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In theory, theory and practice are the same.
In practice, they are not.



ABSTRACT

We investigate open- and closed-loop quantum optimal control in nitrogen-vacancy
(NV) centre systems, using gate set tomography (GST) for pulse characterisation and
calibration. Open-loop optimisation with GRAPE revealed a strong dependence of gate
fidelity on pulse duration and the need for phase correction in echo-based gates.

Despite promising simulations of advanced pulse designs, experimental performance
was consistently higher for a standard weak 7 pulse, highlighting model limitations.
Closed-loop optimisation with dCRAB improved performance but exhibited sensitivity
to environmental drift, confirming magnet-induced variations.

GST identified dominant coherent error channels, notably Z Z, attributed to AC Stark-
induced phase shifts. A novel gate design suppressed ZZ errors but introduced greater
stochastic noise.

These results demonstrate the importance of integrating model-driven and data-
driven approaches with advanced tomography protocols to achieve robust, high-fidelity
quantum control in noisy intermediate-scale quantum (NISQ) devices.
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NOMENCLATURE

AOM  Acousto-Optic Modulator

APD  Avalanche Photodiode

AWG  Arbitrary Waveform Generator

CNOT Controlled-NOT gate

dCRAB dressed Chopped Random Basis algorithm

DD Dynamical decoupling

DDRF Dynamically Decoupled Radio-Frequency

FoM  Figure of Merit

GRAPE Gradient Ascent Pulse Engineering

GST  Gate Set Tomography

MW  Microwave

NV Nitrogen—vacancy centre in diamond

PL Photoluminescence

RF Radio-frequency

RWA  Rotating-Wave Approximation

pyGSTi Python Gate Set Tomography Implementation
QuOCS Quantum Optimal Control Suite

QuTiP Quantum Toolbox in Python

qutip-goc Quantum Optimal Control extension for QuTiP
A Detuning between drive and transition frequency
Ye Electron gyromagnetic ratio (277 x 4.18 MHz G™ 1)
YN 14N gyromagnetic ratio (27 x 0.308kHz G™!)
Q(#) Time-dependent Rabi frequency of the drive

[0) Instantaneous microwave phase

ix



X NOMENCLATURE

T Free-evolution interval in an echo sequence

A Axial hyperfine coupling (= —2.18 MHz for Nitrogen)

By Static magnetic field along the NV axis

D Zero-field splitting (27 x 2.87 GHz) Eq.2.1
Gate (or state) fidelity

p Parity observable used in Bell-state analysis



INTRODUCTION

QUANTUM COMPUTING AND ITS PROGRESS

Quantum computing harnesses the principles of quantum mechanics to process infor-
mation in fundamentally new ways. It aims to outperform classical computers in spe-
cific tasks by exploiting phenomena such as superposition, entanglement, and quantum
interference. The theoretical foundation of quantum computation was first proposed
by Paul Benioff in 1980, who introduced a quantum mechanical model of a Turing ma-
chine [1]. Shortly thereafter, Richard Feynman and Yuri Manin argued that simulating
quantum systems would require quantum computers, as classical computers face expo-
nential overhead in such simulations [2], [3].

A major milestone was reached in 1994 with the introduction of Shor’s algorithm,
which demonstrated that quantum computers could efficiently factor large integers, threat-
ening classical cryptographic schemes such as RSA [4]. The first physical realisation of a
quantum algorithm followed in 1998, implemented using a two-qubit nuclear magnetic
resonance (NMR) system [5].

Since then, the field has experienced remarkable progress. Single-qubit gate fideli-
ties have improved from approximately 90% in early demonstrations to 99.99916% in
trapped-ion systems [6], 99.998% in superconducting circuits using fluxonium qubits [7]
and 99.999% in NV centre systems [8]. Two-qubit gate fidelities, once a significant bot-
tleneck, have also seen substantial progress. State-of-the-art ion trap platforms now ex-
ceed 99.9%[9], NV centre systems have reached 99.93%[8], and superconducting systems
have achieved comparable performance through optimised control and coupling strate-
gies [10]. Despite these advances, quantum processors remain in the Noisy Intermediate-
Scale Quantum (NISQ) regime, limited by noise and decoherence [11]. Achieving fault-
tolerant quantum computation requires two-qubit gate fidelities well above 99.9%, in
conjunction with efficient error correction protocols [12].

NV CENTRES AS A QUANTUM PLATFORM
Compared to other architectures, nitrogen-vacancy (NV) centres in diamond offer long
coherence times and optical addressability. These properties make them strong candi-
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dates for scalable quantum computing and networking [13], though they also pose chal-
lenges in achieving high-fidelity multiqubit control due to weak couplings and complex
spin environments.

QUANTUM OPTIMAL CONTROL

One strategy to meet these challenges is quantum optimal control, which combines clas-
sical control theory with quantum dynamics. Since its emergence in the early 2000s [14],
this framework has achieved notable success across diverse platforms, including trapped
ions [15], superconducting qubits [16], and NV centres [17], [18].

Optimal control techniques are generally classified as either open-loop or closed-
loop. Open-loop methods use simulations and accurate system models to design control
pulses, while closed-loop control incorporates experimental feedback to iteratively re-
fine the pulse, thereby compensating for model inaccuracies. Algorithms such as GRAPE
(Gradient Ascent Pulse Engineering) [14] and dCRAB (dressed Chopped Random Ba-
sis) [19] can be employed in either setting. However, GRAPE is most commonly used
in open-loop simulations due to its reliance on gradient information, whereas dCRAB is
particularly well suited to closed-loop optimisation, where gradients may be unavailable
or unreliable.

QUANTUM GATE CHARACTERISATION

Evaluating the performance of an implemented quantum gate is essential for assess-
ing how closely the realised operation approximates the ideal target, and for identifying
sources of error that may limit fidelity. While this assessment is distinct from the opti-
misation procedure itself, it plays a crucial role in validating the outcome and informing
future control strategies. In open-loop control, performance evaluation provides exper-
imental confirmation of model-based predictions; in closed-loop control, it helps inter-
pret the effectiveness of feedback-based improvements.

To characterise quantum gate performance, a range of diagnostic tools has been de-
veloped, each with different trade-offs. Quantum state and process tomography offer full
characterisation of quantum operations but suffer from poor scalability and significant
sensitivity to state preparation and measurement (SPAM) errors. Randomised bench-
marking (RB), by contrast, is a scalable benchmarking protocol that yields an average
error rate over randomised sequences of gates [20]. It is robust against SPAM but does
not resolve gate-specific errors or distinguish between coherent and incoherent error
sources.

Gate Set Tomography (GST) occupies a complementary role: it is a tomographic
method that provides SPAM-robust, self-consistent reconstructions of an entire gate set,
including state preparation and measurement processes [21]. Unlike RB, GST yields de-
tailed information about the structure and origin of errors in individual gates, making
it particularly useful for diagnosing limitations in optimised control pulses and guiding
subsequent improvements.

SCOPE AND STRUCTURE OF THIS THESIS

This thesis demonstrates the implementation of a high-fidelity two-qubit gate in an NV
centre system using both open-loop and closed-loop optimal control methods. The re-
sulting operations are characterised using GST, which also guides iterative pulse refine-



ment. Although prior work has applied optimal control to NV systems [17], to our knowl-
edge, this is the first study to combine these techniques with comprehensive GST-based
validation.

Our results highlight the synergistic potential of optimal control and advanced char-
acterisation to push gate fidelities closer to thresholds for fault tolerance.

This thesis is structured as follows.

Chapter 2 provides the theoretical background, introducing the NV centre in dia-
mond as our experimental platform, the principles of quantum optimal control—focusing
on the GRAPE and dCRAB algorithms—and the GST framework.

Chapter 3 outlines the software and hardware methods used. On the software side,
we describe the use of QuTiP for open-loop optimal control, QuOCS for closed-loop op-
timisation, and pyGSTi for gate characterisation. On the hardware side, we detail the
experimental setup and control infrastructure.

Chapter 4 presents and discusses our results. We begin with open-loop optimal con-
trol, proceed to closed-loop optimisation, and then describe the GST-based characteri-
sation of our implemented gate. We also explain how these characterisation results in-
form our pulse design and implementation, leading to the implementation of a weak %n
sequence.

Chapter 5 concludes the thesis by summarising the key findings and outlining po-
tential directions for future research.




THEORETICAL BACKGROUND

In this chapter, we present the foundational concepts and models that underpin the ex-
perimental and computational work in this thesis. We begin with an overview of the
nitrogen—vacancy (NV) centre in diamond, a versatile platform for solid-state quantum
technologies. We then introduce the principles of quantum optimal control, focusing on
the GRAPE and dCRAB algorithms, and we conclude with gate set tomography—a robust
protocol for characterising quantum operations.

2.1. NV CENTRE IN DIAMOND

Diamond’s nitrogen—-vacancy (NV) centre is a point defect consisting of a substitutional
nitrogen atom next to a nearest-neighbour carbon vacancy (Figure 2.1). We create a con-
trolled density of NVs in high-purity, lab-grown diamond by (i) incorporating nitrogen
during chemical vapour deposition, (ii) generating vacancies through electron, ion, or
neutron irradiation, and (iii) annealing at ~800-1000°C, which mobilises vacancies so
that they pair with substitutional nitrogen atoms [23].

We can stabilise the centre in two charge configurations, NV and NV~. Throughout
this thesis we employ only the spin-triplet ground state of NV~ as a solid-state qubit
because it supports optical spin polarisation, coherent microwave control, and spin-
dependent fluorescence read-out [22].

2.1.1. OPTICAL SPIN POLARISATION AND READ-OUT

In this work, we use off-resonant excitation at 515 nm to prepare the NV centre in the
negatively charged state (NV™). Spin-selective resonant excitation at 637 nm is then em-
ployed to initialise and read out the electron spin state.

The spin-pump laser at 637 nm selectively excites the electron spin ifitisin mg = +1,
which, through spin-dependent intersystem crossing to the metastable singlet states, ef-
ficiently pumps the spin into the mg = 0 ground sublevel [24]. The subsequent resonant
readout laser also addresses only the mg = 0 state, enabling projective spin readout via
spin-dependent fluorescence.
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Conduction band

Valence band

OISC

Figure 2.1: Crystal structure and molecular orbitals of the NV centre. (a) Schematic of a substitutional nitro-
gen atom (green) adjacent to a vacancy (white) in the diamond lattice. Grey spheres denote the '2C lattice; a
single 13C isotope (yellow) with nuclear spin I = 1/2 naturally occurs with 1.1% abundance. (b) One-electron
molecular-orbital diagram of the negatively charged NV~ centre showing the occupation of the a; and e defect
levels in the triplet ground state. Adapted from Ref. [22].

READOUT UNCERTAINTY
To estimate the number of shots needed to achieve a desired level of statistical certainty
in quantum readout, we model the problem as a binomial distribution: each shot yields
either a 0 or a 1. Let n be the number of shots, and k the number of observed 1’s. The
empirical readout frequency is then f = %, with expectation value p, the true probability
of measuringa 1.

Since k ~ Binomial(n, p), the variance of k is Var(k) = np(1 — p). The variance of f,
the proportion, is therefore:

Var(f) = w

and the standard deviation is (using f to estimate p):

_ [pa-p _ [ra-p
9= n - n

Suppose we wish the uncertainty to be a fraction 1/R of the deviation from perfect
fidelity, thatis, o = %. Solving for n gives:

\-f_ jra-p _ _Ef
R n T1-f

For example, if f = 0.9 and R = 100, we obtain:

1002 x 0.9
=— =900
1-0.9
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This formulation provides a practical way to plan shot counts based on desired ex-
pected fidelity.

In the context of optimisation, the choice of shot count directly affects the ability to
find gradients within the control landscape. Too few shots introduce significant stochas-
tic noise into fidelity estimates, obscuring the underlying landscape structure and im-
peding gradient estimation or convergence of heuristic optimisers. Conversely, exces-
sive shot counts slow down the optimisation loop without proportional benefit once
statistical uncertainty is sufficiently low. The trade-off is particularly important in ex-
perimental optimisation, where each shot consumes valuable time and resources. By
tuning n according to the expected fidelity and required confidence (e.g., using the cri-
terion above), one can maintain a balance between statistical reliability and practical
optimisation speed, thereby promoting efficient exploration of the control landscape.

2.1.2. SYSTEM HAMILTONIAN AND COHERENT CONTROL

For a single NV~ centre coupled to its host 1*N nucleus (I = 1), the secular Hamiltonian
in the laboratory frame is [22], [23]

Hiab = DS2+yeBoS; + YnBol, +S-A-L+ PIZ +2Q(t) cos(wmwt + ) Sx, 2.1)
where
* D/2m =2.87GHz is the ground-state zero-field splitting;

* Ye =21 x 2.802MHz G! and Yn =21 x 0.3077kHz G~! are the electron and N
nuclear gyromagnetic ratios, respectively;

* A=diag(Axx, Avy, 4)) is the hyperfine tensor (A /27w = —2.189 MHz for 14N,
* P/2m = —4.95MHz is the nuclear quadrupole splitting of the 4N spin;
* By is a static magnetic field aligned with the NV axis (z-axis);

* Q(t) and ¢ denote the time-dependent Rabi frequency and phase of the near-
resonant microwave drive.

Transforming to the interaction picture with respect to Hy = DS% +y,BoS; +ynBol,
and applying the rotating-wave approximation (RWA) for a drive near the |mg =0) —
|mg = —1) transition yields

Anv=A8;+S-AT+PIZ+Q(0)[cosp Sy +sinp S, ], (2.2)
with detuning
A=wmw— [D—7veBo+ Ay]. (2.3)

Assuming a fixed nuclear spin state (e.g. my = +1) and restricting to the electronic
subspace {|0),|-1)}, Eq. (2.2) reduces to the effective single-qubit Hamiltonian

N Q(1) N A
Hf(gl)VAz -A |_1><_1|+T [cosqﬁagf) +s1n([)a(ye)], (2.4)
where 6;‘3 are Pauli operators acting on {|0),|—1)}.
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2.1.3. CONDITIONAL ELECTRON SPIN CONTROL WITH A WEAK 7 GATE
Coherent control of NV-centre qubits is achieved using microwave (MW) and radio-
frequency (RF) pulses. This section focuses on the weak 7 gate—a conditional operation
that implements a CROTX gate, where the nitrogen nuclear spin acts as the control and
the electron spin as the target.

