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Abstract

Recent research has indicated attributes of cell-free DNA (cfDNA) called fragmentomics
as a promising method for late stage cancer detection in a non-invasive manner. The pri-
mary objective of this research is to uncover hidden patterns and interactions that could
enhance the accuracy and sensitivity of blood-based cancer diagnostics. This study explores
the complementarity between three fragmentomics features; fragment length distribution,
and nucleotide fragment end sequence diversity and nucleosome positioning for four dif-
ferent sample groups; breast cancer, colorectal cancer, lung cancer and healthy controls.
Various machine learning techniques such as linear regression were employed to quantify
any complementary relationships between the features.

1 Introduction
Accounting for approximately 20% of all deaths in 2020 [11], cancer is a complex disease af-
fecting millions around the world. Unfortunately, once someone is diagnosed with late stage
cancer, treatment options are limited. Options may focus on extending lifespan, controlling
tumor growth, or simply alleviating symptoms to improve quality of life [2]. This is further
worsened by the large financial burden placed on cancer patients and, their loved ones. In 2021,
about 286 billion dollars were spent on getting treatment for cancer patients, a number which
is expected to increase to 581 billion dollars in 2030 [11]. Given cancer’s tricky nature, the best
countermeasure is detecting it at earlier stages. Unfortunately, this presents many challenges in
itself.

Conventional screening tests such as biopsies, where a sample of abnormal tissues is removed
from the patient to confirm cancer [1]. This is extremely invasive and done with a single can-
cer type in mind, which could result in high false positives rates when used sequentially [11].
Fortunately, recent research has produced non-invasive diagnostic methods that are suitable for
large-scale screening.

One such method are liquid biopsies where bodily fluids are extracted and analyzed for the pres-
ence of cancer in patients. Due to their minimally invasive nature, liquid biopsies have emerged
as a promising avenue for cancer detection and monitoring that can be performed frequently
with negligible burden on patients. The study of DNA fragments in blood (taken using liquid
biopsies), is known as fragmentomics. According to Chao Li et al [13], research has indicated
that fragmentation characteristics of cell-free DNA (cfDNA) differ in healthy and diseased in-
dividuals. As an example, patients with cancer had altered fragmentation profiles compared to
healthy individuals whose profiles reflected nucleosomal patterns of white blood cells [6]. These
findings highlight the potential of cfDNA fragmentomics as a novel biomarker for cancer detec-
tion and monitoring.

This study aims to explore the complementarity of various fragmentomics features. Feature com-
plementarity or interaction between features [9], can provide vital insights into inner workings
of features. The aim is not to bundle together multiple fragmentomics features in an ensemble
model for classifying cancer versus healthy, but rather researching how machine learning can
be leveraged to quantify the complementarity between features. This underlying information
was previously neglected when trying to create a multi-feature model for classification, find-
ing the best combination of features could aid in achieving a major goal in the field of cfDNA
fragmentomics for cancer research; defining robust Multi-cancer early detection (MCED) tests

1



that delivers a screening approach with high sensitivity, specificity, and Tissue of Origin (TOO)
identification accessible to the general public, providing better clinical outcomes and treatment
opportunities [11].

Chapter 2 provides a comprehensive review of the most relevant existing works, explaining their
contributions, and indicating what is still unanswered. Next Chapter 3, gives a detailed explana-
tion of the methodology and experimental setup. It delves into the framework used for answering
the research question; narrating the compartmentalization of the main research question into
smaller, more manageable sub-problems, briefly sketching the algorithms, and models used to
answer the sub-problems, and elaborate on key design decisions made throughout the research
process. Based on the setup from Chapter 3, chapter 4 will discuss the results of the conducted
experiment using the proposed approach(es) along with shortcomings and recommendations for
future research. Chapter 5 will conclude the paper, with chapter 6 offering an insight into the
ethical considerations of the research and discusses the reproducibility of the methods employed.

2 Synthesis of published research
Related works on the early diagnosis of cancer where cfDNA fragmentomics characteristics were
integrated using multiple machine-learning models produced promising results [13]. One ex-
ample of this is the multi-modal approach known as SPOT-MAS (Screening for the Presence
of Tumor by DNA Methylation and Size) defined by Van Thien Chi Nguyen et al [11]. This
approach was designed with the intent of performing analysis on methylomics, fragmentomics,
DNA copy number, and end motifs of cfDNA and assess the combined potential of these frag-
mentomics features for a single, comprehensive cancer screening test capable of both detection
and localization. SPOT-MAS was able to successfully detect five different types of cancer in
their early stages and predict the tumor locations. In current studies on the use of cfDNA frag-
mentomics as a biomarker for the detection of cancer, much effort is placed on finding the best
classification model. Studies like SPOT-MAS aimed to integrate multiple features to improve
the cancer detection rate and identify tissue of origin.

A similar experiment by Halner et al [7] proposed the DEcancer framework, where various
machine learning techniques were used to effectively select robust features from liquid biopsy
samples to accurately detect cancer with minimal false positives or negatives. The objective
was to streamline the process of detecting cancer by pinpointing the most essential set of fea-
tures that best predict its presence. This involved developing a machine learning pipeline that
utilizes feature selection methods and multiple data augmentation techniques to achieve feature
selection and high cancer detection performance [7].

Whilst, the studies mentioned provide valuable insight into the future of cfDNA fragmentomics
as a biomarker and highlight the potential of blood-based cancer detection tests to become a
universal, simple, and cost-effective method for early multi-cancer detection in a large populace
[11], they do not consider a very important aspect; feature complementarity. This paper aims
to explore the complementarity of various fragmentomics features and how it can aid cancer
detection.
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3 Methodology and Experimental Setup
This chapter aims to provide a high-level overview of the methodology and experimental setup
for this study. The research was split into three main phases: identification, processing, and eval-
uation. Throughout the three phases, the research question is compartmentalized into smaller
sub-tasks to provide more structure in answering the original question.

3.1 Identification
In the identification phase, it was crucial to select which fragmentomics features such as the
length distribution of cfDNA fragments [6] would be used for the experiment. These features
had to be easily extracted from the raw data provided and available across the different sam-
ple types; Breast cancer (BRCA), Colorectal cancer (CRC), Lung cancer (LUAD), and healthy
controls. Additionally, this phase involved determining the method for extracting these features
from the data. Typically, fragmentomics features are calculated from patient reads by analyzing
the entire genome or dividing it into non-overlapping bins.

For this experiment, three feature types were selected; The log2(short/long) ratio of the frag-
ment lengths [6], 5’ trinucleotide fragment end sequence diversity [10], and nucleosome position-
ing patterns [14]

3.1.1 The short-long ratio of the fragment lengths

The fragment length ratio is calculated as:

ratio = log2

(
short_count
long_count

)

short_count = number of short fragments (100-150 bp)
long_count = number of long fragments (151-220 bp)

The short to long ratio of cfDNA fragments defined by Cristiano et al [6], is a frequently applied
fragmentomics feature used for enhancing ctDNA detection. This ratio effectively distinguishes
tumor-derived fragments from those originating from healthy cells. For instance, Nguyen et al
in their paper [12] demonstrated how short-long ratios aided in distinguishing cancer patients
from healthy controls. Their research revealed a higher prevalence of shorter DNA fragments
(<151 bp) in the plasma of cancer patients compared to healthy individuals, which is in line
with other research done on this feature. All ratios were standardized using z-scores.

