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1
Introduction

In recent years, isogeometric analysis has been an active topic of research in numerical mathemat-
ics. Using higher regularity finite dimensional spaces for the Finite Element Method, allows for bet-
ter approximation power per degree of freedom (DOF) (Beirão da Veiga et al., 2011; Sande et al.,
2020). Additionally, this allows the domain to be more accurately imported from Computer Aided De-
sign (CAD) software, which results in a reduction/elimination of domain meshing errors (Cottrell et
al., 2009; Hughes et al., 2005). Isogeometric analysis can be used to solve problems with tools like
(“FEAP”, n.d.). However, at this time, these tools are only used for research purposes. For this reason,
B-splines are commonly used as basis functions. However, these B-splines are unable to be refined
locally. For this reason Truncated Hierarchical B-splines have been developed (Lyche et al., 2018).

One of the tools which can be used to analyse the finite element method is Finite Element Exterior
Calculus (D. N. Arnold, 2018). This approach helps us design and understand why certain methods
work better than others. Finite Element Exterior Calculus concerns itself with the hodge Laplacian.
This is a generalization of the Laplace problem in higher dimensions. The hodge Laplacian shows
up in many problems. One can formulate the hodge Laplace problem as Stokes flow or the Maxwell
equations. In (D. N. Arnold, 2018), they show that the mixed weak formulation of the hodge Laplacian
is consistent, stable and converges, under certain assumption. One of these assumption being, exis-
tence of a commuting projector. A commuting projector is an operator that commutes with the (exterior)
derivative, when mapping from the infinite dimensional complex to the finite dimensional complex. To
give an example, initially projecting a 𝐻1 function on to the finite dimensional space and then calculat-
ing the divergence must give the same result as first calculating the divergence and then projecting it
onto the finite dimensional space. Lastly, in order for the projector to be efficient in practical use, we
desire the projector to be local. This means that the coefficient of a basis function are only dependent
on function data around the support of the basis function. For these reasons, it is interesting to develop
(or at least show existence of) Local commuting Truncated Hierarchical B-spline projectors. These
projectors do currently not exist in literature. Truncated Hierarchical B-spline projectors exist, see for
example (Giust et al., 2020) and there exists local 𝐿2 bounded commuting FEEC projectors (D. Arnold
& Guzmán, 2021). However, no local commuting Truncated Hierarchical B-spline projectors exist in
academic literature.

In this paper, we introduce a Truncated Hierarchical B-spline projector by extending the local Bezier
projector from (Thomas et al., 2015) to Truncated Hierarchical B-splines. For this, a local notion of
linear independence is required for the Truncated Hierarchical B-spline spaces. Additionally, by using
the same approach as in (Buffa et al., 2011) for the 1D setting, a commuting local Truncated Hierarchical
B-spline projector is constructed. In Chapter 2 the Truncated Hierarchical B-spline space is summarized
followed by an overview of Finite Element Exterior Calculus in Chapter 3. In Chapter 4 the commuting
Truncated Hierarchical B-spline projector is introduced for the univariate case and in Chapter 5 the
TruncatedHierarchical B-spline projector for themultivariate case. Chapter 6 contains numerical results
where we compare our proposed projector to (Giust et al., 2020) in the 1D setting and show that the
theoretical convergence results hold. We conclude with our findings in Chapter 7 of this projector.
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2
General Spline Theory

In this chapter we will introduce splines, in particular one-dimensional B-splines. At the end of this
chapter we will expand this notion to higher dimensional splines by taking a tensor product of multiple
one dimensional splines and locally refine these splines spaces to create (T)HB-splines. This section
is highly inspired by (Lyche et al., 2018). Many Theorem are taken from (Lyche et al., 2018), and for
proofs of all the claims in this section, we refer the reader to (Lyche et al., 2018).

2.1. B-spline
Definition 2.1. A knot-sequence 𝝃 is a sequence of non-decreasing real numbers,

𝝃 = {𝜉𝑖}𝑚𝑖=1 = {𝜉1 ≤ 𝜉2 ≤ ⋯ ≤ 𝜉𝑚}, 𝑚 ∈ ℕ

The elements 𝜉𝑖 are called knots.

Assuming that 𝑚 ≥ 𝑝 + 1 ≥ 0, we can define B-splines of degree 𝑝 over the knot-sequence 𝝃:

Definition 2.2. Given a non-negative integer 𝑝 and an integer 𝑗 such that 𝜉𝑗 ≤ 𝜉𝑗+1 ≤ ⋯ ≤ 𝜉𝑗+𝑝+1 are
𝑝 + 2 real numbers taken from a knot-sequence 𝝃. Then the 𝑗𝑡ℎ B-spline is defined to be zero in the
case 𝜉𝑗 = 𝜉𝑗+𝑝+1, otherwise recursively by:

𝑏𝑗,𝑝,𝜉(𝑥) ∶=
𝑥 − 𝜉𝑗
𝜉𝑗+𝑝 − 𝜉𝑗

𝑏𝑗,𝑝−1,𝝃(𝑥) +
𝜉𝑗+𝑝+1 − 𝑥
𝜉𝑗+𝑝+1 − 𝜉𝑗+1

𝑏𝑗+1,𝑝−1,𝝃(𝑥) (2.1)

Starting with:

𝑏𝑗,0,𝝃(𝑥) ∶= {
1, if 𝑥 ∈ [𝜉𝑗 , 𝜉𝑗+1),
0, otherwise.

Here, the convention is to let the fraction be zero, in case of a zero denominator.

These B-splines have the following properties:

Property 2.3. Given a knot-sequence 𝝃 of 𝑚 knots, a degree 𝑝 and 1 ≤ 𝑗 ≤ 𝑛 = 𝑚 − 𝑝 − 1. Then the
𝑛 B-splines have the following properties:

• Local support. A B-spline is locally supported:

𝑏𝑗,𝑝,𝝃(𝑥) = 0, 𝑥 ∉ [𝜉𝑗 , 𝜉𝑗+𝑝+1)

• Non-negativity. All 𝑛 B-splines are non negative everywhere and strictly positive on the open
local support. Meaning:

𝑏𝑗,𝑝,𝝃(𝑥) ≥ 0, 𝑥 ∈ ℝ, 𝑏𝑗,𝑝,𝝃(𝑥) > 0, 𝑥 ∈ (𝜉𝑗 , 𝜉𝑗+𝑝+1)
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Figure 2.1: An example of a B spline. These are second degree B splines defined over the knot-sequence 𝝃 = {0, 1, 2, 3, 4, 5, 6, 7}
and 𝑗 ∈ {1, 2, 3}.

• Piecewise Structure. B-splines have a polynomial piecewise structure. Specifically, restricting
a B-spline to 𝐼𝑖 = [𝜉𝑖 , 𝜉𝑖+1), the B-spline is a polynomial of degree p:

𝑏𝑖𝑗,𝑝,𝝃(𝑥) ∶= 𝑏𝑗,𝑝,𝝃(𝑥)|𝐼𝑖 ∈ ℙ𝑝(𝐼𝑖), 𝑖 =, 𝑗, 𝑗 + 1,… , 𝑗 + 𝑝

where ℙ𝑝(Ω) denotes the space of polynomials of degree up to p defined over domain Ω.

• Local Partition of Unity. The B-splines with support on 𝐼𝑘 = [𝜉𝑘 , 𝜉𝑘+1), for 𝑝 + 1 ≤ 𝑘 ≤ 𝑛, sum
to 1:

𝑘

∑
𝑖=𝑘−𝑝

𝑏𝑖,𝑝,𝝃(𝑥) = 1, 𝑥 ∈ 𝐼𝑘 = [𝜉𝑘 , 𝜉𝑘+1)

• Local Linear Independence. Given a domain 𝐼𝑘 = [𝜉𝑘 , 𝜉𝑘+1) containing at least 𝑝 + 1 distinct
points, the set {𝑏𝑖,𝑝,𝝃(𝑥)}𝑘𝑖=𝑘−𝑝 forms a basis for the polynomial space ℙ𝑝(𝐼𝑘).

An example of B-splines can be seen in Figure 2.1. Here, three B-splines are shown for the knot-
sequence 𝝃 = {1, 2, 3, 4, 5, 6, 7} of different degrees.

2.1.1. Smoothness, Differentiation and Integration
B-splines are a way to enforce higher regularity at element boundaries. For example, as we have seen,
B-splines are locally a degree 𝑝 polynomial and thus, 𝑝 regular on every subdomain 𝐼𝑘 = [𝜉𝑘 , 𝜉𝑘+1).
However, they also exhibit high regularity at boundaries. To show this, the concept of multiplicity is
introduced. This is a counting function 𝜇 that counts the amount of knots present in the knot-sequence.
It is defined as:

Definition 2.4. The counting function 𝜇 ∶ ℝ → ℕ is defined as follows:

𝜇(𝑥) ∶= {𝑚, if 𝑥 appears 𝑚 distinct times in the knot-sequence 𝝃,
0, otherwise.

(2.2)

We will also call a knot 𝜉𝑚 with multiplicity 𝜇 = 𝜇(𝜉𝑚) a knot of multiplicity 𝜇.

B-splines exhibit the following regularity at the knots of knot-sequence:

Theorem 2.1. If 𝜉𝑚 is a knot of the knot-sequence 𝝃 of multiplicity 𝜇(𝜉𝑚) ≤ 𝑝 + 1, then:

𝑏𝑗,𝑝,𝜉 ∈ 𝐶𝑝−𝜇(𝜉𝑚)(𝜉𝑚), (2.3)
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From this theorem, we deduce that the regularity of B-splines can be influenced by choosing an
appropriate knot-sequence. Additionally, if all knots are chosen to be of multiplicity 1, we see that the
B-splines are 𝑝 − 1 regular.

Additionally, the derivative of a B-spline can be explicitly described. For this, we denote the right
derivative with 𝐷+ and the left derivative by 𝐷−. In this case, we the derivative is given as:

Theorem 2.2. Given a knot-sequence 𝝃 and degree 𝑝 > 1. The right derivative of a B-spline 𝑏𝑗,𝑝,𝝃(𝑥)
is given by:

𝐷+𝑏𝑗,𝑝,𝝃(𝑥) = 𝑝 (
𝑏𝑗,𝑝−1,𝝃(𝑥)
𝜉𝑗+𝑝 − 𝜉𝑗

−
𝑏𝑗+1,𝑝−1,𝝃(𝑥)
𝜉𝑗+𝑝+1 − 𝜉𝑗+1

) , 𝑝 > 1 (2.4)

where fractions with zero denominator are taken to be zero.

2.1.2. B-spline function space
Given a domain Ω = [𝑎, 𝑏], we can partition this space with a knot-sequence 𝜉 where 𝜉1 = 𝑎 and 𝜉𝑚 = 𝑏
with 𝑚 being the number of knots. We will introduce terminology with respect to the knot-sequence,
which is crucial for our study/construction of the B-spline spaces.

Definition 2.5. We call a knot-sequence 𝝃 of 𝑚 knots with 𝑛 = 𝑚 − 𝑝 − 1:

• (𝑝 + 1)-regular if 𝜉𝑗 < 𝜉𝑗+𝑝+1 for all 𝑗 = 1,… , 𝑛.

• (𝑝 + 1)-basic if it is (𝑝 + 1) regular and 𝜉𝑝+1 < 𝜉𝑝+2 and 𝜉𝑛 < 𝜉𝑛+1.

• (𝑝 + 1)-open on an interval [𝑎, 𝑏] if it is (𝑝 + 1)-regular and the end knots have multiplicity 𝑝 + 1.
Thus:

𝑎 ∶= 𝜉1 = ⋯ = 𝜉𝑝+1 < 𝜉𝑝+2 ≤ ⋯ ≤ 𝜉𝑛 < 𝜉𝑛+1 = ⋯ = 𝜉𝑛+𝑝+1 =∶ 𝑏

Definition 2.6. Given a knot-sequence 𝝃 of 𝑚 knots and a degree 𝑝. Then, the B-spline space can be
defined as 𝕊𝑝,𝝃 of 𝑛 = 𝑚 − 𝑝 − 1 B-splines:

𝕊𝑝,𝝃 = span {𝑏𝑖,𝑝,𝝃(𝑥)}
𝑛
𝑖=1 . (2.5)

Additionally, define the basis of the B-spline space as 𝒮𝑝,𝝃 = {𝑏𝑖,𝑝,𝝃(𝑥)}𝑛𝑖=1.

In practice, we will usually use a (𝑝 + 1)-open knot-sequence. In this case, the spline space 𝕊𝑝,𝝃
will be linearly independent. This is a consequence of the following theorem:

Theorem 2.3. (Lyche et al., 2018, Sec. 1.3.1)
If 𝝃 is (𝑝 + 1)-basic, then the spline space 𝕊𝑝,𝝃 is linear independent over the basic domain.

The spline space 𝕊𝑝,𝜉 seems arbitrary, but in fact, this space coincides with the space 𝕊𝑟𝑝(Δ), the
space of piecewise polynomials of degree 𝑝 by a given sequence of break points and some prescribed
smoothness. However, for the two spaces to coincide, the knot-sequence must be suitably chosen
from the break points and the smoothness conditions.

The space of piecewise polynomials 𝕊𝑟𝑝(Δ) is defined as follows. Let Δ ∶= {𝜂0 < 𝜂1 < ⋯ < 𝜂𝑙+1}
be a sequence of distinct real numbers that describe the bounds of the elements of the piecewise
polynomials. Moreover, let r ∶= (𝑟1, … , 𝑟𝑙+1) be a vector of integers for which −1 ≤ 𝑟𝑖 ≤ 𝑝 and where
each 𝑟𝑖 describes the regularity at boundary 𝜂𝑖. Then the space of piecewise polynomials is defined
as:

𝕊r𝑝(Δ) ∶= {𝑠 ∶ [𝜂0, 𝜂𝑙+1] → ℝ|𝑠 ∈ ℙ𝑝([𝜂𝑖 , 𝜂𝑖+1)), 𝑖 = 0,… , 𝑙 − 1,
𝑠 ∈ ℙ𝑝([𝜂𝑙 , 𝜂𝑙+1]), 𝑠 ∈ 𝐶𝑟𝑖(𝜂𝑖), 𝑖 = 1,… , 𝑙}.

(2.6)

As stated before, this space 𝕊r𝑝(Δ) and the B-spline space 𝕊𝑝,𝝃 are equivalent, given correctly chosen
knot-sequence 𝝃, element bounds Δ and boundary regularity r:
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Theorem 2.4. (Lyche et al., 2018, Thm 6)
The piecewise polynomial space 𝕊r𝑝(Δ) is characterized in terms of B-splines by

𝕊r𝑝(Δ) = 𝕊𝑝,𝝃

Where the knot-sequence 𝜉 ∶= {𝜉}𝑛+𝑝+1𝑖=1 with 𝑛 ∶= 𝑑𝑖𝑚(𝕊r𝑝(Δ)) is constructed such that

𝜉1 ≤ ⋯ ≤ 𝜉𝑝+1 ∶= 𝜂0, 𝜂𝑙+1 =∶ 𝜉𝑛+1 ≤ ⋯ ≤ 𝜉𝑛+𝑝+1
and

𝜉𝑝+2, … , 𝜉𝑛 ∶=
𝑝−𝑟1

⏜⎴⏞⎴⏜𝜂1, … , 𝜂1, … ,
𝑝−𝑟𝑙

⏜⎴⏞⎴⏜𝜂𝑙 , … , 𝜂𝑙
Next, we will characterize the derivative spline space by the following theorem:

Theorem2.5. (Lyche et al., 2018, Thm 7)Given a knot-sequence 𝝃 ∶= {𝜉𝑖}𝑛+𝑝+1𝑖=1 , we have for 0 ≤ 𝑟 ≤ 𝑝,

𝐷𝑟+𝕊𝑝,𝝃 = 𝕊𝑝−𝑟,𝝃𝑟

where 𝜉𝑟 ∶= {𝜉𝑖}𝑛+𝑝+1−𝑟𝑖=𝑟+1 .

In practice, we will take the knot-sequence 𝝃 to be equidistant. So, partitioning the unit interval in
𝑁 domains, the knots are spaced 1/𝑁 apart, with the multiplicity of the end knots being 𝑝 + 1, to form a
(𝑝 + 1)-open knot-sequence.

2.1.3. Knot Insertion
Given a knot-sequence 𝝃 and a real number �̃� such that 𝜉1 ≤ �̃� ≤ 𝜉𝑛. The sequence �̃� derived from
adding the knot 𝜉 is again a knot-sequence for which we can define a spline space 𝕊𝑝,�̃�. Additionally,
each element 𝑠(𝑥) ∈ 𝕊𝑝,𝝃 can be mapped in to 𝕊𝑝,�̃� with the following theorem:
Theorem 2.6. (Lyche et al., 2018, Thm. 10)
Let the (𝑝 + 1)-basic knot-sequence �̃� ∶= {�̃�𝑖}𝑛+𝑝+2𝑖=1 be obtained from the (𝑝 + 1)-basic knot-sequence
𝝃 ∶= {𝜉𝑖}𝑛+𝑝+1𝑖=1 by inserting one knot 𝜉 such that 𝜉𝑚 ≤ 𝜉 < 𝜉𝑚+1. Then,

𝑠(𝑥) =
𝑛

∑
𝑗=1
𝑐𝑗𝑏𝑗,𝑝,𝝃(𝑥) =

𝑛+1

∑
𝑖=1

�̃�𝑖𝑏𝑖,𝑝,�̃�(𝑥), 𝑥 ∈ [𝜉𝑝+1, 𝜉𝑛+1], (2.7)

where

�̃�𝑖 =
⎧

⎨
⎩

𝑐𝑖 , if 𝑖 ≤ 𝑚 − 𝑝,
𝜉−𝜉𝑖
𝜉𝑖+𝑝−𝜉𝑖

𝑐𝑖 +
𝜉𝑖+𝑝−𝜉
𝜉𝑖+𝑝−𝜉𝑖

𝑐𝑖−1, if 𝑚 − 𝑝 < 𝑖 ≤ 𝑚,
𝑐𝑖−1, if 𝑖 > 𝑚.

(2.8)

As the knot-sequence �̃� is derived from the knot-sequence 𝝃, by adding new knots. It must be that
𝝃 ⊂ �̃�, meaning that by Theorem 2.6, we have that 𝕊𝑝,𝝃 ⊂ 𝕊𝑝,�̃�. This process thus creates nested
B-spline spaces.

2.1.4. Choosing appropriate knot-sequences
To show the effect the knot-sequence can have, the following problem is solved with the finite element
method with various different B-spline spaces.

𝐷2𝑢 = | sin (2𝜋𝑥) |, ∀𝑢 ∈ (0, 1)
𝑢(0) = 𝑢(1) = 0 (2.9)

The results can be seen in Table 2.1. Note that while keeping the number of degree of freedom 𝑛 the
same for all B-spline spaces, the general trend is that increasing the polynomial degree improves the
solution. However, for case d, the spline space of degree 4 is less accurate than case c, with degree
3. This is a result of the underlying problem. In (2.9), the final solution must be 𝐶2 regular at the point
𝑥 = 1/2. However, the B-spline space in case d is 𝐶3 regular. We can improve upon this, by making
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case 𝑝 𝑛 𝝃 error
a 1 9 {0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1} 0.0837
b 2 9 {0, 0, 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1, 1, 1} 0.0093
c 3 9 {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1} 0.0031
d 4 9 {0, 0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1, 1} 0.0043
e 4 9 {0, 0, 0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1, 1, 1} 0.0021

Table 2.1: Problem (2.9) has been solved with various different B-spline spaces of various degrees 𝑝 and different knot-
sequences 𝝃 while keeping the number of degrees of freedom 𝑛 constant. One can see that the error reduces with increasing
degree. However, for 𝑝 = 4, the error is worse than 𝑝 = 3. This is due to the fact that solution must be 𝐶2 regular at the point
𝑥 = 1/2. In option e, we have altered the knot-sequence such that the B-splines of the resulting spline space are 𝐶2 regular at
the point 𝑥 = 1/2.

sure that the B-spline space is 𝐶2 regular at the point 𝑥 = 1/2 by setting the multiplicity of the knot
𝜉 = 1/2 to be 𝜇(𝜉) = 𝑝 − 2. See case e.

To see the differences in regularity between the cases, in Figure 2.2 one can see the second deriva-
tive for the cases c,d and e. Here it becomes clear that case e is the best option, as it is able to approx-
imate the forcing term the best away from 𝑥 = 1/2, while also being able to deal with the discontinuous
derivative at 𝑥 = 1/2.

0 0.2 0.4 0.6 0.8 1

0

0.5

1 forcing term
case c

case d
case e

Figure 2.2: The second derivative of the solutions to problem (2.9) for cases c,d and e of Table 2.1. Here it is clear that case e
is the best option, as case e is able to approximate the forcing term the best over the whole domain, including the point 𝑥 = 1/2
where case d has issues with the discontinuous derivative.

2.1.5. Multivariate spline spaces
The multivatiate B-splines are constructed as a tensor product of the previously discussed one dimen-
sional B-splines. Thus, we obtain spline functions 𝐵(𝑥, 𝑦) that are defined as:

𝑏𝑖,𝑝𝑥 ,𝝃𝑥 ,𝑗,𝑝𝑦 ,𝝃𝑦(𝑥, 𝑦) ∶= 𝑏𝑖,𝑝𝑥 ,𝝃𝑥(𝑥)𝑏𝑗,𝑝𝑦 ,𝝃𝑦(𝑦), (2.10)

and similarly for more variables. Note that 𝑝𝑥 , 𝑝𝑦 are the degree of the splines in the 𝑥 direction and
the 𝑦 direction. Additionally we denote 𝑛𝑥 , 𝑛𝑦 as the amount of splines in each direction. As there are
multiple knot-sequences, a domain rectangle can be constructed as follows:

𝑅 ∶= [𝜉𝑥,𝑝𝑥+1, 𝜉𝑥,𝑛𝑥+1] × [𝜉𝑦,𝑝𝑦+1, 𝜉𝑦,𝑛𝑦+1]

See Figure 2.3 for an example of a multivariate B-spline. It is clear from the tensor product nature of
the multivariate B-spline spaces that the they inherit all the features of the univariate B-spline spaces.
Additionally, when indexing the elements by 𝑒, we can define a mesh regularity constant 𝜇𝑒, which is
the ratio of the elements smallest edge, and its diameter ℎ𝑒. In the case of B-splines with equidistant
knot spacing, this constant is the same for every element, as will also be the case for (T)HB-spline
spaces.
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Figure 2.3: A multivariate B-spline constructed as the tensor product of two univariate B-splines.