COMPARISON WITH THE DDRF GATE

The weak 7 gate applies a conditional rotation to the electron spin, with the rotation oc-
curring only when the nuclear spin is in a specific state. This is achieved through spectral
selectivity: by tuning the microwave frequency to match the hyperfine-split transition
associated with a particular nuclear spin state, the electron spin undergoes a r rotation
if and only if the nuclear spin is in that state. The resulting gate is straightforward to
implement and inherently robust against certain types of control errors.

Our group previously developed a high-fidelity two-qubit gate known as the DDRF
(Dynamically Decoupled Radio-Frequency) gate [8], which achieved a GST fidelity of
99.93%. The DDRF gate applies a conditional +7/2 rotation to the nuclear spin, con-
ditioned on the electron spin state. Despite its high fidelity, its long duration imposes
limitations for certain applications.

A key distinction lies in the direction of conditionality: the DDRF gate conditions a
nuclear spin rotation on the electron spin, whereas the weak 7 gate conditions an elec-
tron spin rotation on the nuclear spin state. Moreover, their physical mechanisms differ:
the DDRF gate employs differential phase accumulation modulated by dynamical de-
coupling, while the weak 7 gate relies purely on spectral selectivity enabled by hyperfine
splitting.

NUMERICAL VALIDATION OF CONDITIONALITY
The term “weak n” refers to a pulse with lower amplitude and longer duration than a
conventional strong 7 pulse. While strong 7 pulses affect unconditional electron spin
flips—typical in dynamical decoupling sequences—the weak 7 pulse is designed to flip
the electron spin only if the nuclear spin is in the m; = 0 subspace. This selectivity en-
ables conditional gate operations such as the controlled- Ry (r) (CROTX).

Figure 2.2 illustrates this principle. In the time domain (left), the strong pulse (blue)
is brief and intense, while the weak pulse (orange) is longer and weaker.

To quantitatively validate this selectivity, we simulate the driven evolution of a two-
level system under a Gaussian-shaped pulse using the time-dependent Rabi Hamilto-
nian:

A Q)
H(r) = 50z+ — v
where A is the detuning and Q(f) = Qg exp(—%) is the time-dependent Rabi fre-

quency with a Gaussian envelope centred at fy and width o. Figure 2.2(b) shows the
excitation probability as a function of detuning.

The Gaussian weak 7 pulse sharply suppresses off-resonant excitation, confirming
that only transitions near resonance are driven. This spectral confinement is a key de-
sign feature. Compared to a rectangular shape, the Gaussian envelope minimises spec-
tral side lobes and reduces crosstalk with undesired hyperfine transitions. These prop-
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Figure 2.2: Ilustration of strong and weak 7 pulses in the NV centre system. Left: Time-domain view: the
strong pulse (blue) is short and high in amplitude, while the weak pulse (orange) is longer and lower in ampli-
tude. Right: Simulated spin excitation probability versus detuning. A strong Gaussian 7 pulse (blue) excites
all three ODMR resonances uniformly, while a weak pulse (orange) is selective, only inducing transitions near
zero detuning. This confirms the conditional nature of the weak 7 gate.

erties make the Gaussian weak 7 gate particularly effective for conditional control of the
electron spin in NV-based quantum gates.

UNITARY AND PHASE CORRECTION

Although the weak 7 gate induces a full 7 rotation on the electron spin when the nuclear
spin is in the mj = 0 state, its unitary action is subtly different from an ideal CNOT gate.
The CNOT gate is defined as

Ucnor =Te ®10)(0ly + Xe ® [1)(1]n,

which satisfies Uy = 1, since X% = 1.
In contrast, the weak 7 gate implements the controlled- R, () operation,

CRy(m) = 1,®10){0[;y + Ry(m) ® |1){1ly, Ry(m) =-iX.

This gate differs from Ucnor by a controlled phase, which affects the gate’s behaviour

under composition.
To explicitly show the relation, consider applying a virtual Z rotation on the control

qubit (nitrogen spin): ' )
R(=Z) =e™*10)¢0 + e~ ™4 |1)(1].
Then,
Ucorrected = (Te ® Rz(—2)) CR(m) = €1, 8 10)(0] — i e” " X, @ |1)(1].

This unitary is equivalent to Ucnor up to a global phase and a known single-qubit phase
on the nuclear spin.

In our implementation, this residual phase is corrected via a virtual Z rotation on
the nitrogen spin, converting the CROTX gate into an ideal CNOT under composition.
This ensures that the gate behaves as expected when embedded within larger quantum
circuits.
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2.1.4. DYNAMICAL DECOUPLING
To mitigate decoherence caused by continuous coupling between the electron spin and
its environment, dynamical decoupling (DD) techniques such as spin echo are essential.
In this work, we employ decoupling sequences to preserve electron spin coherence by
cancelling the effects of slowly varying environmental noise. The interpulse delay 7 is
optimised for our system as described in Ref. [22].
To maximise the electron coherence, we avoid interpulse delays 7 that satisfy the

condition

2k-1rm

T=—"",
2wy, — Ay

for any nuclear spin coupled to the electron, as these values correspond to resonant
electron-nuclear interactions that degrade coherence. Here, wy, is the electron Larmor
frequency and A is the parallel hyperfine coupling to a given nuclear spin. For our sys-
tem, wy, = 4.18 GHz and A| = 2.18 MHz for the strongest coupled spin, which is the nitro-
gen spin. However, the dominant source of decoherence in our system arises from cou-
pling to nearby '3C nuclear spins, which are naturally abundant in the diamond lattice.
We determine the optimal T by sweeping over candidate values and measuring coher-
ence preservation, selecting T = 12.96 us to avoid resonances and maximise coherence.

DD aims to preserve quantum coherence by applying a sequence of precisely timed
nm-pulses that average out unwanted environmental interactions. When noise varies
slowly compared to the pulse interval, each pulse inverts the qubit’s evolution, effec-
tively cancelling accumulated phase errors from low-frequency fluctuations. This pro-
cess can be understood intuitively: during the first free evolution period, noise causes
phase accumulation; a 7-pulse then flips the qubit frame, so that the subsequent evolu-
tion accumulates phase with the opposite sign. If the noise is sufficiently slow, these con-
tributions cancel over each cycle. A more formal perspective is provided by the toggling-
frame picture: each pulse switches the sign of the noise Hamiltonian, alternating the
effective evolution. Over time, these toggled contributions average to zero, suppressing
unwanted couplings and extending the qubit’s coherence time.

While basic two-pulse echo sequences can cancel the leading-order effects of static
or slowly varying noise, more sophisticated sequences like CPMG, XY4, and XY8 use sym-
metries to cancel higher-order errors [25].

Figure 2.3 shows two examples: the XY4 sequence, which alternates m-pulses along
the X and Y axes, and the XY8 sequence, which symmetrically extends XY4 to suppress
more subtle error terms. These sequences are robust to both dephasing noise and pulse
imperfections, making them widely used in high-fidelity quantum control.

In this work, we do not employ full XY4 or XY8 decoupling blocks. Instead, we place
a single X and —X pulse before and after the pulse being optimised. This choice is mo-
tivated by the relatively short duration of the control pulse, during which the environ-
mental noise is assumed to remain quasi-static. In this regime, an echo structure of the
CPMG type suffices to cancel low-frequency environmental noise. Although XY4 and
XY8 sequences offer enhanced robustness against pulse errors, they provide compara-
ble protection against decoherence from such noise and are therefore not required in
this context.

An excellent pedagogical overview of the underlying theory, including a formal deriva-
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Figure 2.3: Dynamical decoupling sequences: XY4 (upper) and XY8 (lower). Each sequence consists of a
series of 7 pulses applied along specific axes to suppress decoherence due to environmental noise. A free evo-
lution period 7 precedes and follows the pulse block, while adjacent pulses are separated by 27 delays. The XY4
sequence applies X, Y, —X, and —Y pulses; XY8 extends this with a symmetric time-reversed mirror to cancel
higher-order errors. These sequences are widely used to preserve spin coherence in NV-centre experiments
and other qubit systems [25].

tion using average Hamiltonian theory (AHT), can be found in Ref. [26]. While we omit
the full derivation here, AHT formalises the idea that the qubit evolves as if governed by
an average Hamiltonian over the pulse cycle. A well-designed pulse sequence ensures
that this average retains only the desired interactions, while cancelling out noise and
unwanted couplings.

2.2. QUANTUM OPTIMAL CONTROL

Optimal control theory originated in the 1950s, primarily through Lev Pontryagin's Maxi-
mum Principle and Richard Bellman’s dynamic programming [27], [28]. In essence, opti-
mal control determines the control functions that optimise a given objective functional
subject to the dynamics of a system. Over the decades, this framework has found ex-
tensive application in aerospace engineering [29], robotics [30], chemical process con-
trol [31], automotive engineering [32], and economics [33].

To meet the growing need for precise control of quantum states, researchers ex-
tended optimal control to the quantum domain in the early 1980s. Early applications
included shaped laser pulses for molecular dynamics and advanced NMR techniques
[34], [35]. The field expanded in the 1990s with gradient-based algorithms such as Kro-
tov’s method [36]. A major milestone came in 2005 with the Gradient Ascent Pulse Engi-
neering (GRAPE) method, which has since become a standard technique for designing
high-fidelity control pulses [37].
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2.2.1. GRAPE

GRAPE is a widely used numerical optimal-control method introduced by Khaneja et al.
[37]. It provides a systematic way for us to design piecewise-constant control pulses that
drive a quantum system toward a desired evolution with high fidelity. This subsection
draws partly on [38].

SETUP AND OBJECTIVE
Consider a quantum system described by the Hamiltonian [37]

n
A1) = Ho + ) ui(0) Hj, (2.5)
i=1

where:
* Hj is the drift Hamiltonian for free evolution,
* u;(t) are time-dependent control amplitudes, and
* Hj are the corresponding control Hamiltonians.

In our system, Hy encodes the hyperfine interaction, while H; generate driving in the x-
or y-direction on the Bloch sphere. Specifically, we identify:

Hy=AS;®1;+ AjS;®1, H = S0l H = S,8I,.

Rather than targeting a specific state, our goal is to implement a target quantum gate
Utarget by driving the system with control pulses such that the resulting time-evolution
operator U(T) approximates Utarget as closely as possible. We quantify success by the
gate fidelity

1o (mr
F= ﬁ|Tr(U;rargetU(T)) %

where d = 6 is the dimension of the system Hilbert space. This fidelity measure, known
as the gate unitary overlap, directly captures how well the implemented evolution matches
the target gate up to a global phase.

While some implementations of GRAPE optimise for state-transfer fidelity,

Fstate = |<1//target | W(T»lz,

where /(1) is the system state evolved under the applied controls and /target is a desired
target state. Our work uses the gate fidelity F to evaluate performance at the operator
level. This is more appropriate when designing universal gate sets or controlling entan-
gling operations.

We maximise the fidelity via gradient ascent while the evolution operator obeys the
time-dependent Schrédinger equation,

0 PN N
lhaU(t) = HOU ), uo =L
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PIECEWISE-CONSTANT APPROXIMATION
In practice, an arbitrary waveform generator (AWG) represents each control amplitude
u; () in discrete steps. We adopt the same piecewise-constant approximation:

u;(t) = u;(j) for (j-1)6t<t< jot,

where 6t = T/N is the duration of each slice, and j € {1,..., N}.
Under this approximation, the time-evolution operator U(T) factorizes into a prod-
uct of operators over each slice:

UT) = UyOn-y ... Uy,
where each Uy, is given by

Ok = exp(~ ¢ Ho+Y w0 1] (2.6)

1

Hence, the fidelity can be written as
1 At N ~ 1|2
F=— Tt (O e O 01 )|

FORWARD AND BACKWARD PROPAGATION
In GRAPE each time step at t;, is defined as:

lom) = Unm...U1 W), Am) = Un...Uns1 lY1).

The state |p,,) is the forward-propagated initial state up to step m, while |A,,) is the
backward-propagated target state from step N down to step m + 1. These partially prop-
agated states meet at f,,, allowing us to compute the fidelity gradient with respect to
each control amplitude u; (m).

GRADIENT DERIVATION
Figure 2.4 illustrates the piecewise-constant control amplitude together with the corre-
sponding gradients that are optimised in GRAPE.

To derive the gradient of F with respect to u;(j), we need the derivative of the matrix
exponential. A well-known identity (see [39]) states that

d

1
—| &Y = exf dr e™X v e X, 2.7
dt 0

=0

For sufficiently small 6 ¢, the commutator terms in the integral can often be neglected to
first order, giving
d

X+tY X
— e =~ e"Y.
dt

t=0

Applying this to one time slice where X = —£61 F(k) and Y = —£8¢ f; yields the key
simplification in the GRAPE formula.
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Figure 2.4: Schematic representation of a control amplitude u; consisting of N time steps of duration 67 =
T/N. During each time step j, the control amplitude u;(j) is constant. The vertical arrows represent the
gradients 0F/0u; (), indicating how each amplitude should be adjusted to improve the performance metric
F. Image adapted from [38].

After algebra, one obtains the closed-form gradient expression:

OF
ou;(j)

= —i5t<1j|ﬁi|pj>. (2.8)
To maximize F, we update u;(j) via gradient ascent:

ui(j) — ui(j) + € (2.9)

OF
ou;(j)’
where € is the step size (learning rate).

ALGORITHMIC IMPLEMENTATION

Algorithm 1 outlines the basic steps of the GRAPE algorithm. One initialises a guess for
the control amplitudes {u;(j)}, computes the fidelity and its gradient, then iteratively
updates the controls until convergence. The work conducted in this thesis uses QuTiP-
goc for the practical implementation.