3.1.2 The 5’ trinucleotide fragment end sequence diversity

As described by Moldovan et al [10], the 5’ trinucleotide fragment end sequence diversity is
calculated for every input sample as the Gini index using the formula:

G = 1−
64∑
i=1

P 2
i

where Pi is the frequency of a specific i trinucleotide endings. DNA is comprised of four building
blocks called nucleotides: adenine (A), thymine (T), guanine (G), and cytosine (C). For this
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feature, the frequency of different trinucleotide ending e.g. GTA, ATC, etc... found in the
sample are counted and the Gini index is computed to quantify the diversity. CfDNA fragment
end profiling (cfDNA-FEP), which can reveal cancer-specific fragment end sequences has shown
promising results. For instance, Zhitnyuk et al [16] demonstrated that deep profiling of cfDNA
fragment ends could aid in the detection of colorectal and renal cancers.

3.1.3 Nucleosome positioning patterns

Zhang et al [14] wrote, cfDNA is believed to derive predominately from apoptosis of normal
cells of the hematopoietic lineage in healthy samples. However, in the case of cancer patients;
cfDNA can also be released from tumor cells. The patterns of nucleosomes are spaced in cancer
samples reveal additional contributions to cfDNA that correlate most strongly with non-blood
tissues. tissues often matching the anatomical origin of the cancer. The nucleosome patterns
can be observed using a numerical value known as The Windowed Protection Score (WPS). The
WPS is defined as the difference between the number of DNA fragments completely spanning
a 120 bp window centered at a given genomic coordinate and the number of fragments with an
endpoint within that same window [14].
Synder et al [14] calculated the WPS for each base pair position across the genome. To maintain
consistency between features, slight modifications were necessary to compute the WPS for each
bin. After dividing the genome into 5Mb bins, a sliding window of 120 bp centered at each base
pair within each bin was used. For each window, the number of fragments that completely span
the window (start before and end after) and have an endpoint within the window are counted.
The endpoint count is subtracted from the spanning count to get the WPS for that position.
Finally, the WPS values are averaged across all positions within each bin to get one score per
bin. A pseudo-code implementation can be seen in supplementary figure A2

3.2 Processing
Having identified which features to extract, the next phase is processing them. For each sample;
BRCA(n=45), CRC(n=23), LUAD(n=75), and control(n=103), the genome was divided. Each
chromosome was partitioned into bins of 5-megabase (Mb) windows to evaluate cfDNA fragmen-
tation patterns [6]. Furthermore, reads were filtered to include only properly paired reads that
are mapped, not secondary alignments, and have a mapping quality of 20 or higher, ensuring
reliable feature extraction. This dissection of the genome into bins gives far more features per
type for each sample. In supplementary figure A1, a pseudo code implementation is given to
illustrate how for each sample the genome is divided and values for the feature (per bin) are
saved. Values for chromosomes Y were excluded as they do not pertain to the use-case of this
study, where patient data is being analyzed irrespective of sex, whilst chromosome X after the
research supervisors advised due to the chromosome being difficult to map.

Having collected the features for each sample, it was vital to find the most appropriate manner
to combine them for all patients for the same sample type to expand the feature space. To this
end, for each feature type, four feature matrices (one for each sample type) were created with
each column representing feature values for specific 5 million base pair segments across each
chromosome from chromosome 1 to 22. Each feature value column corresponds to a specific
genomic range within a chromosome, indicating the values for that segment, and the first column
represents the identifiers of the sample in that sample group. A sample representation is provided
in the table 1 with pseudo code available in appendix A3.
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Sample Name Chr1 0:5000000 Chr1 5000000:10000000 ... Chr22 ...
Sample 1 value 1 value 2 ... value n
Sample 2 value 3 value 4 ... value m
Sample 3 value 5 value 6 ... value o

... ... ... ... ...
Sample N value x value y ... value z

Table 1: Representation of Feature Space Matrix

3.3 Evaluation
Finally, the evaluation phase involved selecting specific metrics from the processed data to assess
the complementarity of the identified features.

3.3.1 Linear Regression

Linear regression was employeed to observe whether it was possible to predict one feature type
from another. Using the R-squared score [8] to measure the strength of the relationship between
two features, and their potential complementarity (a higher score indicating the two features
are highly correlated, i.e. they carry similar information). Linear regression and the R-squared
score provide an interesting insight into the computing the complementarity between different
features. The R-squared score measures the overall model fit; a high score implies the model
explains the data well, but it does not provide great insights about the relationship between two
features. Hence, this metric can only serve as one part of the complementarity analysis and not
its sole measure.

3.3.2 Multi-Omics Factor Analysis (MOFA)

Another algorithm is Multi-Omics Factor Analysis (MOFA+). MOFA+ is a framework designed
for large-scale datasets with complex experimental designs that include multiple groups of fea-
tures and multiple sample groups [5]. MOFA+ exploits the dependencies between the features
to create a simplified representation of the larger dataset defined by multiple latent factors.
These factors capture the global sources of variability in the data [4]. Each factor has weights
that highlight how important each feature is in determining the factor’s value. MOFA+ can use
these factors to determine which features contribute to the same latent factor thus, indicating
relationships like complementarity. MOFA+ requires the feature matrices in a specific format.
As can be seen in table 2, MOFA+ allows for samples of the same group e.g. BRCA to be
grouped together for both feature types. In total four MOFA+ objects will be created - one for
each sample group.

4 Results
This chapter will present and discuss the results of the conducted experiment, the shortcomings
that occurred and provide directions for future research.
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Sample Name Feature Value Group View
Sample 1 Chr1 0:5000000 ***** BRCA WPS
Sample 1 Chr1 0:5000000 ***** BRCA Standardized Ratio

... ... ... ... ...
Sample N Chr22 ... ***** BRCA WPS
Sample N Chr22 ... ***** BRCA Standardized Ratio

Table 2: Representation of MOFA+ data frame

4.1 Short-long ratio of the fragment lengths and WPS
The first experiment run is checking for complementaritiy between the short-long ratio of the
fragment lengths from 3.1.1 and WPS from 3.1.3. We begun with confirming the usefulness of
the features types especially for the WPS, since we calculated it in a slightly different manner
than in the original paper [14]. To that end, Manhattan plots showing the differences between
healthy controls and each cancer case were generated. As shown in supplementary figures B1
and B3, both the short-long ratios and the WPS exhibit variations across different bins. This
gave sufficient cause to continue the experiment.

We created four MOFA+ objects as mentioned in 3.3.2. Using these objects, we calculated the
proportion of variance explained (i.e. the coefficient of determinations (R2)) by the MOFA+
factors across the two feature types. Tables 3 and 4 shows the amount of variation explained per
factor, per sample group. Alongside the proportion of variance, we also computed the Pearson
Correlation Coefficients and p-values for the factors as shown in tables 5 to 8 for each group.
These statistics provide valuable insights into which factors contribute most to which feature
type and which factors show correlation between the short-long ratios and the WPS. Using both,
we eliminate factors that do not contribute to answering the research question. We continue
with the analysis by examining each sample group independently.