2.2. Hierarchical B-Spline Spaces
A big disadvantage of the multivariate B-spline spaces, is that the accuracy has to be determined in a
global sense (see for example Figure 2.4). Here, we desire higher accuracy in the lower left corner, and
additional knots have been inserted to accomplish this. However, the top left and bottom right corners
also have increased knots, and thus an undesired increase of accuracy. This increased accuracy
comes at the cost more degrees of freedom of the final spline space, and will thus have a negative
impact on computation time.

Figure 2.4: Given a domain rectangle R and the knot-sequences 𝝃𝑥 = 𝝃𝑦 = {0, 1/2, 1, 3/2, 2, 3, 4, 5}. This choice of knot-sequences
allows the resulting multivariate B splines complex allows for higher accuracy in the lower left quadrant of the domain rectangle.
However the top left and bottom quadrants are also higher accuracy as a result. This might not be desired since this will require
additional resources.

To remedy the undesired increase in inaccuracy / degrees of freedom, a hierarchical B-spline space
will be introduced. These splines will initially be introduced in the univariate case, but can be extended
to the multivariate case very naturally.

2.2.1. Univariate Hierarchical B-Spline Spaces
In order to locally refine the mesh (and thus locally increase the accuracy), we will define a sequence
of domains, Ω𝑙 for 𝑙 = 1,… , 𝐿 and Ω𝑙+1 ⊂ Ω𝑙. See Figure 2.5a for such a collection of domains. These
refinement domains, must be chosen such that they are a collection of present mesh elements 𝑒. For
example, Ω2 in Figure 2.5a is the second, third, fourth and fifth element of the B-spline space 𝕊𝑝,𝝃1 .

Additionally, on each domain, wewill define a (𝑝+1)-open knot-sequence 𝝃𝑙 that refines the previous
level knot-sequence 𝝃𝑙−1 by splitting every element in two equal parts. This results in a nested knot-
sequence:

𝝃1 ⊂ 𝝃2 ⊂ ⋯ ⊂ 𝝃𝐿
See Figure 2.5b for an example of nested knot-sequences. Additionally, as a result from Theorem 2.6,
the associated B-spline spaces are nested:

𝕊𝑝,𝝃1 ⊂ 𝕊𝑝,𝝃2 ⊂ ⋯ ⊂ 𝕊𝑝,𝝃𝐿
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Ω1

Ω2

Ω3

(a) A hierarchical set of domains.

𝝃1, 𝒮𝑝,𝝃1

𝝃2, 𝒮𝑝,𝝃2

𝝃3, 𝒮𝑝,𝝃3

(b) A hierarchical set of knot-sequences and their B-spline
basis functions.

Figure 2.5: A set set of hierarchical domains of three levels and the knot-sequences defined on each level. Note that the knot-
sequences are nested, and the next level of knot-sequences is defined by splitting all elements of the previous level in two.

The way to construct the hierarchical B-spline space, is to pick the right splines from all these B-spline
spaces of different levels, such that on domain Ω𝑙, the level 𝑙 B-spline whose support is entirely con-
tained in Ω𝑙, are present. For this, denote the collection of sub domains as 𝛀 ∶= {Ω1, Ω2, … , Ω𝐿}, which
we will refer to as the domain hierarchy. On this domain hierarchy, a finite element space can defined,
see Definition 2.7.

Definition 2.7. Given a domain hierarchy 𝛀, the corresponding basis set of HB-splines is denoted by
ℋΩ and defined recursively as follows:

(i) ℋ1 ∶= {𝑏𝑗,1(𝑥) ∈ ℬ𝑝,𝝃1 ∶ supp (𝑏𝑗,1(𝑥)) ≠ ∅}

(ii) for 𝑙 = 2,… , 𝐿:
ℋ𝑙 ∶= ℋ𝐶

𝐿 ∪ℋ𝐹
𝑙 .

where

ℋ𝐶
𝑙 ∶= {𝑏𝑗,𝑘(𝑥) ∈ ℋ𝑙−1 ∶ supp (𝑏𝑗,𝑙(𝑥)) ⊈ Ω𝑙} ,

ℋ𝐹
𝑙 ∶= {𝑏𝑗,𝑙(𝑥) ∈ ℬ𝑝,𝝃𝑙 ∶ supp (𝑏𝑗,𝑙(𝑥)) ⊆ Ω𝑙} .

(iii) ℋ𝛀 ∶= ℋ𝐿.

Additionally, the hierarchical B-spline space is defined as ℍ𝛀 ∶= span (ℋ𝛀)

To summarize this definition, for the initial level we take all the splines of ℬ1 that have non vanishing
support on Ω1. Next, for every recursive level 𝑙 > 1, we take all the splines from the previous level
ℋ𝑙−1 whose support is not entirely contained in Ω𝑙. To this set, add all the splines of ℬ𝑙 whose support
is entirely contained in Ω𝑙. In Figure 2.6, the resulting HB-spline space can be seen from the example
Domain Hierarchy from Figure 2.5.

2.2.2. Multivariate Hierarchical B-Spline Spaces
For the Multivariate case, notice that Definition 2.9 can be extended to any number of dimensions, by
replacing all univariate B-spline spaces with multivariate B-spline spaces. By doing so, the domain
hierarchy is also extended to the multidimensional case, and we obtain a multidimensional mesh. See
Figure 2.7 for an example. In this example, the lower left corner is refined.

2.2.3. Properties
HB-spline spaces have the following properties:

Property 2.8. Given a Hierarchical B-spline spaceℍ𝛀, the function space has the following properties:

• Local support. An HB-spline is locally supported.

• Non-negativity. All HB-splines are non-negative everywhere and strictly positive on the open
local support.

• Piecewise Structure. HB-splines have a polynomial piecewise structure.
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𝝃1, 𝒮𝑝,𝝃1

𝝃2, 𝒮𝑝,𝝃2

𝝃3, 𝒮𝑝,𝝃3

ℋ𝛀

Ω1

Ω2

Ω3

Figure 2.6: The resulting hierarchical B-spline space ℍ𝛀 resulting from the domain hierarchy from Figure 2.5.

Figure 2.7: Local refinement possible by using hierarchical domains.

• Global Linear Independence. Over the entirety of the domain Ω1, the collection of all HB-splines
are linearly independent.

Of this list of properties, only the global linear independence is non-trivial. See (Lyche et al., 2018)
for a proof. Comparing this list to the list of properties of B-splines, two things stand out. First, the
HB-spline space is only globally linearly independent than locally on every element. Secondly, the
HB-spline space no longer has the partition of unity property. To obtain a Hierarchical B-spline space
that does have the partition of unity property, the Hierarchical B-spline spaces are altered to create a
Truncated Hierarchical B-spline space.

2.3. Truncated Hierarchical B-splines spaces
Truncated Hierarchical B-spline spaces are an altered Hierarchical B-spline space, such that the space
has the partition of unity property. For this space, we will first introduce the truncation operator defined
over level 𝑙:

trunc𝑙,𝛀 ∶ 𝕊𝑝𝑙 ,𝜉𝑙 → 𝕊𝑝𝑙 ,𝜉𝑙 , (2.11)

trunc𝑙,𝛀 (
𝑛𝑙
∑
𝑗=1
𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥)) ∶= ∑

𝑗∶suppΩ(𝑏𝑗,𝑙(𝑥))⊈Ω𝑙

𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥). (2.12)

This truncation operator, when refining to level 𝑙, disregards all information belonging the basis functions
of 𝕊𝑝𝑙 ,𝝃𝑙 which are elements of the intermediary HB-spline basis. Additionally, as for the construction of
the B-spline spaces, we have that:
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𝒯3 = 𝒯𝛀

𝒯2

𝒯1

Ω1

Ω2

Ω3

Figure 2.8: The resulting Truncated Hierarchical B-spline space 𝕋𝛀 resulting from the domain hierarchy from Figure 2.5.

𝕊𝑝,𝝃1 ⊂ 𝕊𝑝,𝝃2 ⊂ ⋯ ⊂ 𝕊𝑝,𝝃𝐿
The truncation operator can be extended to all B-spline spaces of level 𝑙 and lower. This truncation
operator can be used to construct Hierarchical B-spline spaces that have the partition of unity property.
To see why, when a level 𝑙 − 1 B-spline is projected into the level 𝑙 B-splines, we obtain the following
linear combination:

𝑏𝑖,𝑙−1(𝑥) =
𝑛𝑙
∑
𝑗=1
𝑐𝑖,𝑗,𝑙𝑏𝑗,𝑙(𝑥), 𝑥 ∈ Ω1. (2.13)

It can happen that the lower level B-spline 𝑏𝑖,𝑙−1(𝑥), is dependent on a level 𝑙 B-spline 𝑏𝑗,𝑙(𝑥), that is an
element of the HB-spline basis. Then, the unit sum of all HB-spline basis functions up to level 𝑙, must
be equal or greater then 1 + 𝑐𝑖,𝑗,𝑙𝑏𝑗,𝑙(𝑥) > 1. Note that for the level 𝑙 B-spline space, these 𝑐𝑖,𝑗,𝑙 can be
calculated. Clearly, this can happen for many level 𝑙 B-splines. However, by truncating all the lower
level HB-splines, these additional components, 𝑐𝑖,𝑗,𝑙, vanish. Doing this in for every intermediary level
in the HB-spline space construction, we obtain the Truncated Hierarchical B-spline space:

Definition 2.9. Given a domain hierarchy 𝛀 the corresponding set of THB-splines basis functions is
denoted by 𝒯Ω and defined recursively as:

(i) 𝒯1 ∶= {𝑏𝑗,1(𝑥) ∈ ℬ1 ∶ suppΩ(𝑏𝑗,1(𝑥)) ≠ ∅}

(ii) for 𝑙 = 2,… , 𝐿:
𝒯𝑙 ∶= 𝒯𝐶𝑙 ∪ 𝒯𝐹𝑙 ,

where

𝒯𝐶𝑙 ∶= {trunc𝑙,Ω(𝑏𝑗,𝑘(𝑥)) ∶ 𝑏𝑗,𝑘(𝑥) ∈ 𝒯𝑙−1, suppΩ (𝑏𝑗,𝑘(𝑥)) ⊈ Ω𝑙}
𝒯𝐹𝑙 ∶= {𝑏𝑗,𝑙(𝑥) ∈ ℬ𝑙 ∶ suppΩ (𝑏𝑗,𝑙(𝑥)) ⊆ Ω𝑙}

(iii) 𝒯Ω ∶= 𝒯𝐿
Then, the space of Truncated Hierarchical B-splines is given by 𝕋𝛀 ∶= span {𝒯𝛀}.

Note that from the definition of the truncated hierarchical B splines, the number of basis functions
is the same as the number of basis functions for the hierarchical B splines. See Figure 2.8, for an
example of a Truncated Hierarchical B-spline space.

2.3.1. Properties
THB-spline spaces have the following properties.

Property 2.10. Given aHierarchical B-spline spaceℍ𝛀, the function space has the following properties:
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• Local support. A THB-spline is locally supported.

• Non-negativity. All THB-splines are non negative everywhere and strictly positive on the open
local support.

• Piecewise Structure. THB-splines have a polynomial piecewise structure.

• Partition of Unity. All the basis functions of 𝒯Ω sum to the unit function over Ω1.

• Global Linear Independence. Over the entirety of the domain Ω1, the collection of all THB-
splines are linearly independent.

2.4. Bernstein Polynomials
Additionally, a particular set of B-splines will be introduced, namely the Bernstein polynomials. These
are a special subset of B-splines for which the inverse Gramian matrices are known. The Bernstein
polynomials are defined as:

𝔟𝑖,𝑝(𝑥) ∶= (
𝑝

𝑖 − 1) (𝑥)
𝑖−1 (1 − 𝑥)𝑝+1−𝑖 , 𝑖 = {1, 2, … , 𝑝 + 1} , 𝑥 ∈ [0, 1]. (2.14)

See Figure 2.9 for an example of degree 4 Bernstein polynomials.

Figure 2.9: Degree 4 Bernstein polynomials over a unit interval.

As stated before, the Bernstein polynomials are a special set of B-splines. They are defined for the
knot-sequence 𝝃 ∶= {0,… , 0, 1, … , 1}, where both knots have multiplicity 𝑝 + 1. We will proof this with
induction. This clearly holds for 𝑝 = 0. For the induction step, assume that 𝔟𝑖,𝑝−1(𝑥) = 𝑏𝑖,𝑝−1,𝝃𝑝−1(𝑥).
Then, we have:

𝑏𝑗,𝑝,𝝃𝑝(𝑥) =
𝑥 − 𝜉𝑗
𝜉𝑗+𝑝 − 𝜉𝑗

𝑏𝑗,𝑝−1,𝝃𝑝(𝑥) +
𝜉𝑗+𝑝+1 − 𝑥
𝜉𝑗+𝑝+1 − 𝜉𝑗+1

𝑏𝑗+1,𝑝−1,𝝃𝑝(𝑥) (2.15)

= 𝑥𝑏𝑗−1,𝑝−1,𝝃𝑝−1(𝑥) + (1 − 𝑥)𝑏𝑗,𝑝−1,𝝃𝑝−1(𝑥) (2.16)

= 𝑥(𝑝 − 1𝑗 − 2)𝑥
𝑗−2(1 − 𝑥)𝑝−𝑗+1 + (1 − 𝑥)(𝑝 − 1𝑗 − 1)𝑥

𝑗−1(1 − 𝑥)𝑝−𝑗 (2.17)

= (𝑝 − 1𝑗 − 2)𝑥
𝑗−1(1 − 𝑥)𝑝−𝑗+1 + (𝑝 − 1𝑗 − 1)𝑥

𝑗−1(1 − 𝑥)𝑝−𝑗+1 (2.18)

= ( 𝑝
𝑗 − 1)𝑥

𝑗−1(1 − 𝑥)𝑝−𝑗+1 (2.19)

= 𝔟𝑗,𝑝(𝑥) (2.20)

The B-splines are renumbered, since the degree 𝑝 − 1 knot-sequence, has two knots less. Addi-
tionally, the binomial recursion equation has been used. Lastly, for certain 𝑗, the fractions do not exist.
However, exactly for those fractions, the binomial coefficients do not exist as well. These terms are
interpreted to be zero. The relation will thus still hold.
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For a product of Bernstein polynomials over the unit interval, we have the following result:

∫
1

0
𝔟𝑖,𝑝(𝑥)𝔟𝑗,𝑝(𝑥)𝑑𝑥 =

1
2𝑝 + 1(

2𝑝
𝑖 + 𝑗 − 4)

−1
( 𝑝
𝑖 − 2)(

𝑝
𝑗 − 2) (2.21)

From this result, the Gramian matrix can be constructed:

[𝐺]𝑖,𝑗 = ∫
1

0
𝔟𝑖,𝑝(𝑥)𝔟𝑗,𝑝(𝑥)𝑑𝑥 (2.22)

And the entires of the inverse of the Gramian matrix are given by:

[𝐺−1]𝑖,𝑗 =(−1)
𝑖+𝑗−2 [( 𝑝

𝑖 − 2)(
𝑝

𝑗 − 2)]
−1
×

min(𝑖−1,𝑗−1)

∑
𝑘=1

(2𝑘 − 1)(𝑝 − 𝑘 − 1𝑝 − 𝑖 − 2)(
𝑝 − 𝑘 − 1
𝑝 − 𝑗 − 2)(

𝑝 + 𝑘
𝑝 − 𝑖 − 2)(

𝑝 + 𝑘
𝑝 − 𝑗 − 2)

(2.23)

See (Jüttler, 1998), for proofs of these statements.

2.5. Supplemental theory
We will finish this chapter with some external results for splines. Starting with the following lemma from
(Bazilevs et al., 2006), which is an approximation result for a given B-spline space 𝕊 and an element
𝑒, on the support extension �̃�. The support extension is defined as:

Definition 2.11. The support extension �̃� of an element 𝑒, is the union of the supports of all splines
of some spline space 𝕊 with non-empty support on 𝑒:

�̃� ∶= ⋃
𝑏(𝑥)∈ℙ

Ω𝑒⊂supp(𝑏(𝑥))

supp(𝑏𝑗(𝑥)). (2.24)

Then, we can approximate 𝑣 ∈ 𝐻𝑙(Ω�̃�) by the following lemma:

Lemma 2.7 (Lemma 3.1, (Bazilevs et al., 2006)). Let 𝑘 and 𝑙 be integer indices with 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑝+1.
Given 𝑒, and support extension �̃�, 𝑣 ∈ 𝐻𝑙 (Ω�̃�), there exists an 𝑠 ∈ 𝕊 such that:

|𝑣 − 𝑠|𝐻𝑘(Ω�̃�) ≤ 𝐶ℎ𝑙−𝑘𝑒 |𝑣|𝐻𝑙(Ω�̃�). (2.25)

Here ℎ𝑒, is the diameter of element element 𝑒 and 𝐶 is a constant independent of ℎ𝑒, but possibly
dependent on 𝑙, 𝑘 and 𝜇, the mesh shape constant.

Additionally, on an element 𝑒, the local 𝐿2 projection onto the Bernstein polynomials, with the help
of the Gramian matrices introduced in Section 2.4, can be bound by the following lemma from (Thomas
et al., 2015).

Lemma 2.8 (Lemma A.5, (Thomas et al., 2015)). For each element 𝑒, the local Bernstein coefficient
vector 𝜷𝑒 associated with the local 𝐿2-projection of a function 𝑓 ∈ 𝐿2 (Ω𝑒) onto the space of polynomials
of degree 𝑝 satisfies the inequality:

‖𝜷𝑒‖∞≤
𝐶𝑝

|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω𝑒), (2.26)

where 𝐶𝑝 is a constant only dependent upon the polynomial degree 𝑝.





3
Finite Element Exterior Calculus

Finite Element Exterior Calculus (FEEC) concerns itself with choosing appropriate finite dimensional
spaces for the so called abstract Hodge Laplace problem. This is a generalization of the Laplacian
problem, which in 1D is given by the problem of finding 𝑢(𝑥) ∈ 𝐻20 ([0, 1]):

− 𝑑2
𝑑𝑥2𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ (0, 1),

𝑢(0) = 𝑢(1) = 0.
(3.1)

For a given forcing function 𝑓(𝑥) ∈ 𝐿2([0, 1]). One way to solve this problem, is by writing the problem
in the mixed weak form, where we look for the function pair (𝑢, 𝜎) ∈ 𝐿2([0, 1]) × 𝐻1([0, 1]):

∫
1

0
𝜏(𝑥)𝜎(𝑥)𝑑𝑥 − ∫

1

0

𝑑
𝑑𝑥𝜏(𝑥)𝑢(𝑥)𝑑𝑥 = 0, ∀𝜏(𝑥) ∈ 𝐻1([0, 1]),

∫
1

0
𝑣(𝑥) 𝑑𝑑𝑥𝜎(𝑥)𝑑𝑥 = ∫

1

0
𝑣(𝑥)𝑓(𝑥)𝑑𝑥, ∀𝑣(𝑥) ∈ 𝐿2([0, 1]).

(3.2)

In this formulation, the Dirichlet boundary conditions are implicitly enforced in the formulation. When
we solve this problem with Galerkin’s method, a choice has to be made for which finite dimensional
spaces to use. Depending on this choice, the method might be stable, or unstable. For example, for a
given partition Δ of the unit domain, we can define the local piecewise polynomial spaces:

𝔽−1𝑝 ∶= {𝑣 ∈ 𝐿2([0, 1]) ∶ 𝑣|𝐼(𝑥) ∈ ℙ𝑝(𝐼), ∀𝐼 ∈ Δ} (3.3)

Then, in Figure 3.1, two choices are shown. The left graph shows the solution to 𝑢 and the right graph
the solution for 𝜎. In both graphs, three lines are plotted, a blue line which represents the analytical
solution, and two solutions, shown with green and red lines. Both represent a different choice of finite
dimensional spaces. In the case of the green solution, 𝑢 is approximated in the space 𝐹−10 , and 𝜎 in the
space 𝐹−11 . This choice approximates the analytical solution (the blue line is almost perfectly covered
by the green line in the right graph). The red solution, where the space 𝐹−10 is used for 𝑢, and 𝐹−12 for 𝜎,
performs a lot worse, despite, theoretically, allowing for better approximations. Finite Element Exterior
Calculus concerns it self with this issue.

We will first introduce the Hilbert Complex. This is a collection of function spaces, coupled by
the exterior derivative (in practice, these are regular derivatives, or vector derivatives like grad and
curl). On this Hilbert Complex, we will introduce the abstract Hodge Laplacian, which is (as we will
see) a generalization of the (vector) Laplace problem. Next, the abstract Hodge Laplace problem will
be formulated as a mixed weak formulation. Similarly as was done for the example. For the mixed
weak formulation, we will see that the abstract Hodge Laplacian, under three requirements on the finite
dimensional spaces, are well posed and stable. We will end this Chapter by looking closer at what kind
of function spaces the Hilbert Complex is made of, introduce some polynomial Finite element spaces,
and see what the current state of THB-splines used in FEEC is.

15
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Figure 3.1: The solution to the mixed weak problem in (3.2). The left graph shows the solution of function 𝑢 and the right graph
shows the solution to the 𝜎 function. In both graphs, three lines. The blue being the analytical solution. The red and green being
solutions for a particular choice of finite element spaces. The green solution belongs to the choice of 𝐹−10 for 𝑢, and 𝐹−11 for
𝜎, while the red solution belongs to the choice of 𝐹−10 for 𝑢, and 𝐹−12 for 𝜎. Even though, the red solution should have better
approximation power, the red solution performs a lot worse. Image taken from (D. N. Arnold et al., 2010).

3.1. Hilbert Complex
We start by introducing a Hilbert complex:

Definition 3.1. A Hilbert complex is a sequence of Hilbert spaces 𝑊𝑘 and a sequence of closed
densely defined linear operators 𝑑𝑘 from𝑊𝑘 to𝑊𝑘+1 such that ℛ(𝑑𝑘) ⊂ 𝒩(𝑑𝑘+1).

We call the linear operator 𝑑𝑘 the exterior derivative and the exterior derivative has the property
that ℛ(𝑑𝑘) ⊂ 𝒩(𝑑𝑘+1) implies that 𝑑𝑘+1 ∘ 𝑑𝑘 = 0. The simplest example of a Hilbert complex can be
constructed in 1D as follows:

Example 1. In one dimension, we take the domain to be the unit interval Ω = (0, 1). Let 𝑊0 be the
Hilbert space 𝐿2(Ω) and 𝑊1 = 𝐿2(Ω). Let the exterior derivative 𝑑0 be the classical derivative. Then
the Hilbert complex is given by:

𝐿2(Ω) 𝐿2(Ω)
𝑑
𝑑𝑥

Note, that in this case, since there is only one exterior derivative (namely 𝑑/𝑑𝑥), the required property
𝑑𝑘+1 ∘ 𝑑𝑘 = 0 is always satisfied.