2.2,2, DCRAB

dressed Chopped Random Basis (ICRAB) is a gradient-free optimal-control scheme that
extends the original CRAB approach of Caneva et al. [40]. Instead of updating each
time sample individually (as in GRAPE), dCRAB expands every control amplitude in a
low-dimensional, randomly chosen Fourier-like basis and optimises only the expansion
coefficients. Whenever the search stalls, we dress the basis with a fresh set of random
frequencies, allowing the algorithm to escape local optima while still keeping the num-
ber of free parameters small. Because dCRAB never requires gradients, it is particularly
attractive for experimental closed-loop optimisation and for systems where evaluating
O0F/0u;(t) is costly or noisy. This subsection follows Refs. [38], [41], [42]. Optimisation
proceeds on two complementary control landscapes, as we illustrate in Fig. 2.5.
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Algorithm 1 GRAPE Algorithm

Require: Input: Initial guess {u;(j)}, step size €, convergence tolerance §, maximum
iterations Npax
Ensure: Qutput: Optimised control parameters {u; (j)}
1: Initialise control parameters {u; (j)}

2: Compute initial fidelity F({u;(j)})
3: n<—0
4: while n < Ny and AF > 6 do
5: Compute forward-propagated states |p,,) and backward-propagated states |A,,)
6: Compute gradient 0F/0u; ()
7: Update controls: u;(j) < u;(j) +€dF/0u;(j)
8: Compute new fidelity Fpew
9: AF = |Fpew — Foidl
10: Fold < Fnew
11: n—n+1l
12: end while
13: return {u;(j)} > Optimised controls

SETUP AND OBJECTIVE
We again consider the time-dependent Hamiltonian

n
H() = Ho+ ) u;(0) Hj,
i=1
with fidelity F = |(w1 [w(T)) |2. Instead of discretising the full waveform, we parametrise
every control as

K
wi() = (0 + Y cix fir (D), (2.10)
k=1
where

. 1,0 . . . o s .
u; (#) is an optional bias (e.g. our initial analytic pulse),
* c;jx € R are the optimisation variables, and

o fix(t) =sin(w;rt+¢;r) or cos(w;r t+¢p;x) with random frequencies w;x € [ZT”, Qmax]
and phases ¢ € [0,27).

The upper frequency limit Q¢ constrains the bandwidth of the control pulse. In prac-
tice, we choose Q4 based on the hardware’s analogue bandwidth and the physics of the
system, such that Qmax S Qphys, Where Qppys is the highest frequency that the system can
follow without significant distortion or loss.

OPTIMISATION IN A FIXED BASIS (CRAB CYCLE)

For a fixed random basis the fidelity becomes a smooth function F(c). Because K is
small, we efficiently locate a local maximum with derivative-free routines such as CMA-
ES, Nelder—Mead, or Powell search.
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Figure 2.5: Illustration of control landscapes in dCRAB. Left: By varying control parameters c; and ¢, we mod-
ify the control pulse f, which in turn affects the control objective J(f). The landscape includes local maxima
and constrained regions (red barrier), highlighting the complexity of navigating the dynamic control land-
scape. Right: The fidelity F is shown as a function of the final quantum state, represented by coordinates 1
and 2. This typically simpler landscape, with a single maximum, represents the kinematic control landscape
described by F(|y(T))). Adapted from [42].

DRESSING THE BASIS

If the optimiser stalls, we dress the pulse by absorbing the current solution into the bias
ugo) (#) and drawing a fresh random basis for the next cycle. We repeat this process until
the incremental fidelity gain AF falls below a preset threshold.

THEORETICAL GUARANTEES

Under mild assumptions an infinite sequence of dressed cycles avoids strict local max-
ima and converges to the global optimum[41]. Each dressing augments the available
search directions, so we eventually follow any remaining gradient of the true landscape.

ALGORITHMIC IMPLEMENTATION

The dCRAB algorithm proceeds in a sequence of optimisation cycles, each performed in
a randomly chosen low-dimensional basis. Within each cycle, we optimise only the ba-
sis coefficients using a derivative-free method. Once the inner optimiser converges, we
update the control waveform and generate a new random basis for the next cycle. This
loop continues until the fidelity gain between consecutive cycles falls below a threshold
or a maximum number of dressings is reached. The algorithm is outlined in Algorithm 2.

2.3. GATE SET TOMOGRAPHY

Gate Set Tomography (GST) is a self-consistent, high-precision characterisation proto-
col that simultaneously estimates all operations in a quantum processor’s native gate li-
brary, including state-preparation and measurement (SPAM) processes [43]. Unlike con-
ventional quantum-process tomography, GST remains valid even when SPAM errors are
comparable to—or larger than—the gate errors under investigation. We therefore rely
on GST to certify devices that aspire to fault tolerance.




16 2. THEORETICAL BACKGROUND

Algorithm 2 dCRAB Algorithm

Require: Input: Initial waveforms ug()) (2); basis size K; dressing limit Lyax; inner opti-
miser @ (e.g. CMA-ES); global tolerance 6
Ensure: Output: Optimised controls u; (t)
1:1<0 > dressing index
2: repeat
3: Draw random frequencies wgl]i and phases ([)El,i
4 Define basis functions fi[]lc] (1)
5. Optimise coefficients: ¢!/ — @(F(c))
6. Update waveform bias: ugo) (1) — u;o) GE cl[g fl.[,i] )
7 l—1+1
8: AF — F;—F;
9: until AF <6 or [ = Liax
10: return u;(t) = ui.o)(t)

2.3.1. MATHEMATICAL MODEL

We represent a gate set as ¢ = {p, G, E}, where p is the prepared initial state, E is the
two-element positive operator-valued measure (POVM) describing measurement in the
computational basis, and G = {Gy, ..., G|g|} is the collection of trace-preserving quantum
channels realised by the hardware. We parameterise each channel as a d? x d? super-
operator so that

ved(pout) = Gi ved(pin)-

Because the experimental data constrain the gate set only up to a similarity transforma-
tion, we fix the gauge a posteriori.

2.3.2. EXPERIMENTAL PROTOCOL
We build a GST experiment from three nested building blocks [44]:

1. Germ sequences g are short words in the gate alphabet that amplify coherent er-
rors when repeated.

2. Fiducials f;, (preparation) and fy, (measurement) map the unknown SPAM pro-
cesses into an informationally complete basis.

3. Power iterations: we repeat each germ g a length L chosen from a compressed
exponential grid L€ {1,2,4,8,...,2kmax},

We measure all combinations f,, g~ fp and record the binary outcome frequencies {ps, Ny}
for s € &#. Long loops (L ~ 10%) convert tiny coherent errors into &' (1) deviations, so GST
routinely achieves diamond-norm accuracies below 10~*—orders of magnitude beyond
randomised benchmarking.
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Figure 2.6: Overview of our GST experiment design. (1) We choose a set of germs to amplify specific gate
errors. (2) We construct base circuits by repeating germs to varying depths L. (3) We sandwich each base
circuit between sets of fiducial operations (state preparations and measurements) to form the full experimental
circuits. (4) Optionally, we reduce the number of fiducial pairs to decrease the total number of circuits. (5)
The final design is a grid of circuits, indexed by germ and depth L, each including different combinations of
fiducials. Adapted from [44].

2.3.3. PARAMETER ESTIMATION

We infer the unknown parameters 0 via maximum-likelihood estimation (MLE). In gate
set tomography (GST), 8 parametrises the quantum gates, the initial state, and the mea-
surement effect that together define the model of the experiment. Writing the model
probability for sequence s as ps(0), the log-likelihood is

£©0) = ) Ng[nsInpg(0)+(1-nyIn(1-p(0)],
seS

where n; is the observed fraction of ‘1’ outcomes. Because £ (0) is non-convex, our GST
solvers proceed in two stages [45]:

1. We run linear-inversion GST (LGST) to obtain a coarse starting point under the
assumption of negligible SPAM error.
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2. We refine that estimate with iterative MLE, using Newton or quasi-Newton up-
dates that respect complete positivity and trace preservation.

We certify convergence with the log-likelihood ratio A = 2 [%max — £ (6)], which follows
a y? distribution under Wilks’ theorem.

2.3.4. GAUGE OPTIMISATION AND ERROR METRICS

Because the experimental data can be explained equally well by many gauge-equivalent
gate sets, gauge freedom presents a challenge when interpreting estimated gate sets. In
particular, most commonly reported error metrics—such as the average gate fidelity—
are not gauge-invariant. To enable meaningful comparison with a target gate set ¥igeal,
we perform a gauge optimisation: we select the gauge for our estimated gate set ¢ that
minimises the Frobenius distance to %igeal,

. -1 A 2
min T GT - Gigeal || =-
pooin, 2| ideat | 7
This optimisation does not resolve the fundamental ambiguity introduced by gauge free-
dom, but it provides a consistent convention for reporting results. After gauge optimisa-
tion, we report metrics such as the diamond-norm error, process infidelity, a stochastic-
vs-coherent Pauli decomposition, and the unitarity #(G), which witnesses decoherence.

2.3.5. USED METRICS

The metrics used in this work quantify gate errors in different operational and statistical
regimes, allowing for both high-level and fine-grained benchmarking. We focus on the
following diagnostics:

1. N-sigmadeviation. The N-sigma (or log-likelihood ratio) test quantifies the statisti-
cal plausibility of the estimated gate set under the assumption that the model is correct.
Specifically, it measures the discrepancy between the observed data and the predicted
probabilities from the best-fit model. The test statistic

A =2[ZLax— ZL(0)]

follows a chi-squared distribution with k degrees of freedom under the null hypothesis,
where k = [.¥| —dim(@). The N-sigma score is defined as

N
V2k'

which approximates a standard normal deviate and provides an intuitive measure of
model adequacy: values of No < 2 indicate a good fit [43], [45].

2. Average gate fidelity. The average fidelity Favg(G, Gideal) quantifies the overlap be-
tween an implemented gate G and the ideal gate Gjgeq) Under uniform input states:

Favg(G, Gideal) = f dy (WGl 0 Glw) W ly).
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This integral simplifies to a closed-form expression involving the Choi matrices of the
two channels [46]. The fidelity is closely related to the entanglement fidelity and provides
an interpretable single-number summary of performance.

2.3.6. ERROR GENERATORS

Example effect &y (Error 6, (Error

Sector Dimension Action (Bloch sphere) Probability) Amplitude)
Hamiltonian, |H[ B! Hp[p] = —i[P, p] 0 -
Stochastic 2 _

-1 S = PpP — 1lpll

(Pauli) S plel = P ? ' ’
Stochastic (pa}=0 2_1 1 0
(Pauli-correlation) < > Cpqlpl = PpQ + QpP — 3 {{P.Q},p} 0

C [P,Q]=0 2 1

Active P90 IR 1 '

< . ) Apglel =1 (PPQ —QeP+5{[P.Q] ,p}) 0
A [PQ]=0 0

Figure 2.7: We represent an imperfect gate by its error generator, defined as £ = log(GG™1), where G is the
process matrix of the imperfect gate and G is that of the ideal gate. We construct a basis of elementary error
generators spanning the vector space £, which provides a taxonomy of small Markovian errors. This basis
partitions the generators into four sectors (subspaces), listed in this table along with their dimensions and Choi
sum representations. For each sector, we consider the single-qubit case and illustrate how an error process
generated by a single basis element deforms the Bloch sphere. Adapted from [47].

The error generator £ is a linear map that captures deviations from the target gate
via
G= Gideal 926,
analogous to the Lindblad generator in open-system dynamics. Expanding % in a Pauli
basis allows one to classify errors as stochastic, coherent, or non-Markovian.
A systematic basis for £ spans four main types of elementary error generators, each
corresponding to a different physical effect:

° Hamiltonian (H) generators produce unitary errors. These represent over- or
under-rotations about a particular axis of the Bloch sphere and correspond to mis-
calibrated control fields.

* Stochastic (S) generators represent decoherence processes such as dephasing or
amplitude damping. They reduce Bloch vector lengths without introducing rota-
tion, modelling purely incoherent noise.

° Commutator-Pauli (CP) generators and Anticommutator-Pauli (AP) generators
describe non-unitary error processes in the Markovian Lindblad formalism. CP
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generators correspond to reversible but non-unitary dynamics, such as those in-
duced by coherent coupling to a fluctuating environment. AP generators model
state-dependent decoherence effects, for example, relaxation processes whose rates
depend on the system’s instantaneous state or the applied control.

Figure 2.7 shows how each type of generator transforms the Bloch sphere, helping to
visualise their distinct operational effects. This decomposition enables a more granular
understanding of gate errors and supports targeted error mitigation strategies.



METHODS

In this chapter, we outline the methodologies employed in conducting the research. We
begin by introducing the software tools utilized throughout the study. These include
QuTiP for open-loop control and physical simulations, QuOCS for closed-loop optimiza-
tion, and pyGSTi for gate set tomography.

Next, we detail the experimental hardware. We present the optical systems used for
initialisation and readout. Finally, we present the microwave and radio frequency setup
used for precise system control.

SOFTWARE
The implementation and validation of quantum control protocols in this thesis required
a diverse set of simulation and optimisation tools. These tools enabled the design of
high-fidelity control pulses and the quantitative assessment of experimental results. Python-
based open-source frameworks were preferred for their flexibility, community support,
and extensibility, allowing for the development of custom modules tailored to the spe-
cific requirements of NV centre experiments.

This section presents an overview of the primary software packages utilised:

* QuTiP [48] and its extension qutip-qoc [49] for simulating quantum dynamics
and performing quantum optimal control,

* QuOCS [50] for flexible, experiment-oriented control pulse optimization, and

e pyGSTi [51] for rigorous characterisation of gate performance through gate set to-
mography.

The interplay between these software packages forms the computational backbone

of this work, facilitating both theoretical simulations and the experimental realisation of
optimised quantum operations.

21
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3.1. QuTiIP

The Quantum Toolbox in Python (QuTiP) is a widely used open-source Python package
for simulating quantum systems [52]. QuTiP provides solvers for both the Schrédinger
and master equations via the qutip.sesolve and qutip.mesolve functions, respec-
tively. Its modular and extensible architecture makes it particularly suitable for custom
quantum simulation tasks, including the integration of user-defined modules.

In the context of this thesis, several custom helper functions were implemented in
QuTiP to aid in the visualisation and interpretation of optimal control results. These
functions streamline the analysis of control pulse performance and system dynamics.
Brief descriptions and full function signatures are provided in Appendix B.1.

Additionally, some simulations leveraged a specialized Python package called NiVa-
SiT, developed by the Taminiau group. NiVaSiT builds on top of QuTiP and is tailored to
simulations of NV centres in diamond.

3.1.1. QUTIP-QOC

qutip-qoc is an extension of QuTiP that provides functionality for quantum optimal
control [48]. Originally embedded within the QuTiP codebase, qutip-qoc was sepa-
rated into a standalone package in 2024. It supports both gradient-based and gradient-
free optimisation algorithms, including GRAPE, GOAT, CRAB, and reinforcement learn-
ing (RL)-based methods.

