can interact with the environment using their sensor. For the area surveillance problem, the
probability value of a grid point is set to zero if at least one mobile-sensor has the correspond-
ing grid point within its sensing range.
Assuming that a mobile-sensor is at position dκ, the sensing domain can provide the corre-
sponding grid points that the current mobile-sensor can observe. Therefore, the probability
value of these grid points can be set to 0 since the mobile-sensor has just surveyed them. In
addition, the probability value of a grid point depends also on its adjacent grid points since
it is possible that the objects that exist in the area under surveillance, have the ability to
navigate around. Equation 1-7 defines the interaction model between the mobile-sensors and
the environment,

pi(k) =

 0 if x̄i ∈
⋃N
κ=1DSκ

pi(k − 1) +
∑

j∈Dn
pj(k−1)

|Dn| otherwise
(1-7)

where Dn consists of the adjacent grid points of the grid point i.

1-2-5 Utility constraint

Equation 1-7 implies that the probability value of a grid point can be set to zero as soon
as a single mobile-sensor covers the corresponding grid point. Hence, having two or more
mobile-sensors covering the same grid point of the environment is not desired. To improve the
performance of the one-step-ahead optimization, two mobile-sensors will have to communicate
for computing their waypoint for the next discrete time step if any potential position in their
mobility domain result in covering the same grid points.
To determine whether two mobile-sensors have to communicate for defining their waypoint,
a new domain named the active domain is defined. The active domain (DAκ) includes all the
grid points that can be covered by the mobile-sensor based on its mobility and sensing domain.
Consequently, the active domain takes into consideration the mobility domain and the sensing
domain and by combining them together it derives the new domain. The Minkowski sum is

Kyriakos Demetriou Master of Science Thesis

1-2 Problem formulation 9

utilized for combining these two domains. Equation 1-8 shows how the Minowski sum is
formulated for two domains D1 and D2.

D := D1 ⊕D2 = {[(xi + xj), (yi + yj)] | ∀(xi, yi) ∈ D1, ∀(xj , yj) ∈ D2} (1-8)

However, to apply the Minkowski sum to the mobility and sensing domain, an extra step is
required. First, the location of the current mobile-sensor should be subtracted from every
grid point in the sensing and mobility domain (D′Mκ

= {(xi − xκ, yi − yκ)|∀i ∈ DMκ}, D′Rκ =
{(xi−xκ, yi−yκ)|∀i ∈ DRκ}). Then, the domain D′Aκ for the mobile-sensor κ is defined using
the Minkowski sum as shown in Equation 1-9.

D′Aκ := D′Mκ
⊕D′Rκ (1-9)

Finally, the active domain is defined by adding to every grid point in the domain D′Aκ the
location of the mobile-sensor DAκ = {(xi + xκ, yi + yκ)|∀(xi, yi) ∈ D′Aκ}. Figure 1-7 shows
the active domain of the corresponding platform. The blue grid points represent the sensing
domain and the green grid points the area that the mobile-sensor is able to cover in the next
discrete time step.

Figure 1-7: Example of active domain where the blue grid points represents the current sensing
domain, the red correspond to the mobility domain and the green to the active domain.

Furthermore, if the active domain of two different mobile-sensors include the same grid points
of the environment, then these two mobile-sensors have to communicate for solving the prob-
lem. In this case, the two mobile-sensors are said to have a utility constraint. To mathe-
matically define whether two mobile-sensors have a utility constraint, Equation 1-10 will be
utilized.

DSκρ := DAκ ∩DAρ (1-10)

Master of Science Thesis Kyriakos Demetriou

10 Introduction

The domain DSκρ is known as shared domain. If the shared domain between mobile-sensor κ
and ρ is not empty, then the mobile-sensor κ has a utility constraint with the mobile-sensor
ρ. Figure 1-8 shows two mobile-sensors that share a utility constraint.

Figure 1-8: Example of the active domain of two different mobile-sensors where the purple grid
points show the overlapping area of the two mobile-sensors.

1-2-6 One-step ahead optimization

So far, the interaction model, the model of the environment and the mobility, sensing and
utility constraints have been defined. Based on these constraints and given the fact that
a one-step-ahead optimization will be applied, the goal in the area surveillance problem at
every discrete time step is to maximize the sum of the probabilities of the grid points that the
mobile-sensors have within their sensing range. In other words, achieving maximum coverage
at every discrete time step. Equation 1-11 defines how the sum of probabilities is defined.

G =
∑
x̄i∈S

P (x̄i) (1-11)

where P (x̄i) is a function that returns the probability value of the corresponding grid point
and S is shown in Equation 1-12.

S =
N⋃
κ=1

DRκ (1-12)

Therefore, at every discrete time step, every mobile-sensor has to choose the potential position
in its mobility domain DM that based on the other mobile-sensors maximizes the coverage,
as shown in Equation 1-13.

Gmax = arg max
L

∑
x̄i∈S

P (x̄i) (1-13)

where L = {d1, ..., dN | d1 ∈ DM1 , ..., dN ∈ DMN
}.

Kyriakos Demetriou Master of Science Thesis

1-2 Problem formulation 11

Safety constraint

Only defining the combination of positions that result to the maximum sum of probabilities
cannot ensure that the mobile-sensors will avoid any collision. Hence, a safety constraint needs
to be introduced. The safety constraint depends on the distance between two mobile-sensors.
If the distance between any combination of potential positions of these mobile-sensors is less
than a safety threshold (sth), then the safety constraint will not allow the two mobile-sensors
to select these potential positions. Assuming that the agents κ and ρ have the potential
positions dκ ∈ DMκ and dρ ∈ DMρ , respectively, and the distance between these two potential
positions is less than the safety threshold st, then, a large penalty value is added to the sum
of probabilities of the corresponding combination of potential positions. Adding a negative
value will secure that the mobile-sensors will not select the corresponding potential positions
as their next position since it will not result to the maximum sum of probabilities. Equation
1-14 indicates how the penalty value can be defined.

sc(dκ, dρ) =
{ −100
|dκ−dρ| if |dκ − dρ| ≤ st

0 otherwise
(1-14)

Long horizon heuristic

Furthermore, given the decentralized property of the area surveillance problem, and the fact
that a one-step-ahead optimization is utilized, it is possible that a mobile-sensor will be
trapped in an area that has been previously observed by a different mobile-sensor. In this
case, the grid points that belong to this area will have a probability value of zero. Hence, every
potential position in its mobility domain will result in a zero sum of probabilities and the
mobile-sensor will not be able to define a waypoint that will drive it towards an unobserved
area. This problem is the stalemate problem and a heuristic, known as long-horizon, to
overcome it is given below.
The basic idea behind the long-horizon is to guide the mobile-sensor towards its closest area
that has not been fully surveyed yet. More clearly, towards its closest area that has a sum
of probabilities larger than zero. Therefore, the first step in this procedure is to split the
environment into sub-areas.
Using the total number of grid points, the environment is split into sub-areas, subi ∈ Dsub,
that consist of the same amount of grid points. To decide the size of the sub-areas, the sensing
range of the mobile-sensors is utilized. To be more specific, the area is split into regions with
the same size as the sensing range of the mobile-sensors. Moreover, every sub-area has two
features. The location of the center of the sub-area (dsubi), which is the center-point of all
grid points, and the sum of probabilities of the grid points that the sub-area contains (psubi).
The psubi is defined as shown in Equation 1-15.

psubi =
∑

x̄i∈subi

P (x̄i) (1-15)

Furthermore, the next step is to define the sub-area of the environment that is closest to
the current position of the mobile-sensor and has a sum of probabilities larger than zero.
Therefore, first, the sub-areas that have a sum of probabilities larger than zero are picked.
Equation 1-16 shows how to define these sub-areas.

Master of Science Thesis Kyriakos Demetriou

12 Introduction

Dz := {subi ∈ Dsub| psubi > 0} (1-16)

In addition, the sub-area that is closest to the current position of the mobile-sensor is defined
using Equation 1-17.

dc = arg min
dsubi∈Dz

|dsubi − dκ| (1-17)

Finally, the mobile-sensor can use the center of its closest sub-area to decide which one of its
potential positions will drive it closest to this area. Using Equation 1-18, the mobile-sensor
can compute a weight for every potential position in its mobility domain dκ ∈ DMκ .

wdκ = 1
|dc − dκ|

(1-18)

Equation 1-18 defines that the sub-area that is closest to the mobile-sensor will get the highest
weight.

Apply long horizon heuristic

The long horizon heuristic will be applied whenever the sum of the probabilities of the grid
points in the active domain DAκ of the mobile-sensor κ is zero. In this case, the mobile-sensor
will consider for every potential position in its mobility domain what the corresponding weight
is. Specifically, it will add the value of the weight to the corresponding sum of probabilities.
So, in the end, the mobile-sensor will choose the potential position with the highest sum of
probabilities, and it will drive it towards its closest area that still needs to be surveyed. The
long horizon utility value can be defined using Equation 1-19.

wdκ =
{ 1
|dc−dκ| if

∑
x̄i∈DAκ P (x̄i) = 0

0 otherwise
(1-19)

Mobile-sensors goal

Finally, by considering the area surveillance problem, every mobile-sensor has to compute a
waypoint at every discrete time step, with the main goal to achieve maximum coverage of the
area. Therefore, the mobile-sensors that share a utility constraint have to communicate and
coordinate their actions in order to maximize the global utility function (Equation 1-13). This
will allow them to decide the combination of positions that result to the maximum coverage,
based on the mobility, sensing and safety constraints. Furthermore, in the case where the sum
of probabilities in the active domain of any of the mobile-sensors is zero, then the long-horizon
optimization will be utilized. In this case, the mobile-sensors that share a utility constraint
have to decide the combination of positions that result to the maximum coverage, based also
on the long-horizon weight. Therefore, the utility value for every possible combination of
position assignments can be computed using Equation 1-20.

U =
∑
x̄i∈S

P (x̄i) +
N∑
κ=1

N∑
ρ=κ+1

sc(dκ, dρ) +
N∑
κ=1

wdκ (1-20)

Kyriakos Demetriou Master of Science Thesis

1-3 Thesis goal 13

Finally, the value assignment that result to the maximum global utility can be computed by
maximizing Equation 1-21.

W = arg max
L

U (1-21)

where L = {d1, ..., dN | d1 ∈ DM1 , ..., dN ∈ DMN
}.

1-3 Thesis goal

The goal of this thesis is to derive a decentralized algorithm for solving the area surveillance
problem using a group of mobile-sensors. The decentralized algorithm should be able to run
on the onboard computers that the mobile-sensors carry. Due to the fact that onboard com-
puters are not powerful computers, there are time and memory limitations. Moreover, the
algorithm should be scalable with respect to the number of the mobile-sensors. That is, the
algorithm should be able to define the solution to the problem independently of the number
of mobile-sensors. Finally, the algorithm should be able to result the maximum coverage that
the mobile-sensors can achieve at each discrete time step in order to minimize the required
discrete time steps to solve the problem.
This thesis begins by introducing a coordination framework for multi-agent systems known
as a Distributed Constraint Optimization Problem (DCOP). In addition, using the corre-
sponding coordination framework, the area surveillance problem will be formulated as DCOP.
Furthermore, chapter 3 will introduce several available solvers for DCOP, in order to define
the most appropriate solver for solving the area surveillance problem. Moreover, chapter 4
will describe how the algorithm that has been selected from the previous chapter solves the
problem and what its main limitation is. Furthermore, chapter 5 will describe a solution for
overcoming this main limitation. Finally, several experiments are performed to compare the
performance of the solvers and whether they are able to solve the area surveillance problem.

Master of Science Thesis Kyriakos Demetriou

14 Introduction

Kyriakos Demetriou Master of Science Thesis

Chapter 2

Distributed constraint optimization
problem

The multi-agent systems have been studied intensively the last few decades. Due to the fact
that the agents can take actions autonomously based on their perception of their surrounding
environment makes them a valuable tool for solving distributed problems. In the multi-agent
systems, the agents are able to find a solution to a problem that will be impossible for a single
agent. To achieve this, the agents have to cooperate with the other agents, and by incorpo-
rating their perception of their surrounding environment, they can successfully find a global
solution to the problem. Making the agents able to cooperate and coordinate their actions in
order to achieve a global solution is one of the most challenging parts in solving distributed
problems [11]. Therefore, a coordination model that aims to coordinate the actions of the
agents is needed.
In the literature, there are various approaches to define a coordination model. Some examples
are reactive coordination [12], learning [13], planning [14]. However, for these approaches, it
is challenging to define an efficient behavior during the interaction of the agents [11]. An-
other coordination model is the Distributed Constraint Optimization Problem (DCOP). The
DCOP has the ability to model a large class of real world problems. Moreover, due to the
ability of DCOP to define the problem by utilizing the constraints between the agents, it
has emerged as one of the most important formalism for coordination [11, 14, 15]. There
are several examples of multi-agent systems that used DCOP as a formalization structure,
such as for sensor networks [16, 17], traffic control [18], meeting and task scheduling [19].
Moreover, in the literature, there are various available solvers that can be used for solving
a DCOP [1, 20, 21]. Based on the area surveillance problem, the algorithm that should be
designed needs to be able to solve the problem in a decentralized manner. Consequently, since
the available DCOP solvers satisfy this requirement, the DCOP framework can be employed
for the area surveillance problem.
This chapter will first introduce the definition of the DCOP. That is, the basic notations
and how to represent the utility constraints between two different mobile-sensors. Further-
more, this chapter will formulate the area surveillance problem as DCOP. Finally, a brief
introduction on what a dynamic DCOP is, and how to solve such a dynamic DCOP.

Master of Science Thesis Kyriakos Demetriou

16 Distributed constraint optimization problem

2-1 DCOP definition

A Constraint Optimization Problem (COP) consists of variables and constraints between these
variables. In order to solve a COP, a value assignment should be defined for every variable
based on the constraints, and such that the global objective is optimized. The DCOP is an
extension of the COP, where the variables are distributed among agents. In the DCOP, every
agent performs local computations with the main purpose of optimizing a global objective.
The DCOP consists of a set of variables and constraints, where every variable is assigned to
an agent. Each variable has a discrete domain with finite values where these values represent
potential states of the corresponding variable. Only the assigned agent is able to manipulate
the value of its variable where it also knows the potential states of the the other variables
that its own variable has constraints with. Furthermore, a constraint can be described by a
utility value between a pair of variable assignments. Finally, the DCOP intends to maximize
or minimize the total utility value of the constraints [11].
In the DCOP framework, only the assigned agent can adjust the values of its variables. There-
fore, to optimize the sum of the resulting constraints agents have to exchange information
with the agents that share a constraint, in order to coordinate their actions of assigning the
optimal values to their variables.

2-1-1 DCOP model

A DCOP can be described as a tuple < X,D,F,A,G > where X is a set of decision variables,
D is a set of discrete domains, A is a set of agents, F is a set of constraints and G is the
global utility function [22, 11]. Table 2-1 gives an overview for every set in DCOP.

Table 2-1: Description of every set in DCOP.

Set Description

X
X = {x1, ...xn} is a finite set of decision
variables. xj is the value assignment

of variable j.

D

D = {D1, ..., Dn} is a set of finite domains
for each decision variable.

Dj = [d1
j , d

2
j , ..., d

q
j] where d

q
j is the qth

potential state of decision variable j.

A
A = {α1, ..., αp} is a finite set of agents.

αi represents agent i.
F F = {f1, ..., fm} is a finite set of constraints.

G

Is the global utility/cost function that
needs to be optimized. Usually, is the

sum of the constraints
G =

∑m
j=1 fm

Kyriakos Demetriou Master of Science Thesis

2-1 DCOP definition 17

2-1-2 DCOP outcome

The outcome of the DCOP is a value assignment for every variable in the problem. These
values are selected from the discrete domains of every variable, such that the sum of the
constraints is maximized, Equation 2-1.

X∗ = arg max
X

G (2-1)

where,

X∗ = {d∗1, ..., d∗n|d∗1 ∈ D1, ..., d
∗
n ∈ Dn} (2-2)

2-1-3 Representation

The DCOP can be represented as a constraint or factor graph. A constraint graph consists of
nodes and edges [23]. For the DCOP, the nodes of the graph correspond to the agents and the
edges to the constraints or relations between the agents. Two agents are said to be neighbors
if they are connected with an edge. A simple constraint graph is depicted in Figure 2-1.

Figure 2-1: An example of a constraint graph.

Furthermore, factor graphs consist of variable nodes and function nodes [24]. In DCOP, the
variable nodes are the agents and the function nodes are the constraints. A function node
is connected only to the variable nodes that participate in the constraint. Two agents are
said to be neighbors if they are connected to the same function node. An example of a factor
graph can be seen in Figure 2-2.

Figure 2-2: An example of a factor graph.

Master of Science Thesis Kyriakos Demetriou

18 Distributed constraint optimization problem

2-2 Area surveillance as DCOP

The DCOP framework can be utilized to represent any constraint optimization problem. Due
to its simplicity and its ease of use, several solvers have been designed for this framework.
Every DCOP solver is able to solve any problem that is formulated as a DCOP. That makes
the DCOP framework attractive for every multi-agent systems. Additionally, a portion of
DCOP solvers is capable of solving problems in a decentralized manner. That is, they have
been designed such that the agents can define the optimum value assignment of their variables
using their onboard computers, by exchanging messages between them. Regarding the area
surveillance problem, the mobile-sensors have to perform computations on their onboard
computers using information that they can get from the mobile-sensors that share a utility
constraint. This implies that for solving such a problem, a decentralized approach is preferred.
Furthermore, similar problems [7, 25, 26] have been formulated as DCOP with high success.
Consequently, since the DCOP framework has been successfully used in the past for similar
problems and it also has available decentralized solvers, is the one that will be adopted as a
coordination model for the area surveillance problem.
In order to model the area surveillance problem as a DCOP, the decision variables needs to be
specified. The main goal in the area surveillance is to maximize the sum of the probabilities
that the mobile-sensors have within their sensing range by adjusting the position of every
mobile-sensor. Therefore, the position of every mobile-sensor can be modeled as the decision
variable. Based on the area surveillance problem, a decision variable xκ will hold the [xκ, yκ]
position of the mobile-sensor κ.
Moreover, since the position of the mobile-sensor will be the decision variable, the domains will
be the potential positions of the corresponding mobile-sensor. As mentioned in the previous
chapter, this domain is known as the mobility domain (DM). Consequently, a decision variable
can get any value that is included in the mobility domain.
Furthermore, since the DCOP aims to maximize the sum of the utility value of the constraints,
two mobile-sensors will share a constraint in the DCOP if they share a utility constraint. The
reward in this case will be determined using the coverage that the two mobile-sensors can
achieve based on their constraints. Equation 1-20 will be utilized for computing the utility
value of a utility constraint. Therefore, using the active domains for every agent (DA), it can
be specified whether two agents share a constraint. Additionally, an agent will be responsible
for only one mobile-sensor. Therefore, the agent can only set the position of only one mobile-
sensor. For the remainder of this thesis, the mobile-sensor κ will be symbolized as an agent
ακ, since there is one-to-one relation.
Finally, the main goal of DCOP is to maximize the total coverage. This can be achieved by
maximizing the sum of the constraints. Hence, the outcome for every mobile-sensor will be
its next position such that they achieve maximum coverage of the area. Table 2-2 summarizes
how area surveillance is formulated as DCOP.