Factor BRCA Control CRC LUAD
Factor 1 0.003962 0.475860 0.000000 0.797189
Factor 2 14.994697 63.559652 60.567389 28.096179
Factor 3 12.582171 11.757533 23.250430 18.140210
Factor 4 6.541745 4.677977 4.193566 11.922704
Factor 5 4.152841 4.954752 3.494248 7.697722
Factor 6 1.401962 1.192122 0.761268 2.605159
Factor 7 0.844254 0.707920 1.027932 2.399372
Factor 8 0.003578 0.626719 0.882350 2.157469
Factor 9 0.003293 0.266680 0.565307 2.056092
Factor 10 0.011781 0.145003 0.219798 1.233650

Table 3: Variance Explained by Factors for Standardized Ratio

4.1.1 BRCA

Table 5 suggests that most factors do not show a significant correlation between the two feature
types. Factors 5, 6, and 9 exhibit a moderate negative correlation, whilst factor 10 shows a
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Factor BRCA Control CRC LUAD
Factor 1 95.997220 95.924170 95.981025 95.926700
Factor 2 0.000091 0.000000 0.000000 1.400640
Factor 3 0.000076 0.039384 0.000000 0.028134
Factor 4 -0.002085 1.398381 0.030392 0.008740
Factor 5 -0.014069 0.000000 0.000000 0.069507
Factor 6 1.090837 0.000000 1.369869 0.096130
Factor 7 0.036310 0.079795 0.000000 0.030256
Factor 8 0.743937 0.000000 0.000000 0.000000
Factor 9 0.068830 0.059986 0.000000 0.000000
Factor 10 0.017368 0.018965 0.074195 0.000000

Table 4: Variance Explained by Factors for WPS

stronger positive correlation. This reduces the factors to evaluate down to four. We could have
also chosen to keep factors such as 1 and 2 which demonstrate strong values for the short-long
ratios and the WPS in tables 3 and 4 however, they are poor indicators of correlation between
the two feature types and thus were omitted. Next we plotted heat-maps for each feature type
using the four chosen factors as shown in figures 1 and 2 (Due to the small Pearson correlation
coefficients, only the top feature for each factor is plotted).

Factor Pearson Correlation Coefficient p-value
Factor 1 0.00 9.21e-01
Factor 2 0.01 8.51e-01
Factor 3 -0.00 9.59e-01
Factor 4 0.05 2.01e-01
Factor 5 -0.14 6.02e-04
Factor 6 -0.14 9.30e-04
Factor 7 0.06 1.79e-01
Factor 8 -0.04 3.89e-01
Factor 9 -0.16 1.15e-04
Factor 10 0.22 5.50e-08

Table 5: Pearson Correlation Coefficients and p-values for BRCA

In this experiment bins are paired, unfortunately none of the top features for any of the chosen
factors are shared between the two feature types in the BRCA dataset. This leads to a hypothesis
that - Short-long ratio of the fragment lengths and the WPS are independent (for the BRCA
samples). We justify this verdict by running a linear regression algorithm on the two features as
described in section 3.3.1. Supplementary table 9, shows that per chromosome the R-Squared
scores are very small further solidifying our verdict.

4.1.2 Control

For the healthy control samples, table 6 implies a moderate negative correlation exhibited by
factors 4 and 10, while factors 7 and 9 show a stronger positive correlation. We plot heat-maps
for each feature type for selected four factors as shown in figures 3 and 4.
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Figure 1: Heatmap of feature weights for
factors 5, 6, 9, and 10 for the short-long
ratios in the BRCA dataset

Figure 2: Heatmap of feature weights for
factors 5, 6, 9, and 10 for the WPS in the
BRCA dataset

Factor Pearson Correlation Coefficient p-value
1 -0.01 7.67e-01
2 0.03 5.06e-01
3 -0.03 4.38e-01
4 -0.10 1.17e-02
5 -0.04 3.54e-01
6 -0.09 2.98e-02
7 0.50 3.14e-38
8 -0.09 2.19e-02
9 0.26 1.55e-10
10 -0.10 1.80e-02

Table 6: Pearson Correlation Coefficients and p-values for Control

Similar as in the case of the BRCA dataset, none of the top features for any of the chosen factors
are shared between the two feature types, implying independence between - Short-long ratio of
the fragment lengths and the WPS for the healthy control dataset. As before, we attempt to
justify this hypothesis by running a linear regression algorithm on the two features, and just
like in the case of the BRCA dataset, supplementary table 10, shows that per chromosome the
R-Squared scores are again quite insignificant validating our theory.

4.1.3 CRC

Table 7 provides a moderate negative correlation exhibited by factors 4 and 6, while factors 7
and 10 show a positive correlation for the CRC dataset. We proceed by plotting heat-maps for
each feature type for selected four factors as shown in figures 5 and 6.
Akin to the BRCA and healthy control datasets, there are no shared features/bins for the chosen
factors between the two feature types. We extend our analysis with linear regression through
supplementary table 11, which shows that for more chromosomes on average the R-Squared
scores are quite insignificant, however chromosomes 14 shows a moderate score. This makes us
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Figure 3: Heatmap of feature weights for
factors 4, 7, 9, and 10 for the short-long
ratios in the healthy control dataset

Figure 4: Heatmap of feature weights for
factors 4, 7, 9, and 10 for the WPS in the
healthy control dataset

Factor Pearson Correlation Coefficient p-value
1 -0.07 9.06e-02
2 0.03 5.41e-01
3 0.01 8.60e-01
4 -0.10 1.42e-02
5 -0.01 8.06e-01
6 -0.13 1.31e-03
7 0.12 3.46e-03
8 0.05 2.12e-01
9 -0.04 3.80e-01
10 0.14 7.14e-04

Table 7: Pearson Correlation Coefficients and p-values for CRC

turn to the heatmaps in figures 5 and 6 where in the heatmap for the short-long ratios we find
a bin for chromosome 14.

Supplementary figure C33 shows that the slope of the regression line is negative which in-
dicates a negative linear relationship between the two feature types for the bin chromosome
14: 105000000-107013718. This negative correlation implies that higher short-long ratios are
associated with lower the WPS values for this particular chromosome region in the CRC dataset.

This linear regression plot indicates a moderate negative linear relationship in CRC data, sug-
gesting that as the standardized ratio increases, the WPS decreases. The scatter of the data
points around the regression line shows some variability but generally supports this negative
trend. We estimate the degree of statistical significance by calculating the R-squared score. A
score of 0.2233886433673239 means that approximately 22.3% of the variance in the WPS can
be explained by the short-long ratios for this bin. This suggests a moderate fit of the model to
the data. While it indicates some level of explanatory power, over 75% of the variance in the
WPS is due to other factors. Leading to a conclusion, that despite showing some promise the
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Figure 5: Heatmap of feature weights for
factors 4, 6, 7, and 10 for the short-long
ratios in the CRC dataset

Figure 6: Heatmap of feature weights for
factors 4, 6, 7, and 10 for the WPS in the
CRC dataset

two feature types remain largely independent from each other for the CRC dataset.