From version 5 onward, qutip-qoc introduces a new API centered around the Objective

class, which enables multi-objective optimisation.
An example usage of how to run a qutip-qoc optimisation is shown below:
H = [Hsys, tensor(sigmax(), identity(2)), tensor(sigmay (), identity(2))

]
objective = qoc.0Objective(initial=qt.qeye(4), H=H, target=cnot)

5 qoc.optimize_pulses(

4

objectives=objective,
control_parameters={
"ctrl_x": {"guess": x, "bounds": [None, Nonell},
"ctrl_y": {"guess": y, "bounds": [None, Nonel},
},
tlist=tlist,
algorithm_kwargs={
"fid_err_targ": 1e-20,
"min_grad": 1e-20,

llalgﬂ: IIGRAPEII’
"max_iters": 1000,
"dyn_type": "UNIT",
¥o
minimizer_kwargs={
"method": "l-bfgs-b",
¥

)

Listing 3.1: Example of using the Objective class and optimize_pulses in qutip-qoc v5+

Here, the first entry in His the system (drift) Hamiltonian, while the remaining entries
define the control Hamiltonians. The Objective class also requires an initial unitary,
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which is set to the identity in this case, and a target unitary, specified here as a CNOT
gate. The optimize_pulses function accepts the following key arguments:

° control_parameters: A dictionary specifying the control fields. Each entry in-
cludes an initial guess for the control amplitudes ("guess") and optional upper
and lower bounds for the optimisation ("bounds").

° tlist: Alist of time points defining the time grid over which the control fields are
applied. The number of time bins is implicitly set by the length of t1ist.

° algorithm_kwargs: A dictionary of parameters passed to the underlying optimi-
sation algorithm:

- fid_err_targ: Targetfidelity error; the optimization terminates if this thresh-
old is reached.

- min_grad: Minimum allowed gradient magnitude before the optimisation is
considered converged.

- alg: The optimisation algorithm to use; in this case, GRAPE.
- max_iters: The maximum number of iterations for the algorithm.

- dyn_type: The type of system dynamics; "UNIT" indicates unitary evolution.

° minimizer_kwargs: Parameters passed to the classical minimiser used within the
algorithm. Here, the Nelder-Mead simplex method is selected via the "method"
key.

The chosen parameters were selected after extensive experimentation. In partic-
ular, changing dyn_type from the default "GEN_MAT" to "UNIT" proved to be a cru-
cial adjustment, as the optimisation consistently failed to produce meaningful results
with "GEN_MAT". This may be because "GEN_MAT" internally expects the Hamiltonian
and control operators to be defined in a form compatible with Liouville-space evolu-
tion, which is primarily intended for open quantum systems. For purely unitary target
operations, this representation introduces unnecessary complexity and can potentially
lead to mismatches or numerical instabilities if the problem is defined using a Hilbert-
space Hamiltonian, as done here. By restricting the simulation to unitary evolution with
"UNIT", the optimiser is aligned with the problem definition, ensuring correct handling
of closed-system dynamics and significantly reducing computational overhead.

Furthermore, switching from "1-bfgs-b" to the full BFGS method was empirically
observed to accelerate convergence considerably. However, this came at the cost of the
optimiser consistently predicting lower final fidelities than those obtained with L-BFGS-
B in this specific application. This discrepancy is likely due to BFGS being more prone to
converging to sharp local minima in the high-dimensional control landscape, whereas
L-BFGS-B, with its limited memory and bound constraints, performs more conserva-
tive updates that tend to avoid such traps. While BFGS can be advantageous for quickly
exploring the parameter space, L-BFGS-B proved more reliable for achieving higher-
fidelity solutions in practice within this work.
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3.1.2. DYNAMICAL DECOUPLING

In solid-state quantum systems such as the NV centre, environmental noise leads to
rapid decoherence, limiting coherent control times. DD sequences are a well-established
method to mitigate these effects by periodically refocusing phase errors through care-
fully timed 7 pulses [53].

T n T weak i T —n T

0 10 20 30 40 50
Time (us)

Figure 3.1: Schematic of the echo sequence used to embed the optimised control pulse. Free evolution periods
7 and 7’ surround the control pulse of duration Tocp, with 7 pulses applied at intermediate points to refocus
dephasing errors. In this implementation, gate_duration =1.6 usand 7 = 12.96 ps.

Since the electron spin is decoupled throughout the entire experiment, the gates are
defined to incorporate the 7 pulses on the electron within their structure. This ensures
correct timing and compatibility with other gates in the sequence. Alternatively, one
could implement the weak 7 pulse independently on the AWG, which would be valid but
would complicate integration with other gates, as the timing between decoupling pulses
would need to be precisely managed. Each echo in the decoupling sequence includes a
period of free evolution (7) between 7 pulses, as shown in 3.1.

When incorporating an optimal control pulse (OCP) of duration 7ocp, the timing re-
lationship becomes

27 +Tocp = 21.

If the intended target gate is a CNOT operation, i.e., Uiarget = UcnoT, we must account
for the surrounding DD dynamics. The first and second echoes are defined as

Uecho1 = UrUr Uy, Uecho2 = Up Un Uy
The composite evolution including the OCP becomes

Ubp, ocp = Uecho1 Uocp Uechoz-

To ensure that the embedded pulse implements the desired CNOT gate in the DD con-
text, the adjusted target unitary is given by
—77t t
Utarget = Uechol Ucnor UechoZ'
3.1.3. VIRTUAL PHASE CORRECTIONS
The weak 7 gate optimised by GRAPE is a controlled rotation about the X-axis (CROTX),

not a canonical CNOT. The Hamiltonian used in our optimisation supports only such
CROT-type gates. As a result, the implemented unitary differs from the ideal CNOT by a
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known, fixed phase on the control qubit: applying a CROT gate corresponds to a CNOT
gate preceded or followed by a R, (—m/2) rotation on the control qubit.

In addition to this structural difference, the experimental implementation requires
correcting for dynamical phase accumulation during the gate. Specifically, the electron
spin acquires a phase due to coherent evolution under the hyperfine coupling during
the pulse. To maintain a consistent rotating frame for the electron spin, this phase must
be tracked and compensated by adjusting the phase of subsequent control operations
(typically by updating the phase of the local oscillator).

We therefore construct a logically equivalent target unitary that incorporates both
corrections:

Usarget = (R§°“"°l(—n/2) ® u) - (u ® RE (ehf)T) Uideal, 3.1)

where:

. Rg(’mml(—n/ 2) accounts for the fixed structural phase difference between CROT
and CNOT,

 RY°(6,) compensates the hyperfine-induced phase accumulation on the elec-

tron spin,
* Ot depends on the total pulse duration.

By applying both corrections—the fixed RS°"™°!(~7/2) and the dynamical R;arget (Onp)—
we obtain a target unitary that is logically equivalent to an ideal CNOT in the chosen
rotating frame.

3.2.QUOCS

The Quantum Optimal Control Suite (QuOCS)[50] is an open-source Python package de-
signed to facilitate both model-based and experiment-based implementations of quan-
tum optimal control algorithms. It provides a modular framework for deploying a wide
range of optimisation techniques, including GRAPE, AD-GRAPE, dCRAB, and various di-
rect search methods.

QuOCS is well-suited for integration with experimental platforms, offering support
for Qudi, a modular python suite for experiment control and data processing. Its ar-
chitecture is built around extensibility and real-time interaction with laboratory equip-
ment, making it a valuable tool for closed-loop optimisation workflows.

In this work, however, all experimental interfacing and control software were devel-
oped on top of diamondOS, a custom software package developed by QuTech.

An overview of the QuOCS framework is provided in Figure 3.2.

3.2.1. OPTIMISATION DICTIONARY
The main user interface for defining an experiment is the optimisation dictionary. This
dictionary contains all relevant configuration details for the optimisation process, except
for the figure of merit, which is discussed in the next section. An example of what the
optimisation dictionary looks like for a typical experiment can be seen in B.2.

The dictionary first specifies algorithm_settings, which define the optimal con-
trol algorithm to be used (e.g., dCRAB, GRAPE, Reinforcement Learning, Krotov) and the
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User B customizable [ native Algorithm

Stopping Criteria
FoM I Dumping I IHandIe ExitI I Logging I

IControIsI—)I Pulses I
SEE L ==

Figure 3.2: Overview of the QuOCS framework. Left: The user-defined FoM s integrated into a Communication
object, which also connects to native utilities for data dumping, logging, and exit handling. This commu-
nication object is then passed to a customizable Algorithm, which is initiated by the Optimiser to begin
the optimisation process. Right: Structure of the QuOCS optimisation algorithm. The core logic resides in
the Inner method, which is customizable and can be replaced with user-defined code. It interfaces with a
Stopping Criteriacomponentto manage convergence or timeout conditions. The algorithm also interacts
with a Controls object, which manages Parameters, Pulses, and Time—elements critical for defining the
optimisation landscape. Figure adapted from [50].

Communication

optimisation direction (maximisation or minimisation). It also sets the maximum num-
ber of super-iterations and function evaluations allowed.

The direct search method (dsm_settings) determines the numerical optimisation
algorithm (e.g., Nelder-Mead, Powell, CMA-ES, L-BFGS-B), along with the corresponding
stopping criteria based on parameter changes and function evaluations.

Finally, pulse settings are defined. An initial guess can be provided, which in our
experiments corresponds to the reference weak m-pulse. This initial guess is specified as
an array of piecewise constant values, effectively added to the pulses produced during
optimisation. Mathematically, if the pulse created by the optimisation is popt and the
initial guess is pinit, the final pulse applied is

P = Pinit + Popt-

Additionally, the pulse basis (e.g., Fourier, Chebyshev, Sinc, Sigmoid) and the num-
ber of basis vectors are specified. Time arrays required for pulse definitions are also
included.

3.2.2, CONSTRUCTION OF THE FINAL PULSE WITH DCRAB
The final control pulse in dCRAB is built by successively augmenting a base waveform
with oscillatory components drawn from randomly sampled bases, as described in Sec-
tion 2.2.2. Each such augmentation corresponds to a single super-iteration, where QuOCS
generates a new random basis and optimises the associated coefficients.

Specifically, in super-iteration j, a new set of angular frequencies {w;,1,0;2,0; 3} is
drawn, and the optimiser searches for the best amplitudes {a; x, bk} for each compo-
nent. The corresponding update to the pulse is:

3
Apj(t) = Z ajsin(wjt) + bjrcos(w;jkt)],
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where 7 = 27t/ T is a normalised time variable. This representation, equivalent to the
basis given in Eq. (2.10), ensures full expressivity via both sine and cosine terms, enabling
arbitrary phase shifts at each frequency.

The frequencies w; ; in each super-iteration are independently drawn from a uni-
form distribution over a predefined range [54]. This stochastic sampling strategy ensures
that the optimiser explores a wide range of temporal features in the control landscape.
By varying the basis at each super-iteration, dCRAB avoids the risk of being confined to
a fixed functional subspace, enhancing its ability to escape local optima.

The cumulative pulse after N super-iterations is then:

N
Pinal(£) = Pinic(8) + Y Apj(2).
j=1

Each super-iteration expands the accessible search directions by redefining the basis,
thereby avoiding premature convergence to suboptimal solutions. This basis dressing
mechanism provides a meta-level exploration on top of the local optimisation within a
fixed basis, as illustrated in Fig. 2.5.

For reproducibility, the final waveform can be reconstructed from a stored frequency
and coefficient lists:
tau = 2 * np.pi * time / time[-1]
pulse = initial_guess.copy ()
for freqs, params in zip(dcrab_freq_list, dcrab_param_list):
for k, w in enumerate(freqs):
pulse += params [2*xk] * np.sin(w * tau) + params[2xk+1] * np.cos
(w * tau)

Listing 3.2: Reconstruction of the Final Pulse

The table below presents the exact frequencies and amplitudes used by QuOCS in
each super-iteration during a dCRAB optimisation of the weak 7 gate. These values were
extracted directly from optimized_parameters. json and fully determine the updates
applied to the pulse in each super-iteration.

Super-Iter | @) w2 w3 | a1 %103 a;x103  a3x10% | by x10® by x103 b3 x103
0 2.0424 62940 7.2780 -0.3 0.8 0.4 0.5 0.4 1.0
1 2.9443 49170 7.7148 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0618 4.2538 8.1862 0.1 -0.1 0.2 0.2 0.4 1.3
3 1.3234  6.6217 9.9939 -1.3 1.7 -0.4 0.3 1.5 -0.0
4 1.8966 5.3724  9.3921 0.0 0.0 0.0 0.0 0.0 0.0

Super-iterations 1 and 4 resulted in no effective parameter updates, suggesting that
the direct search method identified no significant improvement over the current solution
when using those particular randomised bases.
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This behaviour is characteristic of the
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More details can be found in the
QuOCS GitHub documentation.

3.2.3. FIGURE OF MERIT

As shown in Figure 3.2, the component of the QuOCS framework that must be provided
by the user is the figure of merit (FoM). The FoM serves as the evaluation metric for the
optimal control algorithm, determining how well a given pulse performs. Consequently,
the outcome of the optimisation process depends entirely on how the FoM is defined,
since the algorithm will attempt to either maximise or minimise it according to the set-
tings specified in the optimisation dictionary. For our research, two FoMs were defined:
one based on photoluminescence (PL) contrast, and another incorporating Bell state fi-
delity.

PL CONTRAST

PL contrast serves as a simple yet informative FoM for evaluating the performance of the
optimised weak 7 gate. The core idea is that a properly functioning CNOT gate will flip
the electron spin, conditional on the state of the nitrogen nuclear spin.

The experimental procedure involves two measurements: in the first, the nitrogen
spin is initialised to the |0) state; in the second, it is initialised to the |1) state by applying
a Ry(m) gate. After applying the CNOT operation, the population of the electron spin in
the |0) state is measured for both cases. Ideally, the CNOT gate flips the electron spin
only when the nitrogen spin is in [1). Hence, the difference in electron |0) population
between the two cases quantifies how well the gate performs its conditional logic.

We define the PL contrast as:

PL Contrast = Pe—oN=0 — Pe=0|N=1,

where Pe—on=; is the probability of measuring the electron spin in |0) given that the
nitrogen spin was initialized in state |i). A higher contrast indicates a better-performing
CNOT gate.

The following algorithm outlines the experimental sequence used to compute the PL
contrast:


https://github.com/Quantum-OCS/QuOCS/blob/main/Documentation/Settings_in_Optimization_Dict.md
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Algorithm 3 PL Contrast Measurement

1: for n_initin [0,1] do

2 init () > = |00)
3:  ifn_init==1then

4: x180(nitrogen) > =1|01)
5 end if

6 apply_oc_weak_pi(nitrogen, electron) > Apply optimized CNOT
7 measure_electron_population()

8: P[n_init] — measured population of electron in |0)
9: end for
10: PL Contrast — P[0] — P[1]

BELL STATE FIDELITY

The CNOT gate is intended to be an entangling operation, but to fully assess its per-
formance, it is not sufficient to merely verify that it produces some entangled state. A
stronger and more informative benchmark is its ability to generate a specific maximally
entangled state. In this work, we select the Bell state |[®*) = \%2 (l00y + [11)) as the target,
which allows for an evaluation of both amplitude and phase coherence in the two-qubit
system.