Constraint graph for area surveillance

The most common way to represent the constraints between agents in DCOP is by using a
constraint graph. For the area surveillance problem, nodes represent the mobile sensors and
edges the utility constraints. Therefore, two mobile-sensors will be connected with an edge
in the constraint graph if their active domains overlap. In addition, two mobile-sensors are

Kyriakos Demetriou Master of Science Thesis

2-3 Dynamic DCOP 19

Table 2-2: Formulate the area surveillance as a DCOP.

Set Description
X = {x1, ...,xN} xκ = [xκ, yκ] of mobile-sensor κ.

D = {D1, ...DN}
Dκ is the mobility domain DMκ of

mobile-sensor κ.

A = {α1, ...αN}
An agent αi is responsible for only

one decision variable.

F = {f1, ...fm}

fm is a utility constraint between
two agents and it defines the coverage

that both can achieve. A utility constraint
exists if the active domains of two

mobile-sensors contain the same grid points.
G Is the sum of utility constraints.

neighbors if they share a utility constraint.

Multiple constraint graphs

An example of a constraint graph for the area surveillance problem can be seen in Figure
2-3. This figure shows on the left side the agents along with their active domains and on the
right side the constraint graphs that corresponds to that formation. As it can be seen from
this figure, the active domains of agents α4 and α5 do not overlap with the active domains
of the other agents. This means that the agents α4 and α5 will not share any constraint
with the rest. Therefore, two distinct constraint graphs occur. When multiple constraints
graph exist at the same discrete time step, every graph represents a separate area surveillance
problem since all of them are independent. Therefore, the area-surveillance problem can be
split into sub-problems. Additionally, every sub-problem has to define the global utility that
its mobile-sensors can achieve. Concluding, the total coverage of the whole system will be
the summation of every sub-problem. For example, the total coverage of the area surveillance
problem in Figure 2-3 will be the summation of the two sub-problems.

2-3 Dynamic DCOP

DCOP has been designed as a coordination model for static problems [27]. However, as most
of the real world applications problems do change over time, with respect to the constraints
and the values of the variable, the area surveillance problem does as well. Not only because
of the dynamic behavior of the environment but also because of the ability that the mobile-
sensors have to navigate around the environment. Therefore, at every discrete time step, the
neighbors of a corresponding mobile-sensor might differ. This will result in different constraint
graphs at every discrete time step, and therefore a different DCOP will have to be solved.
This is known as the dynamic DCOP.
Yeoh et al. [27] proposed an algorithm that aims to use as much as possible information from
the previous DCOP, in order to save some time on re-constructing the new DCOP. Another
approach to cope with the dynamic DCOP, is to consider the dynamic DCOP as a sequence

Master of Science Thesis Kyriakos Demetriou

20 Distributed constraint optimization problem

Figure 2-3: Left: Represents the current formation of the mobile-sensors. Black dots represent
their position. The contour lines represent their active domains. Right: A constraint graph for
the given formation where nodes are the agents and edges are the utility constraints.

of DCOPs where each DCOP is different from the DCOP proceeding it [27]. More precisely,
to define at every discrete time step, the new domains and the new constraints between the
agents, and to solve the DCOP based on them.
In the area surveillance problem, it is not reasonable to re-use information for reconstructing
the DCOP. This is mainly due to that fact that at every discrete time step the constraints
between the mobile-sensors are not the same, the domains of the mobile-sensors are different,
where also the probability of every grid point of the environment changes. Consequently, a
sequence of DCOPs will be used for solving the dynamic DCOP.
Using a sequence of DCOPs implies that at every discrete time step, the mobile-sensors have
first to define their neighbors and then formulate the DCOP. Therefore, a different DCOP
has to be solved at every iteration.

2-4 Conclusion

This chapter first introduced the DCOP framework. DCOP provides a useful framework for
coordinating multi-agent systems in centralized and decentralized manner. Furthermore, its
available solvers are suitable for any problem that is formulated as DCOP. Therefore, the
DCOP has been selected as the coordination model for the area surveillance. Concerning
the area surveillance problem, the positions of the mobile-sensors have been modeled as
the decision variables. Moreover, mobile-sensors can get in the next discrete time step any
position that is included in their mobility domain. Therefore, the mobility domain represents
the domain for every decision variable. Finally, the DCOP aims to maximize the global utility
function, in the case of the area surveillance problem the sum of the utility constraints, by
choosing for every decision variable the value in their domain that it achieves this.
Due to the ability of DCOP to successfully represent multi-agent systems, several researchers
designed solvers for solving these type of problems. However, choosing the correct solver for
solving the corresponding problem is challenging. Consequently, the next chapter will briefly
explain some of the available DCOP solvers in order to decide which one suits best for the
area surveillance problem.

Kyriakos Demetriou Master of Science Thesis

Chapter 3

DCOP solvers

The Distributed Constraint Optimization Problem (DCOP) is a framework that is suitable
for multi-agent systems. All the variables and the constraints of the multi-agent system are
defined within this framework. Computing a solution for a DCOP means to find a value
assignment for every agent in the DCOP such that they achieve to maximize the global util-
ity function. Therefore, a DCOP solver aims to calculate the optimum value assignment for
every agent such that a global function is optimized. A DCOP solver can be classified into
centralized and decentralized. Centralized solvers have a single agent, the coordinator, to
decide the final value assignment for every agent, using information from the other agents.
On the other hand, in the decentralized solvers, the agents using their onboard computers
determine the optimum value assignment of their assigned variables by exchanging messages
with the other agents. The centralized approach introduces a single point of failure, where if
the coordinator fails, the agents will not be able to define their optimum value assignment.
Moreover, solving a DCOP in a centralized manner is NP-hard problem [28]. Hence, the
coordinator requires a lot of computation power to define the optimal solution. On the con-
trary, in the decentralized approach there is no single point of failure, where also the required
computational power is split to every agent. Based on the area surveillance problem, and
due to the restricted available resources of the mobile-sensors, a centralized approach will be
infeasible. Moreover, Lian et al. [29] proved that a decentralized solver can have the same
or even better convergence rate with a centralized one. For these reasons, only decentralized
solvers will be studied for the remained of this thesis.
In the literature, various decentralized DCOP solvers can be found which can be categorized
into two main categories: the complete and incomplete solvers. Complete solvers guarantee
to find the optimal solution. However, they require exponential communication and/or com-
putation based on the number of agents [1, 20]. Therefore, complete algorithms are not well
suited for multi-agent systems. On the other hand, incomplete solvers have faster convergence
than the complete ones but they achieve this by finding a sub-optimal solution [11, 30].
Finally, the DCOP solvers differ also on their synchronization scheme. There exist two type
of synchronization schemes, synchronous and asynchronous. In the synchronous solvers, an
agent has to wait for a message from the agents that share a constraint before changing the
values of its assigned variables [20]. On the contrary, in the asynchronous solvers an agent

Master of Science Thesis Kyriakos Demetriou

22 DCOP solvers

does not have to wait to change the values of its assigned variables [1].
Figure 3-1 shows solver categories along with some example of solvers. This chapter will first
give an overview of the DCOP solvers categories and their main differences. This overview
will lead to understand their main limitations. In addition, this chapter will introduce the
solver requirements for the area surveillance problem. Using the solver’s requirements, the
solver that best fits the requirements will be employed for the area surveillance problem.

Figure 3-1: DCOP solvers categories. The squares show the solvers categories and the circles
indicate some of the available solvers.

3-1 Complete solvers

Complete solvers guarantee that their solution will be the global optimum, that is, the best
feasible solution. The complete solvers can be divided into two classes [11]: the inference
based, and the search based.
Search-based are efficient in that the search can be terminated without searching the full
space. On the contrary, inference-based can reduce the number of messages by sending ag-
gregated utility. Two of the most well-known complete solvers are the Distributed pseudo-
tree-optimization procedure (DPOP), an inferenece based algorithm, and the Asynchronous

Kyriakos Demetriou Master of Science Thesis

3-1 Complete solvers 23

Distributed OPTimization (ADOPT), a search-based algorithm. Both solvers operate over a
pseudo-tree for defining the optimum solution. For this reason, the definition of the pseudo-
tree will be given next.

Pseudo-tree

A pseudo-tree is a re-arrangement of the constraint graph where it has the same nodes and
edges as the constraint graph. The definition of the constraint graph for the area surveillance
problem can be found in Section 2-2. Moreover, a pseudo-tree has the property that adjacent
nodes in the constraint graph fall in the same branch in the pseudo-tree structure [30, 20, 11].
One of the most well-known algorithms for deriving the pseudo-tree is the graph traversal
method Depth-First Search (DFS) [31]. DFS requires every agent to know its neighbors,
that is, the agents that they share a constraint. Moreover, the DFS algorithm requires as a
parameter, an agent that will first start the DFS procedure, known as the root of the pseudo-
tree. There are several heuristics to decide the root agent. The most well-known heuristic
is to choose the agent that has the most neighbors. The outcome of the DFS is a label for
every neighbor of the agent. More specific, during the DFS procedure, every agent is able
to classify its neighbors in one of the following categories: parent, pseudo-parent, children,
pseudo-children.

DFS algorithm

Algorithm 1 shows the DFS procedure. DFS algorithm uses a "token procedure" to classify
its neighbors in one of the abovementioned categories. Initially, the root agent starts the
token procedure by adding its name in the token. Then, it sends the token to one of its
unvisited neighbors, and it waits to receive it back before sending it to its other unvisited
neighbors. The receiver agent αi first marks the sender as its parent. In addition, if any
of its neighbors are included in the token, it marks them as pseudo-parents. After this, the
agent αi adds itself in the token, and it sends the token in turn to each one of its unvisited
neighbors αj . These agents become the children of the agent αi. Whenever an agent receives
the token from one of its neighbors, it marks the sender as visited. Finally, the token can
return to the agent αi either from the agent αj , the neighbor that previously sent the token, or
from a different neighbor, the agent αk. In the case that the token is returned from the agent
αk, then it means there is a cycle in the tree, and the αi marks the agent αk as its pseudo-child.

Master of Science Thesis Kyriakos Demetriou

24 DCOP solvers

Algorithm 1: DFS algorithm for constructing the pseudo-tree [30]
Data: neighbors of every agent.
Result: each agent labels all its neighbors as either P, PP,C, PC

Procedure Token Passing(performed by each agent αi)
if αi is root then
P (αi) = null
create empty token DFS

else
DFS = HandleIncomingTokens()

end if
let DFSαi = DFS ∪ {αi}
for all αl ∈ Nαi do
if αl not visited yet then
add αl to C(αi)
send DFSi to αl
wait for DFSi to return from αl

end if
end for

Procedure HandleIncomingTokens()
wait for any incoming DFSl message
let the agent αl be the sender
mark the agent αl as visited
if this is the first DFS message (agent αl is my parent) then
P (αi) = αl
PP (αi) = {αk 6= P (αi)|αk ∈ Nαi ∩DFSl}

else
if αl ∈ C(αi)(this is a DFS message returning form a child) then
continue with other neighbors

else
(the message is DFS message coming from a psuedo-child)
add the agent αl to PC(αi)

end if
end if

Pseudo-tree example

Figure 3-2 shows an example of the construction of the pseudo-tree. In the pseudo-tree
arrangement, the solid lines represent a parent-child relationship and the dashed lines a
pseudo-parent - pseudo-child relationship. Below, the explanation of every category is given.
The given examples will be based on Figure 3-2.

• P (αi) is the parent of the agent αi. This is the ancestor of the agent αi which is
connected to αi through a tree edge. For example, the agent α2 is the parent of the

Kyriakos Demetriou Master of Science Thesis

3-1 Complete solvers 25

agent α8 (P (α8) = α2).

• C(αi) are the children of the agent αi. These are the descendants of agent αi which are
connected to αi through tree edges. For example, the agents α7 and α8 are children of
the agent α2 (C(α2) = {α7, α8}).

• PP(αi) are the pseudo-parents of the agent αi. These are the ancestors of agent αi that
are connected to αi through back edges. For example, the agent α1 is the pseudo-parent
of the agent α5 (PP (α5) = α1).

• PC(αi) are the pseudo-children of the agent αi. These are the descendants of agent αi
that are connected to αi through back edges. For example, the agent α9 is a pseudo-child
of the agent α2 (PC(α2) = α9).

Figure 3-2: An example of deriving the pseudo-tree from the given constraint graph. The
constraint graph is shown on the left and the pseudo-tree can be seen on the right.

Additionally, another three important definitions for the pseudo-tree are the definitions of the
leaves, the separator and the induced width of the pseudo-tree. These three definitions will
be utilized during the explanation of the DPOP and the ADOPT solvers. Specifically, the
separator and the induced width will be utilized to explain the complexity of the solvers.
First, the leaves are the agents that do not have any children or pseudo-children. In Figure
3-2 the agents α4, α5, α6, α8, α9 are the leaves of the pseudo-tree. Furthermore, the separator
is a set of agents that contains the parents and pseudo-parents of agent αi, and the parents
and pseudo-parents of its children. To define the separator of an agent αi, Equation 3-1 is
utilized.

si = P (αi) ∪ PP (αi) ∪ (
⋃

j∈C(αi)
sj)− αi (3-1)

For example, in Figure 3-2, the separator of the agent α3 is s3 = {α1} and the separator of
the agent α9 is s9 = {α2, α7}.
Finally, the induced width of the pseudo-tree is equal to the size of the largest separator
of any agent in the pseudo-tree [30]. For example, the induced width of the pseudo-tree in
Figure 3-2 is equal to 2.

Master of Science Thesis Kyriakos Demetriou

26 DCOP solvers

3-1-1 Inference-based solvers

Inference-based solvers aim to compute the optimal solution by propagating the aggregated
costs of constraints. To get an insight into how inference-based solvers work, a brief explana-
tion of the inference based solver DPOP will be given.
The DPOP was first introduced by Petcu and Faltings [20]. Based on Petcu and Faltings
[20, 30], the DPOP requires a linear number of messages to solve the problem by using dy-
namic programming techniques. The DPOP consists of three phases. The first phase is
the construction of the pseudo-tree, then, is the utility propagation and finally is the value
propagation. A brief explanation of every phase will take place below.

Pseudo-tree construction

The DPOP operates over a pseudo-tree, hence, it starts by creating the pseudo-tree from
the constraint graph. This can be achieved by using the DFS algorithm (Algorithm 1). The
pseudo-tree is used as a communication structure for the next two phases. The agents only
exchange messages with agents that are connected through the tree edges. One of the main
advantages of using the pseudo-tree as a communication structure is that agents that lie in
different branches are able to operate in parallel. This happens due to the fact that these
agents do not share any utility constraint and therefore, their solution is independent from
each other. For example, agents α4, α5, α6, α8, α9, from Figure 3-2, can start the utility
propagation phase at the same time.

Utility propagation

Utility propagation phase starts from the leaves, and it propagates up the pseudo-tree through
the tree edges. In this phase, the leave agents start by creating the utility messages that they
have to send to their parent. The utility message provides to the parent, the maximum
utility that the child agent and its sub-tree can achieve based on the rest of the problem.
More specifically, a utility message contains the utility value for each set of value assignments
of the agents that are including in the separator of the sending agent. Additionally, the
sending agent has to define for every possible value assignment of the agents in its separator,
the optimal value assignment for itself. This operation is known as projection operation.
Then, after the sending agent has projected out itself from the utility message, the sending
agent is ready to send the utility message to its parent. Furthermore, as soon as an agent
has received all of the utility messages from its children, it can start the utility propagation
phase. Finally, the utility propagation phase ends as soon as the root agent receives every
utility message from its children.
Figure 3-3 shows an example of the utility propagation phase. Agents α1 and α2 are the
leaves in this pseudo-tree. Therefore, since they do not have any children so they have to wait
for any utility messages, they start by first creating the utility matrix, and then by following
the projection operation, they create the utility messages U0

1 and U0
2 . The utility message U0

1
represents the utility message that is sent by agent α1 to the agent α0. The optimum utility
of agents α1 and α2 for every value assignment of their parent is depicted in Figure 3-3 with
the shaded colors. Then, both agents send their utility messages U0

1 and U0
2 to their parent

Kyriakos Demetriou Master of Science Thesis

3-1 Complete solvers 27

agent α0 and the utility propagation phase is done because the root agent has received every
utility message from its children.

Figure 3-3: An example of the utility propagation phase. In this example, both agents α1 and α2
starts at the same time to create the utility message for their parents. The two matrices represent
the utility messages before agents α1 and α2 follow the projection operation. The shaded colors
in the matrices represent the optimum utility that the agents can achieve based on the utility
constraints with their parents. Finally, the two tables on the right represent the utility messages
that agents α1 and α2 send to their parent agent α0.

Value propagation

The value propagation phase starts after the root of the pseudo-tree has received every utility
message from its children. In the value propagation phase, the root starts by sending a value
message to its children. A value message contains the optimal value that the corresponding
agent can achieve with respect to the utility constraints between its children. Since the root
agent αr has accumulated the combined utility values, it is able to define its own optimal
value assignment of its variables (x∗r) that results to the maximum utility. Then, the root
agent αr append the optimal value assignment to the value message V C(αr)

r = {x∗r}, and it
sends this message to all of its children. The V C(αr)

r symbolizes the value message that is sent
by the root agent αr to its children C(αr).
In addition, as soon as an agent receives a value-message from its parent, it is able to define
its own optimum value x∗κ. Then, the agent appends its own optimum value x∗κ to the value
message V C(ακ)

κ = {x∗r, ...,x∗κ}, and it sends the value-message to its children. The value
propagation ends when value messages reach the leaves of the pseudo-tree.

3-1-2 Search-based solvers

Search-based solvers aim to define the optimum solution, by using techniques such as best-first,
backtracking, and branch and bound [11]. The ADOPT is the first distributed, search-based
and complete solver. After the ADOPT has been introduced, several researchers made use

Master of Science Thesis Kyriakos Demetriou

28 DCOP solvers

of its communication framework and message passing [32]. Therefore, in this subsection, a
brief explanation of the ADOPT solver will take place in order to understand how the search
based solvers operate for defining the optimal solution.
The ADOPT is an asynchronous algorithm that uses bound propagation technique for com-
puting the optimal solution [1]. The ADOPT operates over a pseudo-tree, where its agents
exchange three type of messages: value messages, cost messages, and threshold messages.
Figure 3-4 shows an example of a communication graph where additional information of the
messages can be found below.