4.1.4 LUAD

Factor Pearson Correlation Coefficient p-value
1 -0.04 2.96e-01
2 -0.04 3.11e-01
3 0.04 3.39e-01
4 -0.04 3.52e-01
5 -0.02 5.90e-01
6 -0.15 2.61e-04
7 0.08 4.64e-02
8 -0.03 4.77e-01
9 -0.01 7.93e-01
10 -0.07 7.51e-02

Table 8: Pearson Correlation Coefficients and p-values for LUAD

For LUAD dataset, only factor 6 shows any noticeable (negative) correlation as shown in table
8. Therefore we plot heat-maps for each feature type for factor 6. However, unlike before where
the heatmaps where created for only the top feature per factor, here we plot for the top ten
features as we only have one factor to investigate.

Figures 7 and 8 show that no features/bins are shared between the heatmaps. We further
investigated this by running a linear regression algorithm on the LUAD dataset for the two
feature types. As shown in supplementary table 12, the chromosomes have small r-squared
scores implying that the short-long ratios do not explain the variation in the WPS (much) for
this dataset. Leading to a verdict that for the LUAD, the short-long ratios and the WPS are
(mostly) independent from each other.
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Figure 7: Heatmap of feature weights for
factor 6 for the short-long ratios in the
LUAD dataset

Figure 8: Heatmap of feature weights for
factor 6 for the WPS in the LUAD dataset

4.1.5 Implications of Findings

Figure 9: Distribution of Pearson correla-
tion coefficients for BRCA samples

Figure 10: Distribution of Pearson correla-
tion coefficients for control samples

We analyzed the relationships between the short-long ratios and the WPS for each sample group
using both MOFA+ and linear regression. Across all four groups, our findings consistently
indicated that the two feature types were largely independent from each other, suggesting that
short-long ratios and the WPS do not significantly influence one another. This can be seen
graphically in figures 9 to 12, where the histograms show that majority of the correlation values
are centered around zero for all groups, suggesting a poor linear relationship between short-long
ratios and the WPS. Therefore, we can ascertain that these two feature types exhibit a high
degree of complementarity, as they provide unique and non-overlapping information.

4.2 Short-long ratio of the fragment lengths and 5’ trinucleotide frag-
ment end sequence diversity

The second experiment run is checking for complementaritiy between the short-long ratio of the
fragment lengths from 3.1.1 and the Gini index from 3.1.2. As before, we began with confirming
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Figure 11: Distribution of Pearson correla-
tion coefficients for CRC samples

Figure 12: Distribution of Pearson correla-
tion coefficients for LUAD samples

the usefulness of the features types. As can be seen in supplementary figures B1 and B2, there
are stark differences between how the values are distributed. The plot for the short long ratios
exhibit a noticeable deviation for each case versus control, providing results that are in line
with previous literature [6] [11]. In comparison, supplementary figure B2 highlights a less varied
distribution, demonstrating curious results prompting for more investigation in the feature.

To understand, why there is negligible variation in the values of the Gini index compared to
the short-long rations, we plotted heatmaps for each sample group for the feature as shown in
supplementary figures B4 - B6. Each cell represents the Gini Index for a specific chromosome in
a particular sample, with color coding indicating the magnitude of the index. Despite showing a
high diversity per sample group collectively, the indifference in the heatmaps implies that there
are little to no distinct patterns that can be used to differentiate between the sample groups.
This is in line with the results found in the original paper [10], where the values for the Gini
Index were also quite similar between the different groups. However, questions still remain as
to why the values for the Gini index are so uniform and ascertain if the trinucleotides vary at all.

To answer these questions additional probing into the 5’ trinucleotide fragment end sequence
diversity was needed. We charted the counts of the trinucleotide endings for one sample from
each group for one bin. As seen in figures 13 to 16 the counts presented a noticeably similar
distribution for each trinucleotide ending with some minor variations. We extended the analysis
to calculate the average count for each ending per chromosome for all datasets.
Supplementary figures B8 - B29 the average counts per trinucleotide ending are close to identical
per sample group for each chromosome, with endings such as AAA, and TTT regularly having
large counts and TCG and CGA consistently showing low counts. As this research is conducted
from a computer science perspective rather than a clinical biology one, it is challenging to draw
conclusions why this feature is so uniform. Various factors such as PCR artifacts, preferential
cleavage by DNASE13, or excessively large bins could have influenced the results. Neverthe-
less, the values are sufficient for our analysis, whereby we can hypothesize, the Gini Index as
described in [10] does not capture unique fragmentomic features, and should not pursed as a
biomarker for the detection of cancer.

To substantiate our hypothesis a linear regression is performed for each sample type per bin. We
calculated the average R-Squared scores per chromosome for each sample group shown in the
supplementary tables 13 - 16. For the BRCA and LUAD datasets we consistently saw low scores
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Figure 13: Distribution of Trinucleotide
Counts for the bin chr1:0-5000000 for a
BRCA sample

Figure 14: Distribution of Trinucleotide
Counts for the bin chr1:0-5000000 for a
CRC sample

Figure 15: Distribution of Trinucleotide
Counts for the bin chr1:0-5000000 for a
healthy control

Figure 16: Distribution of Trinucleotide
Counts for the bin chr1:0-5000000 for a
LUAD sample

throughout indicating that the two features are very independent from each other (for BRCA
and LUAD). However for the healthy control and CRC datasets some chromosomes had large
scores, namely chromosomes twenty and fourteen being the highest respectively. We visualized
linear regression plots for each bin in these chromosomes, as seen in supplementary figures C1
- C35. We observe a consistent negative correlation between the two feature types across both
the CRC and healthy control datasets. However, the actual values for the Gini index are all
closely clustered together, this relates back to the point made earlier that it is challenging to
draw conclusions why this feature is so uniform from a purely computer science prospective. We
therefore conclude our investigate and adjudicate our hypothesis.

4.3 Shortcomings
A major shortcoming in this research was the brief time allocated. A period of ten weeks was
given and given that our background is in computer science, this which resulted in a severe lack
of prerequisite biological knowledge needed to properly conduct this research. This resulted in
some minor delays at the beginning as we attempted to bridge the gaps in knowledge. Secondly,
the scope of the research was lessened as we were provided data which contained samples from
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only four types of patients. Having data on other types of cancer could have impacted the
final results due to the complex nature of cancer. These shortcomings were on a broader level,
however other points of contention arose in the approaches taken in this experiment (defined
in section 3). As mentioned in 3.1.1, all the short-long ratios were standardized using z-scores.
However, when reviewing our methods we learnt that there were different ways on how we could
have done this standardization. Our approach relied on calculating the z-scores for every sample
separately. Therefore, the short-long ratios had a mean of 0 and a standard deviation of 1 on a
per sample basis and when combined in the feature matrices from 3.2, the columns would not
have this normalization. Secondly as mentioned in 3.1.3, our method of calculating the WPS
was not a replication of the work done by Synder et al [14]. To assiduously replicate Snyderâs
work would require making use of nucleosome peak calling and/or Fourier transformations and
correlation with expression, unfortunately due to limited time constraints we would do this. A
significant amount of time was spent on investigating the surprising results for the Gini Index.
We researched if the score itself was flawed or the whether the trinucleotide endings themselves
provide limited information.