Note that in the previous example, there is only one exterior derivative. The requirement that
ℛ(𝑑𝑘) ⊂ 𝒩(𝑑𝑘+1), is thus always satisfied. However, we can construct complexes where this require-
ment plays a role. For example, the following complex in three dimensions, for the three dimensional
unit cube Ω = (0, 1)3:

𝐿2(Ω) 𝐿2(Ω;ℝ3) 𝐿2(Ω;ℝ3) 𝐿2(Ω)grad curl div

Due to the vector identities curl(grad(𝑓)) = 0 and div(curl(�⃗�)) = 0 and a density argument, we find
that this is in fact, a Hilbert complex.

Due to the closed dense property of the exterior derivative, the whole space is not the domain of
the exterior derivative. For this, we can additionally define the domain complex, as:

Definition 3.2. Given a Hilbert complex 𝑊𝑘 and the exterior derivatives 𝑑𝑘 ∶ 𝑊𝑘 → 𝑊𝑘+1, define the
domain complex as:

𝑉𝑘 ∶= 𝐷(𝑑𝑘). (3.4)

Where 𝐷(𝑑𝑘) is the domain of the operator 𝑑𝑘 in𝑊𝑘.
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Given a Hilbert and a domain complex, note the similar structure for both:

… 𝑊𝑘−1 𝑊𝑘 𝑊𝑘+1 …𝑑 𝑑 𝑑 𝑑 (3.5)

… 𝑉𝑘−1 𝑉𝑘 𝑉𝑘+1 …𝑑 𝑑 𝑑 𝑑 (3.6)

Example 2. The three dimensional 𝐿2 de Rham complex. Given the three dimensional Hilbert complex,
the domain complex is given by:

𝐻1(Ω) 𝐻(Ω, curl) 𝐻(Ω, div) 𝐿2(Ω)grad curl div (3.7)

Here 𝐻(Ω, curl) are the 𝐿2(Ω,ℝ3) functions such that the curl exists and is an element of 𝐿2(Ω,ℝ3).
Similarly, 𝐻(Ω, div) are the 𝐿2(Ω,ℝ3) functions such that the divergence is an element of 𝐿2(Ω).

3.1.1. The adjoint of the exterior derivative
Since by definition, 𝑑𝑘 is a densely defined linear operator from 𝑊𝑘 to 𝑊𝑘+1, we may define an un-
bounded linear operator from𝑊𝑘+1 to𝑊𝑘 called the adjoint of 𝑑𝑘, which we denote by 𝑑∗𝑘+1. To define
the adjoint, consider any 𝑤 ∈ 𝑊𝑘+1. Then, since every 𝑊𝑘 is a Hilbert space, we can take the inner
product to define a linear mapping 𝐷(𝑑𝑘) → ℝ:

𝑣 → ⟨𝑤, 𝑑𝑘𝑣⟩𝑊𝑘+1 , 𝑣 ∈ 𝐷(𝑑𝑘) (3.8)

Next, we consider the set of 𝑤 ∈ 𝑊𝑘+1 for which the above linear functional (3.8) is bounded in the𝑊𝑘

norm. For example, the elements of 𝑤 ∈ 𝑊𝑘+1 for which there exists a 𝑐𝑤, such that:

|⟨𝑤, 𝑑𝑘𝑣⟩𝑊𝑘+1 | ≤ 𝑐𝑤||𝑣||𝑊𝑘 , ∀𝑣 ∈ 𝐷(𝑑𝑘)

Define this set of 𝑤 ∈ 𝑊𝑘+1 as the domain of 𝑑∗𝑘+1, denoted by 𝐷(𝑑∗𝑘+1). For any of such 𝑤 ∈ 𝐷(𝑑∗𝑘+1),
we can extend (3.8) to a bounded linear functional over the whole domain 𝑊𝑘, since 𝐷(𝑑𝑘) is dense
in𝑊𝑘. By now applying the Riesz representation theorem, there must exist a unique element 𝑥 ∈ 𝑊𝑘

such that:

⟨𝑤, 𝑑𝑘𝑣⟩𝑊𝑘+1 = ⟨𝑥, 𝑣⟩𝑊𝑘 , ∀𝑣 ∈ 𝐷(𝑑𝑘)
Then we define the adjoint 𝑑∗𝑘+1 by setting 𝑑∗𝑘+1𝑤 = 𝑥. Meaning:

⟨𝑑∗𝑘+1𝑤, 𝑣⟩𝑊𝑘 = ⟨𝑤, 𝑑𝑘𝑣⟩𝑊𝑘+1 (3.9)

And the domain𝑤 ∈ 𝐷(𝑑∗𝑘+1) is exactly those elements of𝑊𝑘+1, for which there exists a unique element
of 𝑥 ∈ 𝑊𝑘. This element 𝑥 fulfills the above equation for 𝑑∗𝑘+1𝑤 = 𝑥.

Example 3. In the 1D case, the adjoint of the exterior derivative 𝑑/𝑑𝑥, is again given by 𝑑/𝑑𝑥. The
domain of the adjoint is 𝐻10 ([0, 1]), where the subscript 0 denotes zero boundary information. To see
that this is a bounded adjoint, take 𝑣 ∈ 𝐻1 ([0, 1]) and 𝑤 ∈ 𝐻10 ([0, 1]), then:

|⟨𝑤, 𝑑𝑣𝑑𝑥 ⟩
𝐿2([0,1])

| = |∫
1

0
𝑤𝑑𝑣𝑑𝑥𝑑𝑥|

= |∫
1

0
𝑣𝑑𝑤𝑑𝑥 𝑑𝑥| (Integration by parts)

≤ ‖𝑤‖𝐻1([0,1])‖𝑣‖𝐿2([0,1]).

Then, we have that 𝑐𝑤 = ‖𝑤‖𝐻1([0,1]). Note, the domain of the adjoint cannot be larger than 𝐻10 ([0, 1]).
For instance, if we allow boundary information, by integration by parts, we obtain a term that is unable
to be written in the regular 𝐿2 norm. Likewise, if we take 𝑤 ∈ 𝐿2 ([0, 1]), we can not perform integration
by parts, meaning that the r.h.s. is bounded by ‖𝑑𝑣/𝑑𝑥‖𝐿2([0,1]), which is not the regular 𝐿2 norm.
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3.1.2. The dual complex
The notation of the adjoint suggests that we can also create a Hilbert complex, where the adjoint
operators map in the reversed direction. This is indeed the result of the following two theorems. The first
shows that the adjoints are closed densly defined operators, while the second relates the range/kernel
of 𝑑𝑘 to the kernel/range of the adjoing 𝑑∗𝑘. See (D. N. Arnold et al., 2010) for proofs.

Theorem 3.1. If 𝑑𝑘 is a closed densely defined unbounded operator from𝑊𝑘 to𝑊𝑘+1, then 𝑑∗𝑘+1 is a
closed densely defined operator from𝑊𝑘+1 to𝑊𝑘.

Theorem 3.2. Given 𝑑𝑘 a closed densely defined operator𝑊𝑘 to𝑊𝑘+1. Then

ℛ(𝑑𝑘)⊥ = 𝒩(𝑑∗𝑘+1), 𝒩(𝑑𝑘)⊥ = ℛ(𝑑∗𝑘+1), ℛ(𝑑∗𝑘+1)⊥ = 𝒩(𝑑𝑘), 𝒩(𝑑∗𝑘+1)⊥ = ℛ(𝑑𝑘) (3.10)

As a direct result of Theorem 3.2, we find that ℛ(𝑑∗𝑘+1) ⊂ 𝒩(𝑑∗𝑘). This is shown as follows:

ℛ(𝑑∗𝑘+1) ⊂ ℛ(𝑑∗𝑘+1) = 𝒩(𝑑𝑘)⊥ ⊂ ℛ(𝑑𝑘−1)⊥ = 𝒩(𝑑∗𝑘)

Combining these results, we find that we can define the dual complex of a Hilbert complex denoted by
(𝑊, 𝑑∗):

… 𝑊𝑘−1 𝑊𝑘 𝑊𝑘+1 …𝑑∗𝑘−1 𝑑∗𝑘 𝑑∗𝑘+1 𝑑∗𝑘+2
(3.11)

And the dual domain complex:

… 𝑉∗𝑘−1 𝑉∗𝑘 𝑉∗𝑘+1 …𝑑∗𝑘−1 𝑑∗𝑘 𝑑∗𝑘+1 𝑑∗𝑘+2
(3.12)

where 𝑉∗𝑘 = 𝐷(𝑑∗𝑘).

Example 4. Given the domain complex for the three dimensional 𝐿2 de Rham complex, the dual com-
plex is given by:

𝐿2(Ω) �̊�(Ω,div) �̊�(Ω, curl) �̊�1(Ω)−div curl ‐grad (3.13)

The small circles, denote reduced boundary information. For �̊�1(Ω), this means that the functions have
zero boundary information. For �̊�(Ω, curl), the functions have zero in tangential boundary information.
Lastly, for �̊�(Ω,div), the functions have zero normal boundary information. To see that the divergence
is the adjoint of the gradient, we can integrate div (𝑓�⃗�) with 𝑓 ∈ 𝐻1(Ω) and �⃗� ∈ 𝐻(Ω,div). Then by
stokes, we find:

∫
Ω
grad(𝑓) ⋅ �⃗�𝑑𝑉 + ∫

Ω
𝑓div(�⃗�)𝑑𝑉 = ∫

𝜕Ω
�̂� ⋅ (𝑓�⃗�) 𝑑𝑆

In case that �⃗� vanishes at the boundary, the right hand side disappears and it becomes obvious
that the divergence is the adjoint of the gradient. For a more extensive argument, on why these are the
adjoints, see (D. N. Arnold, 2018, section 3.4).

3.2. The (abstract) Hodge Laplacian problem
Now, we are able to define the abstract Hodge Laplacian, which, as we will see is a generalization of
the Laplace operator. Given a closed Hilbert complex (𝑊, 𝑑), we can define an operator 𝐿 ∶ 𝑊 → 𝑊
called the (abstract) Hodge Laplacian as follows:

𝐿𝑘𝑢 = 𝑑∗𝑘+1𝑑𝑘𝑢 + 𝑑𝑘−1𝑑∗𝑘𝑢, (3.14)

Where the (abstract) Hodge Laplacian is defined on the space:

𝐷(𝐿𝑘) ∶= {𝑢 ∈ 𝑉𝑘 ∩ 𝑉∗𝑘 ∶ 𝑑𝑘𝑢 ∈ 𝑉∗𝑘+1, 𝑑∗𝑘𝑢 ∈ 𝑉𝑘−1} , (3.15)

A major subject within FEEC are the numerical solutions to the Hodge Laplace problem 𝐿𝑘𝑢 = 𝑓 for a
given 𝑓 ∈ 𝑊𝑘.
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Example 5. In the case of 𝑘 = 0 and the 𝐿2 de Rham complex. (3.14) is equivalent to the ordinary
scalar Laplace problem:

𝐿0𝑢 = −Δ𝑢 = 𝑓, 𝑓 ∈ 𝐿2(Ω) (3.16)

For the case of 𝑘 = 1, we have:

𝐿1�⃗� = 𝑑∗2𝑑1�⃗� + 𝑑0𝑑∗1�⃗� = curl curl �⃗� − graddiv �⃗� = 𝑓, 𝑓 ∈ 𝐿2 (Ω;ℝ3) . (3.17)

This example also shows us why studying the numerical solution to the Hodge Laplace equation is
relevant. Many pde’s have components based on the abstract Hodge Laplace operator. For example
stokes flow and the Maxwell equations.

The abstract Hodge Laplace problem can be written in three different formulations:

• The strong formulation

• The primal weak form

• The mixed weak form

All three formulations are equivalent. However, for designing numerical methods, the mixed weak
form is the preferred choice. For the mixed weak form, one can proof consistency and stability for the
Galerkin method. The mixed weak form is given as the following problem:

Given 𝑓 ∈ 𝑊𝑘, find 𝜎 ∈ 𝑉𝑘−1, 𝑢 ∈ 𝑉𝑘 and 𝑝 ∈ ℌ𝑘 such that:

⟨𝜎, 𝜏⟩ − ⟨𝑢, 𝑑𝑘𝜏⟩ = 0, 𝜏 ∈ 𝑉𝑘−1,
⟨𝑑𝑘𝜎, 𝑣⟩ + ⟨𝑑𝑘𝑢, 𝑑𝑘𝑣⟩ + ⟨𝑝, 𝑣⟩ = ⟨𝑓, 𝑣⟩ , 𝑣 ∈ 𝑉𝑘 ,

⟨𝑢, 𝑞⟩ = 0, 𝑞 ∈ ℌ𝑘 .
(3.18)

Here the space ℌ𝑘 is defined as ℌ𝑘 ∶= 𝒩(𝑑𝑘) ∪ ℛ(𝑑𝑘−1)⊥. In the case of a closed Hilbert complex
(as we have assumed) this space is in fact isomorphic to the cohomology spaceℋ𝑘 see (D. N. Arnold
et al., 2010) for more details. Note that in this formulation, only the exterior derivative 𝑑𝑘 appears. The
𝑑∗𝑘 terms are treated weakly in this formulation.

3.3. Approximating Hilbert Complexes
The next step in creating a numerical method, is to choose finite element sub-spaces for the spaces 𝑉𝑘
and ℌ𝑘. However, note that the space ℌ𝑘 is by definition dependent on the spaces 𝑉𝑘 and the exterior
derivative:

ℌ𝑘 = 𝒩(𝑑𝑘) ∪ ℛ(𝑑𝑘−1)⊥ = {𝑢 ∈ 𝑉𝑘 ∶ 𝑑𝑘𝑣 = 0, 𝑣 ⊥ 𝑑𝑢, ∀𝑢 ∈ 𝑉𝑘−1}
Thus, when we approximate 𝑉𝑘ℎ ⊂ 𝑉𝑘, we construct the finite element space for ℌ𝑘 by:

ℌ𝑘ℎ = {𝑢 ∈ 𝑉𝑘ℎ ∶ 𝑑𝑘𝑣 = 0, 𝑣 ⊥ 𝑑𝑢, ∀𝑢 ∈ 𝑉𝑘−1ℎ }

However, for this choice, it might happen that ℌ𝑘ℎ ⊄ ℌ𝑘. If this is the case, the discretization introduced
is not a standard Galerkin discretization, but a generalized Galerkin method. For a generalized Galerkin
method, the exact solution 𝑢 to (3.18) does not satisfy the general Galerkin discretization. However,
often it is the case that ℌ𝑘ℎ = ℌ𝑘 = 0 (as we will assume from now on), meaning that we can use the
standard Galerkin discretization:

Given a 𝑓 ∈ 𝑊𝑘, find 𝜎ℎ ∈ 𝑉𝑘−1ℎ , 𝑢ℎ ∈ 𝑉𝑘ℎ and 𝑝ℎ ∈ ℌ𝑘ℎ such that:

⟨𝜎ℎ , 𝜏⟩ − ⟨𝑢ℎ , 𝑑𝑘𝜏⟩ = 0, 𝜏 ∈ 𝑉𝑘−1ℎ ,
⟨𝑑𝑘𝜎ℎ , 𝑣⟩ + ⟨𝑑𝑘𝑢ℎ , 𝑑𝑘𝑣⟩ + ⟨𝑝ℎ , 𝑣⟩ = ⟨𝑓, 𝑣⟩ , 𝑣 ∈ 𝑉𝑘ℎ ,

⟨𝑢ℎ , 𝑞⟩ = 0, 𝑞 ∈ ℌ𝑘ℎ .
(3.19)

This Galerkin discretization is consistent and stable given the following three properties:
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3.3.1. Approximation property
The first property, the approximation property, is straightforward. We require that in order for the solu-
tions 𝜎ℎ , 𝑢ℎ of (3.19) to approximate the exact solutions 𝜎, 𝑢 of (3.18), the finite dimensional sub spaces
𝑉𝑘ℎ must approximate the full spaces 𝑉𝑘. For example, we might require that for any 𝑘:

lim
ℎ→0

inf
𝑣∈𝑉𝑘ℎ

||𝑤 − 𝑣||𝑉𝑘 = 0, 𝑤 ∈ 𝑉𝑘 . (3.20)

3.3.2. Subcomplex property
For the second property, we require that 𝑑𝑉𝑘−1ℎ ⊂ 𝑉𝑘ℎ . In this case, we find that the finite dimensional
spaces, form a Hilbert complex:

… 𝑉𝑘−1ℎ 𝑉𝑘ℎ 𝑉𝑘+1ℎ …𝑑𝑘−2 𝑑𝑘−1 𝑑𝑘 𝑑𝑘+1 (3.21)

3.3.3. Bounded cochain projections
Requiring the same structure for the finite dimensional complex and the original Hilbert complex, is a
very natural property. However, the two complexes are not “linked” so to say. For this, we require a
bounded cochain projection property. Here, we require the existence of projectors between the complex
(3.6) to the finite dimensional complex (3.21). Denote these projectors as Π𝑘ℎ. The full complex and the
sub-complex can now be combined in to the following diagram:

… 𝑉𝑘−1 𝑉𝑘 𝑉𝑘+1 …

… 𝑉𝑘−1ℎ 𝑉𝑘ℎ 𝑉𝑘+1ℎ …

𝑑𝑘−2 𝑑𝑘−1

Π𝑘−1ℎ

𝑑𝑘

Π𝑘ℎ

𝑑𝑘+1

Π𝑘+1ℎ
𝑑𝑘−2 𝑑𝑘−1 𝑑𝑘 𝑑𝑘+1

(3.22)

Additionally, we require that the projectors commute with the exterior derivatives:

𝑑𝑘−1Π𝑘−1ℎ 𝑣 = Π𝑘ℎ𝑑𝑘−1𝑣, ∀𝑣 ∈ 𝑉𝑘−1. (3.23)

The commuting property means that in the diagram in (3.22), it does not matter in which order one
moves within the diagram. For example, going from 𝑉𝑘−1 to 𝑉𝑘ℎ , both the top path and bottom path
return the same result.

3.4. Differential forms
Uptill now, the function spaces 𝑉𝑘 have been assumed to be abstract spaces, or given examples in
1D and 3D of scalar/vector spaces. The vector approach, can be used to give useful examples in 2D.
However, for generating an 𝑛-dimensional approach, we will have to introduce differential 𝑘-forms.

3.4.1. Alternating multilinear forms
Given a finite dimensional vector space 𝑈 and a non negative number 𝑘, we consider the vector space
Alt𝑘𝑈 consisting of all 𝑘-linear maps:

𝜔 ∶
𝑘 times

⏜⎴⎴⏞⎴⎴⏜𝑈 ×⋯× 𝑈 → ℝ.
And that changes sign, when interchanging two variables:

𝜔(𝑢1, … , 𝑢𝑖 , … , 𝑢𝑗 , … , 𝑢𝑘) = −𝜔(𝑢1, … , 𝑢𝑗 , … , 𝑢𝑖 , … , 𝑢𝑘), 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑢1, … , 𝑢𝑛 ∈ 𝑈.

Example 6. The Alt1𝑈 space is in fact the dual space of 𝑈. Any element 𝜔 ∈ Alt1𝑈, applied to an
element 𝑢 ∈ 𝑈 must be a real number 𝜔(𝑢) ∈ ℝ, and 𝜔 must be linear functional.

Definition 3.3. The exterior product of 𝜔 ∈ Alt𝑗𝑈 and 𝜇 ∈ Alt𝑘𝑈 is given by:

(𝜔 ∧ 𝜇)(𝑢1, … , 𝑢𝑗+𝑘) =∑
𝜎
sign(𝜎)𝜔(𝑢𝜎1 , … , 𝑢𝜎𝑗)𝜇(𝑢𝜎𝑘+1 , … , 𝑢𝜎𝑗+𝑘), (3.24)

Where the sum is over all 𝜎 = (𝜎1, … , 𝜎𝑗+𝑘) for which 𝜎1 < ⋯ < 𝜎𝑗 and 𝜎𝑗+1 < ⋯ < 𝜎𝑗+𝑘.
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The exterior product satisfies the anticommutativity law:

𝜔 ∧ 𝜇 = (−1)𝑗𝑘𝜇 ∧ 𝜔, 𝜔 ∈ Alt𝑗𝑈, 𝜇 ∈ Alt𝑘𝑈.

Basis for Alternating multilinear forms
Let {𝑢𝑖} be a basis for 𝑈 and let {𝑢𝑖} be the corresponding dual basis. Then given 1 ≤ 𝜎1 < ⋯ < 𝜎𝑘 ≤ 𝑛,
the element of Alt𝑘𝑈 which takes the 𝑘-tuple (𝑢𝜎1 , … , 𝑢𝜎𝑘) to 1 and all other 𝑘-tuples with increasing
indices to 0 is:

𝑢𝜎1 ∧ ⋯ ∧ 𝑢𝜎𝑘 . (3.25)

The set of all these elements, form a basis for Alt𝑘𝑈. Any element 𝜔 ∈ Alt𝑘𝑈, can thus be written as:

𝜔 =∑
𝜎
𝑎𝜎𝑢𝜎1 ∧ ⋯ ∧ 𝑢𝜎𝑘 , (3.26)

with 𝑎𝜎 ∈ ℝ. In the case 𝑈 = ℝ𝑛, the obvious choice for the basis is the canonical basis 𝑒1, … , 𝑒𝑛 ∈ ℝ𝑛.
As notation for the dual basis, instead of the previous introduced notation 𝑒𝑖, we will use the notation
𝑑𝑥1, … , 𝑑𝑥𝑛. From the definition of the canonical basis, it becomes clear that 𝑑𝑥𝑖 assigns to each vector
𝑢 ∈ ℝ𝑛 its 𝑖th component. In this case, (3.26) becomes:

𝜔 =∑
𝜎
𝑎𝜎𝑑𝑥𝜎1 ∧ ⋯ ∧ 𝑑𝑥𝜎𝑘 .

3.4.2. Differential forms
Given a manifold Ω of dimension 𝑛. At each point 𝑥 ∈ Ω, we can define the tangent space 𝑇𝑥Ω. The
tangent space is also a space of dimension 𝑛, and the collection of pairs (𝑥, 𝑣) with 𝑥 ∈ Ω and 𝑣 ∈ 𝑇𝑥Ω
defines the tangent bundle, a manifold of dimension 2𝑛. Coming back to the exterior algebra introduced
in the previous section, define the 𝑘th exterior power of the cotangent bundle as the pairs (𝑥, 𝜇) with
𝜇 ∈ Alt𝑘𝑇𝑥Ω. Then, we define the differential 𝑘-forms as the functions from Ω to an element of Alt𝑘𝑇𝑥Ω:

𝜔𝑥(𝑢1, … , 𝑢𝑘) ∈ ℝ, ∀𝑥 ∈ Ω, 𝑢1, … , 𝑢𝑘 ∈ 𝑇𝑥Ω, (3.27)

In the case that Ω is a sub domain of ℝ𝑛, we can identify the tangent space with ℝ𝑛, and thus use the
previously discussed notation 𝑑𝑥𝑖 as the basis for the tangent space:

𝜔 =∑
𝜎
𝑎𝜎𝑑𝑥𝜎1 ∧ ⋯ ∧ 𝑑𝑥𝜎𝑘 ,

where 𝑎𝜎 is a real valued function on Ω.