Figure 3-4: The communication structure of ADOPT solver [1].

Messages

A value message contains the agent’s current value. An agent sends a value message to
its children and pseudo-children after it has changed the value assignment of its variables.
Furthermore, a cost message contains the following: the context, the lower bound and the
upper bound. The context holds the value assignment for every agent that was used for
computing the current lower bound and upper bound. The lower bound is the minimum local
utility of the current agent plus all the lower bounds of its children, where local utility is the
sum of utilities from constraints between the current agent and its parent/pseudo-parents.
Upper bound is the maximum local utility plus all the upper bounds from its children. An
agent sends a cost message only to its parent and after it has received a value message from its
parent or pseudo-parent. Finally, in order to reduce redundant search, an agent sends to its
children a threshold value through the threshold message. A threshold message reduces the
redundant search since it does not allow the receiver to consider solutions that result to lower
bound lower than the threshold. The threshold message is utilized to reconstruct solutions
that were rejected before as sub-optimal.

ADOPT algorithm

The first step in the ADOPT is to create the pseudo-tree from the constraint graph. The
pseudo-tree can be derived using the DFS algorithm (Algorithm 1). Then ADOPT performs
a distributed backtrack search using the best-first search. During the best-first search, each
agent chooses the value assignment of its variables that returns the optimal local utility.
Initially, each agent randomly selects its initial value assignment. In addition, the agent

Kyriakos Demetriou Master of Science Thesis

3-1 Complete solvers 29

sends its optimal value assignment of its variables to its children and pseudo-children and
it waits for a cost message from its children. Furthermore, when an agent receives a cost
message from its children, it adds the cost values to its lower and upper bounds. Moreover,
the agent checks whether there is another value in its domain that results in smaller lower
bound. If this is the case, the agent changes its value and the process repeats.
However, by following this asynchronous procedure, the agents might abandon solutions before
even proof that they are sub-optimal. Hence, agents may need to reconstruct previously
explored solutions. To do so, ADOPT stores the lower bounds as backtrack thresholds.
Then, a parent agent sends this backtrack threshold to its children, so its children do not
consider any solution that will result in a lower bound lower than the backtrack threshold.
Since this backtrack threshold is a lower bound that has been calculated before, it can ensure
that the cost of the optimal solution will be higher or equal to the backtrack threshold. Hence,
using the backtrack threshold, the ADOPT guarantees that the optimal solution will never
be missed.
Finally, ADOPT uses the bound interval, the difference between the lower bound and the
upper bound, to determine whether the algorithm has to terminate. If the lower bound is
equal to the upper bound then the optimal solution has been determined. Furthermore, one of
the main advantages of using the bound interval is that a sub-optimal solution with a certain
error-bound can be found. That is, by adjusting the desired difference between the lower and
the upper bound, pre-defined threshold, the algorithm terminates as soon as the difference
between the lower and the upper bound is less or equal to the pre-defined threshold. If the
pre-defined threshold is equal to zero, then ADOP will define the optimum solution. If the
pre-defined threshold is larger than zero, the ADOP will compute a sub-optimum solution
with an error equal to the pre-defined threshold.

3-1-3 Comparison

Both inference-based solvers and search-based solvers guarantee to find the optimal solution
of the problem in a distributed manner. The ADOPT is an asynchronous solver, where the
idle time of the agents is less than the DPOP due to the fact that the agents can change their
value depending on their local view of the problem. However, because of the asynchronous
manner of the ADOPT, the agents have to exchange a large number of small messages to
define the optimal solution. More specifically, in the worst case scenario, the ADOPT requires
an exponential number of messages with respect to the height of the pseudo-tree to achieve the
optimal solution. Considering the area surveillance problem, this will create communication
overhead since the mobile sensors will have to spend time on communicating with their
neighbors for defining the optimum solution.
On the contrary, the DPOP solver is using the utility propagation technique to define the
optimal solution. By doing this, it reduces the number of messages that the agents have to
exchange. More precisely, the number of messages that DPOP requires to achieve the optimal
solution is linear in the number of agents. This is because messages are propagating first from
the leaves to the root and then from the root to the leaves. However, the main disadvantage
of the DPOP lies in the size of the messages. The largest message of DPOP will be space
exponential in the induced width of the pseudo-tree. Therefore, the higher the induced width
of the pseudo-tree, the larger the message, and consequently the larger the amount of memory
that DPOP requires. Regarding the area surveillance problem, and due to the fact the mobile

Master of Science Thesis Kyriakos Demetriou

30 DCOP solvers

sensors are equipped with an onboard computer that has a limited amount of memory, the
algorithm may not be able to compute the optimal solution.
By comparing these two type of solvers, both can return the optimal solution in a decentralized
manner. However, both of them are not scalable with respect to the number of agents since
they require either exponential size of messages or exponential number of messages for defining
the solution. Hence, based on the limited computation resources that the mobile-sensors have
and the exponential requirements of both solver, both solvers may fail to define the solution
of the problem if the number of mobile-sensors is high.

3-2 Incomplete solvers

In contrast to complete solvers, incomplete solvers do not guarantee that the outcome will be
the global optimum. However, to find the solution of the DCOP, the incomplete solvers require
less computation and communication cost compared to the complete solvers. Incomplete
solvers can be further divided into three categories: the local search, the inference-based, and
the sampling-based [11].
The local search solvers compute the solution using only the local information of the agents,
where the incomplete inference based solvers, as the complete inference based do, compute
the accumulated utility of constraints. The sampling-based solvers sample the search space
to approximate a function as a product of statistical inference [33]. This section, will first
introduce the max-sum, an inference-based solver. In addition it will briefly describe two of
the most well known local solvers. This will lead to an insight of how incomplete inference-
based and local search solvers solve the DCOP.

3-2-1 Incomplete inference-based solver

The Max-Sum solver is an inference-based solver where it uses a cyclic bipartite factor graph
[26]. Bipartite factor graph consists of variable and function nodes where variables correspond
to the variables and functions to the utility constraints. The edges indicate dependencies
between the function nodes and the variable nodes. By representing the utility constraints
as function nodes, the global function is split into local functions, where the local functions
depend on a subset of variables. Figure 3-5 shows an instance of a factor graph, where
x1, x2, x3 are the variables and F1, F2, F3 are the utility constraints.

Max-sum operates over the factor graph, where variable nodes exchange messages with the
function nodes. More precisely, the variable nodes send to the function nodes that are con-
nected through an edge, their value assignment. The function nodes compute a utility value
based on the constraints, and they send this utility value back to the corresponding variable
node. In addition, the variable node computes the total utility value of this value assign-
ment by summing up all the utility values that it has received from the function nodes. This
procedure is repeated for every possible value assignment in the finite discrete domain of the
variable node. After the variable node has computed the total utility for every value assign-
ment of its variable, it chooses as the value assignment the value that has the maximum sum
of utilities.
The max-sum algorithm can guarantee the optimal solution when is applied to a factor graph
without cycles [2]. However, when the factor graph contains cycles, it returns a sub-optimal

Kyriakos Demetriou Master of Science Thesis

3-2 Incomplete solvers 31

Figure 3-5: An example of a cyclic factor graph from [2].

solution. Therefore, since the area-surveillance problem may introduce cycles in the factor
graph, the max-sum will not be able to define the global optimum.

3-2-2 Local search solvers

Maximum Gain Message (MGM) [21] and Distributed Stochastic Algorithm (DSA) [34] are
two local search solvers which operate over the constraint graph. In both solvers, the agents
compute the highest utility that their local variables can achieve based on the value assignment
of their neighbors. A brief explanation of the local search solvers is given below. More
specifically, every agent follows the following procedure to define its value assignment with
the highest utility.

1. (a) Send value assignment to all neighbors.

(b) Receive value assignment from all neighbors.

2. (a) Computes its highest utility value that its local variables can achieve based on
assignments of neighbors.

(b) Send the utility value to the neighbors.

3. (a) Receive the utility value from the neighbors.

(b) Check and update the value assignment.

In the MGM solver, only the agent that has the highest utility value compared to its neighbors
change its value assignment. In the DSA solver, the agents do not send their highest utility
to their neighbors. The agents stochastically decide to change their values. To be more
specific, if the highest utility of the agent has a positive impact on the problem, for example
a utility value larger than 0, then the agent changes the value assignment of its variables with
probability p. This approach, reduces the number of required messages to define the solution
to the DCOP.

Master of Science Thesis Kyriakos Demetriou

32 DCOP solvers

3-2-3 Comparison

The Max-Sum, the MGM, and the DSA are three of the most popular incomplete solvers.
They compute the solution locally, by exchanging messages with the agents that share con-
straint using either the constraint graph or the factor graph. To define the solution, every
agent determines the value assignment of its variables, that based on the value assignments
of the agents that shares constraints results to the maximum utility value. However, their
main limitation is that they cannot guarantee the optimal solution.
The Max-sum operates over a factor graph, where it can return the global optimum if the
factor graph does not contain any cycles. Both the MGM and the DSA require a linear num-
ber of messages to define the solution. However, since they perform local computations in
order to define the solution, they could get stuck in local minimum and they may result into
poor solutions. The main difference between the MGM and the DSA is that in the DSA an
agent can change its value assignment if it has a utility value higher than 0 with a probability
p where in MGM an agent can change its value if it has the biggest utility compared to its
neighbors. Therefore, the performance of the DSA depends on the probability value [34].
The Max-sum, the MGM and the DSA can successfully solve the area surveillance problem
in a decentralized manner. Moreover, all the three of them are scalable with respect to the
number of agents, since they do not have any exponential requirements.

3-3 Solver requirements

In order to decide which of these type of solvers best fits for the area surveillance problem, the
solvers requirement have to be introduced. Based on the definition of the area surveillance
problem, and given the fact that the onboard computers of the mobile-sensors have limited
computation resources, a decentralized approach is preferred. Therefore, the solver should be
able to find a solution in a decentralized manner by using only communication with the agents
that share utility constraints, known as neighbors. Additionally, since the mobile-sensors have
to survey the given area in an optimal manner, the algorithm should be able to compute the
optimum solution at every discrete time step. On the other hand, when there is a time or
memory limitation, the algorithm should be able to provide a sub-optimum solution that is
within an acceptance range from the optimum solution. More precisely, the sub-optimum
solution should be within 5% of the optimum solution. This will lead to keep the required
number of discrete time steps for solving the area surveillance as low as possible. Finally, the
DCOP solver should be scalable with respect to the number of agents. That is, the DCOP
solver should be able to define the optimum solution for every agent even after increasing the
number of agents that participate in the area surveillance problem.

Solvers comparison

The overview of the type of the solvers that this chapter introduced can be seen in Table 3-1.
Based on the solver’s requirements, the type of solver that satisfies all the two of them will be
picked for solving the area surveillance problem. The comparison will be based on the solvers
that have been introduced in this chapter.

Kyriakos Demetriou Master of Science Thesis

3-3 Solver requirements 33

First, a decision between the two type of complete solvers should be made. The complete
solvers guarantee the optimal solution in a decentralized manner. Hence both of them sat-
isfy the solver’s requirements regarding the decentralized manner and the optimum solution.
However, to define the optimal solution, both inference and search based solvers require ex-
ponential computational effort, in terms of the number of messages, or the memory required
for each agent to perform its actions [11]. This implies that the solver may require a lot of
computational time to derive the optimal solution, especially for large-scale applications.
Complete inference-based solvers have as its main limitation that they require a large amount
of memory to store the messages if the induced-width of the pseudo-tree is high. In that case,
the agents may run out of memory and be unable to perform the required computations for
defining the solution. Hence, the solver will fail to define the global optimum. In contrast,
the complete search-based solvers, in the worst case scenario, they require an exponential
number of messages for defining the global optimum. Therefore, they can create communica-
tion overhead. That is, the agents will exchange exponential number of small messages before
defining the optimum solution.
The main difference between these two types of solvers lies in the number and the size of mes-
sages that the agents have to exchange. Therefore, to decide which type of solvers, inference
or search based, best fits for the area surveillance problem, a further comparison regarding
the number of messages is needed. For real-world applications, it is preferable to send fewer
messages with a larger size than several messages with small size [30]. By sending fewer mes-
sages with a larger size, the interaction between the agents is bounded and the communication
overhead is reduced as well. It is important to reduce the communication overhead because
the difference in the communication overhead can go up to order of magnitudes speedups
[20]. Finally, sending fewer and larger messages can also decrease the amount of information
that the agents may exchange compared to sending an exponential number of messages with
small size [30]. This is mainly happen due to the fact that in the asynchronous solvers, the
agents have to attach to the messages the full context of the value assignments. Exchanging
less information between the agents might be vital in such applications. Despite the several
extensions of the ADOPT, the number of messages is still higher than any inference-based
solver. Moreover, based on the available extensions of the DPOP solver, there are several
heuristics that can be employed to overcome the high memory requirements of the DPOP
[35, 36, 37]. Consequently, the complete inference-based solver DPOP is preferred than com-
plete search-based ADOPT to avoid exchanging an exponential number of small messages.
The final choice should be made between the complete inference-based, and the incomplete
solvers. Incomplete solvers have the fast convergence as their main advantage. However,
they cannot guarantee the global optimum, neither that the error of the solution compared
to the optimum solution will be low. Consequently, the incomplete solvers do not satisfy the
requirement for the optimum solution, of a solution with error less than 5%. Oppositely, the
complete inference-based solvers, do not satisfy the scalability requirement since in the case
of a large scale application, the agents may run out of memory and therefore the solver will
be unable to define the solution. To finally decide whether a complete inference-based or
an incomplete type of solver will be employed for solving the area surveillance problem, the
scaling of the problem needs to be further analyzed.
As illustrated in Chapter 2, depending on the utility constraints, the problem can be divided
into several sub-problems, where every sub-problem will have to solve its own DCOP. Conse-
quently, a large scale problem can be split into several small scale problems. This infers that
a complete inference-based approach can be employed for solving every DCOP separately.

Master of Science Thesis Kyriakos Demetriou

34 DCOP solvers

Nevertheless, in the case where a large scale problem cannot be split into sub-problems, the
large scale problem may result in a pseudo-tree with high induced width where the complete
inference-based solver will fail to compute a solution. As mentioned above, there are several
heuristics that can be applied to overcome the limitation of the exponential memory require-
ment that complete inference-based has [35, 36, 37]. Some of these heuristics can overcome
this limitation and still guarantee the optimal solution, where others will result in computing
a sub-optimum solution. Hence, by applying a heuristic along with the complete inference-
based solver can make this type of solvers scalable with respect to the number of agents.
However, based on the heuristic that is employed, the complete inference-based solver might
violate the requirement for optimum solution.
Oppositely, the incomplete solvers do not satisfy the requirement for the optimum solution
even in a small scale problems. This leads to the conclusion that the complete inference-based
solver along with a heuristic for reducing the message size best fits for the solver’s require-
ments. Consequently, the complete-inference based solver along with a heuristic for reducing
the size of the message will be adopted for solving the area surveillance problem. Since the
DPOP is a complete inference based solver and it has been extended in various ways, it will
be employed to solve the area surveillance problem. In addition, the heuristic that will be
utilized along with the DPOP will need to be designed such that it can ensure that the solver
will not fail whenever the induced width of the pseudo-trees is high so that the solver will be
able to define a solution to the problem.

3-4 Conclusion

In this chapter, different type of DCOP solvers have been introduced. Based on the solvers
requirement and the characteristics of these type of solvers, the complete inference based
approach is the one that best fits the requirements. One of the most well-known complete
inference based solvers is the DPOP. However, to make the DPOP applicable to the area
surveillance problem, a heuristic for reducing the size of the utility messages needs to be
employed along with the DPOP. Hence, the DPOP solver along with a heuristic will be
employed for solving the area surveillance. In the next chapter, the DPOP solver will be
explained in more details. More specifically, the next chapter will first describe how DPOP
solves the area surveillance problem and how does its main limitation affect the performance
of the solver.

Kyriakos Demetriou Master of Science Thesis

3-4 Conclusion 35

Table 3-1: Overview of the DCOP solvers presented in this chapter.

Algorithm Details Limitation

Complete
inference-based
(DPOP)

Synchronous manner.
Return the global-optimum.
Operates over the pseudo-tree
Utility propagation.
Minimize the number of
required messages.

Requires a large amount of
memory to store the messages.
It could fail to return a solution
due to memory requirements.

Complete
search-based
(ADOPT)

Asynchronous manner.
Return the global-optimum.
Operates over the pseudo-tree.
Best-first search.
Minimize the idle time of
the agents.

It can result in communication
overhead.
It could fail to return a solution
due to time limitations.

Incomplete
inference-based
(Max-Sum)

Return a sub-optimal.
Operates over a factor graph.
Maximizes the sum of utilities
received from the function nodes.

Not quality on the solution.
Poor results when the factor
graph contains cycles.

Incomplete
local search
(MGM/DSA)

Return sub-optimal.
Operates over a constraint graph.
Maximizes the local utility.
Agents change value based on
its local utility.
They have fast convergence.

Not quality on the solution.
Agents can be trapped into
local minimal.

Master of Science Thesis Kyriakos Demetriou

36 DCOP solvers

Kyriakos Demetriou Master of Science Thesis

Chapter 4

DPOP for area surveillance

Following the previous chapter, the Distributed Pseudo-tree Optimization Procedure (DPOP)
[20] will be employed to solve the area surveillance problem. The DPOP is one of the most
well known solvers for solving decentralized problems in a synchronous manner. It is a com-
plete solver, where its main advantage is that it requires a linear number of messages for
determining the optimal solution.
Concerning the area surveillance problem, the goal is to successfully survey a given area. To
achieve this, a one-step-ahead optimization will be adopted. In the one-step-ahead optimiza-
tion, the mobile-sensors have to adjust their position at every discrete time step such that they
maximize the sum of the probabilities of the grid points with respect to their sensing range.
This goal is also known as maximizing the current coverage. Solving the area surveillance
problem using a one-step-ahead optimization is a constrained optimization, where the max-
imum coverage should be determined based on the mobility, sensing, and safety constraints.
Additionally, the area surveillance is a dynamic Distributed Constraint Optimization Problem
(DCOP). In dynamic DCOP a sequence of DCOPs will be solved at every discrete time step.
For every discrete time step, the following three phases of the DPOP solver will be executed.
First, using the constraint graph of the problem, the pseudo-tree is constructed. Afterwards,
the utility propagation phase starts. Finally, as soon as the utility propagation phase is done,
the value propagation phase begins.
This chapter will describe step-by-step how DPOP operates and how to use it for solving the
problem of area surveillance. Furthermore, it will outline how the limitation of DPOP affects
the performance of the solution.