4.4 Recommendations for future research
The research conducted in this study serves as a foundation for future investigations into the
complimentarity of different blood-based cancer detection tests. Due to time constraints, the
analysis was limited to three fragmentomics features. Features such as SNV detection, OCF
analysis, and CNV analysis [15] could be explored. Using different features (alongside the three
used in this study), further insights into the three features examined in this paper, particularly
the Gini Index. For instance, could other features possibly explain the uniform distribution
observed in the Gini Index?

This research relied on data from Western sources [6]. To ensure unbiased and universally appli-
cable results, future works should strive to include data from a diverse population representing
different racial and ethnic backgrounds. This would contribute to a more comprehensive under-
standing of the relationship between fragmentomics features.

Moreover, alternative methods beyond those used in this study should be explored. Methods
like Angle-based Joint and Individual Variation Explained (AJIVE) could be employed to assess
complementarity between features and be used to validate the universality of the results found
in this study. Furthermore, given that we selected three feature types, our linear regression
could be extended to a multiple regression model, which aims to predict a value based on two or
more variables. Multiple regression can be useful to observe patterns between the three features
i.e. can a combination of two features predict the third, making the latter irrelevant for further
analysis when trying to create a multi-modal classifier.

Lastly, we recommend that all future works calculating the WPS in a manner similar to ours,
to fully replicate Snyderâs work as previously mentioned. One approach would be to determine
the distance between peaks without peak calling. This involves using the WPS signal of length
5M and determining its period using a Fast Fourier Transform (FFT). We advise visualizing
smaller segments of the signal (1000-10000 base pairs) from different bins, displaying the original
WPS signal, the mean, and the calculated periods. This visual inspection can help confirm the
presence of a dominant frequency and verify the accuracy of the calculated periods.
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5 Conclusion
In conclusion, the research done in this paper assessed the complementarity in different blood-
based cancer detection tests. Three fragmentomics features were selected and analysed. We
examined the relationships between the short-long ratios and the WPS for each sample group
using both MOFA+ and linear regression. Our results consistently indicated that the two fea-
ture types were largely independent across the sample groups, suggesting they offer unique and
non-overlapping information. This was evident in the correlation plots 9 - 12, where the ma-
jority of correlations centered around zero. Therefore, we can ascertain that these two feature
types exhibit a high degree of complementarity.

We also examined the 5’ trinucleotide fragment end sequence diversity (Gini index), finding
consistently similar values within each sample group for every chromosome. This uniformity
led us to inquire, the reasons behind such results. However, as this research was conducted
from a computer science prospective and not a clinical biology one, explaining the uniformity of
these values proved challenging. Consequently, we concluded our investigation and adjudicated
that Gini Index does not capture unique fragmentomic features, and should not be pursed as a
biomarker for the detection of cancer.

One must be very cautious about the interpretation of these results given that they were ob-
tained from a computer science perspective, and not a biological one. It is highly recommended
that other researchers who have a strong background in bioinformatics conduct a validation of
the results obtained.
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6 Responsible Research
This section aims to address the ethical aspects of conducting this research. The paper is
primarily focused on the information entailed in the DNA fragments drawn from blood samples.
It is paramount that one must be hyper-vigilant when working with such data.

6.1 Management of Data
The raw data used in this experiment is obtained from a research conducted by Cristiano et al [6],
where samples from cancer patients and healthy controls were obtained from "ILSBio/Biorecla-
mation, Aarhus University, Herlev Hospital of the University of Copenhagen, Hvidovre Hospital,
the University Medical Center of the University of Utrecht, the Academic Medical Center of the
University of Amsterdam, the Netherlands Cancer Institute and the University of California,
San Diego" [6]. In the paper, the authors mention that "all samples were obtained under In-
stitutional Review Board approved protocols with informed consent from all participants for
research use at participating institutions" [6].

As the data concerns real patients, personal information such as names and other parameters
which reveal a participants identity must be redacted to protect their privacy. Research should
also respect diversity and take full account of genetic factors such as ethnicity, gender, disability,
age, and sexual orientation in its design, undertaking, and reporting. For instance, certain racial
or ethnic groups will have higher proportions of slow metabolisers than others. One example of
this is, "Japanese and Inuit populations have a high proportion of rapid acetylation metabolis-
ers; European and African populations have an equal proportion of slow and rapid metabolisers"
[3]. This highlights the importance of having data from a diverse group of participants. The
data used in this experiment is taken from largely western sources, which could produce results
that are not relevant to a large populace. This could have negative repercussions, as results
from minorities could be construed as outliers and removed/ignored.

As this paper is part of Delft University of Technology’s bachelor course, the task of procuring
the raw data lies with the course coordinators and project supervisors. It is their duty to ensure
the data was collected the required permissions and that, if necessary, an ethical review was
conducted as the guidelines in Netherlands Code of Conduct for Research Integrity 2018 1.

6.2 Use of large language models (LLMs)
LLMs and conversational agents such as ChatGPT2 and Gemini3 were used throughout the
course of this research. They served to largely aid in debugging code and help decode unfamiliar
biology idiom into a more regular tone for easier understanding, instead of regularly seeking out
supervisors’ assistance. An example of the use of LLMs, is shown in appendix D1, where a
prompt was made asking for an explanation on what multi-omics data refers to.

As this was the first time conducting research in this domain, there was also a knowledge gap
regarding the coding processes, given a background as a computer science student rather than
a biologist or bioinformatician, conversational agents helped decode some of these processes,

1https://www.nwo.nl/en/netherlands-code-conduct-research-integrity
2https://chatgpt.com/
3https://gemini.google.com/
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helping in understanding the data. An example of this is shown in appendix ??, where a
prompt is made asking for how to view end motifs using python.
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A Pseudo Code

A.1 Feature Extraction

1 FUNCTION divide_the_genome_and_get_feature_values(sample):
2

3 INITIALIZE featureValuesForSample as an empty dictionary
4

5 FOR each chromosome and its length in sample:
6

7 FOR each bin within the chromosome (with steps of 5000000):
8 SET bin_end as the minimum of (bin_start + 5000000) and

length
9 SET bin_name as "chromosome:bin_start -bin_end"

10 INITIALIZE feature_values as an empty list
11

12 FOR each read in the bin range:
13

14 IF read is valid (not unmapped , not secondary , high
quality , proper pair):

15 APPLY feature_function to read to get feature_value
16 ADD feature_value to feature_values
17

18 IF chromosome not in featureValuesForSample:
19 INITIALIZE data[chromosome] with MAX_POSITION as 0 and

BINS as an empty dictionary
20

21 UPDATE featureValuesForSample[chromosome ][ MAX_POSITION] to
the maximum of its current value and bin_end

22

23 IF bin_name not in featureValuesForSample[chromosome ][BINS]:
24 INITIALIZE featureValuesForSample[chromosome ][BINS][

bin_name] as an empty list
25

26 ADD feature_values to featureValuesForSample[chromosome ][BINS
][ bin_name]

27

28 CLOSE sample
29

30 RETURN featureValuesForSample

Figure A1: Pseudo Code for Genome Division and Feature Extraction per sample
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A.2 Calculate WPS per bin