We will denote these functions as Λ𝑘(Ω) for the general functions of this form. When we would like
to specify the degree of smoothness of a function, we will designate this by appending the required
smoothness in front of Λ𝑘(Ω). For example, if we want to denote the continuous functions we denote
this space by 𝐶Λ𝑘(Ω) and the continuously differentiable functions by 𝐶1Λ𝑘(Ω).

Exterior derivative
The exterior derivative, which maps Λ𝑘(Ω) into Λ𝑘+1(Ω) is the fundamental operator of exterior calculus.
Given 𝜔 ∈ Λ𝑘(Ω), the exterior derivative is defined as:

(𝑑𝜔)𝑥(𝑢0, … , 𝑢𝑘) =
𝑘

∑
𝑗=0
(−1)𝑗𝜕𝑢𝑗𝜔𝑥(𝑢0, … , �̂�𝑗 , … , 𝑢𝑘) (3.28)

Where �̂�𝑗 indicates that this vector is removed. This is well defined, given all partial differentials exist.
Additionally, since 𝜔 ∈ Λ𝑘(Ω), 𝜔 only takes 𝑘 tangent vectors, while the left hand side of (3.28) is de-
fined over 𝑘 + 1 tangent vectors, as is required for an element of Λ𝑘+1(Ω).
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In the case when Ω is a sub domain of ℝ𝑛, (3.28) becomes:

𝑑𝜔 =∑
𝜎

𝑛

∑
𝑗=0

𝜕𝑎𝜎
𝜕𝑥𝑗

𝑑𝑥𝑗 ∧ 𝑑𝑥𝜎1 ∧ ⋯ ∧ 𝑑𝑥𝜎𝑘 .

Example 7. In the case of 𝑘 = 0, the exterior derivative on a subdomain of ℝ𝑛 becomes:

𝑑𝜔 =
𝑛

∑
𝑗=1

𝜕𝑎
𝜕𝑥𝑗

𝑑𝑥𝑗

If we identify the 1-form with the vectors of ℝ𝑛, we can see that the exterior derivative becomes the
vector gradient.

Lastly, we introduce the space 𝐻Λ𝑘(Ω). 𝐻Λ𝑘(Ω) is the space of 𝜔 ∈ 𝐿2Λ𝑘(Ω), such that 𝑑𝜔 ∈
𝐿2Λ𝑘+1(Ω). Clearly, it must be that 𝐻1Λ𝑘(Ω) ⊂ 𝐻Λ𝑘(Ω).

3.5. Finite element differential forms
Next, we will introduce finite dimensional differential forms. These are based on polynomials. In this
section, we will introduce two spaces, namely the regular polynomial complex and the space of trimmed
polynomials. The latter being a subspace of the former, but with better properties.

Definition 3.4. The space of polynomial differential forms ℙ𝑟Λ𝑘(Ω) are the differential forms 𝜔 which
can be written as:

𝜔 =∑
𝜎
𝑝𝜎𝑑𝑥𝜎1 ∧ ⋯ ∧ 𝑑𝑥𝜎𝑘 (3.29)

with 𝑝𝜎 ∈ ℙ𝑟(Ω) where ℙ𝑟(Ω) is the space of all polynomials up to degree 𝑟 over the domain Ω. Here
we define ℙ𝑟Λ𝑘(Ω) to be zero when 𝑟 < 0.

Remark 1. The exterior derivative maps ℙ𝑟Λ𝑘(Ω) into ℙ𝑟−1Λ𝑘+1(Ω). Clearly, the derivative operator
maps ℙ𝑟 into ℙ𝑟−1. This is thus a direct result from (3.28).

The space of polynomial differential forms is a Hilbert complex where the polynomial degree de-
creases as the index of the complex increases:

ℙ𝑟Λ0(Ω) ℙ𝑟−1Λ1(Ω) … ℙ𝑟−𝑛Λ𝑛(Ω)
𝑑 𝑑 𝑑 (3.30)

Next we will introduce the space of trimmed polynomials. For this space, we will first define the
Koszul operator 𝜅, which is defined as:

(𝜅𝜔)𝑥(𝑢1, … , 𝑢𝑘−1) = 𝜔𝑥(𝑥, 𝑢1, … , 𝑢𝑘−1), 𝑥 ∈ Ω, 𝑢1, … , 𝑢𝑘−1 ∈ ℝ𝑛 . (3.31)

The Koszul operator turns out to map ℙ𝑟Λ𝑘(Ω) into ℙ𝑟+1Λ𝑘−1(Ω) and is thus the reverse of 𝑑. We can
now define space of trimmed polynomial differential forms:

Definition 3.5. The trimmed space of polynomial forms of degree 𝑟 is defined as:

ℙ−𝑟 Λ𝑘(Ω) ∶= ℙ𝑟−1Λ𝑘(Ω) + 𝜅ℋ𝑟−1Λ𝑘+1(Ω), (3.32)

whereℋ𝑟Λ𝑘(Ω) is the space of 𝑘-forms with homogeneous polynomial coefficients of degree 𝑟.

Just like the space of polynomial forms, the space of trimmed polynomial forms, is also a Hilbert
complex:

ℙ−𝑟 Λ0(Ω) ℙ−𝑟 Λ1(Ω) … ℙ−𝑟 Λ𝑛(Ω)
𝑑 𝑑 𝑑 (3.33)

Note that in contrast to the polynomial forms, the trimmed polynomial forms do not decrease in degree.
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3.5.1. Canonical Projections
Lastly, we will define the canonical projection Π𝑐𝑎𝑛ℎ ∶ 𝐶Λ𝑘(Ω) → ℙ−𝑟 Λ𝑘(Ω) which is defined by the re-
quirement that:

∫
𝑓
tr𝑓(𝜔 − Π𝑐𝑎𝑛ℎ 𝜔) ∧ 𝜇 = 0, ∀𝜇 ∈ ℙ𝑟+𝑘−𝑑−1Λ𝑑−𝑘(𝑓), ∀𝑓 ∈ Δ𝑑(𝑇), 𝑛 ≥ 𝑑 ≥ 𝑘. (3.34)

Since these are all the degrees of freedom to functions in ℙ−𝑟 Λ𝑘(Ω), the canonical projection 𝐼ℎ is well
defined. The following theorem allows us to extend this definition to a Sobolev space:

Theorem 3.3. (D. N. Arnold, 2018, Thm. 7.6) Denote by 𝐼ℎ, the canonical projection of 𝐼ℎ ∶ 𝐶Λ𝑘(Ω) →
ℙ−𝑟 Λ𝑘(Ω). Let 1 ≤ 𝑝 ≤ ∞ and (𝑛−𝑘)/𝑝 < 𝑠 ≤ 𝑟+1. Then Π𝑐𝑎𝑛ℎ extends boundedly to𝑊𝑠

𝑝 Λ𝑘(Ω), and there
exists a constant 𝐶 independent of ℎ such that:

‖𝜔 − Π𝑐𝑎𝑛ℎ 𝜔‖𝐿𝑝Λ𝑘(Ω) ≤ 𝐶ℎ𝑠|𝜔|𝑊𝑠𝑝Λ𝑘(Ω), 𝜔 ∈ 𝑊𝑠
𝑝 Λ𝑘(Ω). (3.35)

However, this theorem is not perfect. For example, we cannot project from 𝐿2Λ𝑘 (Ω), as then 𝑝 =
2, 𝑠 = 0 which requires 𝑘 > 𝑛. Which is impossible. A practical argument to see that this is impossible,
is to consider the case that 𝑓 is a single vertex 𝑥 ∈ Ω, then ∫𝑓 tr𝑓(𝜔) is the point evaluation of 𝜔 at 𝑥,
which is in issue for 𝜔 ∈ 𝐿2Λ𝑘(Ω). This means that bounded commuting projectors, that are defined on
the entirety of 𝐿2Λ𝑘(Ω), are still needed/desired.

3.6. Remarks on FEEC and Splines
Returning to THB-splines, when we desire a numerical method for the abstract hodge laplace problem,
which is consistent, stable, accurate and efficient, we desire a couple properties. First of all, the ap-
proximation property of THB-spline is a result of the fact that THB-splines are locally refined B-splines.
Furthermore, for B-spline, it has been shown by (Sande et al., 2020) that B-spline have a better approx-
imation power per degree of freedom than regular linear basis functions. This means that THB-splines
are a good choice for finite element spaces, and the accuracy and efficiency requirements are imme-
diately satisfied.

Additionally, we require the space to obey the subcomplex property. Here, we will restrict our efforts
to exact complexes. These are complexes for which the range of 𝑑𝑘 is equal to the kernel of 𝑑𝑘+1:

ℛ(𝑑𝑘) = 𝒩(𝑑𝑘+1). (3.36)

On the unit domain Ω = [0, 1]𝑛, Table 3.1 shows for which spline spaces there are assumptions, under-
which the spline space is exact. Here, the additional spline spaces, T-splines, LR-splines and simplex
splines are mentioned. Even-though, they are not been covered, they have been added for complete-
ness.

Dimension 1 2 3 ℕ
B-spline 3 3 3:(Buffa et al., 2011) -

(T)HB-spline 3 3:(Evans et al., 2020) - -
T-splines 3 3:(Buffa et al., 2014) - -
LR-splines 3 3:(Johannessen et al., 2015) - -

simplex splines 3 - - -

Table 3.1: Exactness of the 𝐿2 De Rham complex for a unit square domain Ω = (0, 1)𝑛. Here a - means that no literature has
been found on the matter.

Lastly, a set of commuting projectors needs to exist. In Table 3.2, one can see for which space
commuting projectors exist in academic literature. Additionally, there are columns to indicate whether
they are local or not.
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Dimension 1 local 2 local 3 local ℕ local
B-spline 3 3 3 3 3:(Buffa et al., 2011) 3 - -

(T)HB-spline 3 - 71:(Evans et al., 2020, p. 465) - - - - -
T-splines 3 - - - - - - -
LR-splines 3 - - - - - - -

simplex splines 3 - - - - - - -

Table 3.2: Existence of (local) commuting cochain projectors.



4
Univariate Projector

Our proposed projector consists of two steps. Initially, the target function 𝑓 ∈ 𝐿2 (Ω) is projected into
intermediary function space 𝔽, a 𝐶0 smooth locally polynomial space by the projector 𝐹. The second
step is to project 𝐹𝑓 onto the desired THB-spline function space 𝕋 by the projector 𝑇. Then, the final
projector THB-spline projector is given by Π = 𝑇𝐹.

𝐿2(Ω)
𝐹
𝔽
𝑇
𝕋

Π (4.1)

The projector is dependent on the following three assumptions on the THB-mesh.

Assumption 1. Every refinement domain is given by the union of lower level spline supports. So for
𝑙 = 0,… , 𝐿:

Ω𝑙+1 = ⋃
𝑏𝑖,𝑙(𝑥)∈𝑆

supp (𝑏𝑖,𝑙(𝑥)) . (4.2)

For a subset 𝑆 ⊂ 𝒮�⃗�,𝑙,𝝃𝑙 .
Assumption 2. Element grading. Only THB-splines from two consecutive refinement levels are present
on any element 𝑒. Thus any element 𝑒 has splines from:

• either level 𝑙, or

• either level 𝑙 and level 𝑙 + 1, or

• either level 𝑙 and level 𝑙 − 1.
Assumption 3. The THB-spline space is maximally smooth, meaning that, all the knots, besides the
border knots, have a multiplicity of 1 for the required B-spline spaces 𝕊𝑝,𝝃𝑙 .

Both Assumption 1 and Assumption 2 appear in academic literature. Assumption 1 appears in
(Evans et al., 2020) as one of the assumptions to proof exactness of the THB-spline complex in 2D.
Assumption 2 appears in a stronger form in (Giust et al., 2020). In (Giust et al., 2020) the requirement
of two consecutive levels is required for the supports of all the spline basis functions1.

Additionally, the projector developed in this section, will allow for multiple choices of the projector 𝐹
on to the intermediary space 𝔽 (this space is fixed, but the projector 𝐹 can be chosen). We will develop
assumptions for 𝐹, and for this paper we have chosen a projector that conforms to these assumptions.
1Since each (TH)B-spline is defined on at least 𝑝 + 1 consecutive elements.

25
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4.1. Projection elements
In the case of B-splines, on every element there are 𝑝+1 B-splines which are all linearly independent.
This means that there is a well defined mapping from a 𝑝 + 1 linearly independent polynomial space
onto the B-splines. However, in the case of THB-splines, certain elements might have more than 𝑝+1
THB-splines, and in this case, these THB-splines will be linearly dependent. We call these elements
overloaded. See Figure 4.1, where both a polynomial space and a THB-spline space of degree two can
be seen. The fourth element from the left contains more THB-spline basis functions than the required
three basis functions. This is an issue, because if we would try to map a function from the polynomial
space ℙ onto the THB-spline basis functions on this element, there is an extra degree of freedom
that can be chosen arbitrarily. This means that this projection step is not well posed. To get around
this issue, multiple elements will be grouped to form projection elements, so that on every projection
element, this mapping is well posed.

overloaded element

𝒯 ∶

𝒮 ∶

Figure 4.1: Two function spaces over a THB-mesh. The top space is a polynomial space of degree two over all elements. The
bottom space is a THB-spline space. Note that for the THB-spline space, there are four THB-splines on one of the elements.
This is an issue, as for any linearly independent polynomial space of degree two, there should be exactly three basis functions.
We call these elements overloaded elements.

From Assumption 2, there are either elements with a single level of THB-splines, or elements with
THB-splines from two levels. From the local Polynomial structure of the (TH)B-splines, the former ele-
ments are well defined. This is a result, from the fact, that on elements with a single level, the restriction
of the THB-splines are B-splines. Every HB-spline, starts as a B-spline, and is only truncated on an
element, if there is a refined HB-spline, from a different level. This is clearly not the case for elements
with THB-spline from a single level. Meaning that the mapping from a polynomial space on to the
THB-splines (for this element) is well posed. We will refer to these elements as projection elements
of type 0.

For those elements with THB-splines from different levels, displayed in Figure 4.1, the THB-spline
basis functions might be overloaded. Due to this overloading, the THB-spline space to map into is
linearly dependent. To remedy this, the elements that contain splines from different levels, will be
grouped to form multiple, bigger projection elements. These projection elements will be called projec-
tion elements of type 1. From Assumption 1 and Assumption 2, we will first show that these projection
elements of type 1 can be chosen to be the first 𝑝 mesh elements on the refined side of the boundary,
which splits the coarse and refined domain. Secondly, we will show that this choice of type 1 projection
elements results in a set of THB-splines which are linearly independent, which is required for a well
posed projection.

4.1.1. Construction of projection elements of type 1
To see which elements have splines from two levels, we refer to the construction of the THB-spline
space and in particular, the truncation step. In the truncation step, the HB-splines are initially mapped
into the space of the refined B-splines over the entire domain. This results in the HB-splines being a
linear combination of the refined B-splines. In Figure 4.2, a THB-spline space and a refined B-spline
space can be seen. The basis functions of the refined B-spline space are colored red for those basis
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functions that are added in the refinement step, and the other B-spline basis function are colored blue.

𝒯 ∶

𝒮 ∶

contains both blue and red fine B-splines

Figure 4.2: Two spline spaces of degree 𝑝 = 2. In the bottom graph, a THB-spline space 𝒯 with two levels of refinement. In
the top graph, the B-spline space 𝒮 of the level 2 refined spline of the bottom graph. In the top graph, the B-spline have been
colored red, to indicate that these are also elements of 𝒯, or blue to indicate that they have not been added. Note that there are
2 elements, on which both red and blue splines have support.

When a HB-spline is truncated, the components that are from the red finer B-spline basis functions,
are discarded. The truncated HB-splines are a linear combination of the blue B-spline basis functions
from Figure 4.2. These blue B-splines are the basis functions that are not entirely contained in the
refinement domain. Since the support of B-splines is at most 𝑝 + 1 consecutive elements, the greatest
amount of elements these blue B-splines can reach in the refinement domain, are the first 𝑝 consecutive
elements, and by extension, the truncated HB-splines as well. For this reason, we define the projection
elements of type 1 to be the first 𝑝 consecutive refined elements from every refinement border.

However, up till now, we have only assumed that there are only two different levels. A coarse and
a refined level. However, because of Assumption 2, only splines of two levels can be present in any
given mesh element, and by extension of the above argument, on any type 1 projection element. Sec-
ondly, the case when the refined domain has two boundaries with the coarse domain, a left and right
boundary, the two projection elements, related to the two boundaries, do not overlap. This is a direct
consequence of Assumption 1, as the refinement domain contains at least a coarse spline. This means
that the refinement domain must be at least 𝑝+1 coarse elements, and in turn, the refinement domain
has 2𝑝 + 2 elements. Since the two projection elements of type 1 consist of 𝑝 consecutive elements,
they are separated by at least two projection elements of type 0.

From the same counting argument, on every type 1 projection element, there are 𝑝 coarse THB-
splines and 𝑝 fine THB-splines. Clearly, from Assumption 1, we can restrict our attention to a single
boundary between a coarse and a refined domain. For this single boundary, there are 𝑝 (H)B-splines
that have non-empty support on the refined domain. These (H)B-splines must have non-zero compo-
nents of the blue B-splines in Figure 4.1, thus after truncation, there are still 𝑝 coarse THB-splines.
For the refined THB-splines, there must be 𝑝, as every element can be associated with a refined THB-
splines as an edge of its support. This means that on every type 1 projection element, there are a total
of 2𝑝 THB-splines with non-empty support. Contrast this with the 𝑝(𝑝 + 1) polynomials basis functions
with non-empty support on the type 1 projection element of 𝔽 (the piecewise polynomial function space
of degree 𝑝 over every element).

4.1.2. Linear independence
For a well-posed projection, the set of THB-splines with non-empty support will need to be linearly
independent over the projection element. For this we will first proof Lemma 4.1, which states that for
any type 1 projection element, there is a single element on which the THB-splines with non-empty
support are linearly independent. With the help of this Lemma, we can show linear independence over
the full projection element in Theorem 4.2.

Lemma 4.1. For a univariate THB-spline space conforming to Assumption 1 and Assumption 2. For all
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type 1 projection elements, the element 𝑒 of the type 1 projection element that intersects the boundary,
which separates two levels. The THB-splines with non-empty support on 𝑒 are linearly independent on
element 𝑒.
Proof. Let the two levels on element 𝑒 be denoted by 𝑙 − 1 and 𝑙. Then, element 𝑒 can be denoted
as Ω𝑒 = [𝜉𝑘,𝑙 , 𝜉𝑘+1,𝑙] with knots from the knot-sequence from level 𝑙. Assume that the boundary that
separates level 𝑙 from level 𝑙 − 1 is given by 𝜉𝑘,𝑙. Over element 𝑒 there are 𝑝 + 1 B-spline from level 𝑙
with non-empty support, 𝑏𝑗,𝑙(𝑥) for 𝑗 = 1,… , 𝑝 + 1. Additionally, before adding the B-splines from level
𝑙, there are 𝑝 + 1 B-splines from level 𝑙 − 1 with non-empty support, 𝑏𝑗,𝑙−1(𝑥) for 𝑗 = 1,… , 𝑝 + 1. During
the construction of the HB-spline space, in the step of refinement of level 𝑙, these B-splines cannot be
truncated by Assumption 2. This means that the B-splines from level 𝑙 − 1, are linearly independent on
element 𝑒. Since the knot-sequence of level 𝑙 is derived from the knot-sequence of level 𝑙 − 1, all the
B-splines from level 𝑙 − 1 can be written as a linear combination of the 𝑝 + 1 B-splines from level 𝑙:

𝑏𝑗,𝑙−1(𝑥) =
𝑝+1

∑
𝑖=1

𝑐𝑗,𝑖𝑏𝑖,𝑙(𝑥), 𝑥 ∈ [𝜉𝑘,𝑙 , 𝜉𝑘+1,𝑙], 𝑗 = 1,… , 𝑝 + 1. (4.3)

From the assumption that the boundary that separates level 𝑙 − 1 and 𝑙 is given by 𝜉𝑘,𝑙 and from
Assumption 1, in the construction of the HB-spline space, the B-spline 𝑏𝑝+1,𝑙−1(𝑥) is removed from the
HB-spline basis, and is replaced by the B-spline 𝑏𝑝+1,𝑙(𝑥). However, locally, on element 𝑒, these two
functions coincide up to a scaling factor. This is the result of the linear combinations in (4.3). Even
though these linear combinations only hold on element 𝑒, the B-splines 𝑏𝑗,𝑙−1(𝑥) can be written to be a
linear combination over the entire domain. This linear combination, restricted to element 𝑒, reproduces
the combinations from (4.3). However, since the support of 𝑏𝑝+1,𝑙−1 ⊆ [𝜉𝑘,𝑙 , 1], this linear combination
can only depend on B-splines of level 𝑙 with 𝑏𝑗,𝑙 ⊆ [𝜉𝑘,𝑙 , 1], as these B-splines are linearly independent.
So, on element 𝑒 we have:

𝑏𝑝+1,𝑙−1(𝑥) = 𝛼𝑏𝑝+1,𝑙(𝑥), 𝑥 ∈ [𝜉𝑘,𝑙 , 𝜉𝑘+1,𝑙]. (4.4)

Note, 𝛼 ≠ 0, as both splines are non-zero on 𝑒. But then the following spans are equivalant and of the
same rank:

span {𝑏1,𝑙−1(𝑥), … , 𝑏𝑝+1,𝑙−1(𝑥)} = span {𝑏1,𝑙−1(𝑥), … , 𝑏𝑝,𝑙−1(𝑥), 𝑏𝑝+1,𝑙(𝑥)} (4.5)

Thus, the HB-splines over element 𝑒 are linearly independent. Additionally, the level 𝑙 − 1 B-splines
can be truncated, as follows:

�̃�𝑖,𝑙−1(𝑥) = 𝑏𝑖,𝑙−1(𝑥) − 𝛼𝑖𝑏𝑝+1,𝑙(𝑥) = 𝑏𝑖,𝑙−1(𝑥) −
𝛼𝑖
𝛼 𝑏𝑝+1,𝑙−1(𝑥), 𝑥 ∈ [𝜉𝑘,𝑙 , 𝜉𝑘+1,𝑙], 𝛼𝑖 ∈ ℝ. (4.6)

But this redefinition of the level 𝑙 − 1 splines, is again a linear combination, and thus an element of the
span. Meaning that:

span{𝑏1,𝑙−1(𝑥), … , 𝑏𝑝+1,𝑙−1(𝑥)} = span{�̃�1,𝑙−1(𝑥), … , �̃�𝑝,𝑙−1(𝑥), 𝑏𝑝+1,𝑙(𝑥)}, 𝑥 ∈ [𝜉𝑘,𝑙 , 𝜉𝑘+1,𝑙]. (4.7)

Again, both sides must have the same rank. From (4.6), these linear combinations can never map to
zero by the linear independence of the level 𝑙 − 1 B-splines. Additionally, in (4.7), the basis for the
r.h.s. are the THB-splines with non-empty support on 𝑒. Thus proofing the linear independence. For
the case when 𝜉𝑘+1,𝑙 is the boundary, the proof can be altered by first showing that 𝑏1,𝑙−1(𝑥) = 𝛼𝑏1,𝑙(𝑥),
and then showing that the altered spans are again all full rank.