4-1 Pseudo-tree construction

The DPOP operates over the pseudo-tree, hence, it starts by constructing the pseudo-tree
arrangement from the constraint graph. The pseudo-tree is a re-arrangement of the constraint
graph [11]. The constraint graph consists of nodes and edges, where the edges indicates the
relations between the different nodes. For the area surveillance problem, the nodes represent

Master of Science Thesis Kyriakos Demetriou

38 DPOP for area surveillance

the mobile-sensors and the edges symbolize the utility constraints. Given the definition of
the utility constraint, an edge between two nodes in the constraint graph exists if their active
domains overlap. More precise, it exists if the two mobile-sensors have the same grid points
in their active domains. Therefore, by defining the utility constraints between every mobile-
sensor, the constraint graph can be defined. As explained in Chapter 2, based on the definition
of the utility constraint, at every discrete time step several constraint graphs may exist. In
this case, every constraint graph, is considered as a separate DCOP. In addition, using the
constraint graph, every mobile-sensor can determine its neighbors since two mobile-sensors
are neighbors if they share a utility constraint.
After the mobile-sensors have defined their neighbors, they should follow the DFS algorithm
[30] (Algorithm 1) for defining the pseudo-tree arrangement. As it can be seen in Algorithm
1, the token procedure requires a mobile-sensor that will start this procedure, known as the
root, and it also requires from every mobile-sensor to know its neighbors. A commonly used
heuristic for defining the root of the pseudo-tree is to select the one with the most neighbors.
Therefore, for the area surveillance problem, the root mobile-sensor will be the mobile-sensor
that has the most neighbors. Moreover, as clarified above, every mobile-sensor define its
neighbors using the constraint graph. Finally, the result of the DFS algorithm for every
mobile-sensor is a label for all of its neighbors. More specifically, a neighbor can be classified
in one of the following categories: parent, pseudo-parent, child, pseudo-child.
Let us take, as an example, the formation of the mobile-sensors given in Figure 4-1.

Figure 4-1: An example of 7 mobile-sensors where they create two constraint graphs. The green
and yellow grid points represent the active domain, the red grid points correspond to the mobility
domains and the blue grid points are the current sensing domains.

Obviously, in this formation, there are two distinct constraint graphs since there is no coupling
between the two groups. Figure 4-2A shows the corresponding constraint graphs of the given
example. As mentioned also before, for every constraint graph a root mobile-sensor should
be picked. For both constraints graphs, there are several candidates since there are several
mobile-sensors with the same amount of neighbors. In this case, the tie is broken using the
identity of the mobile-sensor. To be more specific, the one that has the lowest identity will

Kyriakos Demetriou Master of Science Thesis

4-2 Utility propagation 39

be the root. Therefore, for the first constraint graph, the mobile-sensor α0 is picked as the
root and for the second constraint graph, the mobile-sensor α4 is selected. After applying
the DFS approach to both constraint graphs, the outcome, as can be seen in Figure 4-2B, is
two pseudo-tree arrangements that do not have any relation between them. Therefore, both
pseudo-trees have to solve separate their own area surveillance problem.

Figure 4-2: A) The constraint graphs of the formation shown in Figure 4-2. The edges (lines)
represent the utility constraints and the nodes (circles) correspond to the agents. Two constraint
graphs exist since there is no coupling between the two groups. B) The pseudo-trees of the
constraint graphs shown in A. Solid lines indicate a parent-child relation and dashed lines show
pseudo-parent - pseudo-child relation.

4-2 Utility propagation

After the pseudo-trees are constructed, the utility propagation phase starts. In this phase,
the agents exchange utility messages, where the utility messages are utility matrices that
contains utility values for variable assignments. The pseudo-trees act as a communication
structure, where they specify for every agent to whom the agent has to send a utility message
and from whom it has to receive utility messages. More specific, an agent has to send a utility
message to its parent and it has to receive utility messages from its children. Moreover, an
agent sends a utility message to its parent as soon as it has received every utility message
from its children. The utility propagation phase starts from the leaves of the pseudo-trees,
the agents that do not have any children, and it propagates up to the root [20]. The leaves
start this procedure since they do not have any children and therefore, they do not have to
wait for any utility message. Finally, the utility propagation phase ends as soon as the root
of the pseudo-tree has received all of the utility messages from its children. This subsection
will explain how the utility messages that the agents have to exchange are constructed.

Master of Science Thesis Kyriakos Demetriou

40 DPOP for area surveillance

4-2-1 Utility message

A utility message is a matrix of utility values. A utility message that is sent by agent ακ to
agent αρ is symbolized by Uρκ and it consists of utility values uρκ. In the case that the agent
ακ does not have any pseudo-parents and its separator includes only its parent, the utility
message will be a vector of utility values. Every utility value in the utility message represents
the optimum utility uρκ(dρ) that the sub-tree rooted at ακ can achieve if agent αρ chooses the
value assignment dρ ∈ Dρ. Therefore, in this case, the utility message will contain as many
utility values as the number of value assignments in the discrete domain of the parent agent
αρ.
In the case that agent ακ has also pseudo-parents or its separator includes more than one
agent, the utility table will be a multi-dimensional matrix of utility values, where each utility
value will be the optimum utility uρκ(dρ, d1, ..., dn) that the sub-tree rooted at ακ can achieve
if agent αρ choose value dρ ∈ Dρ and the rest agents in its separator α1, ..., αn ∈ sκ choose
value d1 ∈ D1, ... dn ∈ Dn, respectively. Therefore, the utility message depends on the size of
the separator of the sending agent. That is, the utility message will have an extra dimension
for every agent in the separator of the agent ακ.
For example, lets assume that agent α0 has to send a utility message to its parent agent α1,
and the separator of agent α0 includes agents α1, α2. Then the utility message U1

0 will have
one dimension for agent α1 and one for agent α2. If the domain of agents α1 and α2 are the
following: D1 = {1, 2} , D2 = {3, 4}, then the utility message U1

0 will be the following:

α1
1 2

U1
0 = α2

3 u1
0(1, 3) u1

0(2, 3)
4 u1

0(1, 4) u1
0(2, 4)

Compute the utility values

Utility messages are constructed by the following procedure. First, the agent has to compute
the utility value for every possible combination of value assignments of its local variable and
the local variables of its parent and/or pseudo-parent agents. These utility values will form
a utility message between the sending agent and its parent. In addition, the sending agent
has to incorporate the utility messages that it has received from its children, with its own
utility message. To incorporate the utility messages, the sending agent has to sum up the
utility values in the utility messages of its children with the corresponding utility values in
its own utility message with its parent. Finally, the last step for the sending agent is to
follow the projection operation. During the projection operation, the sending agent defines
for every possible value assignment of the the local variables of the agents other than the
sending agent, the optimal value assignment for its local variable. This will lead to define
the maximum utility value that the sub-tree rooted at the sending agent can achieve for
every possible value assignment of the local variables of the agents in its separator. After the
projection operation is done, the utility message is ready to be sent to the parent agent.
In the following subsections, the procedure that the agents in the area surveillance problem
follow for constructing the utility messages will be explained in more details.

Kyriakos Demetriou Master of Science Thesis

4-2 Utility propagation 41

4-2-2 Utility message for area surveillance

As explained above, a utility message consists of utility values for every possible combination
of value assignments of the current agent and the agents in its separator. For the area
surveillance problem, a value assignment of a mobile-sensor ακ is a potential position in its
mobility domain DMκ , where a potential position is any position that the mobile-sensor can
reach within the next discrete time step based on its mobility constraints. Following the
problem definition of the area surveillance problem in Chapter 1, a utility value depends
on the following: the sum of probabilities of the grid points (fc), known as coverage, the
safety constraint function (fs), and the long horizon function (fh). Equation 4-1 shows
how the utility value of the current mobile-sensor ακ and its parent and pseudo-parents
Ψκ = {αp, αg1 , ..., αgn} is defined for the given potential positions (dκ, dp, dg1 , ..., dgn).

upκ(dκ, dp, dg1 , ..., dgn) = fc(dκ, dp, dg1 , ..., dgn) +
+ fs(dκ, dp, dg1 , ..., dgn) +
+ fh(dκ) (4-1)

Coverage value The coverage value defines the sum of probabilities of the grid points that
only the sending agent ακ will have within its sensing range, if it chooses the potential position
dκ. Therefore, if any of its parent or pseudo-parents have the same grid points within their
sensing range with the agent ακ, these grid points have to be subtracted from the current
coverage of agent ακ. This is done to avoid counting any grid point twice during the utility
propagation phase.
In order to compute the coverage value for the potential position dκ of agent ακ, first, the
grid points that will be within its sensing range based on this position dκ have to be defined.
This is known as potential sensing domain (DΥκ), and it can be defined using Equation 4-2

DΥκ(dκ) := {x̄i ∈M | |dκ − di|2 ≤ rκ} (4-2)

whereM contains every grid point in the environment and rκ is the sensing range of agent ακ.
In addition, to define the common grid points that the agent ακ will have with its parent and
pseudo-parents, the potential sensing domains of its parent and pseudo-parents need to be
defined. This can be done using Equation 4-2 for every potential positions (dp, dg1 , ..., dgn).
Then, the combined potential sensing domain of the parent and pseudo-parents agents is
computed using Equation 4-3.

SΨ = DΥp(dp) ∪DΥg1 (dg1) ∪ ... ∪DΥgn (dgn) (4-3)
Finally, the coverage value between the mobile-sensor ακ and its parent and pseudo-parents
Ψκ can be defined using Equation 4-4.

fc(dκ, dp, dg1 , ..., dgn) =
∑

x̄i∈DΥκ (dκ)
P (x̄i)−

∑
x̄i∈Sκ,Ψ

P (x̄i) (4-4)

where P (x̄i) is a function that returns the probability value of the grid point i, and

Sκ,Ψ = DΥκ(dκ) ∩ SΨ (4-5)

Master of Science Thesis Kyriakos Demetriou

42 DPOP for area surveillance

Safety constraint: The safety constraint function is defined as shown in Equation 1-14. The
safety constraint function sc(dκ, dρ) computes a utility value based on the distance between
the potential positions (dκ, dρ) of the two mobile-sensors. Specifically, the safety constraint
function returns a negative utility value if the distance between the potential positions of the
two mobile-sensors is less than a pre-defined safety threshold. In the case that the current
mobile-sensor ακ has pseudo-parents, the combined utility is defined by Equation 4-6.

fs(dκ, dp, dg1 ..., dgn) = sc(dκ, dp) + sc(dκ, dg1) + ...+ sc(dκ, dgn) (4-6)

Long horizon: The long horizon function depends only on the current agent and the area
within its active domain. The active domain of agent ακ includes every grid point in the
environment that the mobile-sensor ακ can observe in the next discrete time step, based on
its mobility and sensing domain. In the case that every grid point in its active domain has
a probability value zero, the long horizon function is employed to guide the mobile-sensors
towards its closest sub-area that still has unobserved grid points. A sub-area is a small region
in the area under surveillance that can be defined by splitting the area under surveillance into
smaller areas of the same size.
The long horizon function computes a utility value for the potential position dκ that is defined
by the distance between the potential position dκ and the center’s position of the closest sub-
area (dc) in the environment that has still unobserved grid points. The lower the distance
is, the higher the utility value will be. The utility value of the long horizon function can be
computed using Equation 4-7.

fh(dακ) =
{ 1
|dc−dκ| if

∑
x̄i∈DAκ P (x̄i) = 0

0 otherwise
(4-7)

4-2-3 Incorporate the utility messages

When a mobile-sensor ακ receives a utility message from its child αρ, it incorporates it with
its utility message by summing up the two utility messages. Lets assume that the separator
of the child agent αρ includes only the receiver agent ακ. Then, the child’s utility message
contains the utility value that the sub-tree rooted at agent αρ can achieve for every potential
position dκ ∈ DMκ of the current agent ακ. Hence, the agent ακ sums the utility values of
the two utility messages using Equation 4-8

upκ(dκ, dp, dg1 ..., dgn)′ = upκ(dκ, dp, dg1 , ..., dgn) + uκρ(dκ) (4-8)

where the uκρ(dκ) is the utility message received from the child agent αρ. By incorporating
the child’s utility message with its own utility message, the resulting utility values represent
the utility value that the sub-tree rooted at agent ακ can achieve. However, in the case that
the utility message from its children depends on other agents than the agent ακ and the
parents and pseudo-parents of agent ακ, the agent ακ should extend its utility message by
including the missing agent. The mathematical expression for extending the dimension of a
utility message can be seen in Equation 4-9 where the agent ακ extends its utility message
upκ(dκ, dp, dg1 ..., dgn) by adding agent αq. In this Equation it is assumed that the utility
message from the child agent αρ depends on the agents ακ and αq.

upκ(dκ, dp, dg1 ..., dgn , dq)′ = upκ(dκ, dp, dg1 ..., dgn) + uκρ(dκ, dq) (4-9)

Kyriakos Demetriou Master of Science Thesis

4-2 Utility propagation 43

This extension will increase the dimension of the utility message by one, and the number of
values in the utility table by |DMq | times.
Figure 4-3 shows how agent ακ extends its utility message by adding agent αq to its own
utility message. Agent αρ sent to agent ακ the utility message Uκρ = uκρ(dκ, dq) that its
utility values depend on the agents ακ and αq. The values in the utility message of agent
ακ, upκ(dκ, dp) depends only on itself and its parent agent αp. Therefore, the agent ακ has to
extend its utility message by adding an extra dimension for agent αq. The resulting utility
message upκ(dκ, dp, dq)′ is shown on the right.

Figure 4-3: Combining the utility message upκ of agent ακ with the utility message uκρ from its
child agent αρ. The resulting utility message is shown on the right where the agent αq has been
added to the utility message upκ.

4-2-4 Utility message for parent

By incorporating the utility messages from its children in its utility message, the agent ακ
has the optimal utilities that the sub-tree (rooted at itself) can achieve. The final step
before sending the utility message to its parent is to define for every combination of potential
positions of the agents in its separator, its potential position that results to the maximum
utility. This can be done by following the projection operation (∗). The projection operation
is defined as shown in Equation 4-10.

upκ(dp, dg1 , ..., dgn) = max
dκ∈DMκ

upκ(dκ, dp, dg1 , ..., dgn)′ (4-10)

The outcome of the projection operation is the utility message that the agent ακ will send
to its parent agent αp, Upκ = upκ(dp, dg1 ..., dgn). For example, based on the utility messages
presented in Figure 4-3, after the agent ακ followed the projection operation, the utility
message that the agent ακ will send to its parent agent αp will be the following:

d1
q d2

q

upκ(dp, dq) = d1
p 16 11
d2
p 17 12

Master of Science Thesis Kyriakos Demetriou

44 DPOP for area surveillance

4-2-5 End of utility propagation phase

The root of the pseudo-tree is the last agent that will receive the utility messages from its
children. As soon as it has received every utility message, it first sums all the utility messages
together using Equation 4-11.

ur(dr) =
∑

ρ∈C(αr)
urρ(dr) (4-11)

The root agent αr has now full knowledge of what is the maximum utility that the rest
of the agents in the pseudo-tree can achieve for every possible value assignment of itself.
Furthermore, the root has to define for every potential position in its mobility domain dr ∈
DMr its own local coverage value. Since it does not have any parent and pseudo-parents, the
local coverage value for the agent root can be computed using Equation 4-12.

fc(dr) =
∑

x̄i∈DRr

p(x̄i) (4-12)

The root of the pseudo-tree computes the local coverage value since all of the utility constraints
have been incorporated in the utility messages of its children. Finally, the utility value for
the potential position dr of the root agent αr is computed using Equation 4-13.

ur(dr)′ = ur(dr) + fc(dr) + fh(dr) (4-13)

This utility value represents the global utility that the agents in the pseudo-tree can achieve
if the root agent chooses the value assignment dr.

4-3 Value propagation

The value propagation phase starts as soon as the root of the pseudo-tree has received every
utility message from its children. In this phase, every mobile-sensor is able to define its
optimal position. To do so, the root of the pseudo-tree starts by computing its position
assignment that based on its utility message ur(dr)′ results to the maximum utility value.
The root can define its optimal position d∗r using Equation 4-14.

d∗r = arg max
dr∈DMr

ur(dr)′ (4-14)

In addition, it creates the value message and appends its optimal position V
C(αr)
r = {d∗r}.

The value message V C(αr)
r is sent by agent αr to its children agents C(αr), and it contains

the optimal value assignment of the local variables of the root agent. Then the root agent
sends this value message to its children. As soon as the children of the root agent receive the
value message, they can compute their own optimal position using the value assignment of
the root agent. Accordingly, given that the optimal position of its parent is d∗r and by using
their utility matrix urC(αr), they first define their own optimum position and then they append
it to the value message V C(c)

c = {d∗r , d∗C(αr)}. Finally, they send the value message to their
own children. This procedure is repeated until the leaves of the pseudo-tree have received

Kyriakos Demetriou Master of Science Thesis

4-4 Example of area surveillance problem 45

the value message from their parent. It is important to mention that an agent requires the
value assignment of every mobile-sensor that is included in its separator to compute its own
optimum value. For example, if sρ = {ακ, αr} then the agent αρ can define its optimal
position using Equation 4-15 and the optimal positions of both agents ακ and αr.

d∗ρ = arg max
dρ∈DMρ

uκρ(dρ, d∗κ, d∗r)′ (4-15)

4-4 Example of area surveillance problem

Figure 4-4 shows an example of the area surveillance problem with three mobile-sensors. The
mobile-sensor α0 is located at d0 = (5, 3), the mobile-sensor α1 at d1 = (8, 6), and the α2 at
d2 = (3, 5). The sensing range of every mobile-sensor is shown with the orange circle and is
equal to 1 grid point. Moreover, the heading of every platform is given with the blue arrow.
In addition, the mobility range is represented with the red sector. Therefore, the mobility
domain of mobile-sensor α0 is DM0 = {(5, 3), (4, 4), (5, 4), (6, 4)}. Furthermore, the active
domains are depicted with red, blue and yellow colors for the mobile-sensors α0, α1, and α2,
respectively.
Based on the active domains of the mobile-sensors, agent α0 shares a utility constraint with
the agents α1 and α2. These three mobile-sensors aim to solve the area surveillance problem

Figure 4-4: An area surveillance example with three mobile-sensors where the number in the
grid points represent the likelihood that an object exist in the corresponding gird point. In this
example, for every mobile-sensor, the sensing range is shown with the orange circle, the heading
with the blue arrow, and the mobility-range with the red sector. The red, blue and yellow grid-
points represent the active domains of mobile-sensors α0, α1 and α2, respectively. Moreover, the
green grid points represent the grid points that the active domain of mobile-sensor α0 has in
common with the active domains of mobile-sensors α1 and α2.

using the DPOP solver. Therefore, at this discrete time step, the three-mobile sensors have
to coordinate their actions in order to define their next position that results in the maximum

Master of Science Thesis Kyriakos Demetriou

46 DPOP for area surveillance

coverage. Figure 4-5 shows the messages that the three agents exchange during the utility
and value propagation phase. Agents α1 and α2 start by computing their utility message
following the utility propagation phase explained in this Section 4-2. After applying the
projection operation, they send the utility message to their parent agent α0. Then, agent α0
defines its own local utility message using Equation 4-13 and afterwards it incorporates the
utility messages with its local utility message. In addition, it defines its position that results
to the maximum utility value, V {α1,α2}

0 = {d∗0 = d4
0}, and it sends it to its children through

a value message. The agents α1 and α2, using the optimal position of their parent, can
determine their own optimal position. Finally, the optimal position for every mobile-sensor
was found to be d∗0 = (6, 4), d∗1 = (7, 7), d∗2 = (1, 6).