1 FUNCTION calculate_wps(sample):
2 INITIALIZE an empty list wps_data to store WPS results
3

4 FOR each chromosome in sample:
5 Determine the length of the chromosome
6

7 FOR each 5Mb bin in the chromosome:
8 INITIALIZE an empty list wps_values to store WPS for

positions within the bin
9

10 FOR each base pair position within the bin:
11 INITIALIZE spanning_count and endpoint_count to 0
12

13 Define a 120 bp sliding window centered at the current
position

14

15 FOR each read within the 120 bp window:
16 if the read is properly mapped and is a proper pair:
17 Determine the fragment start and end positions
18

19 if the fragment completely spans the window:
20 Increment spanning_count
21

22 if the fragment has an endpoint within the window
:

23 Increment endpoint_count
24

25 Calculate WPS for the current position as spanning_count
- endpoint_count

26 Append the WPS value to wps_values
27

28 Calculate the average WPS for the current bin from wps_values
29 Store the chromosome , bin start , bin end , and average WPS in

wps_data
30

31 RETURN wps_data

Figure A2: Pseudo Code for calculating the WPS per bin
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A.3 Feature Matrix Creation

1 FUNCTION create_feature_matrix(files , feature_type):
2 FOR each sample IN files:
3 sample_data = READ_SAMPLE(sample)
4

5 # Select and transpose the feature column
6 feature_column = SELECT(sample_data , feature_type)
7 transposed_dataframe = TRANSPOSE(feature_column)
8

9 # Construct new column names using CHROMOSOME , BIN_START , and
BIN_END

10 chromosomes = SELECT(sample_data , CHROMOSOME)
11 bin_starts = SELECT(sample_data , BIN_START)
12 bin_ends = SELECT(sample_data , BIN_END)
13

14 new_columns = []
15 FOR chrom , start , end IN ZIP(chromosomes , bin_starts , bin_ends):
16 new_column_name = CONCATENATE(feature_type , "_", chrom , ":",

start , "-", end)
17 APPEND(new_columns , new_column_name)
18

19 # Rename columns using the constructed names
20 SET_COLUMNS(transposed_dataframe , new_columns)
21

22 # Add the ’sample_name ’ column at the beginning
23 sample_name_column = CREATE_DATAFRAME ({ SAMPLE_NAME: [sample_name

]})
24 transposed_dataframe = HSTACK(sample_name_column ,

transposed_dataframe)
25

26 APPEND(dataframes , transposed_dataframe)
27

28 # Concatenate all single -row DataFrames
29 feature_matrix = CONCAT(dataframes , how=" vertical ")
30

31 RETURN feature_matrix

Figure A3: Pseudo Code for Feature Matrix Creation
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B Plots

B.1 Manhattan Plots

Figure B1: Difference/ratio between cases and controls for short-long ratios
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Figure B2: Difference/ratio between cases and controls for Gini Index
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Figure B3: Difference/ratio between cases and controls for Window Protection Score
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B.2 Heatmaps

Figure B4: Heatmap for the Gini Index for CRC Samples
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Figure B5: Heatmap for the Gini Index for BRCA Samples
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Figure B6: Heatmap for the Gini Index for healthy controls
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Figure B7: Heatmap for the Gini Index for LUAD Samples
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B.3 Average Trinucleotide counts per bin

Figure B8: Average distribution of Trinucleotide Counts for Chromosome 1

Figure B9: Average distribution of Trinucleotide Counts for Chromosome 2
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Figure B10: Average distribution of Trinucleotide Counts for Chromosome 3

Figure B11: Average distribution of Trinucleotide Counts for Chromosome 4

Figure B12: Average distribution of Trinucleotide Counts for Chromosome 5
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Figure B13: Average distribution of Trinucleotide Counts for Chromosome 6

Figure B14: Average distribution of Trinucleotide Counts for Chromosome 7

Figure B15: Average distribution of Trinucleotide Counts for Chromosome 8
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Figure B16: Average distribution of Trinucleotide Counts for Chromosome 9

Figure B17: Average distribution of Trinucleotide Counts for Chromosome 10

Figure B18: Average distribution of Trinucleotide Counts for Chromosome 11
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Figure B19: Average distribution of Trinucleotide Counts for Chromosome 12

Figure B20: Average distribution of Trinucleotide Counts for Chromosome 13

Figure B21: Average distribution of Trinucleotide Counts for Chromosome 14
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Figure B22: Average distribution of Trinucleotide Counts for Chromosome 15

Figure B23: Average distribution of Trinucleotide Counts for Chromosome 16

Figure B24: Average distribution of Trinucleotide Counts for Chromosome 17
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Figure B25: Average distribution of Trinucleotide Counts for Chromosome 18

Figure B26: Average distribution of Trinucleotide Counts for Chromosome 19

Figure B27: Average distribution of Trinucleotide Counts for Chromosome 20
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Figure B28: Average distribution of Trinucleotide Counts for Chromosome 21

Figure B29: Average distribution of Trinucleotide Counts for Chromosome 22
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C Linear Regression

C.1 Short-long ratio of the fragment lengths and WPS

Chromosome R-Squared Intercept Coefficient
1 0.06880910577948958 2.881959603955279 0.2483373690562038
2 0.034116557443827245 2.8053845983713357 0.39105348818349644
3 0.03146048533794289 2.9434546213159605 1.0038784421819409
4 0.028519863343267116 2.9036583828553217 0.16721402864780308
5 0.029584923971439265 2.7760194105827223 0.32001177916890866
6 0.030499600062086803 2.778171314246935 0.6813183554301603
7 0.029413909395737306 2.7467503153467208 0.06322095281706308
8 0.032551750686750584 2.8751515997691746 0.5338264112086423
9 0.09689514136814315 2.613735466203455 0.5428058201839712
10 0.03470825439109727 2.9184346502521796 0.551252969033884
11 0.024780007039600035 2.9113108569903567 0.13095496461080708
12 0.04719749512939036 2.8594082936992726 1.0286195466001042
13 0.1509103355857079 2.5406197376610207 0.3311000565580337
14 0.1812033713105282 2.3457883516251608 0.7195610204175567
15 0.17741745677064588 2.449175023648279 0.5828360555504959
16 0.08238655932404017 2.5414384157261796 -0.8717740050014807
17 0.015646086286068606 2.722555403817797 0.034157834855014294
18 0.02151814574702578 2.7272619533714453 -0.3061472269921997
19 0.02404936100075528 2.4077945329612778 -0.6240055907954035
20 0.03459833476295544 2.8680957784834096 -0.9546131102059492
21 0.14200423475661947 2.4847305666213098 -0.6364230973953917
22 0.21347211987862405 2.0980275286994727 -0.8466082302724458