Theorem 4.2. Given a univariate THB-spline space of degree 𝑝 that conforms to Assumption 2 and
Assumption 1 . THB-splines with non-empty support on a type 0 or 1 projection element are locally
linearly independent on that projection element.

Proof. The type 0 projection elements are all THB-splines from a single level. These THB-splines can-
not be truncated, else there are splines from a higher level present, but then this projection element
would be part of a type 1 projection element. Moreover, HB-splines from a single level over a single
element must be B-splines, and thus locally linearly independent.
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Given a type 1 projection element, the domain can be denoted by [𝜉𝑘,𝑙 , 𝜉𝑘+𝑝,𝑙]. From Lemma 4.1,
we know that there are 𝑝 THB-splines 𝑏𝑗,𝑙−1(𝑥) with non-empty support. Over the 𝑝 element of the type
1 projection element, an additional 𝑝 (TH)B-splines from level 𝑙 are with non-empty support, 𝑏𝑗,𝑙(𝑥). Let
them satisfy the following equation for the coefficients 𝑐𝑗,𝑙−1, 𝑐𝑗,𝑙:

𝑝

∑
𝑗=1
𝑐𝑗,𝑙−1𝑏𝑗,𝑙−1(𝑥) +

𝑝

∑
𝑗=1
𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥) = 0, 𝑥 ∈ [𝜉𝑘,𝑙 , 𝜉𝑘+𝑝,𝑙]. (4.8)

From Lemma 4.1, we must have that by the linear independence on one of the elements of the type 1
projection element, that 𝑐𝑗,𝑙−1 = 0 for 𝑗 = 1,… , 𝑝. However, the level 𝑙 THB-splines are B-splines on this
type 1 projection element, and thus from the local linear independence of the B-splines, we have that
𝑐𝑗,𝑙 = 0 for 𝑗 = 1,… , 𝑝. This shows the linear independence of the THB-splines with non-empty support
on the type 1 projection elements.

Lastly, we will differentiate projection elements frommesh elements. Let 𝜖 be the projection element
index, belonging to the projection element {𝑒1, … , 𝑒𝑝} =∶ 𝐸𝜖, where 𝐸𝜖 is the set of mesh element indices
that make up the projection element 𝜖. The projection element indices are denoted by 𝜖, and the set
of all projection element indices is denoted by Υ = {𝜖1, … , 𝜖𝑚} for a THB-spline space with 𝑚 projection
elements.

4.1.3. Notation and Element extensions
The notion of element support extensions has been introduced in Section 2.5. Here, the element
support extension of a mesh element with index 𝑒 for a B-spline space 𝕊 is given by:

̃Ω𝑒 = ⋃
𝑏(𝑥)∈𝒮

Ω𝑒⊂supp(𝑏(𝑥))

supp (𝑏(𝑥)) . (4.9)

Where 𝒮 is the basis of the B-spline space 𝕊. Here, we additionally define �̃� = {𝑒1, … , 𝑒𝑚}, so that:

̃Ω𝑒 = ∪𝑚𝑖=1Ω𝑒𝑖 . (4.10)

We extend this notation to any subset 𝑈 ⊂ 𝐸, so that we have Ω𝑈 = ∪𝑒∈𝑈Ω𝑒. Then, we have that
Ω�̃� = ̃Ω𝑒. Additionally, in a similar fashion, we can create an extension based on projection elements:

Definition 4.1. The projection extension �̄� of a mesh element index 𝑒, is the union of the projection
elements, on which a spline has support of some spline space 𝕊 with non-empty support on 𝑒:

�̄� ∶=⋃
𝛼∈�̃�
{𝑒 ∈ 𝐸𝜖 ∶ ∀𝜖 ∈ Υ, 𝛼 ∈ 𝐸𝜖} (4.11)

The same notation can be used for the domain of the support extension and the projection extension.
Lastly, we can also define the support extension of a projection extension (or any combination), by
taking the union of the support extension of the individual elements of the projection extension:

̃�̄� = ⋃
𝛼∈�̄�

�̃�. (4.12)

Note that, we have not explicitly used the spline space 𝕊 in the definition. It should be obvious from the
context, over which spline space 𝕊 the extension is performed.

4.2. Sub projection F
The first projection, 𝐹, is a local projection on to the space 𝔽. This function space is the space of 𝐶0 (Ω)
functions, that locally, on every element 𝑒, are Bernstein polynomials.

𝔽 ∶= {𝑠 ∈ 𝐶0 (Ω) ∶ 𝑠|𝑒 ∈ ℙ𝑝 (Ω𝑒) , ∀𝑒 ∈ 𝐸} . (4.13)
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Figure 4.3: The space 𝔽, of 𝐶0 smooth local polynomial functions of degree 𝑝 = 2.

See Figure 4.3 for an example of degree 𝑝 = 2. The projection 𝐹 ∶ 𝐿2 (Ω) → 𝔽 is an altered least
square projection on every element on to the local Bernstein polynomial basis, where the boundary
Bersntein polynomials are averaged based on a weighting scheme. The first step of 𝐹, is to perform
the following integration’s:

𝑓𝑒𝑖 ∶= ∫
Ω𝑒
𝑓(𝑥)𝔟𝑒𝑖,𝑝(𝑥)𝑑𝑥, 𝑖 = {1, 2, … , 𝑝 + 1}, 𝑒 ∈ 𝐸. (4.14)

Here, 𝔟𝑒𝑖,𝑝(𝑥) is the Bernstein polynomial 𝔟𝑖,𝑝(𝑥) (see Section 2.4) scaled and translated, so that instead
of having domain [0, 1], it has domain Ω𝑒. The integration can be done with various different numerical
methods. We have used Legendre-Gauss Quadrature where the number of nodes 𝑁 has to be chosen
such that the error is on the level of machine precision. This is done by increasing 𝑁 until it has no
more effect on the accuracy. Then, on each element, the projection onto the local Bernstein basis is
given by:

𝛽𝑒 ∶= 1
|Ω𝑒|𝐺

−1 [𝑓𝑒1 𝑓𝑒2 ⋯ 𝑓𝑒𝑝+1]
𝑇 , ∀𝑒 ∈ 𝐸. (4.15)

Where |Ω𝑒| is the size of element 𝑒, and 𝐺−1 is the inverse Gramian Matrix given in (2.23). The local
projection on element 𝑒 is then given by:

𝑠𝑒(𝑥) =
𝑝+1

∑
𝑖=1

𝛽𝑒𝑖 𝔟𝑒𝑖,𝑝(𝑥), 𝑥 ∈ Ω𝑒 . (4.16)

In order to make sure that the projection is 𝐶0 smooth, we will have to regularize the projection on
the element boundaries. Notice that in (2.14), only 𝔟1,𝑝(𝑥) is non-zero on 𝑥 = 0, and thus is 𝔟𝑒1,𝑝(𝑥)
the only polynomial that is non-zero on the left boundary on 𝑒. Likewise, 𝔟𝑝+1,𝑝(𝑥) and 𝔟𝑒𝑝+1,𝑝(𝑥) are
the only polynomials that are non-zero on 𝑥 = 1 and the right boundary. Now, let 𝑒1 and 𝑒2 be two
subsequent elements such that 𝑒1 is to the left of 𝑒2. Denote the size of 𝑒1 as |Ω𝑒1 | and the size of 𝑒2
as |Ω𝑒2 |. Then, we replace both the values 𝛽𝑒1𝑝+1 and 𝛽𝑒21 by:

𝛽𝑒1 ,𝑒2 ∶=
|Ω𝑒1 | 𝛽𝑒1𝑝+1 + |Ω𝑒2 | 𝛽𝑒21

|Ω𝑒1 | + |Ω𝑒2 | . (4.17)

This forces the splines on 𝑒1 and 𝑒2 to coincide on the border between the two elements2. We repeat
this step for all borders between two mesh elements. The combination of these two steps, the local
projection, and the regularization over all element boundaries, defines the projector 𝐹 for any element
𝑒, with “left” border element 𝑒1, and “right” element border 𝑒2:

𝑠𝑒(𝑥) = 𝛽𝑒1 ,𝑒𝔟𝑒1,𝑝(𝑥) +
𝑝

∑
𝑖=2
𝛽𝑒𝑖 𝔟𝑒𝑖,𝑝(𝑥) + 𝛽𝑒,𝑒2𝔟𝑒𝑝+1,𝑝(𝑥), 𝑥 ∈ Ω𝑒 . (4.18)

Additionally, since 𝛽𝑒1 ,𝑒2 is a linear combination with positive weights, it can be estimated as follows:

|𝛽𝑒1 ,𝑒2 | ≤max {|𝛽𝑒1𝑝+1|, |𝛽𝑒21 |} . (4.19)
2Note that this regularization step differs from the basis functions seen in Figure 4.3. In this space, the basis functions are 𝐶0
smooth. However, in this proposed projector, we have set the values of the boundary functions to a weighted average. In theory
this does not matter, as the resulting regularity is the same. However, the implementation is different as we have extra degrees
of freedom. However, these extra degrees of freedom, assist in notation.
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4.2.1. Estimates
For the projector 𝐹 proposed, we will show some local estimate results. For this, we need the interme-
diary result:

Lemma 4.3. We have:
‖𝐹𝑣‖𝐿2(Ω𝑒) ≤ 𝐶𝑏𝑒𝑟𝑛‖𝑣‖𝐿2(Ω�̃�). (4.20)

Where 𝐶𝑝 is only dependent on mesh regularity 𝜇 and polynomial degree 𝑝 and the support extension
is taken from the spline space 𝔽.

Proof. Given:

‖𝐹𝑣‖2𝐿2(Ω𝑒) = ‖𝛽𝑒1 ,𝑒 (𝑣) 𝔟1(𝑥) +
𝑝

∑
𝑖=2
𝛽𝑒𝑖 (𝑣) 𝔟𝑖(𝑥) + 𝛽𝑒,𝑒2 (𝑣) 𝔟𝑝+1(𝑥)‖

2

𝐿2(Ω𝑒)

(4.21)

≤ ‖𝛽𝑒(𝑣)‖2∞ ‖
𝑝+1

∑
𝑖=1

𝔟𝑖(𝑥)‖

2

𝐿2(Ω𝑒)

(4.22)

= |Ω𝑒|max {|𝛽𝑒1 ,𝑒|, |𝛽𝑒2 |, … , |𝛽𝑒𝑝 |, |𝛽𝑒,𝑒2 |}
2

(4.23)

≤ |Ω𝑒|max {|𝛽𝑒1𝑝+1|, |𝛽𝑒1 |, |𝛽𝑒2 |, … , |𝛽𝑒𝑝 |, |𝛽𝑒𝑝+1|, |𝛽𝑒21 |}
2

(4.24)
≤ 𝐶2𝑏𝑒𝑟𝑛‖𝑣‖2𝐿2(Ω�̃�) (4.25)

Here, we used that the Bernstein polynomials sum to one, the estimates from (4.19) and in the last step
we used Lemma 2.8. Do note that the coefficient 𝐶𝑏𝑒𝑟𝑛 is the coefficient 𝐶𝑝 of Lemma 2.8, multiplied
by the difference in size of the mesh elements 𝑒1, 𝑒2 compared to 𝑒. This is solely dependent on the
dimension, as these elements can at most differ by one level.

Corollary 4.3.1. For each element 𝑒, the local Bernstein coefficient vector 𝛽𝑒 over the support exten-
sion �̃� associated with the altered local 𝐿2-projection of a function 𝑓 ∈ 𝐿2 (Ω𝑒) onto 𝔽, the space of
polynomials of degree 𝑝 over the projection element satisfies the inequality:

‖𝛽𝑒‖∞≤
𝐶𝑏𝑒𝑟𝑛
|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω�̃�), (4.26)

Here, |Ω𝑒| is the mesh size of element 𝑒. 𝐶𝑏𝑒𝑟𝑛 is a constant only dependent upon the polynomial
degree 𝑝 and mesh regularity 𝜇.

Using this lemma, we can show the following local error estimate result:

Proposition 4.4. Let 𝑘 and 𝑙 be integers with 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑝 + 1 and 𝑙 ≤ 𝛼 + 1. Then for each element
𝑒 we have:

|𝑣 − 𝐹𝑣|𝐻𝑘(Ω𝑒) ≤ 𝐶ℎ𝑙−𝑘𝑒 |𝑣|𝐻𝑙(Ω�̃�), ∀𝑣 ∈ 𝐻𝑘 (Ω�̃�) . (4.27)

where ℎ𝑒 is the diameter of element 𝑒. 𝐶 is independent of ℎ𝑒, but possibly dependent on shape
regularity, polynomial degree, continuity and 𝑘, 𝑙.

Proof. Note that the space 𝔽 is a B-spline space 𝕊 where every internal knot has multiplicity 𝑝. Given
𝑠 as in Lemma 2.7:

|𝑣 − 𝐹𝑣|𝐻𝑘(Ω𝑒) = |𝑣 − 𝑠 + 𝑠 − 𝐹𝑣|𝐻𝑘(Ω𝑒) (4.28)
≤ |𝑣 − 𝑠|𝐻𝑘(Ω𝑒) + |𝐹 (𝑣 − 𝑠) |𝐻𝑘(Ω𝑒) (4.29)
≤ 𝐼 + 𝐼𝐼. (4.30)

Then, with 𝐶𝑙𝑒𝑚 the constant from Lemma 2.7:

𝐼 ≤ 𝐶𝑙𝑒𝑚ℎ𝑙−𝑘𝑒 ‖𝑣‖𝐻𝑙(Ω�̃�). (4.31)
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The standard inverse inequality for polynomials yields:

𝐼𝐼 ≤ 𝐶𝑖𝑛𝑣ℎ−𝑘𝑒 ‖𝐹 (𝑣 − 𝑠) ‖𝐿2(Ω𝑒). (4.32)

And with Lemma 4.3 and Lemma 2.7 we find:

𝐼𝐼 ≤ 𝐶𝑖𝑛𝑣𝐶𝑏𝑒𝑟𝑛𝐶𝑙𝑒𝑚‖𝐻𝑙(Ω�̃�). (4.33)

Thus the proposition holds with 𝐶 = 𝐶𝑙𝑒𝑚 (1 + 𝐶𝑖𝑛𝑣𝐶𝑏𝑒𝑟𝑛).

Lastly, we will show that the projector preserves all 𝑣 ∈ 𝔽:
Proposition 4.5. The projector 𝐹 preserves all elements in 𝔽:

𝐹𝑣 = 𝑣, ∀𝑣 ∈ 𝔽. (4.34)

Proof. Given a 𝑣 ∈ 𝔽, on any element 𝑒, the local representation is given by:

𝑣|𝑒 =
𝑝+1

∑
𝑖=1

𝛽𝑒𝑖 𝔟𝑒𝑖,𝑝(𝑥). (4.35)

Then, the intermediary integrals 𝑣𝑗 are:

𝑣𝑗 =
𝑝+1

∑
𝑖=1

𝛽𝑒𝑖 ∫
Ω𝑒
𝔟𝑖,𝑝(𝑥)𝔟𝑗,𝑝(𝑥)𝑑𝑥 = [𝐺𝛽𝑒]𝑗 . (4.36)

Here 𝐺 is the Gramian matrix. Now, the resulting projection (before regularization) is given by the
vector:

�⃗� = 𝐺−1�⃗� = 𝐺−1𝐺𝛽𝑒 . (4.37)

Where [𝛽𝑒]
𝑖
= 𝛽𝑒𝑖 . However, before regularization, the projection is the exact initial smooth function.

Thus, the regularization step does not alter the coefficients. This means that the projection preserves
𝑣 ∈ 𝔽.

4.3. Sub projection T
The second projector, 𝑇 ∶ 𝔽 → 𝕋 is defined in two steps. Initially, on every projection element, the
local polynomials are projected on to the THB-splines with non-empty support. This produces a local
projection. However, for THB-splines that span multiple projection elements, these THB-splines will
have multiple coefficients, each linked to a particular projection element. These different coefficients
are combined by a weighted average to obtain a single final coefficient for each THB-spline basis func-
tion.

For the first step, let 𝜖 ∈ Υ be a projection element index and let 𝐸𝜖 ⊂ 𝐸 be the set of elements that
make up the projection element with index 𝜖. Let 𝐽𝜖 be the index set of all THB-splines with non-empty
support on 𝜖. Since the THB-splines are local polynomials on all 𝑒 ∈ 𝐸𝜖, the THB-splines can be written
as a linear combination of local polynomials expressed as bernstein polynomials:

𝑏𝑗(𝑥)|𝜖 = ∑
𝑒∈𝐸𝜖

𝑝+1

∑
𝑖=1

𝐶𝑒𝑗,𝑖𝔟𝑒𝑖,𝑝(𝑥), ∀𝑗 ∈ 𝐽𝜖 . (4.38)

Here, 𝑏𝑗(𝑥)|𝜖 is the restriction of THB-spline 𝑗 to the projection element 𝜖. In this case, by choosing an
ordering of 𝑒 ∈ 𝐸𝜖, a matrix 𝐶𝜖 can be constructed, where every column represents a THB-spline 𝑗 ∈ 𝐽𝜖
and where the coefficients represent the linear combination given in (4.38). Thus, given a �⃗�𝜖 of a linear
combination of THB-splines 𝑗 ∈ 𝐽𝜖 with non-empty support on 𝜖, this representation can be mapped to
the local polynomial space 𝔽, restricted to 𝜖 by:

𝛽𝜖 = 𝐶𝜖 �⃗�𝜖 . (4.39)
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In the case of 𝑇, we desire to map the space of local polynomials in to the space of THB-splines with
non-empty support on 𝜖. In the case of type 0 projection elements, there are 𝑝+1 THB-splines and local
polynomials on 𝜖. For the case of type 1 projection elements, there are 2𝑝 THB-splines and 𝑝(𝑝 + 1)
local polynomials on 𝜖. Then the matrix 𝐶𝜖 is a matrix of size 𝑚 × 𝑛, with 𝑚 ≥ 𝑛. Additionally, as
a consequence from Proposition 4.2, the columns of 𝐶𝜖 are linearly independent. This means that a
Moore-Penrose pseudo-inverse exists and is given by:

𝐶𝜖 + ∶= (𝐶𝜖 𝑇 𝐶𝜖 )
−1
𝐶𝜖 𝑇 . (4.40)

The Moore-Penrose pseudo-inverse is the solution to the following minimization problem:

𝑥 = argmin𝑢∈ℝ𝑛 ‖𝑣 − 𝐶𝜖 𝑢‖2 = 𝐶𝜖 + 𝑣, 𝑣 ∈ ℝ𝑚 . (4.41)

By constructing the vector 𝛽𝜖 from 𝛽𝑒 , 𝑒 ∈ 𝐸𝜖 in the same order as 𝐶𝜖 , such that the 𝑖𝑡ℎ index of 𝛽𝜖 and
the 𝑖𝑡ℎ row of 𝐶𝜖 correlate to the same local polynomial function defined over 𝜖, the local projection on
projection element 𝜖 is given by:

�⃗�𝜖 ∶= 𝐶𝜖 + 𝛽𝜖 , ∀𝜖 ∈ 𝐸𝜖 . (4.42)

The vector �⃗�𝜖 is a local THB projection on a projection element 𝜖. Thus on projection element 𝜖, the
local projection is given by:

𝑠(𝑥)|𝜖 = ∑
𝑗∈𝐽𝜖

𝛾𝜖𝑗 𝑏𝑗(𝑥). (4.43)

Here, 𝛾𝜖𝑗 (𝑥) are the THB-splines indexed by 𝐽𝜖 that have support on 𝜖. In order to obtain a global
projection for a given THB-spline 𝑗, all the coefficients that are related to the THB-spline 𝑗 will need
to be combined. For this, let Υ𝑗 = {𝜖1, 𝜖2, … , 𝜖𝑛} ⊂ Υ be the set of projection elements on which the
THB-spline 𝑗 has non-empty support. Then, the final coefficient 𝛾𝑗 for THB-spline 𝑗 is given by:

𝛾𝑗 ∶= ∑
𝜖∈Υ𝑗

𝜔𝜖𝑗 𝛾𝜖𝑗 . (4.44)

Where the weights 𝜔𝜖𝑗 are given by:

𝜔𝜖𝑗 ∶=
∫Ω𝜖 𝑏𝑗(𝑥)𝑑𝑥
∫Ω 𝑏𝑗(𝑥)𝑑𝑥

. (4.45)

This produces the global THB-spline projection:

𝑠(𝑥) =∑
𝑗
𝛾𝑗𝑏𝑗(𝑥). (4.46)

4.3.1. Construction of the local projection matrices
The 𝐶𝜖 matrices can be constructed by knot insertion, see Section 2.1.3. Since the Bernstein poly-
nomials are B-splines defined over a (𝑝 + 1)-open knot-sequence with only two distinct knots (the
boundaries), we can write all (T)(H)B-splines as local Bernstein polynomials by knot inserting all ele-
ment boundaries till they have a multiplicity of 𝑝 + 1. However, in the case of (T)HB-splines, we have
splines of multiple levels. Fortunately, all the splines are of at most two different levels on every pro-
jection element. Next to that, on the type 1 projection elements, the coarse THB-splines are already
a known linear combination of the finer splines (as this is what the truncation process does). And on
type 0 projection elements, the THB-splines are all locally B-splines. This means that on any projection
element, the THB-splines are a linear combination of B-splines, all from the same level. Then, add all
element boundaries of the projection element until the knots have multiplicity 𝑝 + 1. See Figure 4.4 for
an example on a type 1 projection element.