Figure 4-5: On the left side the pseudo-tree of the DCOP problem can be seen. On the
right side, the message flow during the DPOP is depicted. First, agents α1 and α2 constructs
their utility messages using the utility propagation phase (Section 4-2). Then, they follow the
projection operation (∗) where they define the optimum utility for every value assignment of their
parent(shaded colors). Finally, they send the utility message to their parent agent α0. Agent
α0, after receiving the utility messages, determines its optimal position and it sends it as a value
message to its children. Finally, agents α1 and α2 compute their optimal position using the value
message of agent α0

4-5 Memory requirements

The DPOP is a complete solver that finds the optimal solution, through exchanging a linear
number of messages with respect to the number of agents [30, 20]. Nevertheless, the size
of these messages depends on the induced width of the pseudo-tree. The induced width is
equal to the size of the largest separator of any agent in the pseudo-tree [30]. Specifically,

Kyriakos Demetriou Master of Science Thesis

4-6 Conclusion 47

the largest message that the mobile-sensors have to exchange will be space exponential in the
induced width of the pseudo-tree. Consequently, DPOP demands a large amount of memory
to store the data, whenever the induced width of the pseudo-tree is high.
When the agents have a limited amount of storage, this drawback limits the number of agents
that can be utilized for solving the DCOP. Considering the area surveillance problem, the
mobile-sensors are equipped with onboard computers that have a limited amount of available
memory. Therefore, if the induced width of the pseudo-tree is high, some of the mobile-sensors
will not be able to construct their utility messages. For a better understanding of how does
this drawback limits the number of mobile-sensors, the size requirements will be elaborated.

Size of a utility message

The utility message for a mobile-sensor contains the utility value for every possible com-
bination of positions of the current mobile-sensor and the mobile-sensors in its separator.
Therefore, the number of values that the utility matrix has depends on the size of its separa-
tor, the number of variables per agent within the separator, the size of the mobility domain
for every mobile-sensor in its separator, and the size of its own mobility domain. The number
of values that the utility matrix of mobile-sensor κ is given by Equation 4-16.

vκ = |DMκ | ×
∏
q∈sκ
|DMq | (4-16)

Furthermore, the required storage size of the utility message can be computed by multiplying
the required memory to store a single value with the total number of values that the utility
message has.
An example of a pseudo-tree with a high induced width can be seen in Figure 4-6. In this
pseudo-tree, 7 agents exist where every agent has a utility constraint with every other agent.
This will create a pseudo-tree with an induced width of 6. If every mobile-sensor has the
same size of the mobility domain, η = |DMκ |, then the utility matrix of mobile-sensor κ will
consist of η|sκ|+1 values.
Based on the same pseudo-tree example, if the size of the mobility domain is larger than 20
and by assuming that a single value requires 8 bytes of memory, then agent 7 will require
more than 8Gb of memory to construct and store the utility matrix. Consequently, if the
agent has less than 8Gb of available memory, the agent 7 will not be able to construct the
utility matrix and the DPOP will fail to solve the problem.

4-6 Conclusion

In this chapter, the DPOP solver was further explained. At every discrete time step, every
agent within the pseudo-trees has to follow the utility and value propagation phase that have
been described in this chapter. By doing this, every mobile-sensor is able to compute its
position that will result in the maximum coverage for the next discrete time step. Using
the DPOP solver, defining the optimal postion for every mobile-sensor can be achieved by
using a linear number of messages. However, the main limitation of the DPOP solver makes
it inappropriate for solving the area surveillance problem. More specifically, if the induced
width of any of the pseudo-trees is high, then the mobile-sensors will require a large amount

Master of Science Thesis Kyriakos Demetriou

48 DPOP for area surveillance

Figure 4-6: An instance of a pseudo-tree with high induced width. The agents are the circles
where two agents are connected with an edge (line) if they share a utility constraint. The solid
lines represent a parent-child relationship and the dashed lines indicate a pseudo-parent - pseudo-
child relation. The induced width of this pseudo-tree is equal to 6 since the separator of agent
α6 consists of the agents {α0, α1, α2, α3, α4, α5}.

of memory to store the utility matrices. If the mobile-sensor do not have enough memory for
constructing the utility matrices, the agent will not be able send the utility message to its
parent and the utility propagation phase will terminate. Consequently, due to the fact that
mobile-sensors have a limited amount of available memory, there is a limit on the number of
mobile-sensors that can be employed for the area surveillance problem. Hence, DPOP does
not satisfy the solver’s requirement of being scalable with respect to the number of mobile-
sensors.
In order to overcome this limitation, an extension of DPOP that can successfully overcome
the high demand for memory requirement will be designed. Based on the available extensions
of DPOP, there are several ways to overcome this memory requirement. The next chapter
will present some of the available extensions of DPOP and it will introduce a new extension
in order to overcome the high demand of memory.

Kyriakos Demetriou Master of Science Thesis

Chapter 5

DPOP extension

The Distributed Pseudo-tree Optimization Procedure (DPOP) is an inference-based solver
that checks the whole search space in order to determine the optimal solution. One of its
key limitations is the size of the largest message that the agents have to exchange during
the utility propagation phase. Moreover, as shown in the previous chapter, this limitation
restricts the number of mobile-sensors that can be employed for solving the area surveillance
problem.
Since the DPOP will be utilized for solving the area surveillance problem, a solution for
this problem needs to be found. One of the solutions is to optimize the induced width of
the pseudo-tree. However, optimizing the induced width of the pseudo-tree is an NP-hard
problem and solving an NP-hard problem can introduce extra computational complexity [38].
Furthermore, optimizing the induced width of the pseudo-tree cannot guarantee that the re-
sulting pseudo-tree will be of low induced width. Hence, a different approach is required.
This chapter will first give an overview of the available extensions of the DPOP solver which
focus on how to reduce the memory requirements. In addition, this chapter will introduce a
new algorithm, an extension for the DPOP, which has been designed based on the area surveil-
lance problem. The main goal of the new extension is to reduce the memory requirements of
the DPOP so it can be efficiently applied to a real-world scenario. Eventually, this chapter
will prove that this extension can provide an error bound to the solution of the problem. That
is, a bound on the error between the solution of the solver and the global optimum.

5-1 Available extensions of DPOP

The exponential memory requirements of the DPOP restricts the use of the DPOP for real-
world multi-agent systems. This is due to the fact that in multi-agent systems the agents
are equipped with onboard computers with limited computational resources. Therefore, if
the agents have to construct and store utility messages that are higher than their available
memory, they will not be able to define the solution to the problem. During the last few
years, the DPOP has been extended in various ways by several researchers where their main

Master of Science Thesis Kyriakos Demetriou

50 DPOP extension

focus was to reduce the search space for the optimal solution.
The majority of the researchers focus on how to reduce the domains of the agents so they can
decrease the search space and the size of the message. Ismel and Pedro [39] introduce the
use of function filtering for reducing the size of the largest message. Fioretto et al [35] make
use of branch consistency for reducing the size of the messages. More specific, using the hard
constraints of the problem they were able to prune the search space. Based on the same idea,
H-DPOP [36] exploits hard constraints for smaller runtimes (number of operations executed
for defining the solution). However, compared to the branch consistency, H-DPOP requires
longer runtimes to define the solution, where also DPOP with branch consistency can scale
larger problems than H-DPOP [35].
Besides the use of hard constraints, some other researchers overcomes this limitation using
memory restrictions. To be more specific, O-DPOP and MB-DPOP trade off memory require-
ment for longer runtimes [40, 37]. Based on the same idea, Petcu introduced the A-DPOP
[41] solver which trades off solution optimality for shorter runtimes.
Furthermore, other researchers [33, 42] recommended replacing the pseudo-tree arrangement
that the conventional DPOP utilizes. Chen et al [33] proved that by using the Breadth First
Search (BFS) for deriving the pseudo-tree arrangement, the runtime can be reduced. Using
the BFS algorithm they achieved to slightly decrease the maximal dimension of the utility
message. This is because BFS result in much more branches than DFS. Moreover, BFS can
result in a pseudo-tree with lower induced width. In addition, Vinyals et al [42] use junk
trees to solve the DCOP problem. After a comparison with DPOP, they concluded that their
algorithm outperforms DPOP in terms of computation, communication, and parallelism.
Consequently, there are three different approaches to reduce the size of the message. The
first approach is to use the hard constraints of the problem to prune the domain of the agents
[39, 35, 36]. Using the hard constraints for pruning the domains might lead to reducing
the size of the message, however, it highly depends on the hard constraints of the problem,
and whether the hard constraints provide sufficient information for pruning the domains of
the agents. Moreover, the second approach is to apply hybrid algorithms to overcome the
memory restrictions. That is, to utilize the conventional DPOP whenever there is memory
available and a bounded DPOP whenever there is no memory available [37]. By utilizing the
hybrid DPOP can result in reducing the size of the message, however, this approach requires
longer runtimes to compute the solution and this is not desirable for the area surveillance
problem. Finally, the last approach is to change the pseudo-tree arrangement by either us-
ing another approach to derive the pseudo-tree or by employing a different representation
[33]. This approach may result in reducing the induced width of the pseudo-tree, however,
it slightly decreases the size of the messages. This implies that the memory requirements
of the utility messages will still be high and the agents will still be unable to construct the
utility messages. Therefore, such an approach will not make the DPOP applicable to the area
surveillance problem.
To conclude, based on this section and based on the available extensions in the literature,
only the MB-DPOP can successfully overcome the high memory requirements of DPOP and
at the same time guarantee the global optimum solution [37]. To achieve this, the MB-DPOP
increases the number of messages that the agents have to exchange, and as explained in the
previous chapter this is not desired. Moreover, the MB-DPOP requires longer runtimes to
define the solution compared to the DPOP. Given the fact that the solver should be able to
run during the surveillance of the area, it is not desirable to have longer runtimes. Therefore,
a new technique has to be designed. This new technique will combine the idea of both the first

Kyriakos Demetriou Master of Science Thesis

5-2 Insight of the new extension 51

and the second approach. That is, a new bounded-DPOP will be designed and will be utilized
whenever the induced width of the pseudo-tree is high. Moreover, the bounded-DPOP will
make use of the utility constraints to reduce the size of the utility messages.

5-2 Insight of the new extension

During the surveillance of the known area, it could be that all the mobile-sensors are close
to each other. Based on their active domains, this can result in an area surveillance problem
where every agent shares a utility constraint with every other agent. This creates a constraint
graph with (N−1)∗N

2 edges, where N is the number of agents. In addition, by utilizing the DFS
algorithm for deriving the pseudo-tree, it will result in a pseudo-tree with an induced width
of N − 1. Hence, the dimension of the biggest message that the agents will exchange during
the utility propagation phase will be N −1. In order to avoid storing and constructing such a
big utility messages, action needs to be taken whenever the induced width of the pseudo-tree
is high.
Based on the approach in MB-DPOP [37], the size of the message can be reduced by removing
areas in the pseudo-tree that have high induced width. More simply, by removing edges
and nodes from the pseudo-tree that increases the induced width. Moreover, based on the
approach in [35], the size of the messages can be reduced by utilizing the hard constraints of
the problem for pruning the domains of the agents. Consequently, to get the most out of both
approaches, the new extension will be based on both of them, where edges that increases the
induced width of the pseudo-tree and does not have big impact on the optimal solution will
be removed from the DCOP to reduce the size of the utility messages.
Considering the area surveillance problem, only the safety constraint can be considered as
hard constraint. However, it cannot be utilized for reducing the size of the messages since it
does not provide enough information for the optimal solution. Besides the safety constraint,
in the area surveillance problem the agents share utility constraints. A utility constraint or
an edge in the area surveillance problem exists if the active domains of two mobile-sensors
contain the same grid points of the environment. In this case, the mobile-sensors should
exchange information for constructing the utility messages. The information that these two
mobile-sensors will exchange depends on the probability value of the grid points that the
active domains of these two mobile-sensors have in common. Based on that, some edges do
not share any important information for the optimal solution since the grid points that the
mobile-sensors have in common have low probability value compared to other edges. Hence,
these edges do not have a large influence on the optimal solution. The solution is to remove
these edges from the problem to avoid any unnecessary computation, communication and
memory requirements. Removing an edge from the problem means that the corresponding
mobile-sensors will not have to exchange messages for computing the solution nor to consider
the other mobile-sensor for constructing the utility message during the utility propagation
phase. Hence, the number of values in the utility messages is reduced.
Nevertheless, it is challenging to determine how many edges and which edges have to be
removed. For this reason, an algorithm that aims to get rid of the edges that have low impact
on the optimal solution will be utilized. One of the most commonly used techniques for
removing edges in the pseudo-tree is the Maximum Spanning Tree (MST) algorithm [43, 44].
This approach requires a weighted constraint graph or pseudo-tree, where based on the weights
of the edges it defines the edges that have to be removed. The remainder of this chapter will

Master of Science Thesis Kyriakos Demetriou

52 DPOP extension

explain in more details the MST algorithm and how it can be utilized as an extension of the
DPOP.

5-3 Maximum spanning tree

A spanning tree is a tree that consists of a subset of edges of a constraint graph that connects
all the nodes in the tree without creating cycles [43, 44, 45]. Assuming that the edges have a
value or weight that indicates the importance of the edge for the problem, then the maximum
spanning tree is the sub-tree where its sum of the edges results in the maximum value/weight.
Two of the most common algorithms for deriving the maximum spanning tree are the Kruskal’s
algorithm [46] and the Prim’s algorithm [47]. Their outcome is the same, however, they differ
in the procedure for constructing the MST.

Kruskal’s algorithm

Kruskal’s algorithm tries to define the maximum spanning tree by finding the edge with the
highest weight that connects two different trees [46]. Initially, every node in the constraint
graph forms a tree. Then, it determines the edge with the highest weight. If this edge
connects two nodes that belong to two different trees, it combines the trees. Otherwise, it
skips the edge. This approach is repeated until every edge has been explored. In the end, this
algorithm will result in the maximum spanning tree that connects all of the nodes without
creating any cycles.

Prim’s algorithm

Prim’s algorithm, on the other hand, builds the maximum spanning tree by iteratively adding
the node that results to the highest weight [47]. Initially, it randomly chooses a node. Addi-
tionally, it finds the node that is connected to the initial node, and it has the maximum edge
weight. This procedure continues by adding every time the node that is connected with the
tree, and it has the maximum weight. Again, it skips the edge if it creates a cycle.

MST example

As the definition of the MST indicates, the outcome will be a sub-tree of the constraint graph,
where it does not create any cycles and it has the maximum sum of weights. Such an example
can be seen in Figure 5-1. Figure 5-1a shows a constraint graph that consists of 5 agents and
10 edges along with their weights. After applying the Kruskal’s or Prim’s algorithm, the MST
shown in Figure 5-1b is constructed. This MST consists of 5 agents and 4 edges.

Kyriakos Demetriou Master of Science Thesis

5-4 Apply MST to the area surveillance problem 53

(a) The initial constraint-graph with 5 agents and 10
edges.

(b) The resulting MST after applying the Kruskal’s
algorithm.

Figure 5-1: Apply the MST algorithm to the constraint graph in (a). The MST of the constraint
graph is depicted in (b)

5-4 Apply MST to the area surveillance problem

An MST algorithm requires a weighted constraint graph or pseudo-tree for determining the
MST. Consequently, before applying the MST algorithm to the area surveillance problem, the
weight of each edge has to be defined. This procedure is known as the weighting procedure
and is explained below.

5-4-1 Weighting procedure

The MST approach defines the spanning tree that results to the maximum sum of weights.
Consequently, any edge with low weight will not be part of the final spanning tree. Considering
the area surveillance problem, an edge between two agents means there is a utility constraint
between them, and therefore the two agents could result in covering the same grid points.
From the definition of the utility constraint, an edge can take its weight using the grid points
that the active domains of the two agents have in common. Every grid point has its own
probability value. Therefore, the sum of the probabilities of these grid points can set up the
weight for each edge. Using this technique for defining the weight for the edges, the weight
can define the influence that the edge will have on the global utility function. Equation 5-1
shows how to define the weight for an edge that connects agent ακ and agent αρ

wκ,ρ =
∑

x̄i∈DSκρ

P (x̄i) (5-1)

where P (x̄i) is a function that retuns the probability value of the grip point i and the DSκρ is
the share domain and it consists of the grid points that active domains of agents ακ and αρ
have in common. Therefore, if an edge in the constraint graph has a low weight, it indicates
that either the share domain of the agents contains only a few grid points or that the grid
points that are included in the share domain have low probability value. In both cases, the
information that the two agents will exchange during the utility propagation phase will have
a low impact on the optimum solution. Hence, it is preferred to ignore the edges with a low
weight in order to keep the error of the solution as low as possible.

Master of Science Thesis Kyriakos Demetriou

54 DPOP extension

Tie-breaker

When the MST algorithm is applied to the constraint graph of the area-surveillance problem,
it could be that two or more edges have equal weights. In this case, for each edge, the current
positions of the two agents that are part of the edge are utilized to break the tie. To be
more specific, the actual distance in euclidean space between the positions of the two agents
will be considered. Since these edges have the same utility relation based on the sum of the
probability values, it is preferable to keep in the DCOP the edge that its agents are closer
to each other. This will allow the two agents to communicate during the utility and value
propagation phase so they will avoid any collision. Therefore, whenever there is a tie between
edges, the inverse of the distance will be added to the weight of the edges as shown in Equation
5-2.

w′κ,ρ = wκ,ρ + 1
|dκ − dρ|2

(5-2)

After defining the weights for each edge in the DCOP and by applying any of the aforemen-
tioned MST algorithms, the outcome will be a set of edges that have to be removed from
the DCOP. By removing them from the DCOP, the outcome will be a constraint graph with
N-1 edges. This is desired since the pseudo-tree that will be constructed from this constraint
graph will have at maximum an induced width of 1. Hence, the largest utility message will
be reduced and its maximum dimension will be 1.
Nonetheless, removing an edge from the DCOP implies that the two mobile-sensors will
not coordinate their actions for defining the optimum solution. Furthermore, since the two
mobile-sensors share a utility constraint but they will not communicate for defining the op-
timum solution, it is possible that they will end up in covering the same grid points of the
environment. Based on the definition of the area-surveillance problem, it is not desirable to
have two mobile-sensors sensing the same grid points. Consequently, to avoid this, an extra
step known as the edge elimination procedure, will be utilized.