To this end, we define a FoM based on the parity of the generated state in three com-
plementary Pauli bases: ZZ, XX, and Y'Y. This approach is motivated by the symmetry
of the Bell state, which exhibits strong correlations (or anti-correlations) in each of these
bases. Measuring in multiple bases enables the detection of phase errors and leakage
that would not be apparent from measurements in the computational (Z) basis alone.
Notably, while the earlier contrast measurement in the Z basis verifies population trans-
fer, it is insensitive to relative phases between basis states—phases which are crucial for
certifying the creation of coherent superposition states like [®*).

In each basis, the parity of the measured state is estimated as:

P =2 (proby, +prob;;) -1,

where prob, and prob,; denote the probabilities of observing the even-parity outcomes
in the chosen basis. High parity values indicate strong coherence and correct correla-
tions consistent with the target state.
The final FoM aggregates the parity values from all three bases into a single scalar
quantity:
1+Pxx—Pyy+Pzz
4

FoM = Bell state fidelity =

This expression estimates the fidelity with respect to the ideal |®*) state, assuming ideal
measurement and state preparation. The sign conventions are chosen to reflect the ex-
pected parities of |®*): even in Z and X, and odd in Y.

The algorithm below outlines the procedure used to compute this FoM:
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Algorithm 4 Bell State Fidelity FoM calculation

1: measurements < [x,},z]
2: correlations — {}
3: for measurement in measurements do

4 initQ) > = [00)
5. x90(nitrogen) >y =10)|-i)
6: apply_oc_weak_pi(nitrogen, electron) > =100y +]11)
7: if measurement == x then > Project on X axis
8: y90 (electron)

9: y90 (nitrogen)
10 elseif measurement ==y then > Project on Y axis
11: x90m(electron)
12: x90m(nitrogen)
13: end if

14: correlationsimeasurement] — 2- (prob_00+ prob_11) — 1

15: end for

1+correlations[x]—correlations[y] + correlations|z]
16: FoM —

4

3.3. pvGSTI

pyGSTi is a Python-based implementation of Gate Set Tomography (GST), developed
and maintained by Sandia National Laboratories [51]. It provides a comprehensive end-
to-end framework for GST, encompassing the construction of target models, experimen-
tal design generation, and analysis of experimental data. A typical pyGSTi workflow is
illustrated in Figure 3.4.

the available
gates.

Fiducials and The experiment

A target model design is run
is constructed
which defines

germs are
calculated, and
an experiment
design is
constructed.

on the target

system, and
measurements
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Figure 3.4: Example of a typical pyGSTi workflow.

The collected The resulting
data is metrics can be
imported into analysed in
pyGSTi, and order to
the GST charaterise the
protacol is run. system.

The primary objects used to interact with pyGST1 are Circuit, Model, and DataSet:

e Circuit: Defines quantum circuits composed of one or more qubits. These ob-

jects specify the sequences of operations (circuits) to be executed during the ex-

periment.

° Model: Encodes the target gate set of the system under study, including available

quantum gates and any state preparation and measurement (SPAM) operations.

* DataSet: A dictionary-like container that stores experimental data, enabling feed-

back of collected data into pyGST1i for further analysis.
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pyGSTi offers a range of functionalities, including circuit simulation, data simula-
tion, model testing, model-free characterization, and, most importantly for this work,
model estimation. In addition to GST, it provides ready-to-use implementations for ran-
domized benchmarking (RB) and robust phase estimation (RPE).

An example of code implementing PyGSTi can be seen in B.3.

After incorporating the experimental data and performing model fitting, pyGST1i gen-
erates a comprehensive HTML report.

In this thesis, we primarily analyse the following quantities:

* Non-Markovianity indicators which highlight systematic deviations beyond Marko- -
vian assumptions;

 Average gate infidelity, to assess the overall quality of implemented gate opera-
tions;

 Error generators, which give a Lie-algebraic description of coherent and stochas-
tic errors in each gate.

3.4. EXPERIMENTAL SETUP

High-fidelity control of solid-state qubits demands a robust hardware platform that syn-
chronises optical, microwave, and RF components with sub-microsecond precision. We
use a previously built cryogenic system integrated with laser, microwave, and timing
electronics. This section outlines the experimental setup.

3.4.1. OPTICAL SYSTEM

All experiments are performed on a diamond sample mounted in a Montana cryogenics
chamber at 4 K. A static magnetic field of 2518 G is aligned along the NV axis of the sam-
ple. We use three distinct lasers which are employed for charge-state and spin control:

° A 515 nm (green) laser is used for charge-resonance reset, ensuring the NV centre
is initialised into the negative charge state (NV™).

* A 637 nm (red) laser is used for optical readout; this laser is resonant with the zero-
phonon line transition.

* A second 637 nm (red) laser is used for spin initialisation, preparing the electron
spin state in |0) at the start of each experimental sequence.

Acousto-optic modulators (AOMs) act as fast optical switches, providing high extinc-
tion ratios (> 100 dB) to prevent laser leakage during experiments.

Photon detection and optical readout are performed using an avalanche photodiode
(APD). An ADwin real-time control system orchestrates the experimental timing, ensur-
ing precise synchronisation of control and readout signals. The control signal architec-
ture is detailed further in the following section.
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3.4.2. SIGNAL CHAIN

In this section, we discuss the signal chain—that is, the path traversed by the control
pulses from their generation in the arbitrary waveform generator (AWG) to their delivery
at the sample housed in the cryogenic environment. An overview of the signal chain is
provided in Fig. 3.5.

The control pulses are resonant with the electron spin transition at approximately
4.18 GHz. To generate a clean carrier at this frequency, single-sideband (SSB) modu-
lation [55] is employed. The local oscillator (LO) of the signal generator is set to fio =
4.43 GHz, i.e. 250 MHz above the qubit frequency. The AWG produces an intermediate-
frequency (IF) waveform at fir = 250 MHz.

This IF signal is mixed with the LO using an IQ mixer. The output contains compo-
nents at fio + fir (i.e. 4.68 GHz and 4.18 GHz). By adjusting the relative phase of the
in-phase (I) and quadrature (Q) inputs, the upper sideband at 4.68 GHz is suppressed,
leaving only the desired lower sideband at 4.18 GHz. This SSB technique also filters low-
frequency noise originating from the AWG.

Mathematically, the baseband signal entering the mixer is

Spb (£) = I(¥) cos(2x fipt) + Q() sin(27 fipt).
For a single-tone pulse of constant amplitude A we choose
I(t) = Acos(2n fipt), Q(#) = Asin(2x firt).
Substituting into the mixer relations yields
s(t) = Acos[27(fio - fir)t],

demonstrating that only the lower sideband at fio — fir = 4.18 GHz survives, while the
upper sideband is cancelled by destructive interference. This implementation corre-
sponds to the Hartley (or Weaver) method of SSB modulation [56].

The resulting microwave signal is amplified and gated by a switch controlled by the
ADwin real-time controller. The switch is open only during pulse application, minimis-
ing leakage and background noise.

For the nitrogen nuclear spin, control pulses at 2.18 MHz are generated directly by
the AWG, filtered by a ferrite coil to suppress high-frequency electronic noise, and then
amplified to ensure sufficient driving strength at the sample.

The 2.18 MHz nitrogen drive and the 4.18 GHz electron drive are combined using a
triplexer (the third port is unused) and delivered to the sample through a DC block. A
gold stripline patterned on the diamond surface ensures efficient coupling to the qubits.

Signal distortion can degrade gate fidelity, but in our setup—with microsecond-scale
pulses—distortion is modest compared with nanosecond-scale control typical of super-
conducting qubits [57].
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Figure 3.5: Diagram of the microwave and radio-frequency delivery system. For the electron spin (purple), single-
sideband modulated pulses at 250 MHz are generated by the AWG and upconverted with an LO at 4.18 GHz using an
external RF source. A 20 dB attenuator protects the amplifier, and a microwave (MW) switch suppresses leakage when
pulses are inactive. Band-pass and high-pass filters remove out-of-band noise. For the nitrogen nuclear spin (green), the
AWG synthesises baseband pulses which are filtered, amplified, and passed through a ferrite coil to reduce high-frequency
noise. A second RF source (red) is used for the electron |+1) transition, which is currently not used. All paths are com-
bined via a triplexer and routed through DC blocks to the sample.




RESULTS AND DISCUSSION

This chapter presents the results of our control pulse optimisation experiments and
their performance evaluations on a two-qubit NV centre system. We begin by exploring
open-loop optimal control methods based on idealised system models, using GRAPE to
produce high-fidelity pulses under controlled assumptions. We then demonstrate how
these pulses, despite their strong simulated performance, degrade in real experimen-
tal settings due to model inaccuracies and unaccounted-for noise. This motivates the
shift to closed-loop optimisation, where the physical system itself guides the search for
optimal control, enabling greater robustness and adaptability to experimental imperfec-
tions.

We then apply GST to characterise the implemented gates, identify systematic er-
rors, and quantify performance. These diagnostics reveal key insights into the nature
and structure of control errors. Finally, we design and implement a novel gate sequence
based on the information learned from GST analysis.

4.1. OPEN-LOOP OPTIMAL CONTROL

Open-loop optimal control seeks to determine the time-dependent control fields that
best realise a desired quantum operation, based on a mathematical model of the system
dynamics. In this approach, pulses are optimised by simulating the time evolution of
the system under a given Hamiltonian and adjusting control parameters to maximise a
chosen figure of merit—typically, the fidelity with respect to a target gate or state.

Among the most widely used algorithms in this domain is GRAPE, which leverages
gradient-based optimisation under the assumption of a known and differentiable Hamil-
tonian. This makes it especially well-suited for simulating idealised dynamics where the
model closely matches reality.

However, as we demonstrate in later sections, the performance of open-loop pulses
is ultimately limited by the accuracy and tractability of the system model. Real-world
quantum systems, such as NV centres in diamond, often exhibit non-idealities—such
as crosstalk, decoherence, and unknown couplings—that can be challenging to capture

34
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fully. Even when detailed information is available, as in the case of known couplings to
many nearby '3C nuclei, it may be computationally infeasible to incorporate this com-
plexity into a model suitable for fast evaluation and optimisation. Consequently, pulses
optimised in simulation do not always translate into high-fidelity gates in experiment.

Despite these challenges, open-loop control remains a valuable tool for exploring
pulse design under controlled assumptions. It provides a foundation for understand-
ing the system’s ideal behaviour and for benchmarking the performance of more robust,
data-driven closed-loop techniques introduced later.

4.1.1. PRODUCED PULSES

We produced optimised pulses under three different modelling assumptions. In all cases,
the target operation was a CNOT gate with the nitrogen nuclear spin as the control and
the electron spin as the target.

Amplitude (MHz)
Amplitude (MHz)

S 1
b LT

!

m =24
—— 1 (In-phase) L_ I (In-phase) —— | (In-phase)
Q (Quadrature) -1.04 Q (Quadrature) Q (Quadrature)
1000 1500 0 500 1000 1500 0 500 1000 1500
Time (ns) Time (ns) Time (ns)

Figure 4.1: Optimised control pulses for the CNOT gate under three modelling assumptions. Each panel shows
the Rabi frequency of the microwave drive as a function of time. Left: Vanilla model using a simplified two-
qubit Hamiltonian without decoherence or leakage. Middle: Qutrit model including the full three-level Hilbert
space of the nitrogen nuclear spin and penalising leakage from the computational subspace. Right: No Echo
model where the echo pulses are omitted from the target unitary, serving as a coherence control test.

1) Vanilla. This baseline pulse was optimised using the simplified Hamiltonian H =
Aj S(ZE) S(Z”) with no explicit modelling of decoherence or leakage. It serves as a reference
to evaluate the effects of more realistic modelling choices introduced in subsequent sce-
narios.

2) No Echo. This pulse omits the echo pulses in the target unitary described in Sec-
tion 3.1.2. Tt functions as a sanity check to verify that the echo layer is needed and im-
proves coherence. The experiments are performed with echo pulses present, as other-
wise the electron decoheres quickly.

3) Nitrogen as a Qutrit. Finally, we modelled the nitrogen nuclear spin as a full qutrit,
accounting for the entire m; = {—1,0, +1} subspace. The Hamiltonian becomes
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H=A 501",

where I{"” is the spin-1 operator for the nitrogen nucleus. The control optimisation
explicitly penalised population transfer into the m; = —1 level, effectively constraining
the dynamics to the computational subspace {m; = 0,+1}. This approach ensures that
the resulting gates are robust not only to decoherence but also to leakage.

All four pulses achieved extremely high expected fidelities in simulation, all of them
exceeding 99%.

4.1.2. PHASE EVOLUTION AND CORRECTION MECHANISMS

During open-loop optimal control, the evolution of the nitrogen nuclear spin under the
hyperfine coupling A leads to phase accumulation that must be managed carefully. If
left uncorrected, this phase can degrade the fidelity of the implemented gate, even when
the pulse correctly performs the desired logical operation. In this section, we show two
complementary strategies for addressing this effect: tuning the gate duration and apply-
ing an explicit phase correction to the target unitary.

GATE DURATION SWEEPS

An important free variable in open-loop optimal control is the gate duration. We there-
fore investigated the relationship between gate duration and the resulting expected fi-
delity, as shown in Figure 4.2.

Optimised pulse fidelities
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Figure 4.2: Gate duration sweep of GRAPE pulses. The fidelities oscillate as a function of A}, consistent with
the phase evolution under the simplified Hamiltonian. The horizontal plateaus arise from the finite step size
in gate duration; 60 data points were used in total.

We find that the fidelity exhibits oscillations as a function of Aj. This behaviour is
expected, as the simplified Hamiltonian used in this optimisation is given by

H= A58y,

where S(Ze) and S(Z") are the Z-operators for the electron and nitrogen nuclear spins, re-
spectively.
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The term At in the time evolution induces a phase accumulation on the nitrogen
spin that depends on the gate duration ¢. Constructive interference of this phase occurs

at times satisfying
1

f=——0),
2A)k

with ke N.
Given that A = 2.18 MHz, an oscillation period corresponding to A is expected. An
optimal gate duration can therefore be calculated as

1
ate_duration = ——.
gare- Aj k

By selecting gate durations that satisfy this condition, the nitrogen spin acquires a
phase compatible with the target unitary, thereby improving fidelity.