This process relates any THB-spline 𝑗 with non-empty support on 𝜖 to the local Bernstein polyno-
mials. Doing this for all THB-splines with non-empty support, the matrix 𝐶𝜖 can be constructed. In the
case of type 0 projection elements that are at least 𝑝 elements away from the global boundary, the
eigenvalues of the Moore-Penrose pseudo-inverse are given in Proposition 4.6.
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Write THB-splines as refined B-splines

Insert knots till multiplicity is 𝑝 + 1

Figure 4.4: The construction process of 𝐶𝜖 for the only type 1 projection element over this THB-spline space. Initially, write all
THB-splines with non-empty support as a linear combination of the refined B-splines. Secondly, alter these linear combination
coefficients with knot insertion untill all the knots on the projection element have multiplicity 𝑝 + 1. By raising the multiplicity of
the element boundaries, the knot-sequence on every element becomes 𝑝 + 1-open, and thus the B-splines over the elements
are the local Bernstein polynomials.

Proposition 4.6. Given an equidistant knot-sequence 𝝃 and an element 𝑒 which is at least 𝑝 elements
away from the global border, the projection matrix 𝐶𝜖 + over the type 0 projection element 𝜖 over ele-
ment 𝑒, from the local Bernstein polynomials to the B-splines with support on element 𝑒 has the 𝑝 + 1
eigenvalues 1, 𝑝, 𝑝 ⋅ (𝑝 − 1), … , 𝑝!.

Proof. The projection matrix 𝐶𝜖 + satisfies both of the following two equations.

�⃗� = 𝐶𝜖 + 𝛽, (4.47)
𝑝+1

∑
𝑖=1

𝛾𝑖𝑏𝑖(𝑥) =
𝑝+1

∑
𝑖=1

𝑝+1

∑
𝑗=1

[𝐶𝜖 +]
𝑖,𝑗
𝛽𝑗𝔟𝑗(𝑥), 𝑥 ∈ Ω𝜖 . (4.48)

Since both the B-splines and the Bernstein polynomials satisfy the partition of unity, 1⃗ must be an
eigenvector with eigenvalue 1. For the other eigenvectors and values, we will integrate a 𝑝 − 1 degree
B-spline/Bernstein polynomial vector. The operator that maps 𝐼𝑝 ∶ 𝕊𝑝−1,𝝃 → 𝕊𝑝,𝝃34 by integration is
given by the 𝑝 + 1 × 𝑝 matrix:

𝐼𝑝 =
1
𝑝

⎡
⎢
⎢
⎢
⎣

𝜉𝑖+𝑝 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖 𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝜉𝑖+𝑝 − 𝜉𝑖 𝜉𝑖+𝑝+1 − 𝜉𝑖+1 𝜉𝑖+𝑝+2 − 𝜉𝑖+2

⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

(4.49)

Here, 𝑖 is chosen such that when element 𝑒 is given by Ω𝑒 = [𝜉𝑚 , 𝜉𝑚+1], we have that 𝜉𝑖+𝑝 = 𝜉𝑚+1.
This integral operator corresponds to integrating the spline functions with the condition that the function
is zero at the left boundary. Now note that in the case of B-splines, for which the element is at least
𝑝 elements away from the border, we must have that all elements of (4.49) are 𝑝|Ω𝑒|. Likewise, in
the case of the Bernstein Polynomials, all elements are |Ω𝑒| because 𝜉𝑖+𝑝 = 𝜉𝑖+𝑝+1 = ⋯ = 𝜉𝑚+1 and
𝜉𝑖 = ⋯ = 𝜉𝑖+𝑝−1 = 𝜉𝑚. This means that if we distinguish the integral operators for the B-splines as 𝐼𝑏𝑝
and for the Bernstein polynomials as 𝐼𝑏𝑝 , we have that 𝐼𝑏𝑝 = 𝑝𝐼𝑝𝑝 .

The last step to obtain all the eigenvectors and eigenvalues, is to keep integrating the 𝑘’th dimen-
sional vector 1⃗𝑘 to the degree 𝑝 spaces. Clearly, 1⃗𝑘 ∈ 𝕊𝑘,𝝃 corresponds (by partition of unity) to the unit

3Since the Bernstein polynomials are a special case B-spline space, we only have to do the derivation for the B-spline case.
4Strictly speaking, the knot-sequence needs to be altered, as the initial and last knots must appear exactly 𝑝+1 times. However,
since the degree is known, we will assume that it is implied.
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function, and likewise for the Bernstein polynomials. So we must have that:

𝛽𝑘 = (
𝑝

∏
𝑙=𝑘

𝐼𝑝𝑙 ) 1⃗𝑘 , (4.50)

�⃗�𝑘 = (
𝑝

∏
𝑙=𝑘

𝐼𝑏𝑙 ) 1⃗𝑘 = (
𝑝

∏
𝑙=𝑘

𝑙𝐼𝑝𝑙 ) 1⃗𝑘 = (
𝑝

∏
𝑙=𝑘

𝑙) 𝛽𝑘 . (4.51)

However, both vectors must describe the same function, as we are integrating the unit function 𝑝 − 𝑘
times in both cases. From this we conclude that 𝛽𝑘 is an eigenvector with eigenvalue ∏

𝑝
𝑙=𝑘 𝑙.

For the other type 0 projection elements, no expression has been found. However, from numerical
experiments the largest eigenvalue seems to coincide with 𝑝!. Likewise, for the type 1 projection ele-
ments, no bounds have been found. However, since the THB-splines and Bernstein polynomials are
invariant under translation and scaling, these matrices should be independent on location and element
diameter ℎ𝑒, but can depend on spline degree 𝑝, shape regularity of the mesh and continuity.

4.4. Local estimates of full projector
In this section, we will show that the combination Π = 𝑇𝐹 is locally stable. For this we will first require
that the initial projector conforms to the following assumptions:

Assumption 4. The initial projector 𝐹 ∶ 𝐿2(Ω) → 𝔽 conforms to the following assumptions for any 𝑒 ∈ 𝐸.
Here we have that the coefficients 𝛽𝑒 are the coefficients related to 𝔟𝑒𝑖 (𝑥) that represent the projected
coefficient on element 𝑒.

𝐹𝑠 = 𝑠, ∀𝑠, ∈ 𝔽, (continuous polynomial preserving) (4.52)

‖𝛽𝑒‖∞ ≤
𝐶𝑠𝑡𝑎𝑏,𝐹
|Ω𝑒|1/2 ‖𝑠‖𝐿2(Ω�̃�), ∀𝑠 ∈ 𝐿2 (Ω�̃�) . (local stability property) (4.53)

Where 𝐶𝑠𝑡𝑎𝑏,𝐹 is a constant independent on |Ω𝑒| and the support extension is taken in the 𝔽 spline
space.

Note that the projector 𝐹 in Section 4.2 conforms to this assumption by Corollary 4.3.1 and 4.5.
However, any other projector conforming to these assumptions can also be chosen.

Then, the full projector Π is locally stable over the domain 𝑒∗ ∶= ̃�̄�, the support extension of the
projection extension (see Section 4.1.3). Here, the projection extension is taken over 𝕋 and the support
extension over 𝔽. Now, from the construction of 𝔽, the support extension is equivalent to the collection
of all elements neighbouring and including �̄�. For this element, we have the following result:
Lemma 4.7. Let 𝑘 and 𝑙 be integer indices with 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑝 + 1. Given 𝑒, and support extension �̃�,
𝑣 ∈ 𝐻𝑙 (Ω𝑒∗), there exists an 𝑠 ∈ 𝕋 such that:

|𝑣 − 𝑠|𝐻𝑘(Ω𝑒∗ ) ≤ 𝐶𝑖𝑛𝑡ℎ𝑙−𝑘𝑒 |𝑣|𝐻𝑙(Ω𝑒∗ ). (4.54)

Where 𝐶𝑖𝑛𝑡 is a constant independent on element diameter ℎ𝑒, but possibly on 𝑝, 𝑘, 𝑙, 𝜇.
Proof. The above proof relies on Lemma 2.7. However, this Lemma requires a B-spline space. For
this, we will construct a B-spline space that is locally contained in 𝕋, and for which the local B-splines
defined over 𝑒∗ are independent on level of refinement 𝑒.

For this, note that 𝑒∗ consists of splines of at most 6 levels. To see why, note 𝑒 has at most 2
levels by Assumption 2. Then, the projection extension can have splines of at most 4 levels, as each
projection element can also have at most two levels of splines. The final support extension brings it up
to at most 6 different levels. By taking 𝑙 to be this lowest level, all the 𝑏𝑖,𝑙,𝝃𝑙(𝑥) ∈ 𝒮�⃗�,𝝃𝑙 with support on
𝑒∗, are elements of 𝕋.
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Next, there must be a level 𝑙 element 𝑒𝑙 such that 𝑒 is contained in 𝑒𝑙. Then, the support extension
�̃�𝑙 might contain 𝑒∗. If it does, the 𝑠 ∈ 𝕊�⃗�,𝝃𝑙 from Lemma 2.7 proofs the lemma. If it does not, we can
remove knots of 𝝃𝑙 to construct a new knot-sequence Ξ and B-spline space 𝕊�⃗�,Ξ ⊂ 𝕊�⃗�,𝝃𝑙 .

Whenwe remove knots that correspond to boundaries strictly within �̃�𝑙, the underlyingmesh changes.
This means that there is a new element 𝑒Ξ that contains 𝑒, but crucially, this must also contain 𝑒𝑙. Thus
the support extension �̃�Ξ contains �̃�𝑙. By increasingly removing knots, the support extension �̃�Ξ will
contain 𝑒∗ at some point. Also, note that the amount of elements (which is related to the number of
internal knots) is bounded by some function of 𝑝. Then, choose 𝑠 ∈ 𝕊�⃗�,Ξ according to Lemma 2.7. Then
we have that 𝑠 ∈ 𝕊�⃗�,Ξ ⊂ 𝕊�⃗�,𝝃𝑙 . Additionally, all the level 𝑙 B-splines from 𝑠 with support on 𝑒∗ can be
reproduced in 𝕋, so 𝑠 ∈ 𝕋.

Additionally, as a direct consequence of the local stability property:

Lemma 4.8. Given a projector 𝐹 as in Assumption 4, the local stability over a projection element is
bounded by:

‖𝛽𝜖‖∞ ≤
𝐶𝑠𝑡𝑎𝑏,𝐹
|Ω𝑒,𝜖|1/2 ‖𝑠‖𝐿2(Ω�̃�), ∀𝑠 ∈ 𝐿2 (Ω�̃�) . (4.55)

Where Ω𝑒,𝜖 is the smallest mesh element of 𝜖.

Proof. This is a direct result from the local stability property in Assumption 4. Note that by construction
of the projection element 𝜖, all the mesh elements 𝑒 ∈ 𝐸𝜖 have the same size |Ω𝑒,𝜖|.

Then, the full projector Π = 𝑇𝐹 has the following two properties:

Proposition 4.9. We have:

Π𝑠 = 𝑠, ∀𝑠 ∈ 𝕋 (spline-preserving property) (4.56)
‖Π𝑣‖𝐿2(Ω𝑒) ≤ 𝐶𝑠𝑡𝑎𝑏‖𝑣‖𝐿2(Ω𝑒∗ ), ∀𝑣 ∈ 𝐿2 (Ω𝑒∗) , ∀𝑒 ∈ 𝐸 (local stability property) (4.57)

Here, 𝑒∗, is the support extension of the support extension of 𝑒. 𝐶𝑠𝑡𝑎𝑏 is a constant independent of ℎ,
but possibly dependent on the shape regularity of the mesh, polynomial degree and continuity.

Proof. The spline-preserving property holds trivially as the splines are also elements of 𝔽, so 𝐹 pre-
serves them by Assumption 4. For 𝑇, the correct spline is given by the optimal pseudo inverse solution.
This means that 𝑇 preserves the splines. Hence, what remains to prove is the local stability property.
Given any element 𝑒 and 𝑓 ∈ 𝐿2 (Ω𝑒∗), denote the set 𝐽𝑒 as the set of THB-spline indices, which have
non-empty support on Ω𝑒:

𝐽𝑒 ∶= {𝑗 ∶ Ω𝑒 ⊂ supp (𝑏𝑗(𝑥))} (4.58)

Then we have that:

Π𝑓|𝑒(𝑥) = ∑
𝑗∈𝐽𝑒

[∑
𝜖∈Υ𝑗

𝜔𝜖𝑗 𝛾𝜖𝑗 (𝑓)] 𝑏𝑗(𝑥) (4.59)

Here, 𝜔𝜖𝑗 are the weighting coefficients of the recombination set that are all non negative and sum
to one for any given splines 𝑗. Lastly, 𝛾𝜖𝑗 (𝑓) are the local THB-spline projection coefficients defined as:

�⃗�𝜖(𝑓) = 𝐶𝜖 + 𝛽𝜖(𝑓)

Where 𝐶𝜖 + is the local THB-spline projection matrix and 𝛽𝜖(𝑓) the local Bernstein coefficients over
projection element 𝜖 as a result of 𝐹. Since the projection matrices 𝐶𝜖 + only depend on 𝑝, shape
regularity and continuity and by Lemma 4.8, we have:

‖�⃗�𝜖(𝑓)‖∞ ≤
𝐶𝜆

|Ω𝑒,𝜖|1/2 ‖𝑓‖𝐿2(Ω�̃�)
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Here, |Ω𝑒,𝜖| is the size of the smallest element of 𝜖, and 𝐶𝜆 a constant which only depends on the
polynomial degree 𝑝 and the shape regularity of the parametric mesh. Next, similar as in (Thomas
et al., 2015), we have that:

|Π𝑓(𝑥)| ≤ |∑
𝑗∈𝐽𝑒

[∑
𝜖∈Υ𝑗

𝜔𝜖𝑗 𝛾𝜖𝑗 (𝑓)] 𝑏𝑗(𝑥)| (4.60)

≤ |∑
𝑗∈𝐽𝑒

[∑
𝜖∈Υ𝑗

𝐶𝜆
|Ω𝑒,𝜖|1/2 ‖𝑓‖𝐿2(Ω�̃�)] 𝑏𝑗(𝑥)| (4.61)

≤max
𝑗∈𝐽𝑒

[∑
𝜖∈Υ𝑗

𝐶𝜆
|Ω𝑒,𝜖|1/2 ‖𝑓‖𝐿2(Ω�̃�)] |∑

𝑗
𝑏𝑗(𝑥)| (4.62)

≤max
𝑗∈𝐽𝑒

[∑
𝜖∈Υ𝑗

𝐶𝜆
|Ω𝑒,𝜖|1/2 ‖𝑓‖𝐿2(Ω�̃�)] (4.63)

≤ 𝐶∗𝜆
|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω𝑒∗ ) (4.64)

Here, 𝑒∗ is the projection extension of 𝑒. The constant 𝐶∗𝜆 does absorb some constants that relate the
size of |Ω𝑒| to all the sizes of |Ω𝑒,𝜖|, but this is solely dependent on the mesh regularity 𝜇 and 𝑝 and the
maximal difference in levels (which is 6). Integrating over 𝑒 we find:

‖Π𝑓‖𝐿2(Ω𝑒) ≤
𝐶∗𝜆

|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω𝑒∗ ) (∫Ω𝑒
12𝑑𝑥)

1/2
= 𝐶∗𝜆‖𝑓‖𝐿2(Ω𝑒∗ ) (4.65)

The local approximation error is then given by:

Theorem 4.10. Let 𝑘 and 𝑙 be integer indices with 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑝 + 1. For each mesh element 𝑒, the
following inequality holds:

‖𝑓 − Π𝑓‖𝐻𝑘(Ω𝑒) ≤ 𝐶𝑎𝑝𝑝ℎ𝑙−𝑘𝑒 ‖𝑓‖𝐻𝑙(Ω𝑒∗ ), ∀𝑓 ∈ 𝐻𝑙 (Ω𝑒∗) , (4.66)

where ℎ𝑒 is the element diameter of 𝑒, 𝑒∗ is the support extension of the support extension of 𝑒, and 𝐶𝑖𝑛𝑡
is a constant independent of ℎ𝑒 but possibly dependent on the shape regularity of the mesh, polynomial
degree, number of refinement levels 𝐿, continuity, and the parameters 𝑘 and 𝑙.
Proof. Let 𝑠 be as in Lemma 4.7. Then, by Proposition 4.9:

|𝑣 − Π𝑣|𝐻𝑘(Ω𝑒) = |𝑣 − 𝑠 + 𝑠 − Π𝑣|𝐻𝑘(Ω𝑒) (4.67)
= |𝑣 − 𝑠 + Π[𝑠 − 𝑣]|𝐻𝑘(Ω𝑒) (4.68)
≤ |𝑣 − 𝑠|𝐻𝑘(Ω𝑒) + |Π[𝑣 − 𝑠]|𝐻𝑘(Ω𝑒). (4.69)

Note that the second term is a polynomial (because of the projection) on element 𝑒. Thus by a standard
inverse inequality for polynomials (see for example (Bernardi et al., 2007)), we get:

|Π[𝑣 − 𝑠]|𝐻𝑘(Ω𝑒) ≤ 𝐶𝑖𝑛𝑣ℎ−𝑘𝑒 ‖Π[𝑣 − 𝑠]‖𝐿2(Ω𝑒) (4.70)
≤ 𝐶𝑖𝑛𝑣𝐶𝑠𝑡𝑎𝑏ℎ−𝑘𝑒 ‖𝑣 − 𝑠‖𝐿2(Ω𝑒∗ ) (Proposition 4.9) (4.71)

≤ 𝐶𝑖𝑛𝑣𝐶𝑠𝑡𝑎𝑏𝐶𝑖𝑛𝑡ℎ𝑙−𝑘𝑒 ‖𝑣‖𝐻𝑙(Ω𝑒∗ ). (Lemma 4.7) (4.72)

The first term can immediately be estimated by Lemma 4.7, to obtain the result where,

𝐶𝑎𝑝𝑝 = 𝐶𝑖𝑛𝑡 (1 + 𝐶𝑖𝑛𝑣𝐶𝑠𝑡𝑎𝑏)

which only depends on 𝑘, 𝑙, 𝑝, 𝜇.
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4.5. Commutativity
To construct a commuting projector, a similar approach that was introduced in (Buffa et al., 2011) will
be used. Given the following diagram:

𝐻1 (Ω) 𝐿2 (Ω)

𝔽0 𝔽1

𝕋0 𝕋1

𝑑
𝑑𝑥

𝐹0 𝐹1
𝑑
𝑑𝑥

𝑇0 𝑇1
𝑑
𝑑𝑥

(4.73)

Here, 𝕋0 and 𝕋1 represent the THB-spline spaces on which to project. The first THB-spline space
𝕋0 has degree 𝑝, and the second THB-spline space 𝕋1 has degree 𝑝−1. Secondly, we have the inter-
mediate spaces 𝔽0 and 𝔽1 where the former is of degree 𝑝 and the latter of degree 𝑝 − 1. Additionally,
𝐹0 and 𝑇0 are the sub projectors derived in previous sections. For 𝐹1, we can define the commuting
projector 𝐹1 inspired by (Buffa et al., 2011) as follows:

𝐹1[𝑓](𝑥) ∶= 𝑑
𝑑𝑥𝐹

0 [∫
𝑥

0
𝑓(𝑠)𝑑𝑠] (𝑥) (4.74)

Lemma 4.11. The projectors 𝐹0 and 𝐹1 commutes with the exterior derivative.

𝑑
𝑑𝑥𝐹

0𝑓 = 𝐹1 𝑑𝑑𝑥𝑓, 𝑓 ∈ 𝐻1 (Ω) . (4.75)

Proof. Let 𝑓 ∈ 𝐻1 (Ω), then:

𝐹1 𝑑𝑑𝑥𝑓 =
𝑑
𝑑𝑥𝐹

0 [∫
𝑥

0

𝑑
𝑑𝑥𝑓(𝑠)𝑑𝑠] (4.76)

= 𝑑
𝑑𝑥𝐹

0 [𝑓 + 𝐶] (4.77)

= 𝑑
𝑑𝑥𝐹

0𝑓 + 𝑑
𝑑𝑥𝐶 (4.78)

= 𝑑
𝑑𝑥𝐹

0𝑓 (4.79)

Here, 𝐶 is a constant. The projector 𝐹0 does not alter constants, since the projector 𝐹0 does not alter
splines. Since this was for an arbitrary 𝑓 ∈ 𝐻1 (Ω), we conclude it holds for all 𝑓 ∈ 𝐻1 (Ω).

Likewise, the commuting projector 𝑇1 is constructed as 𝑇1[𝑓](𝑥) ∶= 𝑑𝑇0 [∫𝑥0 𝑓(𝑠)𝑑𝑠] (𝑥). Yet, since
the domain of this projector is a finite dimensional function space, the local integral operator can be
explicitly calculated (see equation (4.49)). However, this integral operator only acts locally. Fortunately,
the functions in 𝔽0 are 𝐶0 continuous. So, for any function 𝑓 ∈ 𝔽0, after integrating 𝑑

𝑑𝑥𝑓, we again obtain
a 𝐶0 smooth function. For this reason, by working from the left to right, we add constants on each
element until the local integral matches the left integral on the border. Denote this finite dimensional
integral operator by 𝐼, resulting in:

𝑇1[𝑓](𝑥) ∶= 𝑑𝑇0 [𝐼𝑓] (𝑥) (4.80)

These projectors also commute.

Lemma 4.12. The projectors 𝑇0 and 𝑇1 commute with the exterior derivative.

𝑑
𝑑𝑥𝑇

0𝑓 = 𝑇1 𝑑𝑑𝑥𝑓, 𝑓 ∈ 𝔽0. (4.81)
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The proof of this lemma is equivalent to the proof of lemma 4.11. Combining these results, we can
construct local THB-spline projectors as:

Π0𝑓(𝑥) ∶= 𝑇0𝐹0𝑓(𝑥), ∀𝑓 ∈ 𝐻1 (Ω) (4.82)

Π1𝑓(𝑥) ∶= 𝑑
𝑑𝑥𝑇

0𝐹0 [∫
𝑥

0
𝑓(𝑠)𝑑𝑠] (𝑥), ∀𝑓 ∈ 𝐿2 (Ω) (4.83)

And these projectors also commute with the exterior derivative.

Theorem 4.13. The local THB-spline projectors Π0 and Π1 commute with the exterior derivative:

𝑑
𝑑𝑥Π

0𝑓 = Π1 𝑑𝑑𝑥𝑓, ∀𝑓 ∈ 𝐻1 (Ω) . (4.84)

Proof. The theorem is the direct result from Lemma 4.11 and Lemma 4.12.





5
Multivariate Bezier Projector

Themultivariate projector is again structured in two subsequent projectors, starting with a local projector
𝐹 on a Bernstein polynomial space 𝔽 and followed by a subsequent THB-spline projector 𝑇 on to 𝕋.
For the multivariate case, both will be an extension of the univariate projectors. Let Ω be a domain in
𝑛-dimensions, then the final projector Π ∶= 𝑇𝐹 is defined over the diagram:

𝐿2(Ω)
𝐹
𝔽
𝑇
𝕋

Π (5.1)

First, we will extend the notion of projection elements to higher dimensions. Followed by the construc-
tion of 𝐹 and 𝑇. We will end this chapter with estimates for the projector Π in the multivariate setting.