5-4-2 Edge elimination procedure

When an edge between two mobile-sensors is removed from the DCOP, it is important that
these two mobile-sensors will not observe the same unobserved grid points in the next discrete
time step. In order to achieve this, the share domain and the active domain of the mobile-
sensors will be utilized. Specifically, the grid points that exist in the share domain will be
blocked from the active domain of any of these two mobile-sensors. Blocking a grid point
from the active domain of any mobile-sensor means to remove the grid point from the active
domain of the mobile-sensor. Hence, the mobile-sensor will not get any utility gain if it has
within its sensing range the blocked grid point. So, it will not be possible any more for both
to end up in covering the same grid points.
This can be better understood with an example. Figure 5-2a shows two agents with their
active domains (orange color agent α0, blue color agent α1) and their share domain (green
color). To eliminate the edge between this two agents, the grid points within the share domain
should be blocked from the active domain of one of the two agents. Let us assume that the
share domain will be blocked from the active domain of agent α1. This will result in Figure

Kyriakos Demetriou Master of Science Thesis

5-4 Apply MST to the area surveillance problem 55

5-2b. Therefore, if any potential position of agent α1 result in having within its sensing
domain the blocked grid points, instead of getting 1.4 utility gain, it will get 0. Hence, even
without communicating during the utility and value propagation phase, the two agents will
not choose the potential position that result in covering the same grid points.

(a) Before edge elimination. (b) After edge elimination.

Figure 5-2: The effect of the edge elimination procedure. Orange and blue colors represent
the active domains of the agents and green color represents the shared utility. After the edge
elimination procedure, the active domain of the mobile-sensor α2 does not include the grid points
of the share domain.

Reduce the active domain of the agents

Based on the edge elimination procedure, the share domain DSκρ of the edge between the
agents ακ and αρ will be used for reducing the active domains of the agents ακ and αρ. To
choose from which agent to remove the corresponding grid point i from its active domain,
the distance in euclidean space between the position of the center of the grid point i and the
current positions of the mobile-sensors αρ and ακ needs to be computed. Equation 5-3 shows
how to compute the euclidean distance between the position of the center of the grid point i
and the current position of the mobile-sensor ακ.

eiκ =
√

(xi − xκ)2 + (yi − yκ)2 (5-3)

Finally, based on the distance of both agents, the one that is further away from the grid
point will have to remove the corresponding grid point from its active domain. In the case
that the distances of both mobile-sensors are equal, the mobile-sensor with the higher sum of
probabilities in its active domain will have to remove the grid point from its active domain.
Equation 5-4 shows the updated domain of agent ακ after removing the grid point i from its
active domain.

D′Aκ = DAκ/x̄i (5-4)

This procedure is repeated for every grid point in the share domain DSκρ .

Eliminate all the edges

The MST approach returns a sub-set of edges that are utilized for reducing the active domains
of the mobile-sensors. When more than one edges need to be eliminated, an extra step is
required. This extra step is to update the remaining edges in case they have the same grid

Master of Science Thesis Kyriakos Demetriou

56 DPOP extension

point with the grid point that has just been removed from the active domain of the mobile-
sensor. In more detail, when an agent ακ removes a grid point from its active domain, it
checks whether any other edge that includes itself has the blocked grid points x̄i within its
share domain. If this is the case, the agent ακ updates the share domain using Equation 5-5

D′Sκρ = DSκρ/x̄i (5-5)

This process is repeated for every grid point that has been blocked. By applying this procedure
for every grid point, it ensures that a grid point will not be removed from the active domain
of two separate agents. The edge elimination procedure ends when all of the edges that have
been rejected from the MST approach, have been used for blocking the grid points from the
active domains of the agents.
The MST approach and the edge elimination procedure will be used as an extension of the
DPOP. The DPOP along with this extension is known as MST-DPOP.

5-5 MST-DPOP

The DPOP solves the area surveillance problem in a decentralized manner and it consists of
three phases. The MST-DPOP is an extension of DPOP and therefore it inherits these three
phases. However, the MST-DPOP requires an extra phase for defining the edges that have
to be eliminated from the DCOP. More precisely, after the pseudo-tree has been constructed
and before applying the utility propagation procedure, MST-DPOP has to follow the edge
elimination procedure explained in the previous sub-section.
To perform the edge elimination procedure in a decentralized manner, the agents first have to
propagate edge-detail messages from the leaves to the root and then edge-reduction messages
from the root to the leaves.
An edge-detail message is sent by the agent to its parent and it consists of the following:

Medκ := {Eκ,WDSκ , DSκ ,WAκ , dκ}.

More details regarding the information that is included in the edge-detail message is given
below.

• Eκ: The edges that the agent ακ has. For example, if agent α3 has an edge with agent
α1 and agent α2 then E3 = {(1, 3), (2, 3)}.

• WDSκ : The weight for every edge of agent ακ. For example, WDS3 = {w1,3 = 10,
w2,3 = 12}.

• DSκ : The share domain for every edge of agent ακ. For example, DS3 = {DS13 , DS23}.

• WAκ : The sum of probabilities of the active domains of the agents that agent κ share
a utility constraint. For example, WA3 = {wA3 = 20, wA2 = 12, wA1 = 22} where
wA3 =

∑
x̄i∈DA3

P (x̄i).

• dκ: The current position of agent ακ, dκ = (xκ, yκ) .

Kyriakos Demetriou Master of Science Thesis

5-5 MST-DPOP 57

An agent sends its edge-detail message to its parent if it has received all of the edge-detail
messages from its children. When an agent receives an edge-detail message from its child c1,
it combines the information within the message with its own edge-detail message,

Medκ := {Eκ ∪ Ec1 ,WDSκ ∪WDSc1
, DSκ ∪DSc1

,WAκ ∪WAc1
, [dκ, dc1]}.

If an agent has several children, it does this for all children. Furthermore, when the root
has received every edge-detail message from its children, it first combines all the edge-detail
messages together, Medr , and then it applies the MST algorithm and the edge elimination
procedure. The root, using the information that is included in the edge-detail message (Medr)
starts by applying the MST approach. Specifically, using the Er, theWDSr and the Kruskal’s
algorithm, the root defines the edges that have to be removed. To be more specific, using the
Kruskal’s algorithm it creates the new set C and it stores the edges that have to be removed
in this set. That is, initially the tree consists of just the node of the root. Then, it iteratively
finds the edge with the maximum weight and if it does not create any cycle it adds it to the
tree. Otherwise it adds the edge to the set C.
Furthermore, using the set C, the current positions of the agents in its edge-detail message,
the share domains DSr , and the edge elimination procedure, the root is able to define whether
an agent has to remove grid points from its active domain. In this phase, the root creates for
every agent in the pseudo-tree a set DBPκ that consists of the grid points that the agent ακ
has to block from its active domain. To do so, it starts from the first edge that is included in
the set C, for example (κ, ρ), where (κ, ρ) is the edge between agents ακ and αρ. For every
grid point x̄i that is included in the share domain of the edge (κ, ρ), the root agent follows
the edge elimination procedure explained before. Assuming that the agent ακ has the highest
distance, then the root will store this grid point to the set D′BPκ = DBPκ ∪ x̄i. In addition,
it will update the remaining edges as explained before. Then it will move to the next edge in
the set C. This process is repeated until every edge in the set C has been examined.
In the end, the root will have for every agent in the pseudo-tree, the grid points that they
have to block from their active domain. Hence, the root creates the reduction message Mµr

that consists of the following:

Mµr = {C, [DBP0 , DBP1 , ..., DBPN]}

where N is the total number of agents in the pseudo-tree. This message propagates from the
root to the leaves. When an agent ακ receives this message from its parent, it removes any
edge that is included in the set C. In addition, it checks the DBPκ and if is not empty, it
removes the grid points that are included in DBPκ from its active domain. After the agent
ακ is done, it sends the reduction message to its children. This procedure terminates when
the reduction message reaches the leaves.
The last step is to re-construct the pseudo-tree using the updated DCOP without the edges
that are included in the set C. To construct the pseudo-tree, the DFS algorithm is utilized
(Algorithm 1). Furthermore, the utility propagation phase and the value propagation phase
of DPOP will be utilized for defining the solution.

Master of Science Thesis Kyriakos Demetriou

58 DPOP extension

5-6 MST-DPOP benefits

One of DPOP’s main limitation is the size of the largest message, where it will be space
exponential in the induced width of the pseudo-tree [30, 20]. The size of every utility mes-
sage depends on the size of the separator of the corresponding agent. Hence, by reducing
the size of the separator, the size of the largest message will be decreased too. As explained
in this chapter, applying the MST to the DPOP can result in reducing the separator of the
agents. Consequently, by extending the DPOP using the MST algorithm, the area surveil-
lance problem can benefits the following: The MST-DPOP can bound the size of the largest
message. In addition, since the size of the message is reduced, the MST-DPOP can reduce
the required computation for constructing the utility message. However, due to the fact that
MST-DPOP ignores some of the utility constraints, it cannot guarantee that it can define the
optimal solution. Though, based on the edge-elimination technique and the MST approach,
MST-DPOP can provide an error bound on the solution. That is, a bound on the difference
between the solution and the global optimum. The proof of the three improvements can be
found below.

5-6-1 Proof of upper bound for the message size

In order to prove that the MST algorithm provides an upper bound to the message size, the
definition of the separator will be used. As previously explained, a separator of an agent
consists of the parent and pseudo-parents of the current agent and the parent and pseudo-
parents of its children. The MST algorithm will result in a spanning tree that does not
contain any cycles. Therefore, this will guarantee that during the construction of the pseudo-
tree arrangement, every agent will have at maximum one parent and no pseudo-parents. This
means that the separator of every agent will be at most 1. In other words the largest message
will be of dimension 1 and its size will be equal to the largest mobility domain.
Lets take for example the constraint graphs before and after the MST approach as shown in
Figure 5-1a. The pseudo-tree for both constraints graphs can be seen in Figure 5-3 where
the pseudo-tree on the left side represents the pseudo-tree for the constraint graph before
applying the MST approach and the one on the right shows the pseudo-tree for the constraint
graph after applying the MST approach.

Figure 5-3: Pseudo-tree arrangement before (left) and after (right) applying the MST approach.

Kyriakos Demetriou Master of Science Thesis

5-6 MST-DPOP benefits 59

In this example, the separator of agent α4 before applying the MST is s4 = {α0, α1, α2, α3}.
Therefore, the utility message that agent α3 has to send to agent α2 will be of dimension
4. After applying the MST approach, the separator of agent α4 is s4 = {α3} and the utility
message that agent α4 has to send to agent α3 will be of dimension 1.

5-6-2 Proof of improvement on computational complexity

Along with the upper bound on the message size, the MST-DPOP provides improvement
regarding the computational complexity. In order to derive the utility message, an agent has
to consider every value assignment of the local variables of the agents in its separator. Hence,
agent ακ has to compute the utility value for vκ combination of value assignments, where vκ
depends on the size of the domains of the agents in the separator of agent ακ and it can be
computed using Equation 4-16. The MST-DPOP reduces the size of the separator of every
agent to 1. Hence, an agent has to compute the utility value for every value assignment of
the local variables of its parent agent αp. Therefore, the MST-DPOP decreases the required
computations for deriving the values of the utility message. Specifically, an agent will have
to compute the utility value ηκ × ηp times.
Lets take for example the pseudo-trees shown in Figure 5-3. Before applying the MST ap-
proach on the pseudo-tree, the agent a4 has to compute the utility value η3 × η2 × η1 × η4
times to construct the utility message. On the other hand, after applying the MST approach,
the agent α4 has to compute the utility value η4×η3 to construct the utility message. Conse-
quently, in the MST-DPOP the agents require less computational time to compute the utility
messages and the utility propagation phase can be speed up.

5-6-3 Proof of error bound on the solution

The MST-DPOP reduces the size of the largest message by eliminating edges of the con-
straint graph. However, this procedure affects the optimal solution for the one-step-ahead
optimization. This happens because the MST-DPOP reduces the active domains of a sub-set
of agents. Consequently, the optimal solution might not be available after the edge elimi-
nation procedure. For example, by removing the grid points that are included in the share
domain DSκρ from the agents ακ and αρ will result in reducing the active domains of both
agents. Accordingly, based on the same idea, the MST approach can provide an error bound
on the solution of the MST-DPOP. More specific, it can provide an insight of the error of the
solution of the MST-DPOP compared to the optimal solution.

Definition of error bound on the solution

The weight for each edge indicates the cumulative probability that the corresponding share
domain has. Therefore, the error bound of the solution can be defined by using the total sum
of weights of the eliminated edges. This can be done since after defining the edges that have
to be removed, the edge elimination procedure blocks from the active domains of a sub-set of
agents the corresponding grid points that exist in the share domain of the eliminated edges.
Therefore, it could be that at the next discrete time step, the set of agents will not be able

Master of Science Thesis Kyriakos Demetriou

60 DPOP extension

to survey these blocked grid points.
For defining the error of the solution, first the total sum of weights Te of the eliminated edges
has to be determined. This can be done using Equation 5-6,

DEE =
⋃
k∈C

D′Sk

Te =
∑

x̄i∈DEE

P (x̄i) (5-6)

where C contains the set of the eliminated edges. Consequently, after applying the MST
approach on DPOP, the solution that it will return will be at most Te lower than the optimal
solution, Equation 5-7.

lb = G∗ − Te (5-7)

where G∗ is the total coverage after defining the optimal position for every mobile-sensor using
DPOP. This guarantees that the solution of the MST-DPOP will be within the following range

lb ≤ G ≤ G∗ (5-8)

with G the total coverage using MST-DPOP.
Therefore, using the total sum of the eliminated edges, an insight of the error bound of the
MST-DPOP solution can be gained. More specific, using the MST-DPOP for defining the
optimum position for every mobile-sensor, and by defining the total coverage, the error bound
of the solution can be defined using Equation 5-9.

QG = Te
G+ Te

× 100% (5-9)

This percentage indicates that the sub-optimum solution of the MST-DPOP is at maximum
QG% lower than the optimal solution. In case that the Te is equal to zero, then it implies that
the MST has removed the edges with cumulative probability equals to zero, and the solution
of the MST-DPOP will be the optimal solution. However, since the quality bound depends
on the grid points that have been blocked from the active domains, it can get any value. If
the mobile-sensors are close to each other and the area is still uncovered, the error bound will
have a high estimation of error. On the contrary, when the mobile-sensors are close to each
other and the area has already been covered, the error bound will have a low estimation of
error. Hence, depending on the formation of the mobile-sensors, and the probability value of
the surrounding grid points, the estimation of the error varies.

5-7 Conclusion

This chapter introduced an extension of DPOP where using the MST algorithm and the
edge elimination procedure it can successfully decrease the size of the largest message. More
specifically, it can set an upper bounds on the dimension of the utility messages since after
applying the MST approach the induced width of the resulting pseudo-tree is equal to 1.
Furthermore, using the edge elimination procedure, the MST-DPOP can ensure that two

Kyriakos Demetriou Master of Science Thesis

5-7 Conclusion 61

mobile-sensors will not share grid points after removing the utility constraint between them.
However, given the fact that the MST-DPOP reduces the active domains of the agents, the
MST-DPOP cannot guarantee to find the global optimum. Based on the properties of the
edge elimination procedure, an error bound of the MST-DPOP solution can be defined. The
error bound can be defined using the sum of the gird points that have been blocked from the
active domains of the mobile-sensors during the edge elimination procedure. Based on the
sum of the blocked grid points, the error of the sub-optimum solution with respect to the
optimal solution is guaranteed to be at maximum equal to this sum.
To conclude, the MST-DPOP is an extension of the DPOP solver, where it can be utilized
whenever the induced width of the pseudo-tree is high. Since the MST-DPOP provides upper
bounds on the utility messages, it leads to avoid exchanging exponential size of utility messages
and it overcomes the high memory requirements of the DPOP. Finally, despite the fact that
the MST-DPOP cannot provide the optimal solution anymore, it can define solutions with a
small error compared to the optimal solution. In order to further study the performance of
this extension, a comparison between the MST-DPOP and the DPOP will be conducted in
the next chapter.

Master of Science Thesis Kyriakos Demetriou

62 DPOP extension

Kyriakos Demetriou Master of Science Thesis

Chapter 6

Results

In the previous chapters, the area surveillance problem has been formulated as a Distributed
Constraint Optimization Problem (DCOP). Based on the available type of solvers and the
solver requirements, the Distributed Pseudo-tree Optimization Problem (DPOP) was selected
to be employed for solving the DCOP. One of the DPOP disadvantages is that the largest
utility message that the agents have to exchange is space exponential in the induced width of
the pseudo-tree. Therefore, the higher the induced-width of the pseudo-tree is, the higher the
memory requirement for the agents is. This limitation violates the algorithm requirement,
that is, to be scalable with respect to the number of agents, since the agents will not be
able to construct the utility messages due to the limited amount of storage that they have.
To overcome this limitation of the DPOP solver, a new extension for DPOP was introduced
in Chapter 5. This new solver is called MST-DPOP and it aims to reduce the size of the
largest message by removing some of the utility constraints of the DCOP. Specifically, the
MST-DPOP overcomes this limitation by making use of the Maximum Spanning Tree (MST)
algorithm and the edge elimination procedure. The MST-DPOP is able to define the optimum
solution whenever the induced width of the pseudo-tree is equal to 1. However, when the
induced width of the pseudo-tree is higher than 1, the MST-DPOP cannot guarantee the
optimal solution.
This chapter will present several experiments that performed to examine the performance of
the MST-DPOP compared to the DPOP. First, two sets of experiments will take place. The
first set of experiments will examine the quality of the solution of the MST-DPOP compared
to the DPOP where the solvers will have to compute the optimum solution for the next
discrete time step. The second set of experiments will analyze the number of discrete time
steps that both solvers require to solve small scale area surveillance problems where only one
pseudo-tree will occur. Furthermore, both solvers will be utilized for solving a larger scale
area surveillance problem in order to study how both solvers would perform in a real world
scenario. In the real world scenario it is possible to have several pseudo-trees at every discrete
time step. Therefore, it is interesting to test how MST-DPOP will perform in such a scenario.
Finally, a performance analysis regarding the scale of the problem will take place. In this
analysis, by varying the number of mobile-sensors, the number of discrete time steps that
both solvers require to solve the area surveillance problem will by studied.