EXPLICIT PHASE CORRECTION
Alternatively, the same phase evolution can be corrected directly by adjusting the phase
of the target unitary, rather than tuning the gate duration.

As explained in Section 3.1.3, a phase offset may need to be corrected for when defin-
ing the target unitary, especially when echo sequences are used. If this phase is not in-
cluded in the definition of the target unitary, the overlap between the simulated and
target unitaries will appear reduced, leading to an artificially low fidelity even if the im-
plemented operation is otherwise correct.

Om im 2m 3m an

1.0 4

0 2 4 6 8 10 12
Phase (radians)

Figure 4.3: Fidelity as a function of global phase offset applied to the target unitary. A fixed pulse is used for
all evaluations. The observed periodicity confirms that the implemented operation differs from the ideal gate
only by a global phase, which must be accounted for in fidelity evaluation.

In order to characterise the fidelity landscape with respect to phase correction, we
perform a phase sweep using a fixed pulse, as shown in Figure 4.3. The sweep is con-
ducted at a gate duration of 2.5us with an echo included in the target unitary. The
utilised pulse sequence can be seen in Figure 4.4.
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Figure 4.4: Pulse sequence used to perform the phase sweep shown in Figure 4.3. The sequence includes a DD
layer that introduces a deterministic phase offset in the nitrogen spin, necessitating correction in the target
unitary.

We observe a clear periodic dependence of fidelity on the applied phase offset, with
maxima near 7/2 and 37/2, and pronounced dips at 0, 7, and 2x. This confirms that
the pulse implements the correct logical operation up to a global phase, which must be
incorporated into the target unitary to avoid artificially reduced fidelity values.

Using the method described in Section 3.1.3, we determine the optimal phase offset
to be

¢Po ~ 1.087 (=~ 194.4°).

This value aligns well with the observed fidelity peaks, validating the correction proce-
dure.
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Figure 4.5: Effect of phase correction on fidelity as a function of gate duration. Left: Without phase correction,
fidelity plateaus near 0.77 due to a fixed mismatch between the implemented and target unitaries. Right:
Applying the optimal phase correction (¢ = 1.087) restores fidelity to the expected high values near 0.99,
confirming that the discrepancy was due solely to a global phase offset.

To further validate the importance of phase correction, we repeat the gate duration
sweep using both a fixed phase of 0 and the optimal phase (Figure 4.5). In the left plot,
the fidelity remains flat near 0.77, corresponding to the initial mismatch discussed in
Section 3.1.3. This can also be observed in Figure 4.2, where at a gate duration of 2.5 us
we see a fidelity of approximately 0.77.

In contrast, the right plot shows fidelity stabilising near 0.99, confirming that the
optimiser consistently aligns the pulse to a unitary differing only by a global phase. This
further demonstrates that uncorrected phases can obscure high-fidelity solutions and
lead to misleading optimisation outcomes.

In summary, the oscillations observed in the gate duration sweep and the phase cor-
rection explored here stem from the same physical effect: phase accumulation of the
nitrogen spin due to its precession under Aj. This phase can be managed either by se-
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lecting specific gate durations that align the phase appropriately, or by explicitly correct-
ing the phase in the target unitary. Both approaches are complementary and together
ensure accurate fidelity evaluation and convergence to physically valid solutions.
Therefore, we explicitly incorporate the echo-induced phase shift into the target uni-
tary for all subsequent optimisations. This ensures meaningful fidelity evaluation and
prevents high-fidelity solutions from being obscured by trivial phase mismatches.

4.1.3. AMPLITUDE SWEEPS

After generating the optimised pulses, we implemented them on our experimental setup
and applied them to a physical sample containing the NV centre system. To facilitate
this, a NumericalMWPulse object was defined in diamondOS, a custom software pack-
age developed by QuTech to streamline experimental procedures. Since the open-loop
optimisation returns Rabi frequencies rather than control voltages, we must calibrate
the corresponding amplitude scaling factors required for effective hardware implemen-
tation. As an initial step, we calculated the Rabi frequency to voltage conversion factor
based on the parameters of a square weak 7 pulse. This provided a theoretical expec-
tation for the correct control amplitude, which led us to apply an initial scaling factor
of 1.0 when implementing the optimised pulse. To refine this calibration, we perform
amplitude sweeps and monitor the PL contrast to identify the optimal operating point.
High PL contrast indicates improved gate fidelity, as discussed in Section 3.2.3.

Figure C.1 shows the results of the amplitude sweeps. Figure 4.6 shows the full am-
plitude sweep, around multiplication factor 1 and around multiplication factor 19.8 for
the qutrit pulse.

The sweep range was normalised by the maximum amplitude present in each pulse.
As shown in Figure 4.1, the vanilla pulse features significantly higher peak amplitudes—nearly
an order of magnitude larger—than the others.
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Figure 4.6: Amplitude sweeps for the GRAPE-optimised qutrit pulse. Left: Full sweep over a broad range of
scaling factors. Middle: Zoomed-in view near scaling factor 1.0, corresponding to the theoretically predicted
operating point. Right: Zoomed-in view near scaling factor 19.8, which also exhibits high contrast. These two
operating points correspond to implementations of the target gate and its logical inverse, respectively.

The vanilla pulse exhibits no clear region of high contrast, suggesting poor control fi-
delity. The no-echo pulse yields low contrast across the sweep range, with both nitrogen
initialisation states having similar lines. This indicates that without echo compensation,
the pulse fails to induce meaningful conditional dynamics. In contrast, the qutrit pulse
displays two prominent contrast peaks, around scaling factors of 1 and 19.8, suggesting
effective conditional gate operation at these amplitudes.
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Since the qutrit pulse yielded the highest contrast in the initial amplitude sweeps, it
was selected for all subsequent experiments.

As shown in Figure 4.6, both experimental and simulated sweeps reveal two distinct
sweet spots near scaling factors of 1 and 19.8. At these points, we observe maximal PL
contrast between the readouts conditioned on the nitrogen spin state, indicating strong
conditional control fidelity. Notably, although the contrast magnitude is similar at both
points, the roles of the |0) and |1) traces are reversed.

This inversion arises from the pulse effectively implementing opposite unitary op-
erations at the two amplitude settings. At a scaling factor of 1, the pulse performs the
intended target gate. Near 19.8, the accumulated phase and rotation angle result in an
over-rotation that implements the logical inverse of the intended gate. For instance, a
CNOT gate targeting the electron spin conditioned on |1)5 becomes an inverse CNOT,
flipping the electron spin when the nitrogen spin is in |0)y.
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Figure 4.7: Comparison of simulated (left) and experimental (right) amplitude sweeps for the qutrit-optimised
pulse. Each trace corresponds to a different initialisation of the nitrogen nuclear spin: blue for [1)y and or-
ange for |0)y. Vertical axis: final electron spin population. Horizontal axis: amplitude scaling factor. Both
experimental and simulated results display distinct sweet spots near scaling factors of 1 and 19.8, confirming
conditional control fidelity at these amplitudes.

The existence of sweet spots around an amplification factor of 1 and 19.8 is further
validated by simulation, as shown in 4.7.

4.1.4. PL CONTRAST AND BELL STATE FIDELITY

To quantitatively assess pulse performance with minimal experimental overhead, we
evaluate the PL contrast and Bell state fidelity figures of merit introduced in subsection
3.2.3. Figure 4.8 compares these metrics for the reference weak 7 pulse and the GRAPE-
optimised pulse, evaluated at the two sweet spots identified in the earlier amplitude
sweep—namely, amplitudes 1 and 19.8. The reference pulse, described in subsection
2.1.3, serves as our baseline.

The reference weak 7 pulse achieves a PL contrast of 97.36% + 0.12%, whereas the
GRAPE pulses yield 91.11% + 0.33% (amplitude 1) and 89.55% + 0.35% (amplitude 19.8).
This reduction is expected, as open-loop optimisation is based on an idealised model
that omits experimental imperfections such as decoherence, drift, and pulse distortions.
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Figure 4.8: Comparison of PL contrast and Bell state fidelity for the reference weak = pulse and the GRAPE-
optimised qutrit pulse at amplitude scaling factors 1 and 19.8. For the reference pulse, fidelity is computed
with respect to the Bell state |®T) = \/Li (100) +111)). For the GRAPE pulses, fidelity is computed with respect
to|P7) = \/Li (101) — [10)), which is the expected outcome given the inverted control logic. The reference pulse
outperforms the GRAPE pulses on both metrics, illustrating the limitations of open-loop control in experimen-

tal settings.

To interpret the Bell state fidelity data, we consider the full entanglement circuit. A
Ry (/2) gate is first applied to the nitrogen nuclear spin, followed by a conditional weak
7 pulse on the electron. The reference pulse implements:

Uw-z =1 ®10)0| y + X ® |1){1],
where X, denotes the Pauli X on the electron spin. Acting on the initial state |0), |0y,
the sequence yields:
Initial: |0),]0)

Y(r/2) 1
TN, 10)e 75100 + 1))

7

1
B, (10)e 10V + (1) 1) ) = [).

V2

Thus, under ideal conditions, the reference pulse prepares the Bell state |®*).
The GRAPE pulse, by contrast, was optimised to flip the electron spin if the nitrogen
is in |0) 5, implementing the opposite control logic:

Ucrare = Xe ®10)(0ly + T ® [1)(1] .
Applying this to the same input state gives:

Initial: |0),|0)x

Y(/2)N 1
—0), —(0)y+ |1
| )e\/z” N+ I N)

Ugrare 1 -
——— — (|1 10) y+10), |1 =|¥7).
\/§(|>|>N|>|>N)| )
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This is the singlet Bell state |[¥~) = % (101) —110y), where the first qubit is the electron.
This prediction is confirmed by correlator measurements shown in Figure 4.9. The
reference pulse produces:

(XX)=0.847+0.018, (YY)=-0.794+0.006, (ZZ)=0.844+0.018,

in good agreement with the expected signature of |®*). In contrast, the GRAPE pulse at
amplitude 1 yields:

(XX)=-0.671£0.008, (YY)=-0.749+£0.007, (ZZ)=-0.779+0.006,

consistent with | ™), whose negative correlations along all three axes are unique among
Bell states.

1.0

0.0 1

Correlation
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XX Yy zz XX Yy zz XX Yy zz

Figure 4.9: Two-qubit correlator measurements ((XX), (YY), (ZZ)) for the reference and GRAPE-optimised
qutrit pulses. Left: Reference weak 7 pulse yields strong positive correlations, consistent with the target Bell
state |®*). Middle: GRAPE pulse at amplitude 1 exhibits strong negative correlations along all axes, character-
istic of the singlet state | ™). Right: GRAPE pulse at amplitude 19.8 shows degraded correlations, reflecting
reduced fidelity.

The fidelity with respect to the singlet state is:

1-(XX)—«(YY)-(Z2)
Fy- = )
4
yielding Fg- = 0.801 + 0.004 for the GRAPE pulse at amplitude 1.

At amplitude 19.8, GRAPE pulse performance degrades on both metrics. The state
trajectory is effectively longer (approaching ten full rotations), amplifying sensitivity to
imperfections. Susceptibility to hyperfine transitions detuned by 2.2 MHz and 4.4 MHz
becomes significant at high power, introducing decoherence and state mixing.

These results underscore the limitations of model-based open-loop control under
realistic conditions. This motivates a shift to closed-loop control strategies, which incor-
porate direct hardware feedback to improve robustness and target fidelity.

4.2. CLOSED LOOP OPTIMAL CONTROL

While our GRAPE-optimised pulse performed well within the limits of the simulation,
its effectiveness in experiment is fundamentally constrained by the accuracy of the un-
derlying model—which remains relatively simple. To address this limitation, we transi-
tioned to a closed-loop control approach, allowing the system itself to guide the pulse
optimisation process in real time.
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To this end, we implemented the dCRAB algorithm using the QuOCS library. We used
the reference weak 7 pulse as an initial guess.

Throughout the optimisation runs, we used the PL contrast and Bell state fidelity
metrics introduced in 3.2.3 to guide the search for high-performance pulses.

4.2.1. PRODUCED PULSES

Throughout the experimental work in this thesis, control pulses were generated by op-
timising the PL contrast and Bell state fidelity FoMs, as defined in Section 3.2.3. In ad-
dition to full IQ pulses, which include both in-phase (I) and quadrature (Q) compo-
nents, we also optimised pulses using only the I component. This choice served as an
example of a constrained search space, selected to test whether comparable gate perfor-
mance could be achieved with fewer control parameters, potentially enabling faster con-
vergence and improved robustness. Other possible ways to constrain the search space
include reducing the number of basis functions used to parameterise the pulse, limiting
the maximum pulse amplitude, or restricting the allowed pulse variation range during
optimisation.

===+ Initial Guess | 129 -==- Initial Guess |

12.5 -=--- Initial Guess Q 104 --=-Initial Guess Q
Optimised | Optimised |
10.0 Optimised Q 84 Optimised Q
7.5 6
5.0

Amplitude (mV)
Amplitude (mV)
IS

i| - AR

-5.0 -4
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time (ns) Time (ns)
125 ---- Initial Guess | -=--- Initial Guess |
i Optimised | 10.0 Optimised |
100 7.5
= 75 =
H Z 5.0
g 50 ]
3 S 254
E 2
a a
2.5
£ £ oo
0.0
—2.54
=25
~5.04
-5.0 T T T T T v v v v T T T T T v v y y
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Time (ns) Time (ns)

Figure 4.10: Final GRAPE-optimised control pulses for each figure of merit and control parameterisation. Up-
per left: PL contrast optimisation using full /Q control. Upper right: Bell state fidelity optimisation using full
IQ control. Lower left: PL contrast optimisation using I-only control. Lower right: Bell state fidelity optimi-
sation using I-only control. Solid lines denote the optimised I and Q components (or I only); dashed lines
indicate the initial guesses. These pulses represent the final outcomes of the closed-loop optimisation proce-
dure described in Section 3.2.3.
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Pulse Name Optimisation Objective = Components Used

PL PL contrast Tand Q
Bell Bell state fidelity I'and Q
PLonlyI PL contrast I only
Bell only I Bell state fidelity I only

Table 4.1: Summary of the optimised pulses, including their objective functions and control parameterisations.
Each pulse is labelled according to the figure of merit used during optimisation and whether both in-phase (I)
and quadrature (Q) components were employed.

Figure C.2 shows the evolution of the FoM values during optimisation. Characteristic
sharp dips are observed, which align with the start of new super-iterations—these mark
global reshuffling events where the optimiser samples new directions to escape local
optima.