Table 9: BRCA Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.06880965157733453 2.500778293485195 0.4368147692174412
2 0.016027798665649035 2.5023090956026364 -0.47227528222775067
3 0.02044417485559008 2.4602602283140467 -0.631897890397452
4 0.03347014109084536 2.2149629985970147 -1.7511005079572448
5 0.022224388162725383 2.495174128113085 -0.5626800455169865
6 0.021645651390490333 2.285726958779289 -0.8494440984874739
7 0.019467875788638102 2.479969483020625 -0.11084591418253667
8 0.015793624649426376 2.429243385036345 -0.5102528541613808
9 0.08648068787339233 2.145949835074644 0.03846617510589336
10 0.014914674579999789 2.746373612819807 0.3374712469856886
11 0.019055353390373002 2.6525305565162682 0.08644344900784791
12 0.026026031229686903 2.337114000043204 -1.032257207707861
13 0.18974088132280761 1.9589812919881135 -1.3290635048194515
14 0.1773512170858593 2.005983843631658 -1.1110272342354677
15 0.17021698159616921 2.0112283102805146 -1.0127170510657302
16 0.07063440159312462 2.276186684488301 -0.7032930793886137
17 0.01938394023785322 2.5223071668612924 -0.8729307604479252
18 0.08024620381732978 2.230814083661842 -1.0667472086865102
19 0.0397350311700918 2.5343629053247247 -0.8147373884456323
20 0.06330814128048547 2.666301438653865 -1.065021754230189
21 0.18154293732741325 2.0107653774252223 -0.7546762907461757
22 0.21805684604889677 1.9558348082703 -0.6423363054168899

Table 10: Control Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.09953082840479588 2.4733857588094126 0.884575519475048
2 0.08680920420509365 2.6655010229612888 1.1179772092848785
3 0.05310850361421875 2.4917709032496327 0.6651459007933938
4 0.026699308862686382 2.328396796313251 0.2603414631109088
5 0.038697357637343895 2.4920909337558346 0.5992314395890268
6 0.14383875297637086 2.5860161890511293 1.350359534929962
7 0.39335909791757784 2.808769256078056 2.1610091924726826
8 0.18391200773039135 2.741211201427025 1.3674496468490704
9 0.21175937462548583 2.272751696525438 0.9726007107504663
10 0.1020779005549367 2.654944944777703 1.0428424257203344
11 0.09494567684026069 2.8349136852615753 1.118141486353342
12 0.2852615748948692 2.2920880447419 -1.3812088301997336
13 0.15186751655249414 2.1925148970241723 -0.1555000391443
14 0.43384348442634485 1.82238009513577 -1.1684361365679692
15 0.33621127843202225 1.7758534106833574 -0.8122199871306861
16 0.34855168865480624 2.167654341005522 -1.2752777947874347
17 0.19105033463861434 2.3645105162655025 -1.0553917586599257
18 0.22464442106176988 1.9404189011015418 -0.8568502972188815
19 0.18237966555634288 2.4119535341438945 -1.0385049044422552
20 0.07724166833614604 2.6838283515116816 -0.3392314573731183
21 0.3919561270961085 1.826169050321809 -1.0830169159340264
22 0.39424317081105914 1.76373965933062 -0.7927965785919475

Table 11: CRC Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.09391212626832916 2.5470834849171493 -0.29764700085311246
2 0.09293858962404417 2.2577449130106264 -1.339656067051109
3 0.053268468989810816 2.5198765172888766 0.18872857601447715
4 0.11673718682716301 2.945538500034519 1.130506595410072
5 0.08869672013335844 2.6836729243731305 0.963748535139818
6 0.0454524777960892 2.3082581173390824 -0.9224741111734517
7 0.05001579095757599 2.571811100485535 0.6988721853164802
8 0.04997654389508326 2.530915362737334 0.30534823644348236
9 0.10536839193136541 2.1811989446983646 -0.33414032584881326
10 0.050439384295361815 2.4466148419237017 -0.6763752383391719
11 0.06781490090861766 2.66931004287984 0.21430354995823933
12 0.07293916219693168 2.469967530094089 -0.562910870851863
13 0.21628116579050524 2.4140438694672874 0.9316568666971553
14 0.23673472233251144 2.2271523484092457 1.0455441150938742
15 0.17782725646952077 2.014423225107671 -0.5310674945002626
16 0.13174714396999365 2.4767162409181003 0.7720518029524754
17 0.06871803913860931 2.5352119193236704 -0.822820833238587
18 0.10928302712459 2.495601821872335 0.4187946711447668
19 0.09136494234403818 2.431929432536078 -0.9757574832968756
20 0.04999590872498218 2.932421754036853 -0.4750593575713319
21 0.17057569606547585 1.531402153555798 0.21727500979878767
22 0.1701927596268123 1.3743413315611286 -0.37327124279720364

Table 12: LUAD Chromosome Regression Summary
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C.2 Short-long ratios and 5’ trinucleotide fragment end sequence di-
versity

Chromosome R-Squared Intercept Coefficient
1 0.10118850297045096 0.9413338545841274 0.000207476690473926
2 0.0900022490435446 0.9811262614963033 0.00032826133259176326
3 0.09690124914262692 0.9810906387402936 0.00063522417997337
4 0.07246245271080125 0.9807747795933535 0.0004067198118640718
5 0.08813867732606925 0.9810057008716676 0.0003980809770960306
6 0.06609400399120839 0.9810429541883993 0.00036609078271156284
7 0.07659887942399542 0.9811722538754053 0.00020026316348647813
8 0.06593376931201697 0.9811430560857393 0.0002525432480597266
9 0.14290260093719304 0.9110103952799441 0.00021875902518607142
10 0.04330211050694572 0.981248390272057 8.389275006648156e-06
11 0.07110339292945214 0.9813019878072042 0.00033584246408566783
12 0.10350836870664784 0.9812118435783903 0.0005271141446312222
13 0.17412812097993868 0.852879393084812 0.00021630873369620434
14 0.18230365461220754 0.8474139505740376 0.00030231468875717725
15 0.21081449035333724 0.8411660694215577 9.058493342304286e-05
16 0.1428012802073334 0.9293514314331548 -0.0008083611560107
17 0.1387279108887115 0.9817133600915757 -0.00011068061163351765
18 0.06810197736435207 0.9810752036192082 1.9595072363469442e-05
19 0.10442093333903696 0.9817787730637523 -0.000175342474024825
20 0.12313892942038668 0.9815205477845482 -0.0002724211413741615
21 0.15436169697312105 0.8827900819036802 -0.00010276879818965999
22 0.2872018764354058 0.8031944346616432 -9.332207862943459e-05