Master of Science Thesis Kyriakos Demetriou

64 Results

6-1 Performance analysis of MST-DPOP

To evaluate the performance of the MST-DPOP compared to the DPOP, both solvers were
utilized for solving area surveillance problems of small scale with respect to the number of
mobile-sensors and the size of the area. Two series of experiments were performed, where in
the first experiment the quality of the solution of both solvers was compared. In the second
experiment the number of iterations that the solvers needed to solve the area surveillance
problem was studied.

Quality of the solution

In the first set of experiments, small scale area surveillance problems were generated, such
that they can be solved by the DPOP algorithm as well, in order to compare the DPOP
solution with the solution of the MST-DPOP. The solution of the DPOP was assumed to
be the global optimum in these experiments. In more detail, the mobile-sensors were placed
in a rectangular area of size 40 × 40 grid points such that the resulting pseudo-tree has the
maximum induced width. The mobile-sensors were placed such that they result in maximum
induced width in order to force the MST-DPOP to remove the maximum number of utility
constraints from the DCOP and analyze the quality of the solution of the MST-DPOP in a
worst case scenario. Furthermore, both solvers were applied in order to define the position of
every mobile-sensor for only the next discrete time step. Based on the position of every mobile-
sensor, the total sum of probabilities of the grid points that the mobile-sensors had within
their sensing range was computed. Finally, the percentage of the error between the DPOP
and the MST-DPOP solution was determined. This error indicates the difference between the
solution of the MST-DPOP and the optimum solution. In this set of experiments, along with
the percentage of the error of the MST-DPOP solution, the error bound that the MST-DPOP
estimates is presented.
These experiments were performed for different numbers of mobile-sensors, sensing range, and
mobility range. This was done to understand the behaviour of the MST-DPOP. The results
are shown in Figure 6-1.

From this set of experiments, there are three main conclusions that can be made. First,
as it can be observed from the Figure 6-1, the error bound that the MST-DPOP estimates
increases by increasing the mobility range. This is reasonable since by increasing the mobility
range, the active domain will contain more grid points. The bigger the active domain is, the
bigger the share domain will be and the more grid points will have to be blocked. Therefore,
based on the definition of the error bound, the MST-DPOP will have a higher estimation of
the error of the solution.
Second, the real error of the MST-DPOP solution increases by increasing the mobility range.
The real error increases since by increasing the mobility range, grid points that have not been
observed yet are blocked from the active domains of the mobile-sensors. Therefore, given
that some unobserved gird points were blocked, the MST-DPOP was not able to define the
combination of positions for the mobile-sensors such that they observe all the unobserved grid
points, and the real error of the solution increases too. However, the average real error of
the MST-DPOP solution in this set of experiments was within 2%. This shows that during
the edge elimination procedure, the most appropriate grid points were selected to be blocked.

Kyriakos Demetriou Master of Science Thesis

6-1 Performance analysis of MST-DPOP 65

Figure 6-1: Quality experiments: Comparison between the error bound and the real error of
the MST-DPOP solution compared to the DPOP solution. The error bound shows the estimate
of the error of the MST-DPOP solution. The error shows the true error of the solution of the
MST-DPOP. These results are the average of 100 experiments where they differ on the mobility
and sensing range.

Master of Science Thesis Kyriakos Demetriou

66 Results

Hence, the MST-DPOP, using the reduced active domains, was still able to define the position
of the mobile-sensors that resulted to solutions close to the optimum.
Finally, based on these experiments, the error bound of the MST-DPOP did not provide
accurate estimates for the real error. The inaccurate estimation of the MST-DPOP was based
on that the mobile-sensors were placed in the area such that they resulted in maximum induced
width. Therefore, during the edge elimination procedure several unobserved grid points with
probability value higher than zero had to be removed from the active domains of the mobile-
sensors. Based on the definition of the error bound, this resulted in a high error estimation.
However, the remaining grid points within the active domains of the mobile-sensors had higher
or equal probability values than the ones that were removed, and therefore, the mobile-sensors
were able to compute a sub-optimum solution with a low real error. Consequently, the error
bound cannot be used for computing an accurate error bound. It can be utilized to just get an
insight of what the maximum error that the solution of the MST-DPOP will have in the worst
case scenario. In addition, the error bound can be utilized to define whether the solution of
the MST-DPOP is the optimal one. Specifically, whenever the error bound is equal to 0%,
the MST-DPOP can ensure that it will return the global optimum solution.

Number of discrete time steps

The second set of experiments was performed for comparing the number of discrete time steps
that the DPOP and the MST-DPOP solvers require. Specifically, this set of experiments
tested whether the lack of optimum solution of the MST-DPOP affects the required number
of discrete time steps to solve the area surveillance problem. In this set of experiments, four
mobile-sensors were placed in areas of different sizes. The goal of the solvers was to scan
every grid point in the environment. Moreover, in this set of experiments, the sensing range
and the mobility range of the mobile-sensors were selected such that at every discrete time
step only one pseudo-tree exist with minimum induced width equal to 2 in order to force
the MST-DPOP to remove at least 1 utility constraint from the DCOP. By doing this, the
MST-DPOP will not be able to guarantee the optimal solution at every discrete time step.
The results from this set of experiments can be seen in Table 6-1, where the difference in
discrete time steps is the average of 100 different initial positions of the mobile-sensors.

Table 6-1: Average difference of discrete time steps that the MST-DPOP requires to solve the
area surveillance compared to the DPOP solver.

Area Sensing range Mobility range Difference in discrete
time steps (average) Variance

10× 10 3 1 0.02 0.02
15× 15 5 1 0.05 0.048
20× 20 6 2 0.34 1.01
24× 24 8 3 1.06 2.68
30× 30 10 3 1.13 3.53

It is clear from the Table 6-1 that by increasing the mobility and sensing range, the average
difference increases as well. Based on the previous experiments, the larger the mobility
and sensing range is, the higher the percentage error of the MST-DPOP solution. Hence,

Kyriakos Demetriou Master of Science Thesis

6-2 Area surveillance problem 67

this implies that the MST-DPOP resulted in sub-optimum solutions at certain discrete time
steps, and at the end it required more discrete time steps to solve the problem than the DPOP
solver. However, for these experiments, the difference of discrete time steps on average does
not surpass 2. This proves that the lack of optimum solution of the MST-DPOP can increase
the required number of discrete time steps, however, the difference on average was kept low.
In the previous set of experiments, the performance of the MST-DPOP solver was compared
with the DPOP solver in area surveillance problems where only one pseudo-tree existed. In
real world area surveillance problems, this is not the case, since the area can be larger and
therefore several constraint graphs may occur. To investigate the performance of the MST-
DPOP in a real world area surveillance problem, the mobile-sensors will be employed to
survey a larger area, where at every discrete time step several pseudo-trees will occur.

6-2 Area surveillance problem

To study the performance of the MST-DPOP in a real world scenario, both solvers were
utilized for solving a larger scale area surveillance problem. In this experiment, six mobile-
sensors were utilized for surveying a rectangular area with a size of 50×50 grid points. Their
mobility range was set equal to 1 and their sensing range was equivalent to 4. The mobility
and sensing range were selected such that at every discrete time step multiple constraint
graphs could arise. In this case, every constraint graph represents a sub-problem that is
solve independently. Moreover, it is important to mention that the MST-DPOP makes use of
the MST algorithm and the edge elimination procedure whenever the induced width of the
pseudo-tree is higher than one. Therefore, whenever the induced width of the pseudo-tree is
equal to 1, the MST-DPOP is identical with the DPOP solver and it can define the optimum
solution.
From this experiment, the percentage of the total coverage at every discrete time step was
defined. The percentage of coverage defines the remaining sum of probabilities of the grid
points that the mobile-sensors still had to survey. Figure 6-2 depicts the percentage of coverage
of the mobile-sensors at every discrete time step.

Figure 6-2: The percentage of coverage of the total area at every discrete time step. The blue
colour represents the total coverage for the DPOP and the orange colour corresponds to the total
coverage for the MST-DPOP.

Master of Science Thesis Kyriakos Demetriou

68 Results

As it can be seen from Figure 6-2, both solvers followed the same trend. However, the MST-
DPOP required more discrete time steps to solve the area surveillance problem. To be more
specific, the DPOP required in total 84 discrete time steps, where the MST-DPOP needed
85 discrete time steps. Based on the previous set of experiments, the average error of the
solution of the MST-DPOP using a mobility range of 1 was found to be on average less than
0.12%. This explains the small difference in the number of discrete time steps that the solvers
required, since even when the MST-DPOP had to remove the maximum number of utility
constraints, the solution of the MST-DPOP would be 0.12% lower than the optimum one. In
this experiment, the MST-DPOP was not able to define the optimum solution for the first
time at the 69th discrete time step. Figure 6-3 shows the percentage of coverage for both
solvers after the 69th discrete time step. In this figure, it is more clear that the MST-DPOP
could not define the optimum solution and therefore at the end required more discrete time
steps.

Figure 6-3: The percentage of coverage for both MST-DPOP and DPOP solver after the 69th
discrete time step. The blue colour represents the percentage of coverage for the DPOP and the
orange colour corresponds to the percentage of coverage for the MST-DPOP.

To understand why the MST-DPOP does not return the optimum solution, the size of the
messages that both solvers exchanged and the number of edges that the MST-DPOP removed
from the DCOP need to be studied. Figure 6-4 shows the maximum message size that the
mobile-sensors exchanged for both solvers and Figure 6-5 presents the number of edges that
the MST-DPOP removed from the DCOP. It is important to mention that the computer that
the experiment was performed requires 8 bytes to store a single value, plus 104 bytes for
storing the values in a table. As it can be understood from Figure 6-4, after the 59th discrete
time step, the mobile-sensors were close to each other and they resulted in a pseudo-tree with
an induced width of 3. Hence, based on Figure 6-5, the MST-DPOP had to remove more
than 3 utility constraints from the DCOP. Due to the fact that until the 69th discrete time
step the mobile-sensors surveyed the 98% of the grid points, only a few grid points remained
uncovered. Therefore, by following the edge elimination procedure for removing the grid
points from the active domains of the mobile-sensors, the uncovered grid points were removed
from the active domains of the mobile-sensors and the MST-DPOP solver could not define the
combination of positions that result to the maximum coverage. On the contrary, in the first 7
discrete time steps, the induced width of the pseudo-tree was equal to 5. However, since only
the 7% of the grid points were covered, the most of the grid points in the active domain of the

Kyriakos Demetriou Master of Science Thesis

6-2 Area surveillance problem 69

mobile-sensors were uncovered and the MST-DPOP was able to define the position for the
mobile-sensors that result to the optimal solution. It is important to mention that at every
discrete time step there are multiple solution that might result to the maximum coverage.
Therefore, it might be that the DPOP and MST-DPOP compute a different combination of
positions that result to the maximum coverage. Finally, from Figure 6-5 it is obvious that
between the 12th and the 36th discrete time step the MST-DPOP did not have to remove any
utility constraint from the DCOP, and therefore it was able to define the optimum position.

Figure 6-4: The maximum message size that the mobile-sensors exchanged at every discrete
time step. The blue colour represents the maximum message size for the DPOP and the orange
colour corresponds to the maximum message size for the MST-DPOP.

Figure 6-5: The number of edges that the MST-DPOP had to remove from the DCOP at every
discrete time step so the resulting pseudo-tree had an induced-width of 1. The maximum number
of edges that the MST-DPOP could remove is 10 since 6 mobile-sensors are utilized for this
experiment.

For a better understanding of why the MST-DPOP returns a sub-optimum solution when
the number of unobserved grid points is low, lets study the simple area surveillance example
depicted in Figure 6-6. In this example, the 4 mobile-sensors are assumed to have a sensing

Master of Science Thesis Kyriakos Demetriou

70 Results

range equal to 1 and a mobility range equal to 2. Moreover, the green grid points are the
unobserved grid points and the blue grid points are the observed ones.

Figure 6-6: A simple area surveillance example where the dots represent the mobile-sensors,
the green grid points represent the unobserved grid points and the blue grid points represent the
observed ones. The mobile-sensors have a sensing range equal to 1 and a mobility range equal
to 2. This will result in an instant area surveillance problem where every mobile-sensor shares a
utility constraint with every other mobile-sensor.

Based on their active domains, every mobile-sensor shares a utility constraint with every
other mobile-sensor. Hence, the MST-DPOP will have to remove 3 utility constraints from
the DCOP. After following the MST algorithm and the edge elimination procedure, the α3 will
have to block from its active domain all of the 4 unobserved grid points. This means that the
mobile-sensor α3 will not get any utility gain if it has within its sensing range the unobserved
grid points. Therefore, the 4 mobile-sensors will not be able to choose the positions in their
mobility domains that result in covering all the 4 unobserved grid points and the MST-DPOP
will compute a sub-optimum solution. More specifically, the solution to this problem for the
next discrete time step after applying the MST-DPOP solver can be seen in Figure 6-7b. The
optimal solution for this problem (using the DPOP solver) is shown in Figure 6-7a.

(a) Solution using the DPOP solver. (b) Solution using the MST-DPOP solver.

Figure 6-7: The solution for the next discrete time step of the area surveillance problem de-
picted in Figure 6-6. The dots represent the mobile-sensors, the green grid points represent the
unobserved grid points and the blue grid points represent the observed ones. On the left side is
the solution of the problem using the DPOP solver and on the right side is the solution using the
MST-DPOP.

Kyriakos Demetriou Master of Science Thesis

6-3 Scalability analysis 71

From Figure 6-7 it is obvious that the MST-DPOP could not define the position for every
mobile-sensor such that they resulted in maximum area coverage.
To conclude, even in a larger scale problem, the MST-DPOP was able to solve the area
surveillance problem by using just 1 discrete time step more than the DPOP. Moreover, the
MST-DPOP is more likely to result in a sub-optimum solution when the number of unobserved
grid points is low and the mobile-sensors are close to each other. Finally, from this experiment,
it can be seen in Figure 6-4 that the MST-DPOP managed to bound the size of the largest
message and at the end it reduced the size of the largest message by several times. This
indicates that the MST-DPOP solver overcomes the high memory requirements of the DPOP
solver. To investigate how this improvement can affect the scalability of the MST-DPOP, a
scalability analysis will take place below.

6-3 Scalability analysis

An important aspect of performance analysis of a decentralized algorithm is the study of how
the algorithm’s performance varies with the scale of the problem. In the area surveillance
problem, the scale of the problem depends on the number of mobile-sensors. More specifically,
by varying the number of agents, the DPOP and the MST-DPOP were employed to solve
the area surveillance problem. In this analysis, the number of discrete time steps that every
solver required to solve the problem was checked. This analysis took place in an area of a
rectangular shape of dimension 50× 50 grid points. Initially, all the mobile-sensors started in
the middle of the area and they formed a circle. Moreover, the sensing range was set to be
equal to 4, and the mobility range of the mobile-sensors was set to be 1. Finally, this analysis
was performed on a computer with 8Gb memory. Therefore, if the message size grows larger
than 8Gb the solver was considered unable to execute. The results from this analysis can be
seen in Figure 6-8.

Figure 6-8: Scalability analysis for MST-DPOP and DPOP solvers. This analysis shows the
number of discrete time steps that both solvers required to solve the area surveillance problem,
based on the number of mobile-sensors (agents) that were utilized. The DPOP was not able to
execute with more than 9 mobile-sensors due to the fact that the size of the largest message was
larger than the available memory.

Master of Science Thesis Kyriakos Demetriou

72 Results

From the scalability analysis, it is noticeable that by increasing the number of mobile-sensors,
the MST-DPOP and the DPOP solvers required less number of discrete time steps. Further-
more, as it can be seen in Figure 6-8, the DPOP solver was not able to solve the area
surveillance problem with more than 9 mobile-sensors. This is due to the fact that the largest
utility message that the agents had to construct was larger than 8Gb and therefore the com-
puter could not construct the utility message. This makes the DPOP unable to execute the
utility propagation procedure and at the end the DPOP failed to solve the area surveillance
problem. On the other hand, the MST-DPOP was able to solve the problem with more than
30 mobile-sensors. The MST-DPOP bounds the size of the largest message and it does not
require large amount of memory to construct the utility messages. Consequently, the scal-
ability analysis proves that the MST-DPOP does not have any restriction on the number
of mobile-sensors that can be used since its largest utility message does not depend on the
number of the mobile-sensors.

6-4 Discussion

In this chapter, several experiments were performed to study the performance of the MST-
DPOP solver compared to the DPOP solver. Based on the experiments, the solution of the
MST-DPOP solver, whenever the induced width of the pseudo-tree was higher than 1, was
found to have on average an error of less than 2% from the optimum solution. In addition, it
was found that despite the fact that the MST-DPOP solver cannot guarantee the optimum
solution, it requires on average 1 discrete time step more than the DPOP.
Furthermore, based on the real world area surveillance problem, the MST-DPOP was found
to perform as good as the DPOP when the number of unobserved grid points was higher
than the observed ones. This happened due to the fact that the remaining grid points in the
active domains of the mobile-sensors after following the edge elimination procedure were still
unobserved, and therefore, the MST-DPOP could compute to position of the mobile-sensors
that result to the maximum coverage. However, when the number of the unobserved grid
points was low and the MST-DPOP had to remove utility constraints from the problem, it
was more likely for the MST-DPOP solver to compute a sub-optimum solution. This mainly
happened since the MST-DPOP blocked from the active domains of the mobile-sensors the
remaining unobserved grid points and it was not able to define the combination of positions
that resulted in maximum coverage. This leads to the conclusion that during the first dis-
crete time steps, where every grid point has not been observed, the MST-DPOP should be
preferred over the DPOP in order to avoid exchanging exponential size of utility messages.
On the other hand, when the number of unobserved grid points is less than 10% of the total
number of grid points, the DPOP solver should be adopted to avoid increasing the required
discrete time steps for solving the area surveillance problem.
Finally, based on the scalability analysis, the improvement on the memory requirements of
the MST-DPOP solver makes the MST-DPOP solver scalable with respect to the number of
mobile-sensors that can be used for solving the area surveillance problem.
To conclude, based on the experiments that took place in this chapter and given the improve-
ments that the MST-DPOP offers over the DPOP, the MST-DPOP solver can be considered
as more appropriate for solving the area surveillance problem than the DPOP solver. More-
over, the MST-DPOP solver was found to satisfy all of the solver’s requirement, since even
when it was not able to define the optimal solution, the average error of its solution was less

Kyriakos Demetriou Master of Science Thesis

6-4 Discussion 73

than 5%. However, the more ideal scenario for solving the area surveillance problem in an
optimal manner would be to use the MST-DPOP solver as soon as the percentage of coverage
is less than 90%, and then to employ the DPOP solver for surveying the final 10% of the area.