Interestingly, for both the PL contrast and Bell state fidelity objectives, the highest-
performing solutions were not found at the end of the optimisation but rather at ear-
lier super-iterations. This may imply that early explorations identified favourable pulse
structures that were later perturbed by overfitting to local landscape noise or hardware
drift.

Figure 4.10 displays the final control pulses, including both I and Q components.

4.2.2. PL CONTRAST AND BELL STATE FIDELITY

To accurately assess the performance of our control pulses, we evaluate them using the
FoMs defined earlier, which also serve as cost functions in our closed-loop optimisa-
tion routine. All measurements were performed with 5000 repetitions (shots) per ba-
sis setting. To ensure a fair comparison, the reference weak n-pulse data were recol-
lected alongside the other pulses, thereby controlling for environmental variations such
as magnetic field fluctuations.

As shown in Figure 4.11, the reference weak n-pulse achieves the highest PL contrast.
Interestingly, the PL-optimised pulses yield slightly lower contrast, which is counterin-
tuitive since they were specifically optimised for this metric. One possible explanation
is that magnetic field drift or other slow variations occurred during the course of the
optimisation process, causing a shift in system parameters that degraded performance
relative to the reference.

Turning to the Bell state fidelity metric, we observe a more level distribution of values
across different pulses, though the uncertainties are larger. This increased uncertainty is
primarily due to how the fidelity is computed as detailed in section A.1.

To further dissect the Bell state fidelity results, Figure 4.12 presents the individual
two-qubit correlators used in its calculation. The correlators show consistent structure
across all pulses, with XX and ZZ generally yielding higher absolute values than YY.
This may reflect phases being accrued in certain bases. The uncertainty in each correla-
tor is substantial, as discussed in A.1, which propagates into the total Bell fidelity metric.
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Figure 4.11: Comparison of all optimised pulses and the reference weak 7 pulse using the two primary figures
of merit: PL contrast and Bell state fidelity. All data were collected under consistent experimental conditions
with 5000 repetitions per basis setting. The reference pulse achieves the highest PL contrast, while Bell state
fidelities are more uniformly distributed across pulses with higher uncertainties.
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Figure 4.12: Measured two-qubit correlators ((XX), (YY), (ZZ)) for each pulse, used in computing Bell state
fidelities. The correlator structure is broadly consistent across all pulses, though variation in magnitude and
uncertainty—particularly in (Y Y)—affects the overall fidelity calculation. All correlators were estimated using
5000 shots per basis setting.

4.2.3. NOISE LIMITATIONS
A valuable dataset for characterising the system’s intrinsic noise was obtained during
runs involving only I pulses. Due to a bug in the sequencer code, the initial guess pulse
was replayed at every iteration rather than being updated. Although unintended, this be-
haviour provided a unique opportunity to systematically probe the system’s noise char-
acteristics under repeated application of a fixed control pulse.

Each function evaluation involved 5000 measurement shots. Assuming binary out-
comes and a typical population contrast of p = 0.96, as discussed in Section 2.1.1, the
expected standard deviation from quantum projection noise is

1- 10.96-0.04
Ostat = pa-_p) = =~ 0.00277.
N 5000

This defines a theoretical noise floor for comparison with observed fluctuations.
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The recorded PL contrast data exhibit both random variation from shot noise and
structured drifts, particularly during the early hours of the experiment. Across the entire
dataset, the mean standard deviation in PL contrast is 6py, = 0.00843 + 0.00028, approx-
imately three times the projection noise limit. Excluding the first 8 hours—where drift
was most pronounced—this reduces to op;, = 0.00545 + 0.00021, indicating improved
system stability thereafter.

Magnetic field calibrations were performed hourly, and objective lens repositioning
scans were carried out every 4 hours. However, during the initial phase of data collection,
neither the magnet nor the lens had been realigned for some time. This misalignment
led to pronounced drift in the PL signal and an exceptionally large repositioning step
in the first lens scan. The magnetic field calibrations during this period show strong
temporal correlation with abrupt corrections in the PL signal, marking a transition to a
more stable regime for the remainder of the experiment.
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Figure 4.13: Correlation between PL contrast (blue), magnet position (red dashed line), and objective lens
repositioning magnitude (green) over time. The PL contrast exhibits both gradual drifts and sudden jumps,
many of which align with manual adjustments to the magnet or optical system. The largest contrast change
coincides with the first objective lens realignment, indicating that optical focus has a dominant effect on sig-
nal quality. Smaller contrast variations are also associated with magnetic field recalibrations, suggesting that
magnetic drift is a non-negligible noise source.

While the goal was to maintain a stable magnetic field and optical alignment, this
required periodic manual adjustments. The absolute magnet position is not directly
meaningful, but sudden changes often coincide with jumps in the PL signal, indicating
magnetic field drift as a significant noise source.

The lens repositioning trace reflects regular calibration events, performed every 4
hours via full scans along the X, Y, and Z axes. At each of these time points, the net
mechanical displacement is computed as the Euclidean distance between the current
and previous scan centres:

Ar =/ = X2 + (3~ yie)? + (2 - 2o,

where x;, y;, z; denote the scan centre coordinates at time ¢;. The largest displacement
occurs after the initial two alignments, while subsequent refocusing steps are smaller
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but still non-negligible.

Notably, the first objective lens repositioning produces an immediate and pronounced
jump in the FoM, from approximately 0.90 back to 0.97. In contrast, magnetic field cal-
ibrations tend to induce smaller, gradual corrections. This highlights the dominant im-
pact of optical alignment on readout quality, particularly when significantly out of focus.

4.3. GATE SET TOMOGRAPHY

GST is a comprehensive protocol for characterising quantum gates, state preparations,
and measurements in a self-consistent and device-agnostic manner. Unlike traditional
quantum process tomography, which assumes perfect SPAM, GST reconstructs the en-
tire gate set from experimentally accessible data, making no such assumptions. This
allows it to isolate and quantify errors not just in individual gates, but in the full logical
gate set implemented on a quantum device.

In this section, we apply GST to the produced pulses in order to evaluate the perfor-
mance of our optimised gate, identify the dominant sources of error, and determine the
degree to which the system dynamics can be described by a time-independent, Marko-

vian model. We begin by assessing global deviations from this model using a non-Markovianity

metric, then quantify per-gate performance via average infidelities and error generators.

4.3.1. NON-MARKOVIANITY

The non-Markovianity metric, denoted N;, quantifies how strongly the experimental
data deviates from the assumptions of a Markovian quantum process—specifically, that
each gate acts independently and identically at every invocation. This metric is com-
puted from the log-likelihood ratio between the best-fit gateset model and the raw data,
scaled in units of standard deviation. In essence, it measures how well the stationary
CPTP (completely positive trace-preserving) model assumed by GST captures the ob-
served behaviour.

An explicit error bar is not reported for Ny, it expresses statistical deviation in units
of standard deviation under the assumption that the fitted model is correct. As such, it
already incorporates expected sampling fluctuations, and its interpretation is similar to
that of a goodness-of-fit statistic. Values of Ny < 1 are consistent with the model within
statistical noise, whereas N; > 1 indicates an inconsistency between model and data,
suggesting the presence of non-Markovian effects [58].

The way it is constructed, N, aggregates contributions across all circuits and is sen-
sitive to non-Markovian effects such as temporal correlations, drift, or gate-context de-
pendence that violate the assumptions of time-independent noise. Therefore, it is an
excellent metric for diagnosing whether the overall GST model is fundamentally inade-
quate to describe the true experimental system dynamics.

Looking at Figure 4.14, we observe that non-Markovianity is present in all experi-
ments and follows similar patterns across the different base lengths. For L = 1, Ny is
around 45 for all pulses. For L = 2, it drops slightly to values between 38 and 42. For
L = 4, a similar range of 39 to 43 is observed. Finally, for L = 8, N;; increases again to
values between 44 and 53.

It is important to interpret these trends carefully. N, does not directly quantify the
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Figure 4.14: Non-Markovianity metric Ny for five experiments, shown across base lengths L =1, 2, 4, and 8.
Higher values of Ny indicate stronger statistical evidence against the Markovian noise model assumed by GST.
While Ny increases slightly with base length—partly due to the cumulative nature of deviations over deeper
circuits—all experiments exhibit significant non-Markovianity. No single pulse deviates markedly from the
others, suggesting that non-Markovian effects are broadly distributed across the system.

amount of non-Markovianity present in the system, nor does a larger value imply a
stronger non-Markovian effect per se. Rather, it quantifies the statistical confidence with
which the data rejects the Markovian model [43], and it grows roughly linearly with the
total number of circuit repetitions. Thus, changes in N, with base length L partly reflect
the fact that deeper circuits comprise more repeated operations, leading to larger aggre-
gate deviations even if the underlying noise processes remain unchanged. In this light,
the observed variations across L should not be overinterpreted as evidence for qualita-
tively different non-Markovian behaviour at different depths.

A more robust observation is that no single optimised control pulse stands out as
an outlier in N across the different base lengths. This suggests that none of the pulses
introduces disproportionately strong violations of the Markovian model, and that non-
Markovian effects are instead broadly distributed across the system and circuits.

Finally, it must be emphasised that Ny is a global metric: it aggregates evidence over
the entire GST dataset and does not indicate which specific gates or circuits contribute
most to the observed deviations. More targeted diagnostics would be required to localise
the sources of non-Markovianity.
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4.3.2. AVERAGE GATE FIDELITY
To evaluate the performance of individual gates, we turn to the average gate infidelity es-
timates provided by GST. These values are derived from the reconstructed process ma-
trices and offer insight into how closely each implemented gate approximates its ideal
counterpart.

As the CNOT is the gate that we optimised, we visualise the CNOT gate results as a
bar chart in Figure 4.15.

5.0

Average Gate Infidelity (%)

Figure 4.15: Average gate infidelity for the CNOT gate across five GST reconstructions, each corresponding to
a different control pulse. The reference weak 7 pulse achieves the lowest infidelity, indicating robust perfor-
mance under the GST model. Optimised pulses yield slightly higher infidelities, ranging from 3.64% to 4.21%,
but remain within a comparable performance range. Error bars reflect the statistical uncertainty in the GST
estimate.

We notice that the reference weak 7 pulse achieves the lowest average gate infidelity
of 3.36 + 0.14%, suggesting that this pulse remains well-suited for implementing the
CNOT gate. The other pulses exhibit slightly higher but comparable infidelities, rang-
ing from 3.64 +0.14% to 4.21 + 0.14%.

To better understand the source of these errors, we now turn to one of the most in-
formative metrics provided by GST: the error generator.

4.3.3. ERROR GENERATOR

The error generator is one of the most informative diagnostics provided by GST, offering
a detailed decomposition of gate errors into coherent and stochastic contributions. It
is constructed by comparing the estimated superoperator to its ideal form within a Lie-
algebraic framework, where small deviations are expressed in the Pauli basis as elements
of the corresponding error algebra [47].
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Figure 4.16: Coherent (upper) and stochastic (lower) error generators for the CNOT gate under each optimised pulse, expressed
in the Pauli basis. Coherent errors reflect systematic, unitary deviations from the ideal gate and contribute quadratically to
gate infidelity, whereas stochastic errors represent decoherent noise processes and contribute linearly. All pulses exhibit a
dominant ZZ coherent error component, indicating residual two-qubit coupling as the primary source of infidelity. Stochastic
contributions are comparatively small but show consistent structure along YI and YZ terms, possibly reflecting system-specific
dephasing channels.

Coherent error generators.

In Figure 4.16, we present the coherent and stochastic error generators for the op-
timised pulses. It is important to note that coherent errors contribute quadratically to
gate infidelity, whereas stochastic errors contribute linearly.

We observe a clear and consistent pattern across all con-

figurations: a large ZZ component dominates the coherent error generator, with values
ranging from 0.10 to 0.16. Additional observations for each pulse are as follows:

* Ref weak 7 pulse: Moderate single-qubit error terms are present, with —0.01 XI,
—0.02 Y], and —0.01 ZI.

PL pulse: Similar structure is observed with 0.02 1Z, —0.01 YI, and —0.02 ZI.

Bell pulse: This pulse exhibits larger single-qubit coherent terms: —0.03 XI, 0.02
Y], and —0.04 ZI. Interestingly, despite these larger terms, the Bell pulse achieves
a lower average gate infidelity than the PL pulse, which may be attributed to its
larger ZZ term (—0.16 compared to —0.13).

PL only I pulse: This pulse exhibits significant —0.03 XZ and 0.02 ZI terms, as well
as a large ZZ component (0.15).

Bell only I pulse: While this pulse achieves the lowest ZZ term (0.10), it suffers
from large other coherent terms: —0.07 XZ, 0.04 YZ, 0.04 YI, and —0.04 ZI. The
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presence of multiple large coherent components in this case leads to the worst
overall gate infidelity among the pulses studied.

Stochastic error generators. For the stochastic error generators, we observe small con-
tributions across all configurations, consistent with the low stochastic noise level of the
system. Nevertheless, a pattern of elevated YI and YZ components is apparent. This
may indicate a susceptibility to stochastic noise along the Y axis. The fact that these
stochastic terms remain small compared to the coherent errors suggests that further
improvements in gate fidelity should prioritise addressing the coherent contributions,
particularly the ZZ interaction.

A clear pattern emerges: all optimised pulses exhibit a large ZZ coherent error com-
ponent, which dominates the overall error budget. Single-qubit coherent terms vary be-
tween pulses, and their impact on gate fidelity depends sensitively on their magnitude
and combination with ZZ errors. Stochastic errors remain minor, with some consistent
structure in Y-axis terms. These results underscore the importance of targeting ZZ error
suppression.

77 TERM DUE TO AC-STARK SHIFT

The persistence of ZZ indicates that it originates from a mechanism invariant under
a global reference-frame update—specifically, an AC-Stark (Bloch-Siegert) shift of the
electron that is conditional on the state of the nitrogen nuclear spin.

The microwave carrier is tuned to the bare electron resonance, w./27 ~4.18 GHz. To
select the |m; = 0) manifold we impose a numerical envelope modulation at the parallel
hyperfine splitting, A;/2x = 2.18 MHz. Consequently, pulses applied to the |m = +1)
manifold are detuned by A/27 = 2.18 MHz.