Table 13: BRCA Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.06527175478093009 0.9411890799916872 -0.00018994043189937237
2 0.013109632088614945 0.9809810991942092 -6.783807047386986e-05
3 0.033018600624163355 0.9808752734429464 -4.5578016044582075e-05
4 0.027574787201846102 0.9804915088017109 -0.0001519307547784541
5 0.026845155207299697 0.9808268632208454 -0.00012813521169324839
6 0.0197312036989467 0.9808918459295609 -3.167492361214109e-05
7 0.01796506327481154 0.9810828410018442 -1.972439960681104e-05
8 0.01818433570340187 0.9810044959862995 -8.520379514445488e-05
9 0.08372660863248309 0.9109019106852745 -1.0649035377485713e-05
10 0.013567463692356776 0.9811930158557236 -2.9582851107771648e-05
11 0.017381778198707912 0.9811732251130728 3.1995340434824755e-07
12 0.32634662562120975 0.9504348250333062 -0.1856534877128569
13 0.8639132280027175 0.7686347858795649 -0.4227004862127822
14 0.8815424479917194 0.7668693136963676 -0.4328660542934399
15 0.8938586555504503 0.7652011497903094 -0.43973528561722897
16 0.7693623026611691 0.882566061166241 -0.43726757871181104
17 0.7570172857227566 1.0028476750390707 -0.5091754789248927
18 0.9046879746094513 0.8712967421200025 -0.40313949570799484
19 0.7983829521848002 1.0782532492909491 -0.4288054504953056
20 0.9026883993839745 0.9277589903324771 -0.4044941571302132
21 0.8652389040029316 0.834132437078279 -0.30480395115012604
22 0.870565700201391 0.7946691692901685 -0.32497247678854796

Table 14: Control Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.16168137659249918 0.9413392019857468 -0.00020642626885021453
2 0.06416279682721042 0.9812135203362825 -0.00010954920329136473
3 0.04781097347989538 0.9811105247472778 -6.861232345204476e-05
4 0.048226805596974 0.9807231813074572 3.002720689110988e-05
5 0.04811410018873306 0.980953287901786 -8.310873863831408e-05
6 0.10870361618032452 0.9811197929231223 -0.00021564524986511714
7 0.047226388301785105 0.9813210847498582 -6.854460755119688e-05
8 0.037676678867051595 0.981264183544973 -4.130985895218728e-05
9 0.11925224739208008 0.9110964296012903 6.241069885831813e-05
10 0.1934386800293547 0.9515729715502167 -0.09045657343925437
11 0.09605725017903506 0.9813182933424266 -3.79063053956779e-05
12 0.8966241386794733 0.9053096922964053 -0.5860963166550336
13 0.5740303699839029 0.8256028545329578 -0.30883063227966945
14 0.9036512023808524 0.7508211270408677 -0.47885510596620456
15 0.750322000902095 0.7452815001269067 -0.37047454808111435
16 0.8496220699117453 0.8531539139318425 -0.5163326279348396
17 0.7377921118165396 0.9598724215767187 -0.5174859584743163
18 0.6984791887220496 0.8359448310958953 -0.40097818178291444
19 0.7382664357220282 1.0162663856292637 -0.5587335556095606
20 0.6250516742526494 0.9273323082381856 -0.41717467459859947
21 0.8446758503827281 0.7870243929029026 -0.4650735179482231
22 0.7377951894490934 0.7159244536299022 -0.34065497386294596

Table 15: CRC Chromosome Regression Summary
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Chromosome R-Squared Intercept Coefficient
1 0.0679855779129456 0.9412651349113854 6.35367417275149e-06
2 0.030978618966081534 0.9810312500960308 -8.510547050802037e-05
3 0.040359295825962135 0.9809412324774751 3.0359503627112174e-05
4 0.03321253906652119 0.9806721429936084 -7.941191951492845e-06
5 0.04298510760701074 0.980932305995518 9.509829598877972e-06
6 0.015138891726253153 0.9809621601794822 5.3705823935871585e-05
7 0.0156905878111175 0.9811138348223086 -3.173551527918333e-05
8 0.024112098167019945 0.9810846872471253 9.164495042697592e-05
9 0.10320647184683526 0.9109568093337074 1.858445263920263e-05
10 0.04180486324946227 0.9812198083943005 -9.814443728700546e-05
11 0.028850122692748788 0.9812435925987613 0.00014422794281104936
12 0.023455386177861897 0.9811237671927295 6.0514481721884574e-05
13 0.1493613819721836 0.8528125692017731 4.8868938632821736e-05
14 0.16394197643917094 0.8473513317200372 6.47211620877e-05
15 0.16783124123997992 0.8411717431846869 7.069026848149957e-05
16 0.08207332754942438 0.9292733907769029 -0.00017184479799938558
17 0.06835881681490934 0.9817268112114673 -5.642268903571737e-05
18 0.0201131839169317 0.9810540233135495 -1.1106002464527157e-05
19 0.10271224226061375 0.9817789215749898 1.4064600042193425e-06
20 0.07562875170074336 0.9815251348189385 -0.00018558975635644614
21 0.15295070616242756 0.8828066019533516 7.562568935538806e-05
22 0.24150450347156963 0.8032474948249007 5.809429709950909e-05

Table 16: LUAD Chromosome Regression Summary
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Figure C1: Linear regression plot showing
the relationship between the short-long ra-
tios and Gini Index for the bin chr20:0-
5000000 for control samples

Figure C2: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:5000000-10000000 for control sam-
ples

Figure C3: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:10000000-15000000 for control sam-
ples

Figure C4: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:15000000-20000000 for control sam-
ples
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Figure C5: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:20000000-25000000 for control sam-
ples

Figure C6: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:25000000-30000000 for control sam-
ples

Figure C7: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:30000000-35000000 for control sam-
ples

Figure C8: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:35000000-40000000 for control sam-
ples
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Figure C9: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:40000000-45000000 for control sam-
ples

Figure C10: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:45000000-50000000 for control sam-
ples

Figure C11: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:50000000-55000000 for control sam-
ples

Figure C12: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:55000000-60000000 for control sam-
ples
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Figure C13: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr20:60000000-64444167 for control sam-
ples

Figure C14: Linear regression plot show-
ing the relationship between the short-long
ratios and Gini Index for the bin chr14:0-
5000000 for CRC samples

Figure C15: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:5000000-10000000 for CRC samples

Figure C16: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:10000000-15000000 for CRC samples

Figure C17: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:15000000-20000000 for CRC samples
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Figure C18: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:20000000-25000000 for CRC samples

Figure C19: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:25000000-30000000 for CRC samples

Figure C20: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:30000000-35000000 for CRC samples

Figure C21: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:35000000-40000000 for CRC samples

Figure C22: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:40000000-45000000 for CRC samples

Figure C23: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:45000000-50000000 for CRC samples

50



Figure C24: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:50000000-55000000 for CRC samples

Figure C25: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:55000000-60000000 for CRC samples

Figure C26: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:60000000-65000000 for CRC samples

Figure C27: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:65000000-70000000 for CRC samples

Figure C28: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:70000000-75000000 for CRC samples

Figure C29: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:75000000-80000000 for CRC samples
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Figure C30: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:80000000-85000000 for CRC samples

Figure C31: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:85000000-90000000 for CRC samples

Figure C32: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:90000000-95000000 for CRC samples

Figure C33: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:95000000-100000000 for CRC sam-
ples
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Figure C34: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:100000000-105000000 for CRC sam-
ples

Figure C35: Linear regression plot show-
ing the relationship between the short-
long ratios and Gini Index for the bin
chr14:105000000-107043718 for CRC sam-
ples
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D AI Prompts

Figure D1: What is multi–omics data?
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Figure D2: How to view end motifs using python?
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