Master of Science Thesis Kyriakos Demetriou

74 Results

Kyriakos Demetriou Master of Science Thesis

Chapter 7

Conclusions and future work

In this thesis, the problem of the area surveillance was addressed. The area surveillance is
assumed to take place in an unobstructed area which is discretized into multiple grid points.
Moreover, mobile-sensors were utilized for surveying the area. Mobile-sensors are robots that
are equipped with onboard computers and cameras, so they can perceive their surrounding
environment. In order to solve the area surveillance problem, several mobile-sensors have to
coordinate their actions and survey every unobserved grid point of the area under surveil-
lance. This problem is a constraint optimization problem, where its solution is a waypoint for
every mobile-sensor. Moreover, due to the restricted computation resources of the onboard
computers, and due to the fact that the algorithm should be scalable with respect to the
number of mobile-sensors, a centralized approach could not be used. For these reasons, in
the thesis, a decentralized algorithm was designed such that it can run online and on the
onboard computers, and it can compute waypoints for every mobile-sensor until they manage
to survey every unobserved grid point of the environment.

7-1 Conclusions

As a first step, a coordination model was needed. The coordination model determines the
relations between the different mobile-sensors and it defines whether two mobile-sensors will
have to communicate for computing their waypoints for the next discrete time step. One
of the most important formalism for coordination that can be found in the literature is the
Distributed Constraint Optimization Problem (DCOP). The DCOP has the ability to define
the problem by utilizing the constraints between the agents. The solution of a DCOP is
a value assignment for every variable in the problem such that the aggregate utility of the
utility constraints is maximized. Based on the available solvers of DCOPs, and given the
fact that DCOP can be employed for multi-agent systems, the area surveillance problem was
formulated as DCOP.
The next step was to choose a solver that best fits the requirements for the area surveillance

Master of Science Thesis Kyriakos Demetriou

76 Conclusions and future work

problem. In more details, the solver should be able to solve the problem in a decentralized
manner. Moreover, the solver should be able to result at every discrete time step in solutions
that their error is less than 5% from the optimum solution. Finally, the solver should be
scalable with respect to the number of mobile-sensors. Based on the available type of solvers,
the complete inference based was found to best fit the requirements.
One of the most well known complete inference based solvers is the Distributed Pseudo-tree
Optimization Procedure (DPOP) [20]. The DPOP is able to solve a DCOP in a decentralized
manner using a linear number of massages with respect to the number of agents. However,
its main disadvantage lies on the memory requirements of the agents. More precisely, during
the utility propagation phase, the largest message that the agents have to exchange is space
exponential in the induced width of the pseudo-tree. Consequently, if the induced width of the
pseudo-tree is high, the agents require large amount of memory for constructing and sending
the utility messages to the agents that share a utility constraint. Given the fact that the
agents in the area surveillance problem are mobile-sensors with a limited available of storage,
they might be unable to construct the utility messages. This means that the agents will be
unable to exchange utility messages and the DPOP solver will fail to solve the area surveil-
lance problem. Consequently, this limit the number of mobile-sensors that can be utilized for
solving the area surveillance problem. To overcome this limitation, this thesis introduced an
extension for the DPOP. The new solver is called MST-DPOP.

The MST-DPOP

The MST-DPOP intends to bound the size of the largest message by removing the least
important utility constraints from the DCOP. To do so, the MST-DPOP makes use of the
Maximum Spanning Tree (MST) algorithm, and a novel procedure called edge elimination
procedure. First, the MST algorithm defines the utility constraints from the constraint graph
that need to be removed such that the resulting pseudo-tree will have an induced width of 1. In
addition, the edge elimination procedure, using the utility constraints that the MST discarded
from the DCOP, blocks from the active domain of the mobile-sensors the corresponding grid
points that belong to the utility constraints. By removing these grid points from the active
domain of the mobile-sensors, the MST-DPOP ensures that the mobile-sensors will not choose
the potential positions that drive them towards the same region of the area. The MST-DPOP
overcomes the memory requirement of the DPOP solver. However, the MST algorithm along
with the edge elimination procedure makes the MST-DPOP an incomplete solver due to the
fact that whenever the induced width of the pseudo-tree is larger than 1 the MST-DPOP
ignores some utility constraints and at the end it cannot guarantee the optimal solution.
To investigate the performance of the MST-DPOP and the DPOP solver, several experiments
were performed. The first set of experiments tried to examine the quality of the solution of
the MST-DPOP compared to the optimal solution. The optimal solution is the solution of the
DPOP solver. In this set of experiments, both solvers had to define the position of the mobile-
sensors that maximizes the total coverage based on the constraints. Moreover, during this set
of experiments the mobility and the sensing range was varied to check whether the quality of
the solution is affected. It was found that by increasing the mobility and the sensing range,
the percentage of the error was increasing too. This is due to the fact that by increasing these
ranges, the active domain increases too. Therefore, during the edge elimination procedure

Kyriakos Demetriou Master of Science Thesis

7-1 Conclusions 77

more grid points had to be removed from the active domains of the mobile-sensors and the
error from the optimum position was higher. Nonetheless, from this set of experiments, it
was found that the MST-DPOP was able to define a solution with an average error of less
than 2%. Consequently, the MST-DPOP solver, using the MST algorithm and the edge
elimination procedure, was able to define the most appropriate grid points to remove from
the active domains of the mobile-sensors such that it reduced the size of the largest message
and at the same time it kept the error of the solution low. This set of experiments proved also
that the MST-DPOP satisfied the solver’s requirement that the solution should be within 5%
from the optimal solution.
Furthermore, the next set of experiments aimed to prove that due to the low error of the
solution of the MST-DPOP solver, the number of discrete time steps that the MST-DPOP
will require to solve the area surveillance problem will be very close to that of the DPOP
solver. After running several set of experiments, and by comparing the number of discrete
time steps that both solvers require, it was found that the MST-DPOP required on average
1 discrete time step more than the DPOP solver to observe every unobserved grid point.
Consequently, this set of experiments proved that by keeping the error of the solution low,
the required number of discrete time steps can be kept low as well.
In addition, the performance of the MST-DPOP solver against the DPOP solver was analyzed
in a larger scale area surveillance problem. This was done to investigate the performance of
MST-DPOP in a real world scenario. In the case of a real world scenario, it is possible
that multiple constraints graph could arise where every constraint graph should solve the
problem independently. Based on the results from this experiment, whenever the MST-
DPOP had to remove utility constraints from the DCOP and the number of unobserved
grid points was still high, the MST-DPOP was able to define the optimal solution. This
mainly happened since even by removing several grid points from the active domain of the
mobile-sensors, the remaining grid points were still unobserved and the solver was able to
define a position for every mobile-sensors such that they achieved maximum coverage. On
the contrary, whenever the MST-DPOP had to remove utility constraints from the DCOP and
the number of unobserved grid points was low, the MST-DPOP could not define the optimal
position. This happened because during the edge elimination procedure, the uncovered grid
points were removed from the active domains of the mobile-sensors, and the MST-DPOP was
not able to define a combination of positions such that the mobile sensors achieved maximum
coverage.
Finally, based on the scalability analysis, it was proved that the new extension was able to
overcome the exponential memory requirements that the DPOP has. The MST-DPOP was
able to solve the area surveillance problem using more than 30 mobile-sensors compared to
the DPOP that could not solve the problem with more than 9 due to the limited available
memory of the computer (8Gb). Hence, based on this set of experiments, the MST-DPOP
solver satisfies the scalability requirement of the MST-DPOP.
To conclude, the MST-DPOP satisfies all of the three requirements of the solver since in
the worst case scenario, the MST-DPOP was able to compute a solution with an error less
than 5%. Based on the set of experiments that performed in the last chapter, the most
ideal scenario for solving the area surveillance problem in an optimal manner, it is to employ
the MST-DPOP initially, where the unobserved grid points are more than the observed grid
points, and then to employ the DPOP solver for surveying the last part of the area under
surveillance. This will lead to avoid exchanging exponential size of messages in the initial
stage, where the mobile-sensors start in the middle of the area under surveillance, and it will

Master of Science Thesis Kyriakos Demetriou

78 Conclusions and future work

lead to minimize the number of required discrete time steps at the end, where the MST-DPOP
was not able to define the optimal solution. However, in the case that the induced width of
the pseudo-tree is high and will result in messages higher than the available storage of the
mobile-sensors, the MST-DPOP should be employed.

7-2 Future work

Based on the conclusions and the fact that a one-step-ahead optimization was used to solve
the problem, it can be concluded that there is still room of improvement for this solver.
First, in the MST-DPOP, for defining the utility constraints that have to be removed from the
DCOP, the MST algorithm was employed. The MST algorithm is able to define the spanning
tree that results to the maximum sum of weights and it has the lowest induced width. The
performance of the MST-DPOP can be improved by employing a different approach for defin-
ing the utility constraints that have to be removed. More specific, instead of using the MST
algorithm, a new algorithm can be designed which will be able to define the minimum number
of utility constraints that can be removed from the DCOP such that the mobile-sensors will
not run out of memory during the construction of the utility messages. This is challenging,
since it is not directly clear how a utility constraint can reduce the induced width of the
resulting pseudo-tree. Moreover, it is also challenging to define what is the minimum number
of utility constraints that have to be removed from the DCOP such that the mobile-sensors
will be able to construct the utility messages.
Furthermore, using a one-step-ahead optimization allows the mobile-sensors to run the re-
quired computations on their onboard computers. However, during the optimization, the
mobile-sensors consider the impact that only their next action will have to the problem. By
increasing the optimization horizon can decrease the required number of discrete time steps
to solve the problem. This will increase the required computational power, where it will also
increase the utility constraints between the mobile-sensors.

Kyriakos Demetriou Master of Science Thesis

Bibliography

[1] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “Adopt: asynchronous distributed
constraint optimization with quality guarantees,” Artificial Intelligence, vol. 161, no. 1,
pp. 149 – 180, 2005.

[2] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings, “Bounded approximate decen-
tralised coordination via the max-sum algorithm,” Artificial Intelligence, vol. 175, no. 2,
pp. 730–759, 2011.

[3] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides, “A survey on sensor networks
from a multiagent perspective,” The Computer Journal, vol. 54, no. 3, pp. 455–470, 2011.

[4] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor networks,”
in IEEE International Conference on Robotics and Automation. Proceedings., vol. 1,
pp. 165–171, IEEE, 2004.

[5] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings, “Decentralised coordination
of mobile sensors using the max-sum algorithm.,” in IJCAI, vol. 9, pp. 299–304, 2009.

[6] S. H. Semnani and O. A. Basir, “Multi-target engagement in complex mobile surveillance
sensor networks,” Unmanned Systems, vol. 5, no. 01, pp. 31–43, 2017.

[7] R. Zivan, R. Glinton, and K. Sycara, “Distributed constraint optimization for large
teams of mobile sensing agents,” in Web Intelligence and Intelligent Agent Technologies.
IEEE/WIC/ACM International Joint Conferences, vol. 2, pp. 347–354, 2009.

[8] C. J. Carpenter, R. N. Lass, E. Sultanik, C. J. Dugan, G. Naik, P. J. Modi, J. B. Kopena,
D. N. Nguyen, and W. C. Regli, “Disaster evacuation support,” in Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems, p. 263,
ACM, 2007.

[9] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” International
journal of computer vision, vol. 38, no. 1, pp. 15–33, 2000.

Master of Science Thesis Kyriakos Demetriou

80 Bibliography

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 779–788, 2016.

[11] A. R. Leite, F. Enembreck, and J.-P. A. Barthes, “Distributed constraint optimization
problems: Review and perspectives,” Expert Systems with Applications, vol. 41, no. 11,
pp. 5139–5157, 2014.

[12] N. R. Jennings and S. Bussmann, “Agent-based control systems: Why are they suited
to engineering complex systems?,” IEEE control systems, vol. 23, no. 3, pp. 61–73, 2003.

[13] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.

[14] P. Scerri, R. Vincent, and R. Mailler, Coordination of large-scale multiagent systems.
Springer, 2006.

[15] W. Yeoh and M. Yokoo, “Distributed problem solving,” AI Magazine, vol. 33, no. 3,
p. 53, 2012.

[16] A. Farinelli, A. Rogers, and N. R. Jennings, “Agent-based decentralised coordination
for sensor networks using the max-sum algorithm,” Autonomous agents and multi-agent
systems, vol. 28, no. 3, pp. 337–380, 2014.

[17] S. H. Semnani and O. A. Basir, “Target to sensor allocation: A hierarchical dynamic
distributed constraint optimization approach,” Computer Communications, vol. 36, no. 9,
pp. 1024–1038, 2013.

[18] R. Junges and A. L. Bazzan, “Evaluating the performance of dcop algorithms in a real
world, dynamic problem,” in Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 2, pp. 599–606, 2008.

[19] F. Enembreck and J.-P. A. Barthès, “Distributed constraint optimization with mulbs:
A case study on collaborative meeting scheduling,” Journal of Network and Computer
Applications, vol. 35, no. 1, pp. 164–175, 2012.

[20] A. Petcu and B. Faltings, “A scalable method for multiagent constraint optimization,”
tech. rep., 2005.

[21] R. T. Maheswaran, J. P. Pearce, and M. Tambe, “Distributed algorithms for dcop: A
graphical-game-based approach,” in ISCA PDCS, 2004.

[22] T. Le, T. C. Son, E. Pontelli, and W. Yeoh, “Solving distributed constraint optimization
problems using logic programming,” Theory and Practice of Logic Programming, vol. 17,
no. 4, pp. 634–683, 2017.

[23] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,” AI magazine,
vol. 13, no. 1, pp. 32–32, 1992.

[24] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on information theory, vol. 47, no. 2, pp. 498–519, 2001.

Kyriakos Demetriou Master of Science Thesis

81

[25] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, and K. Sycara, “Distributed constraint
optimization for teams of mobile sensing agents,” Autonomous Agents and Multi-Agent
Systems, vol. 29, pp. 495–536, May 2015.

[26] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised coordination of
low-power embedded devices using the max-sum algorithm,” in Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-Volume 2,
pp. 639–646, 2008.

[27] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig, “Incremental dcop search algorithms
for solving dynamic dcop problems,” in IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 257–264, 2015.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[29] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent,” in Advances in Neural Information Processing Systems,
pp. 5330–5340, 2017.

[30] A. Petcu, A class of algorithms for distributed constraint optimization, vol. 194. Ios
Press, 2009.

[31] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing,
vol. 1, no. 2, pp. 146–160, 1972.

[32] W. Yeoh, A. Felner, and S. Koenig, “Bnb-adopt: An asynchronous branch-and-bound
dcop algorithm,” Journal of Artificial Intelligence Research, vol. 38, pp. 85–133, 2010.

[33] Z. Chen, Z. He, and C. He, “An improved dpop algorithm based on breadth first search
pseudo-tree for distributed constraint optimization,” Applied Intelligence, vol. 47, no. 3,
pp. 607–623, 2017.

[34] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg, “Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimization
problems in sensor networks,” Artificial Intelligence, vol. 161, no. 1, pp. 55 – 87, 2005.

[35] F. Fioretto, T. Le, W. Yeoh, E. Pontelli, and T. C. Son, “Improving dpop with
branch consistency for solving distributed constraint optimization problems,” in Interna-
tional Conference on Principles and Practice of Constraint Programming, pp. 307–323,
Springer, 2014.

[36] A. Kumar, A. Petcu, and B. Faltings, “H-dpop: Using hard constraints for search space
pruning in dcop.,” in AAAI, pp. 325–330, 2008.

[37] A. Petcu and B. Faltings, “Mb-dpop: A new memory-bounded algorithm for distributed
optimization.,” in IJCAI, pp. 1452–1457, 2007.

[38] R. J. Bayardo and D. P. Miranker, “On the space-time trade-off in solving constraint
satisfaction problems,” in International joint conference on artificial intelligence, vol. 14,
pp. 558–562, 1995.

Master of Science Thesis Kyriakos Demetriou

82 Bibliography

[39] I. Brito and P. Meseguer, “Improving dpop with function filtering,” in Proceedings of the
9th International Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pp. 141–148, 2010.

[40] A. Petcu and B. Faltings, “Odpop: An algorithm for open/distributed constraint opti-
mization,” in AAAI, vol. 6, pp. 703–708, 2006.

[41] A. Petcu and B. Faltings, “Approximations in distributed optimization,” in Interna-
tional Conference on Principles and Practice of Constraint Programming, pp. 802–806,
Springer, 2005.

[42] M. Vinyals, J. A. Rodriguez-Aguilar, and J. Cerquides, “Generalizing dpop: Action-gdl,
a new complete algorithm for dcops,” in Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 2, pp. 1239–1240, 2009.

[43] F. V. Jensen and F. Jensen, “Optimal junction trees,” in Uncertainty Proceedings,
pp. 360–366, Elsevier, 1994.

[44] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-
weight spanning trees,” ACM Transactions on Programming Languages and systems,
vol. 5, no. 1, pp. 66–77, 1983.

[45] S. Rai and S. Sharma, “Determining minimum spanning tree in an undirected weighted
graph,” in International Conference on Advances in Computer Engineering and Appli-
cations, pp. 637–642, IEEE, 2015.

[46] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman
problem,” Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48–50,
1956.

[47] R. C. Prim, “Shortest connection networks and some generalizations,” Bell system tech-
nical journal, vol. 36, no. 6, pp. 1389–1401, 1957.

Kyriakos Demetriou Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Area surveillance
	Problem formulation
	Environment model
	Sensing constraint
	Mobility constraint
	Interaction model
	Utility constraint
	One-step ahead optimization

	Thesis goal

	Distributed constraint optimization problem
	DCOP definition
	DCOP model
	DCOP outcome
	Representation

	Area surveillance as DCOP
	Dynamic DCOP
	Conclusion

	DCOP solvers
	Complete solvers
	Inference-based solvers
	Search-based solvers
	Comparison

	Incomplete solvers
	Incomplete inference-based solver
	Local search solvers
	Comparison

	Solver requirements
	Conclusion

	DPOP for area surveillance
	Pseudo-tree construction
	Utility propagation
	Utility message
	Utility message for area surveillance
	Incorporate the utility messages
	Utility message for parent
	End of utility propagation phase

	Value propagation
	Example of area surveillance problem
	Memory requirements
	Conclusion

	DPOP extension
	Available extensions of DPOP
	Insight of the new extension
	Maximum spanning tree
	Apply MST to the area surveillance problem
	Weighting procedure
	Edge elimination procedure

	MST-DPOP
	MST-DPOP benefits
	Proof of upper bound for the message size
	Proof of improvement on computational complexity
	Proof of error bound on the solution

	Conclusion

	Results
	Performance analysis of MST-DPOP
	Area surveillance problem
	Scalability analysis
	Discussion

	Conclusions and future work
	Conclusions
	Future work

	Back Matter
	Bibliography