5.1. Projection elements
In the multivariate setting, there will be more types of projection elements, instead of the two types for
the univariate case (see Section 4.1). For an 𝑛-dimensional domain, we will have 𝑛 + 1 different pro-
jection elements, ranging from type 0 to type 𝑛 projection elements. We will first introduce a process to
determine generator elements. These are the elements from which a projection element is generated.
These projection element generators will also aid us in proofing linear independence, and are thus a
useful concept.

By Assumption 2, it suffices to look at a refinements from level 𝑙 − 1 to level 𝑙. Then, all refined
elements 𝑒 of level 𝑙, which intersect the boundary 𝜕Ω𝑙\𝜕Ω0, are projection element generators and will
be assigned a type. This will be done by looking at the refined B-splines that are inserted in the refine-
ment step. Clearly these level 𝑙 B-splines, are from the B-spline space 𝕊�⃗�,𝝃𝑙 . In the B-spline space 𝕊�⃗�,𝝃𝑙 ,
there are B-splines that have support on the element 𝑒, of which a subset is inserted in the refinement
step to level 𝑙. See Figure 5.1 for an example with degree �⃗� = (2, 2). Here, for different elements 𝑒,
the B-splines of the B-spline space 𝕊�⃗�,𝝃𝑙 are marked in the center of their support. They are marked
with either a × for a level 𝑙 B-splines that is not inserted, or denoted with a ○ if they are inserted to the
THB-spline basis. See the construction of the HB-spline space in Section 2.2.

By the tensor product structure of the B-spline space, these B-splines can be denoted by a vector
index 𝑖:

𝑖 = (𝑖1, 𝑖2, … , 𝑖𝑛),→ 𝑏𝑖,�⃗�,𝝃𝑙(𝑥) ∈ 𝕊�⃗�,𝝃𝑙 , such that Ω𝑒 ⊂ supp (𝑏𝑖,�⃗�,𝝃𝑙(𝑥)) . (5.2)

Here each 𝑖𝑑 can be (up to) 𝑝𝑑 +1 different values. Note that the collection of these indices will create
a hyper-rectangle (see Figure 5.1, where the marked B-splines define a rectangle). Now, given some

41
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× × ×
× × ×
× × ○

× × ○
× × ○
○ ○ ○× × ○

× × ○
× × ○

Figure 5.1: Given �⃗� = (2, 2) and a THB-spline space. For three different refined elements, that neighbour the border 𝜕Ω𝑙\𝜕Ω0
(colored red, orange and blue), the nine B-splines of level 𝑙 − 1 that have support on each element. These B-splines have either
been marked with a ○ to denote that they are inserted in to the THB-spline basis, or by × when they are not. Here the × or ○ is
placed in the center of the support of the B-spline. Note that for �⃗� = (2, 2) the B-splines have a support on a collection of 3 × 3
elements of level 𝑙.

𝑖 and a dimension 𝑑, we can a create set of 𝑝𝑑 + 1 different indices 𝐼𝑖,𝑑, that only differ in the 𝑑’th
component. Here the 𝑑’th component runs over all the possible 𝑖𝑑, such that these indices conform to
(5.2). Note that in Figure 5.1, this corresponds to either a row or column of possible indices.

For a given dimension 𝑑, we call that dimension refined on element 𝑒, if there is a vector 𝑖 for which
the set 𝐼𝑖,𝑑 contains exactly one B-spline of level 𝑙 that is inserted in to the THB-spline basis. See for
example the red arrows in Figure 5.1. To recap, a dimension 𝑑 of element 𝑒 is refined if:

∃𝑖 ∶ ∃!𝑗 ∈ 𝐼𝑖,𝑑 ∶ supp (𝑏𝑗,�⃗�,𝝃𝑙(𝑥)) ⊆ Ω𝑙 . (5.3)

Let 𝑒 be a refined element of level 𝑙 that intersects the boundary 𝜕Ω𝑙\𝜕Ω0. Element 𝑒 is a type-𝑘
projection element generator, if there are exactly 𝑘 refined dimensions. In figure 5.1, the red and
orange elements are type-2 generators, and the blue element is a type-1 generator.

2

22 1 1 1
1
1
1
1 1 1

1
1
1

Figure 5.2: For the THB-spline space in Figure 5.1, the different types of projection element generators, for all the elements
that intersect the refinement boundary 𝜕Ω𝑙\𝜕Ω0. Additionally, the projection elements generated by the colored elements from
Figure 5.1 are drawn in color.

These generator elements will generate projection elements. A type-k projection element is a rect-
angular collection of elements in the directions of the refined dimensions. If the dimensions 𝑑1, … , 𝑑𝑘
are refined, then one B-spline of level 𝑙 that must be inserted. This B-spline is either the first or the last
for a given set 𝐼𝑖,𝑑1 . If it is the first, 𝑑1 will be extended into the −1 direction, while if it is the last, it will
be extended into the +1 direction. Starting from element 𝑒, the first 𝑝1 refined elements1 of level 𝑙 in
1Note that the existence of a single refined B-spline in 𝐼𝑖,𝑑1 , means that all these elements are in fact elements of the THB-splinespace.
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Figure 5.3: The projection elements for the THB-spline space of Figure 5.1. Here the red projection elements, are projection
elements of type-2, the blue projection elements are type-1 and the remaining elements are all type-0.

the extension direction of 𝑑1 are added. Then, the first 𝑝2 refined elements of level 𝑙 in the extension
direction of 𝑑2 are added. This process is repeated until this has been done for all refined dimensions.
Finally, the minimum amount of elements are added, to create a rectangular collection of refined ele-
ments of level 𝑙.

In Figure 5.2, the projection elements generated by the colored generator elements of Figure 5.1
are shown. From this Figure, it becomes clear that some projection elements can/will overlap. For
example, in Figure 5.2, the red projection element is a type-2 projection element, and will contain two
projection elements of type-1. In this case, we will remove the lower type projection elements2. Ad-
ditionally, if instead �⃗� = (2, 5) would have been chosen, the two type-2 projection elements overlap
(see the red and orange projection elements in Figure 5.2). In the case that two projection elements of
the same type overlap (after first removing all the contained lower type projection elements), the proof
presented below for linear independence, fails. For this reason, we will require that the mesh does not
produce these kind of projection elements. See the following assumption.

Assumption 5. Given a THB-spline mesh, after removing lower type projection elements, no projection
elements of the same type overlap.

The notion of removing lower type projection elements that are contained in higher type projection
elements, is quite natural. For example, in Figure 5.2, the red type-2 generator is next to two type-1
generators. These type-1 generators must have a dimension that does not contain a row (or column)
with a singular refined B-spline. In fact, they have rows (or columns) with either none, or with two. For
those rows (or columns) with two, the exact same row (or columns) in the next element over, contains
a single refined B-spline. Thus, this dimension is refined in the next element over. This is the case for
our type-2 starting element. For this reason, the type-2 projection element is in someway an extension
of the type-1 elements that are removed. However, in the proof of linear independence, these type-1
projection element generators are still useful. Lastly, all the remaining elements that are not covered
by any type-𝑘 with 𝑘 ≥ 1 projection elements, are all individual type-0 projection elements. In Figure
5.3 the final projection elements can be seen.

5.1.1. Linear independence
Linear independence is proven in multiple steps. We will first introduce some definitions which will lead
to a local description of which B-splines are inserted and which are removed. Following this, we will
proof that the projection element generators have a linearly independent set of basis functions with
support on the generator. From this, we will show that the THB-splines with support over the rest of
the projection element, are linearly independent.

We start with the introduction of the complement support of any projection element generator:
2From the construction, these lower types of projection elements that get removed, are always full contained in a projection
element of a higher type.
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𝑒

𝑒𝐶

Figure 5.4: An example of a support complement of an element 𝑒.

Definition 5.1. Given a generator element 𝑒, related to the refinement of level 𝑙 − 1 to level 𝑙. The
complement support 𝑒𝐶 is given by the collection of elements from level 𝑙 −1 such that they intersect
𝑒:

𝑒𝐶 ∶= {𝛼 ∈ 𝐸𝑙−1 ∶ Ω𝑒 ∩ Ω𝛼 ∩ 𝜕Ω𝑙 ≠ ∅} (5.4)

And for the projection element 𝜖 related to the generator element 𝑒, the complement support of a
projection element:

𝜖𝐶 ∶= {𝛼 ∈ 𝐸𝑙−1 ∶ Ω𝜖 ∩ Ω𝛼 ∩ 𝜕Ω𝑙 ≠ ∅} (5.5)

See Figure 5.4 for an example of a complement support. This definition coupled with Assumption
5, allows us to characterise the B-splines that are removed, by whether they have support on the
complement support of a projection element:

Lemma 5.1. Given a projection element 𝜖 in a THB-spline space conforming to Assumptions 1, 2 and
5. A level 𝑙 − 1 B-spline still has support on 𝜖 after refinement and truncation to level 𝑙, if and only if it
has support on 𝜖𝐶.

Proof. Clearly, if 𝑏𝑖,𝑙−1(𝑥) has support on 𝜖𝐶, its support is not entirely contained in Ω𝑙, and this spline
will be truncated. After truncation, it is a linear combination of level 𝑙 B-splines whose support is not
entirely contained in Ω𝑙, and will thus still have support on 𝜖.

However, if 𝑏𝑖,𝑙−1(𝑥) has no support on 𝜖𝐶, it is not directly obvious that it will be removed, or
truncated until it has no support on 𝜖. If it is removed, we are done, so let 𝑏𝑖,𝑙−1(𝑥) be a spline with no
support on 𝜖𝐶, that is not removed. Then, by the construction of the THB-spline space, it must have
support on some level 𝑙 − 1 elements 𝑒1, … , 𝑒𝑚 that border the boundary 𝜕Ω𝑙\𝜕Ω0:

∃𝑒𝑗 ∈ 𝐸𝑙−1 ∶ supp (𝑏𝑖,𝑙−1(𝑥)) ∩ Ω𝑒𝑗 ≠ ∅. (5.6)

However, these elements must all border projection elements, and this produces some list of projection
elements 𝜖1, … , 𝜖𝑚 on which 𝑏𝑖,𝑙−1(𝑥) also has support.

supp (𝑏𝑖,𝑙−1(𝑥)) ∩ Ω𝜖𝑗 ≠ ∅. (5.7)

But then, when we truncate 𝑏𝑖,𝑙−1(𝑥), it becomes a linear combination of level 𝑙 B-splines that must
have support on some level 𝑙 − 1 elements, and whose support is a subset of the support of 𝑏𝑖,𝑙−1(𝑥).
This forces these level 𝑙 B-splines to only have support on the projection elements 𝜖1, … , 𝜖𝑚.

supp [trunc (𝑏𝑖,𝑙−1(𝑥))] ∩ Ω𝑙 ⊆ Ω𝜖1 ∪⋯ ∪ Ω𝜖𝑚 . (5.8)

However, by Assumption 5, the r.h.s. does not intersect the original projection element 𝜖. So, when
𝑏𝑖,𝑙−1(𝑥) has no support on 𝜖𝐶, and is not entirely contained in Ω𝑙, the truncation of 𝑏𝑖,𝑙−1(𝑥) has no
support on 𝜖.

Next, we proof that for any type-𝑘 generator element 𝑒, the THB-splines with support on 𝑒 are linearly
independent.
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Lemma 5.2. Given an 𝑛-dimensional THB-spline space that conforms to Assumptions 1, 2 and 5,
then for any type 𝑘 projection element, generated by element 𝑒, the THB-splines with support on 𝑒 are
linearly independent.

Proof. Let the projection element 𝜖 contain THB-splines from level 𝑙−1 and 𝑙 (by Assumption 2). Then,
the generator element 𝑒 = 𝑒𝑙 is a mesh element of refinement level 𝑙, which must be contained in some
level 𝑙 −1mesh element 𝑒𝑙−1. In the refinement step to level 𝑙, we start with a collection of B-splines of
level 𝑙 −1 (at least, they must locally be B-splines on element 𝑒𝑙−1, as this element will be refined). But
then, this set of B-spline must be linearly independent on element 𝑒𝑙−1 (and thus also 𝑒𝑙) by properties
of the B-splines:

{𝑏𝑖,𝑙−1(𝑥)} . (5.9)

This set of B-splines will be split in two. Those level 𝑙 − 1 B-splines that get removed, as they are fully
contained in Ω𝑙, and those that remain, and will be truncated. Now, note that the B-splines that get
removed, cannot have any support on the support complement of 𝑒, 𝑒𝐶 by Lemma 5.13. So we can
denote the B-splines of level 𝑙 − 1 that are to be removed, by whether they have support on 𝑒𝐶:

{𝑏𝑖,𝑙−1(𝑥)}
𝑛
𝑖=1 = {𝑏

𝐶
𝑖,𝑙−1(𝑥)}

𝑛−𝑛�̸�𝑙−1
𝑖=1 ∪ {𝑏�̸�𝑖,𝑙−1(𝑥)}

𝑛�̸�𝑙−1
𝑖=1

(5.10)

Here, superscript 𝐶 denotes the splines with support on 𝑒𝐶, and �̸� if they have no support on 𝑒𝐶 and
𝑛�̸�𝑙−1 is the number of splines without support on 𝑒𝐶. The latter set will be removed and replaced by
level 𝑙 B-splines that also have no support on 𝑒𝐶. Additionally, since both sets are B-spline spaces,
where the level 𝑙 − 1 B-splines that are removed and the level 𝑙 B-splines have the same requirement
of not having support on 𝑒𝐶, they must consist of the same number of splines. So we have:

|{𝑏�̸�𝑖,𝑙−1(𝑥)}
𝑛�̸�𝑙−1
𝑖=1

| = |{𝑏�̸�𝑖,𝑙(𝑥)}
𝑛�̸�𝑙
𝑖=1
| (5.11)

So 𝑛�̸�𝑙−1 = 𝑛�̸�𝑙 = 𝑛�̸�. Next, since we have that 𝕊�⃗�,𝝃𝑙−1 ⊂ 𝕊�⃗�,𝝃𝑙 , the removed B-splines 𝑏�̸�𝑖,𝑙−1(𝑥) can be
written as a linear combination of level 𝑙 B-splines. However, again because of the support argument
over 𝑒𝐶, we must have that:

𝑏�̸�𝑖,𝑙−1(𝑥) =
𝑛�̸�

∑
𝑗=1
𝑐𝑖,𝑗𝑏�̸�𝑗,𝑙(𝑥), ∀𝑖 = 1,… , 𝑛�̸� , 𝑥 ∈ Ω𝑒 . (5.12)

But then, the map between the two sets must be full rank since none of these B-splines is zero over
element 𝑒. Thus, we must have that the following set is linearly independent over element 𝑒:

{𝑏𝐶𝑖,𝑙−1(𝑥)}
𝑛−𝑛�̸�

𝑖=1 ∪ {𝑏�̸�𝑖,𝑙(𝑥)}
𝑛�̸�

𝑖=1
, 𝑥 ∈ Ω𝑒 . (5.13)

To find the THB-spline basis, we have to truncate the B-spline of the first set by removing a linear
combination of the second set. But this does not alter linearly independence. So we conclude that the
THB-splines over the element 𝑒 are linearly independent.

Note that the previous lemma only shows that the projection element generator is linearly indepen-
dent. However, from the construction of a type-𝑘 projection element, it contains lower type projection
elements. This allows us to partition the level 𝑙 − 1 THB-splines with support on 𝜖 as follows:

{𝑏𝑖,𝑙−1(𝑥)}
𝑛
𝑖=1 =

𝑘

⋃
𝑚=1

{𝑏𝑚𝑗,𝑙−1(𝑥)}
𝑛𝑚

𝑗=1
=

𝑘

⋃
𝑚=1

𝐵𝑚 . (5.14)

3Strictly speaking, some level 𝑙 − 1 B-splines do not get removed. However, by truncation, they no longer have support on 𝜖.
The result is still the same, these splines get removed from the set of B-splines with support on 𝜖.
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Where 𝑏𝑚𝑖,𝑙=1(𝑥) is a level 𝑙 −1 B-spline that has support on a type-𝑚 generator element in 𝜖, but not on
any generator element of a type higher than𝑚. To proof that the THB-splines on the projection element
are linearly independent, we will show that for any linear combination of THB-splines that is zero:

𝑘

∑
𝑚=1

𝑛𝑚
∑
𝑗=1
𝑐𝑚𝑗,𝑙−1𝑏𝑚𝑗,𝑙−1(𝑥) +

𝑛

∑
𝑖=1
𝑐𝑖,𝑙𝑏𝑖,𝑙(𝑥) = 0. (5.15)

That the coefficients 𝑐𝑚𝑗,𝑙−1 and 𝑐𝑖,𝑙 are all zero. Clearly, by Lemma 5.2, all 𝑐𝑘𝑗,𝑙−1 are zero. Next, showing
that sequentially all 𝑐𝑚𝑗,𝑙−1 are zero with first 𝑚 = 𝑘 − 1 down to 𝑘 = 1, the first sum vanishes. Then,
since the second sum is over non truncated B-splines from level 𝑙, which must be linearly independent
on these elements, we find that 𝑐𝑖,𝑙 are all zero. This is the outline for the proof of linear independence
over the projection elements.

To show this, we will call all the projection elements of type 𝑚 with 𝑚 < 𝑘, in a type-𝑘 projection
element, a sub projection element of type-𝑘. These are exactly the removed projection elements in
the construction of the type-𝑘 projection elements. Next, introducing the concept of restricted linearly
independence:

Definition 5.2. A sub projection element generator 𝑒 of type 1 ≤ 𝑚 ≤ 𝑘 of a projection element with
splines of level 𝑙 − 1 and level 𝑙 of type 𝑘 is called restricted linearly independent, if it is linearly
independent over the following set:

𝐵𝑚|𝑒 ∪ {𝑏𝑖,𝑙(𝑥) ∶ Ω
𝑒 ⊂ supp (𝑏𝑖,𝑙(𝑥)) ⊆ Ω𝑙} (5.16)

Here 𝐵𝑚|𝑒 are the elements of 𝐵𝑚 that have support on Ω𝑒.

Then, the following lemma shows that the boundary elements of 𝜖 that intersect the border 𝜕Ω𝑙 are
restricted linearly independent.

Lemma 5.3. Let 𝜖 be a projection element of type 𝑘 in a THB-spline space conforming to Assumptions
1, 2 and 5 with splines of level 𝑙−1 and 𝑙. The sub projection elements of type 1 ≤ 𝑚 ≤ 𝑘 are restricted
linearly independent.

Proof. This lemma is proven with induction. The base case of 𝑚 = 𝑘, is proven by Lemma 5.2. Only
the induction step remains to be proven. That is, if the Lemma holds for sub projection elements of
type-𝑚 + 1,… , 𝑘, then it holds for sub projection elements of type-𝑚. Assume that the sub projection
elements of type-𝑚+1,… , 𝑘 are all restricted linearly independent. Now, let 𝑒 be the generator element
of one of the sub projection elements of type-𝑚. Then, over 𝑒, before refinement to level 𝑙, there are 𝑛
B-splines of level 𝑙 − 1 defined over element 𝑒:

{𝑏𝑖,𝑙−1(𝑥)}
𝑛
𝑖=1 . (5.17)

This set must be linearly independent on element 𝑒. Now, we can split this set in two parts, those
B-splines that will be truncated to THB-elements of the sets 𝐵𝑚+1, … , 𝐵𝑘, and the complement:

{𝑏𝑖,𝑙−1(𝑥)}
𝑛
𝑖=1 = {𝑏𝑗,𝑙−1(𝑥) ∶ trunc (𝑏𝑗,𝑙−1(𝑥)) ∈

𝑘

⋃
𝛼=𝑚+1

𝐵𝛼} ∪ {𝑏𝑚𝑖,𝑙−1(𝑥)}
𝑛𝑚
𝑖=1 . (5.18)

To show restricted linear independence, only the latter set is of importance. The B-splines of the latter
set come in two flavours. Those B-splines that are entirely contained in Ω𝑙 (and will thus be removed),
or those B-splines that have support on 𝑒, but must also have support on the complement support 𝑒𝐶
by Lemma 5.1. This means the latter set can be split in two:

{𝑏𝑚𝑖,𝑙−1(𝑥)}
𝑛𝑚
𝑖=1 = {𝑏

𝑚,𝐶
𝑖,𝑙−1(𝑥)}

𝑛𝐶𝑚
𝑖=1 ∪ {𝑏

𝑚,�̸�
𝑖,𝑙−1(𝑥)}

𝑛�̸�𝑚

𝑖=1
. (5.19)
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The latter set is replaced by a set of level 𝑙 B-splines, entirely contained in Ω𝑙. Denote these splines
by 𝑏�̸�𝑖,𝑙(𝑥). For these level 𝑙 B-splines, we must have that they are linearly independent, and span the
same space as 𝑏�̸�𝑖,𝑙−1(𝑥) (these are a bigger set then the level 𝑙 − 1 B-splines in (5.19)). Thus we have:

span {𝑏�̸�𝑖,𝑙−1(𝑥)}
𝑛�̸�

𝑖=1
= span {𝑏�̸�𝑖,𝑙(𝑥)}

𝑛�̸�

𝑖=1
, 𝑥 ∈ Ω𝑒 . (5.20)

Next, both bases are linearly independent. But then, since {𝑏𝑚,�̸�𝑖,𝑙−1(𝑥)}
𝑛�̸�𝑚

𝑖=1
is a subset of the l.h.s. of

(5.20), we must have that the following set of splines are linearly independent over element 𝑒 by the
splitting of (5.19):

{𝑏𝑚,𝐶𝑖,𝑙−1(𝑥)}
𝑛𝐶𝑚
𝑖=1 ∪ {𝑏

�̸�
𝑖,𝑙(𝑥)}

𝑛�̸�

𝑖=1
. (5.21)

By now truncating the level 𝑙−1 B-splines in (5.21), the first set of (5.21) becomes the grade𝑚 restricted
truncated THB-splines of level 𝑙 − 1, restricted to those splines with non-empty support on element 𝑒:

𝐵𝑟𝑒𝑠𝑚 |𝑒 ∪ {𝑏�̸�𝑖,𝑙(𝑥)}
𝑛�̸�

𝑖=1
. (5.22)

As stated before, the truncation operations do not affect the linear independence of this set, as they
produce new linear combinations that span the same space. This proves the restricted linear indepen-
dence of grade 𝑚. So, by the induction hypotheses, this holds for all 𝑚 = 1,… , 𝑘.

We can now proof linear independence over the entire projection elements:

Proposition 5.4. Given a THB-spline space conforming to Assumptions 1, 2 and 5 and let 𝜖 be a
projection element of type 𝑘. Then this projection element is linearly independent.

Proof. Split the THB-splines over 𝜖 in the truncated level 𝑙 − 1 THB-splines and the level 𝑙 B-splines.
Then, given a linear combination that sums to zero:

𝑛

∑
𝑖=1
𝑐𝑖,𝑙−1𝑏𝑖,𝑙−1(𝑥) +

𝑚

∑
𝑗=1
𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥) = 0, 𝑥 ∈ Ω𝜖 . (5.23)

From the splitting in (5.14), the first sum can be rewritten to be:

𝑘

∑
𝑚=1

𝑛𝑚
∑
𝑖=1
𝑐𝑚𝑖,𝑙−1𝑏𝑚𝑖,𝑙−1(𝑥) +

𝑚

∑
𝑗=1
𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥) = 0, 𝑥 ∈ Ω𝜖 . (5.24)

Starting with 𝑚 = 𝑘, and any 𝑏𝑘𝑖,𝑙1(𝑥), this B-spline has support on some type-𝑘 generator element by
definition. By Lemma 5.3 the coefficient 𝑐𝑘𝑖,𝑙−1 = 0. This holds for all 𝑏𝑘𝑖,𝑙−1(𝑥) ∈ 𝐵𝑘. But then, the same
argument holds for all 𝑏𝑘−1𝑖,𝑙−1 ∈ 𝐵𝑘−1 by Lemma 5.3. Repeat this to find that all the 𝑐𝑚𝑖,𝑙−1 = 0. Resulting
in:

𝑚

∑
𝑗=1
𝑐𝑗,𝑙𝑏𝑗,𝑙(𝑥) = 0, 𝑥 ∈ Ω𝜖 . (5.25)

However, these THB-splines are unaltered B-splines of level 𝑙, forcing the coefficients to be zero by
the linear independence of the B-splines. This means that the THB-splines with support on 𝜖 are linear
independent.

5.2. Sub projection F
Given the mesh element 𝑒, the local Bernstein projection 𝐹 is given by the tensor product of the one
dimensional projection with a regularization step. This can be done since the mesh elements are all
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higher dimensional rectangles that can be written as a tensor product of one dimensional domains. In
this case, the local Bernstein polynomials basis is given by a tensor product:

𝒫�⃗� ∶= 𝒫𝑝1 ⊗𝒫𝑝2 ⊗⋯⊗𝒫𝑝𝑛 (5.26)

And thus, the basis functions are associated with the index vector 𝑖 = (𝑖1, 𝑖2, … , 𝑖𝐷)𝑇 given by:

𝔟𝑖,�⃗�(𝑥1, … , 𝑥𝑛) ∶=
𝑛

∏
𝑑=1

𝔟𝑖𝑑 ,𝑝𝑑(𝑥𝑑), 𝔟𝑖𝑑 ,𝑝𝑑(𝑥𝑑) ∈ 𝒫𝑝𝑑 . (5.27)

These 𝑖 are generated by taking tensor products of the index set per dimension. Given dimension 𝑑 of
degree 𝑝𝑑, there are 𝑝𝑑 + 1 local Bernstein polynomials and denote 𝐼𝑑 ∶= {1, 2, … , 𝑝𝑑 + 1} as the index
set of these Bernstein polynomials. Then, take 𝐼 ∶= 𝐼1⊗ 𝐼2⊗⋯⊗ 𝐼𝑛 to be the multivariate index set.
In the two dimensional case, with �⃗� = (3, 2), these can be associated with nodes on the domain as in
Figure 5.5.

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

Figure 5.5: Nodal points of a degree �⃗� = (3, 2) 2D Bernstein polynomial space over some element 𝑒.

To construct the full dimensional projector 𝐺�⃗�, let 𝐺𝑝𝑑 be the the one dimensional projector for di-
mension 𝑑, see (2.23). Then, the full dimensional local Bernstein projector is given by a tensor of the
1D projection matrices:

𝐺�⃗� ∶= 𝐺𝑝1 ⊗𝐺𝑝2 ⊗⋯⊗𝐺𝑝𝑛 (5.28)

Additionally, the integrals are given by:

𝑓𝑒𝑖 = ∫Ω𝑒
𝔟𝑖,�⃗�(𝑥1, … , 𝑥𝑛)𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑥1⋯𝑑𝑥𝑛 (5.29)

These are again calculated numerically by Legendre-Gauss Quadrature, where the number of nodal
points will need to be chosen as such, that they have no effect on the accuracy of the later projections.
Denote the full collection of all of these elements as 𝑓𝑒. The local Bernstein polynomial projection is
then given by:

𝛽𝑒 = 𝐺�⃗�𝑓𝑒 (5.30)

5.2.1. Regularization
Secondly, the projection is regularized over the element boundaries, to produce a 𝐶0 smooth projec-
tion. This smooth space 𝔽, will be a particular THB-spline space. Until now, we have assumed that the
B-spline spaces used to construct the THB-spline spaces are (𝑝 + 1) open, where all knots (besides
the border knots) have multiplicity 1, see Assumption 3. This produces a maximally smooth THB-spline
space. However, if we create a different THB-spline space, where the B-spline spaces are again (𝑝+1)
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open, but all the interior knots have multiplicity 𝑝, we obtain the desired 𝐶0 smooth space 𝔽.

This THB-spline space is 𝐶0 smooth, since all the basis functions are 𝐶0 smooth. Additionally, any
basis function of one of the B-spline spaces is a local Bernstein polynomial on most elements. The
case where all knots have multiplicity 𝑝 + 1, is proven in Section 2.4. However, if we decrease the
multiplicity, and thus increase the regularity from 𝐶−1 to 𝐶0 on any element, only the B-spline on the
borders are combined. However, these B-splines that are combined, must coincide on the border, and
are thus not altered. This immediately means that any non truncated THB-spline in 𝔽, restricted to any
mesh element 𝑒, is a Bernstein polynomial. This is not the case for the truncated THB-splines, as on
some elements, they are truncated/altered. However, since we desire a 𝐶0 smooth space, we cannot
expect this to be the case, as on the border between two levels, the refined Bernstein polynomials have
more degrees of freedom. See Figure 5.6, here on the red and blue edges. The 𝐶0 smooth functions
imply that some of basis functions of 𝔽, cannot be a local Bernstein polynomial, but must instead be
some linear combination.

Figure 5.6: A grid of local Bernstein polynomial degrees of freedom. They have been shifted inwards, as otherwise degrees of
freedom will overlap. Notice that on the border between the coarse and refined domain, the degrees of freedom only partially
coincide.

Now, on any mesh element 𝑒, these THB-splines are in fact linearly independent. Any element
of level 𝑙 that does not intersect any refinement boundary 𝜕Ω𝑙\𝜕Ω0, is obvious by the local Bernstein
polynomial structure. For any element that does intersect a refinement boundary 𝜕Ω𝑙\𝜕Ω0, the splines
can be split whether they have support on this refinement boundary or not. Clearly, those without are
linearly independent, and must be linearly independent to any spline with support on the boundary.
The splines on the boundary, restricted to the boundary, must be Bernstein polynomials from level 𝑙 −1
restricted to the boundary. They are thus linearly independent on the boundary, and hence on the
element.

This means that we can do a Bezier projection from the local Bernstein polynomial space to this
THB-space 𝔽. As shown above, on any element 𝑒, the THB-splines of 𝔽 are linearly independent, and
we can thus do an element wise projection:

𝜆𝑒 = 𝐶𝑒 −1 𝛽𝑒 . (5.31)

Where the columns of matrix 𝐶𝑒 describe any basis function on element 𝑒 of 𝑓𝑒𝑗 (𝑥) ∈ ℱ as a linear
combination of Bernstein polynomials 𝔟𝑒𝑖 (𝑥). Secondly, this mapping is regularized as:

𝜆𝑗 =∑
𝑒∈𝐸

𝜔𝑒𝑗 𝜆𝑒𝑗 , 𝜔𝑒𝑗 ∶=
∫Ω𝑒 𝑓𝑗(𝑥)𝑑𝑥
∫Ω 𝑓𝑗(𝑥)𝑑𝑥

. (5.32)

Hence, we find an element 𝑠 ∈ 𝔽:
𝑠(𝑥) =∑

𝑗
𝜆𝑗𝑓𝑗(𝑥). (5.33)
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This element can be mapped back to the local Bernstein polynomials on any element 𝑒 by multiplying
the coefficients by 𝐶𝑒. This is useful, as the actual THB projector 𝑇 maps from the local Bernstein
polynomial basis.

5.2.2. Estimates
We desire this projector to conform to the requirements of Assumption 4.

Proposition 5.5. The projector 𝐹 ∶ 𝐿2(Ω) → 𝔽 conforms to the following properties for any 𝑒 ∈ 𝐸.
Let the coefficients 𝛽𝑒 be the coefficients related to 𝔟𝑒𝑖 (𝑥) that represent the projected coefficient on
element 𝑒.

𝐹𝑠 = 𝑠, ∀𝑠 ∈ 𝔽, (continuous polynomial preserving) (5.34)

‖𝛽𝑒‖∞ ≤
𝐶𝑠𝑡𝑎𝑏,𝐹
|Ω𝑒|1/2 ‖𝑠‖𝐿2(Ω�̃�), ∀𝑠 ∈ 𝐿2 (Ω�̃�) . (local stability property) (5.35)

Where 𝐶𝑠𝑡𝑎𝑏,𝐹 is a constant independent on ℎ. The support extension is taken in the 𝔽 spline space.

Proof. The continuous polynomial preserving property is trivial. It clearly holds on the initial local ele-
ments projections, and in the regularization steps, for 𝑠 ∈ 𝔽, it must be continuous, and thus coincide
on every element boundary. This means that the regularization step does not alter the initial local pro-
jection.

To show the local stability property:

‖𝛽𝑒‖∞ ≤
𝐶𝑠𝑡𝑎𝑏,𝐹
|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω�̃�), ∀𝑓 ∈ 𝐿2 (Ω�̃�) . (5.36)

We again start from Lemma 2.8, this bounds all the pre-regularized coefficients over all elements 𝑒, by:

‖𝛽𝑒‖∞≤
𝐶𝑝

|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω𝑒). (5.37)

In the regularization step, a Bezier projection is performed, where the local projection matrices 𝐶𝑒 −1
of (5.31) must be independent of element size, possibly dependent on 𝑝 and mesh regularity 𝜇. But
then, the regularized coefficients 𝜆𝑒 are bounded:

‖𝜆𝑒‖∞≤
𝐶

|Ω𝑒|1/2 ‖𝑓‖𝐿2(Ω𝑒). (5.38)

Where this constant 𝐶 is dependent on 𝐶𝑝, 𝑝 and 𝜇. Taking a weighted average, the resulting coefficients
must be bounded by all of these 𝜆𝑒 and hence, the local stability property follows.

5.3. Sub projection T
The second projector 𝑇 is defined the exact same way is in the univariate setting (see section 4.3).
In the multivariate case, we have more types of projection elements. However, every type is simply
a collection of mesh elements, on which the THB-splines with support on the projection element, are
linearly independent (see Lemma 5.2). Given some element 𝑒, all the THB-splines 𝑏𝑖(𝑥) can be written
as a linear combination of Bernstein polynomials over 𝑒, denoted by 𝔟𝑒𝑗 :

𝑏𝑖(𝑥) =∑
𝑗
𝑐𝑒𝑖,𝑗𝔟𝑒𝑗 (𝑥), 𝑥 ∈ Ω𝑒 . (5.39)

We can extend this over any projection element 𝐸𝜖 = {𝑒1, … , 𝑒𝑚}:

𝑏𝑖(𝑥) = ∑
𝑒∈𝐸𝜖

∑
𝑗
𝑐𝑒𝑖,𝑗𝔟𝑒𝑗 (𝑥) =∑

𝑗
𝑐𝜖𝑖,𝑗𝔟𝜖𝑗 (𝑥), 𝑥 ∈ Ω𝜖 . (5.40)
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Then, locally on projection element 𝜖, we project to the THB-spline basis with the pseudo inverse:

𝐶𝜖 + ∶= (𝐶𝜖 𝑇 𝐶𝜖 ) 𝐶𝜖 𝑇 . (5.41)

To obtain a local representation:
𝑠(𝑥)|𝜖∑

𝑖
𝛾𝜖𝑖 𝑏𝑖(𝑥), 𝑥 ∈ Ω𝜖 . (5.42)

Finally, a recombination step produces the final projection for any THB-spline 𝑖:

𝛾𝑖 = ∑
𝜖∈Υ𝑗

𝜔𝜖𝑖 𝛾𝜖𝑖 . (5.43)

Where the weighting coefficients are given by:

𝜔𝜖𝑖 ∶=
∫Ω𝜖 𝑏𝑖(𝑥)𝑑𝑥
∫Ω0 𝑏𝑖(𝑥)𝑑𝑥

. (5.44)

This produces a final THB-projection:

𝑇𝑠 =∑
𝑖
𝛾𝑖𝑏𝑖(𝑥), 𝑥 ∈ Ω0, 𝑠 ∈ 𝔽. (5.45)

Note, this is exactly the same as in Section 4.3.

5.4. Estimates
Defining the multivariate projector Π ∶= 𝑇𝐹. This projector has the following estimate result:

Theorem 5.6. Let 𝑘 and 𝑙 be integer indices with 0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑝 + 1. For each mesh element 𝑒, the
following inequality holds:

‖𝑓 − Π𝑓‖𝐻𝑘(Ω𝑒) ≤ 𝐶𝑎𝑝𝑝ℎ𝑙−𝑘𝑒 ‖𝑓‖𝐻𝑙(Ω𝑒∗ ), ∀𝑓 ∈ 𝐻𝑙 (Ω𝑒∗) , (5.46)

where ℎ𝑒 is the diameter of the element 𝑒. 𝑒∗ is the support extension of the support extension of
𝑒. 𝐶𝑖𝑛𝑡 is a constant independent of ℎ𝑒, but possibly dependent on the shape regularity of the mesh,
polynomial degree, number of refinement levels 𝐿, continuity, and the parameters 𝑘 and 𝑙.

Proof. The proof and required lemmas from Theorem 4.10 also hold in the multivariate case.





6
Numerical Results

The proposed projector has been implemented in Matlab for both the univariate and multivariate case.

6.1. Univariate Projector
For the univariate projector, we have the following test cases:

𝑓(𝑥) = sin(𝜋𝑥), (6.1)
𝑔(𝑥) = 2 |𝑥 − 1/2| , (6.2)
ℎ(𝑥) = cos(20𝜋𝑥), (6.3)
𝑧(𝑥) = sin(8𝜋𝑥) + 2. (6.4)

6.1.1. Accuracy
The above mentioned test cases have been used to compare our proposed projector Π against a global
THB-spline projection1 and a different THB-spline projector introduced in (Giust et al., 2020). This was
done for 𝑝 = 2 in Figure 6.1 and for 𝑝 = 4 in Figure 6.2. The first function 𝑓(𝑥) was chosen as a simple
function to see how the projectors deal with the different levels of refinement. The second 𝑔(𝑥) was
chosen to see how they would deal with 𝐶0 smooth functions and ℎ(𝑥) was chosen in such a way that
the coarse splines will have difficulty capturing the finer details. In all cases, a THB-spline spaces was
generated where the coarse spline space partitions the unit domain in sixteen elements, of which the
middle eight have been refined.

Figure 6.1: p=2, THB local is projector introduced in (Giust et al., 2020)

1The second step in Π, 𝑇 has been replaced by a global THB projection, instead of the local projection element projections. This
represents an “optimal” 𝑇 projector.
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In the case of 𝑝 = 2 in Figure 6.1, there is not much difference between the proposed projector
and the projector of (Giust et al., 2020). In the case of 𝑝 = 4 in Figure 6.2, the differences become
more pronounced. For the 𝑠𝑖𝑛 (𝜋𝑥) case, the projector of (Giust et al., 2020) seems to struggle with
the refinement boundaries at 𝑥 = 1

4 and 𝑥 =
3
4 . In the case of 2 |𝑥 −

1
2 |, our proposed projector has a

larger error at 𝑥 = 1
2 , while the projector of (Giust et al., 2020) has a bigger overshoot. This indicates

that neither one is better, but each excel for different problems.

Figure 6.2: p=4, THB local is projector introduced in (Giust et al., 2020)

Additionally, convergence for both Π0 and Π1 are shown in Figure 6.3. To show this, we have a THB-
spline space for which the middle is refined. The error is calculated for different element diameters ℎ
in order to check Theorem 4.10, which states that for 𝑧(𝑥) = sin(8𝜋𝑥) + 2, the projections should
converge as 𝒪(ℎ𝑝+1) for Π0. To see this, the theoretical slopes have also been plotted. For Π1, no
theoretical results on convergence are given, but the solution seems to converge as 𝒪(ℎ𝑝).

Ω0 Ω0Ω1Ω0 Ω0Ω1

Figure 6.3: Convergence of the univariate projectors Π0 and Π1 for target function 𝑧(𝑥) = sin(8𝜋𝑥) + 2, over different element
diameters and degrees. Here a THB-spline mesh is used where the middle half of the domain is refined. Additionally, the optimal
convergence slopes are also plotted. Note that due to Theorem 4.10, only optimal convergence slopes for Π0 are known, the
slopes for Π1 are the slopes that fit the best. Additionally, note that for Π1, we project in to 𝕋1, but the degree denotes the degree
of the THB-spline space 𝕋0.

6.1.2. Commutation
The commuting property of the projector has also been numerically confirmed in Figure 6.4. Here
the function 𝑓(𝑥) = 𝑐𝑜𝑠 (4𝜋𝑥) is first projected on to the local Polynomial space 𝔽0 as is proposed in
Section 4.2. In Figure 6.4, the error between 𝑑

𝑑𝑥𝑇
0𝐹0𝑓(𝑥) and 𝑇1 𝑑𝑑𝑥𝐹

0𝑓(𝑥) is shown. Only commutation
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has been checked for 𝑇, as in 𝐹, the integrals have to be calculed analytically, thus the two to project
function, differ by a constant. The commutation result is more involved for the projector 𝑇. The Figure
shows that the second projector 𝑇0 and 𝑇1 commute with the derivative, and that the error is close
to the order of machine precision for both the cases of 𝑝 = 2 and 𝑝 = 4. The not-exactly machine
precision error is most likely a result of the numerical errors propagating through the projector 𝑇.

Figure 6.4: Given the projection of the function 𝑓(𝑥) = 𝑐𝑜𝑠 (4𝜋𝑥) in to the space 𝔽0 of (4.73). On the left the error between
𝑑
𝑑𝑥𝑇

0𝐹0𝑓(𝑥) and 𝑇1 𝑑
𝑑𝑥𝐹

0𝑓(𝑥) for 𝑝 = 2 and on the right for 𝑝 = 4.

6.2. Multivariate projector
For the multivariate projector Π, we have the test case 𝑓(𝑥, 𝑦):

𝑓(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). (6.5)

6.2.1. Convergence
In order to check convergence, a B-spline space will be used. Clearly, the 𝐿2 error is mainly determined
by the coarsest level. For this reason, analysing B-spline spaces, will give a better result. In Figure
6.5, the 𝐿2 error for the function 𝑓(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦) can be seen for various degrees 𝑝 = 1,… , 5
over different element diameters ℎ.

From Theorem 5.6, the error should converge as 𝒪(ℎ𝑝+1). In Figure 6.5, for 𝑝 = 1,… , 4, the pro-
jection converges optimally. However, for 𝑝 = 5, the accuracy of the projection halts, for ℎ = 6 ⋅ 10−1.
This is most likely the result of the numerical errors propagating through the projector.

Additionally, a similar Convergence plot has been made for THB-spline spaces for the function
𝑔(𝑥, 𝑦) = sin(2𝜋𝑥2) sin(2𝜋𝑦2). Due to the squares in the function, the domain [0.5, 1]×[0.5, 1] contains
more detail and will benefit from refinement. The convergence of the error is given in Figure 6.6. In
this Figure, it becomes clear that even for the THB-spline space, the convergence is optimal according
to Theorem 5.6. But the optimal convergence rates require a minimal element diameter in order to
converge properly.
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Figure 6.5: Projection error on to a B-spline space of the function 𝑓(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). For the degree values 𝑝 = 1,… , 5,
the error is calculated over different element diameters ℎ. Additionally, the optimal 𝑝 + 1 slope lines are shown.

Ω0

Ω1

Figure 6.6: Projection error of 𝑔(𝑥, 𝑦) = sin(2𝜋𝑥2) sin(2𝜋𝑦2) in a THB-spline space. The mesh is refined for a single level on
the domain [0.5, 1] × [0.5, 1], see the domain. The horizontal axis shows the element diameter ℎ of the coarsest level. The error
is given for 𝑝 = 1,… , 4 and the optimal convergence slope lines 𝑝 + 1 are also shown.



7
Conclusion

Within the research field of Finite Element Exterior Calculus, that concerns it self with solving the ab-
stract Hodge Laplacian problem numerically, one requires that the finite element complex has good
approximation power, shares the underlying structure of the continuous complex, and the existence of
a commuting projector. That is to say, an projector which commutes with the exterior derivative. THB-
spline spaces are a natural choice for a finite element space/complex. They exhibit better approximation
power per degree of freedom, compared to the regularly used linear basis functions. Additionally, they
can be refined on subsets of the main domain to an arbitrary level or refinements. While local THB-
spline projectors exist in literature, no commuting THB-spline projector exists.

Our proposed projector requires a local set of linearly independent THB-splines. Compared to B-
splines, THB-splines can be overload on certain elements, which means that on certain mesh elements,
the set of THB-spline basis functions with non-empty support are linearly dependent. To get around
the overloaded elements, projection elements were introduced, that are collections of mesh elements
for which we have shown that the set of THB-spline basis functions with non-empty support are linearly
independent.

The local THB-spline projector Π consists of two sub-projectors, namely 𝐹 and 𝑇. First, on every
mesh element, the target function is projected on to a local Bernstein polynomial basis, which is then
regularized to obtain a 𝐶0 smooth projection. The second sub-projector is a Bezier projection over the
projection elements. In this Thesis we have chosen the initial projector to be a 𝐿2 projection on every
element. However, this initial projection can be chosen, as long as they conform to Assumption 4.

Additionally, for the univariate setting, a set of commuting projectors was constructed. This was
done by constructing a commuting set of sub-projectors. However, to show commutation for the sec-
ond sub-projector, the intermediary space was required to be 𝐶0 smooth, hence a regularization step.
Unfortunately, this approach did not extend to the multivariate setting.

Lastly, the local estimates were proven for both the univariate and mutlivariate projectors. These
estimates were numerically verified, as was the commutation property for the univarite case.

However, the projector does require various assumptions. Some of these appear in literature, like
Assumption 1 and 2, which are used to show that THB-spline spaces are exact in 2D, or are necessary
for other local THB-spline projectors. Additionally, we require that the THB-spline space is maximally
smooth and that non of the projection elements overlap.
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