For a constant detuning A, the effective Hamiltonian for the electron spin (first qubit)
is

H=2QX.+AZ,),
where Q is the Rabi frequency of the drive, and I, I, are the usual electron spin-% oper-
ators. The effective rotation frequency is then

Qer = VO2 + A2,
During the weak-7 pulse the electron therefore acquires an additional phase
¢ =Art,

where 7 is the pulse duration, and this phase accrues only when m; = +1.
The resulting two-spin unitary can be written

U ~ (X.®10%0In) + (€7 eI1)1ly),

where X, is the weak n-rotation applied to the electron when m; = 0, and e/%% is a
conditional phase acquired in the m; = +1 manifold due to the off-resonant drive.
Expanding e'?% = cos(¢) I, + i sin(¢p) Z,, we can rewrite the unitary as

U ~ X,®|0X0|n + [cos(p) I+ isin(p) Z,|®|1)1|x.
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From this form it is evident that a term proportional to Z, Zy is present:
U= X,®|0X0|x+cos(@) I, ® 1)1y +isin(p)Z, ® Zy;,
where we used the identity
[IX1n = 3Un+2Zn), [0X0In = 3Un—ZN),

Crucially, this conditional phase is dependent on the nitrogen nuclear spin state: the
electron spin acquires an additional phase only in the m; = +1 branch. It is not simply
the fact that the phase arises within the weak-m pulse that is problematic, but rather its
conditionality: there is no global single-qubit gate that can correct this term once it has
been imprinted.

This explains why the Z Z component remains unchanged after applying single-qubit
corrections.

The gate infidelity corroborates this picture: it remains 0.0426 + 0.0075 before and
after correction. Since the dominant single-qubit error is mitigated while the infidelity is
unaffected, we conclude that the residual ZZ coupling is now the principal error mech-
anism.

To counteract this we designed an improved gate scheme that suppresses the coher-
ent ZZ interaction while preserving both coherence and fluorescence contrast.

4.4. WEAK t/2 SEQUENCE

As shown in Fig. 2.7 and discussed in Section 4.3.3, the dominant coherent two-qubit
error in our system is an unwanted Z,Zy interaction. It originates from an AC-Stark
shift accumulated during periods when the microwave drive, resonant with the m; =0
electron spin transition, is applied while the nitrogen nuclear spin is in the m; = +1 state.
In this case, the drive is detuned by approximately 2.18 MHz, leading to a differential
phase accumulation.

To suppress this asymmetry, we restored symmetry in the pulse sequence by replac-
ing the solitary weak 7 pulse with two weak /2 pulses placed symmetrically between
dynamical decoupling pulses (Fig. 4.17). While the nitrogen spin state remains fixed
throughout the sequence, the time-symmetric structure ensures that any phase accu-
mulated due to off-resonant driving is refocused. This is because the effective Hamilto-
nian during the second /2 pulse has a flipped sign compared to the first, cancelling out
Stark-induced evolution. Thus, the differential phase between the m; = 0 and m; = +1
manifolds is eliminated, suppressing the coherent Z, Zy interaction.

To leading order in yx ¢, the net evolution is

U.1 ~ exp[—iHot] + G ((x1)2).

This cancellation arises from the symmetry of the sequence, but its effectiveness de-
pends on the form of Hy. In the m; = 0 manifold, the drive is on-resonance, so Hy is
dominated by a large X, term. Although this does not commute with the Z,Zy interac-
tion, the fast rotation it induces suppresses the effect of the weaker y Z, perturbation. In
the m; = +1 manifold, the drive is off-resonant, and Hj is approximately a Z, rotation.



4.4. WEAK /2 SEQUENCE 53

Since this commutes with Z, Zy, the two terms effectively evolve independently and the
time-symmetric structure of the sequence cancels the net effect of the y Z, term.

In both cases, the symmetric structure of the sequence eliminates the leading-order
contribution of the unwanted Z, Zy interaction, suppressing the coherent error.

T weak 1/2 1 T -1 T weak1/2 T 3 T T -n

Time (ps)

Figure 4.17: Pulse sequence for the symmetric weak-7/2 dynamical decoupling scheme. The original central
weak 7 pulse is replaced by two weak /2 pulses (black Gaussian envelopes), placed symmetrically between
DD pulses. 7 and —m DD pulses are shown as blue rectangles. This symmetric construction ensures equal time
spent in resonant and off-resonant driving configurations for both nuclear spin states, cancelling deterministic
Ze Zp phase accumulation via echo-based refocusing.

We verified the effectiveness of this sequence with the same error-amplification cir-
cuit used to benchmark the original weak-n gate: initial local R, (7/2) rotations on both
qubits, followed by n applications of the optimised control pulse (nominally a CNOT),
and final Ry (r/2) rotations. This maps Bell-state preparation and read-out onto a parity
measurement that is extremely sensitive to residual ZZ phases.
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Figure 4.18: Measured population dynamics under repeated application of the control gate, using the original
weak-m DD sequence (left) and the symmetric weak-7/2 DD sequence (right). Solid markers indicate mea-
sured electron (blue) and nitrogen (orange) spin populations; hollow markers represent the ideal evolution.
The symmetric sequence exhibits significantly reduced deviation from the ideal populations over multiple
gate applications, confirming effective suppression of coherent Z, Z error via symmetric phase cancellation.

Figure 4.18 shows that, with the original weak-m sequence, ZZ errors introduced by
the AC Stark shift grow rapidly: the electron population shifts after only a few gate ap-
plications. In contrast, the symmetric weak-7/2 sequence keeps both electron and ni-
trogen populations almost constant over the same repetition range, demonstrating ef-
fective cancellation of the unwanted Z Z interaction. Although minor residual errors re-
main, the overall dynamics are much closer to the ideal and the gate fidelity is markedly
improved.

4.4.1. GATE SET TOMOGRAPHY
To benchmark the new /2 gate sequence, we once again employ GST. Since the refer-
ence pulse used in this gate has approximately half the amplitude of a standard 7 pulse,
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we also benchmark a sequence based on a 57/2 pulse for comparison.

The rationale for this is that the reduced amplitude of the 7/2 pulse may lead to in-
creased decoherence, as it becomes more susceptible to stochastic noise arising from
environmental couplings.

Additionally, we benchmark a /2 pulse that was optimised using our closed-loop
optimal control scheme, targeting the Bell state fidelity as the figure of merit.

NON-MARKOVIANITY

Figure 4.19 shows the extracted non-
Markovianity metric N, for the three
pulse types—reference weak 7/2, refer-
ence 57/2, and the optimised Bell-state-
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noise may be more pronounced over longer gate sequences. Meanwhile, the optimised
pulse appears to mitigate this somewhat, but still shows elevated N, at higher L.

AVERAGE GATE FIDELITY
Figure 4.20 shows the average gate infidelity for the reference weak /2, reference 57/2,
and the optimised Bell state fidelity weak /2 pulse.

The reference weak /2 pulse exhibits an average gate infidelity of 5.91 +£0.19, while
the optimised weak 7/2 pulse improves on this with 4.71 +£0.16. The weak 57/2 pulse
performs slightly better still, with an infidelity of 4.16 + 0.15.

All three values remain significantly higher than the infidelities reported in Figure 4.15,
where values range from 3.35 + 0.14 for the reference weak 7 pulse to 4.20 + 0.14 for the
Bell only I pulse. Although the weak 57/2 pulse has the lowest infidelity among the three
shown here, it would still rank among the poorest performers in the weak 7 GST analysis.

To investigate whether this performance degradation arises from insufficient sup-
pression of the ZZ interaction term or an increase in stochastic noise, we next examine
the corresponding error generators.



4.4. WEAK /2 SEQUENCE 55

o
U

A v v o
o U» o w o

w
5
!

Average Gate Infidelity (%)

w
o
X

< < A\
A il « A
W N &

Figure 4.20: Average gate infidelity for the CNOT gate, as estimated by GST, for three control sequences: ref-
erence weak /2, reference 5m/2, and the Bell-state-optimised weak 7/2 pulse. The optimised pulse achieves
lower infidelity than the standard weak 7/2, indicating improved performance, but is still outperformed by
the weak 57/2 sequence. All three infidelities are notably higher than those reported for weak 7 pulses in Fig-
ure 4.15, suggesting that weak-7/2-based sequences are more susceptible to stochastic errors.

ERROR GENERATORS

Figure 4.21 shows the coherent and stochastic error generators extracted from GST for
the three weak /2 gate implementations.

Coherent error generators. As expected, the coherent ZZ term—prominent in the orig-
inal weak 7 sequence—is absent across all three variants. This confirms that the sym-
metric pulse design effectively cancels the deterministic Z, Zy interaction.

For the reference weak 7/2 pulse, the dominant coherent terms are XI (—0.05) and XZ
(+0.04), indicating a small overrotation and conditional phase error. The optimised weak
7/2 pulse shows similar magnitudes but with rotated axes: YI (+0.03) and YZ (-0.03).

In contrast, the weak 57/2 pulse exhibits negligible coherent errors, with no domi-
nant terms, suggesting it implements the target unitary more cleanly.

Stochastic error generators. The stochastic error generators show amplified noise com-
pared to the weak 7 case. All three pulses exhibit strong contributions in YI, YZ, and
1Z, matching the noise structure observed previously (Fig. 4.16) but with amplitudes in-
creased by nearly an order of magnitude.

Among the three, the reference weak 7/2 pulse exhibits the largest stochastic errors,
followed by the optimised weak /2, which closely mirrors the reference due to its shared
starting point in the optimisation. The weak 57/2 pulse shows the lowest overall noise,
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Figure 4.21: Coherent (upper) and stochastic (lower) error generators for the CNOT gate under three weak /2 gate im-
plementations: reference weak /2, reference 57/2, and the Bell-state-optimised weak 7/2 pulse. All three sequences
successfully suppress the coherent ZZ component, confirming effective cancellation of deterministic two-qubit phase
accumulation. However, significant stochastic errors remain—particularly in YI, YZ, and IZ—with amplitudes nearly an
order of magnitude larger than in the original weak 7 configurations. Among the three, the 57/2 pulse exhibits the lowest
overall error, suggesting that stronger driving mitigates stochastic noise.

further supporting the hypothesis that moderately stronger driving improves noise re-
silience.

Another contributing factor to the increased stochastic noise is the effective dou-
bling in gate sequence length compared to the weak 7 implementation. Longer gate
durations lead to greater exposure to decoherence, which manifests as enhanced terms
in the Stochastic error generator.
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5.1. CONCLUSION

In this work, we have investigated both open- and closed-loop quantum optimal control
for NV centre systems and characterised the resulting optimised pulses using GST to
inform calibration routines.

In summary, this work demonstrates the interplay between theoretical control de-
sign and experimental feedback in quantum systems. While open-loop methods offer
rapid prototyping, their performance is constrained by model correctness and unac-
counted environmental effects. Closed-loop optimisation provides a more robust path-
way to high-fidelity control, particularly when paired with diagnostic tools such as GST
and drift-aware analysis.

5.1.1. OPEN-LOOP OPTIMISATION

Open-loop control was implemented using the GRAPE algorithm via qutip-qoc. In a
simplified model, we observed that the maximum achievable fidelity depends strongly
on the gate duration relative to characteristic frequencies of the Hamiltonian. Further-
more, when echo sequences are incorporated into the target unitary, any resulting phase
must be corrected via an explicit phase gate; otherwise, the optimiser fails to identify
meaningful solutions. We generated three distinct pulses using different ansidtze and
assessed their experimental performance through PL contrast as a function of pulse am-
plitude.

Of the three pulses, two failed to produce significant PL contrast. However, the qutrit-
based pulse exhibited high contrast at both amp=1 and amp=19.8. Characterisation us-
ing PL contrast and Bell-state fidelity FoMs revealed that this pulses were nonetheless
outperformed by the reference weak 7 pulse. The superior performance of the refer-
ence weak 7 pulse highlights the limitations of open-loop optimisation in the presence
of model inaccuracies and motivates the shift toward closed-loop approaches.

57



58 5. CONCLUSION AND OUTLOOK

5.1.2. CLOSED-LOOP OPTIMISATION

To this end, we employed dCRAB-based closed-loop optimisation using the QuOCS frame-
work. Four pulses were optimised using either PL contrast or Bell-state fidelity as the
FoM, with and without Q components, to assess whether reduced control dimension-
ality could still yield high-performance pulses. We compared their performance across
FoMs and found that the Bell-state fidelity FoM incurred greater uncertainty. The PL
contrast results suggest that the reference weak 7 pulse again outperforms others, likely
due to environmental drift during the optimisation process.

To better understand such drift, we analysed a dataset in which the same control
pulse was repeatedly applied across iterations. We discovered a strong correlation be-
tween PL contrast, magnet position and lens position, indicating that magnetic field drift
and optical alignment play a significant role in performance variation and highlighting
the need for more stable experimental conditions or drift-robust FoMs.

5.1.3. GATE SET TOMOGRAPHY AND ERROR ANALYSIS

Subsequently, we characterised the closed-loop pulses using GST. We closely examined
the CNOT gate infidelities. By analysing the error generators, we identified that most
infidelity arises from coherent errors. In particular strong ZZ terms were observed.

We attributed these to phases acquired via the AC Stark effect during off-resonant
driving. To compensate for this, we implemented a dynamical decoupling sequence
composed of two half-7 pulses designed to cancel the accumulated phases. In the re-
sulting coherent error generators, the ZZ term vanished; however, the overall gate fi-
delity worsened. Further inspection of the stochastic error generators revealed increased
stochastic contributions, indicating that the error profile had shifted from predominantly
coherent to predominantly stochastic. This degradation is likely due to the reduced
amplitude of the half-n pulses, which weakened the control sufficiently that ambient
stochastic noise began to dominate the dynamics.

5.2. OUTLOOK

While this work provides a broad exploration of both open- and closed-loop quantum
optimal control techniques for NV centre systems, several promising avenues remain
open for further investigation.

5.2.1. REFINING OPEN-LOOP APPROACHES

The open-loop GRAPE-based approach, though ultimately sidelined in favour of closed-
loop methods, remains valuable for exploring system mechanics and pulse intuition.
Future work could explore sophisticated noise models incorporating, for example, spec-
tral density characteristics, correlated noise, or anisotropic dephasing.

Additionally, our preliminary experiments hinted at a dependence of optimiser per-
formance on the underlying Hamiltonian structure. A systematic comparison of how
different classical optimisers (e.g., Nelder-Mead, CMA-ES, or gradient-based methods)
behave across a range of system models could yield insights into their suitability for var-
ious control landscapes.
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5.2.2. EXTENDING CLOSED-LOOP OPTIMISATION
For closed-loop optimisation, the outlook is even more expansive. Despite the high ex-
perimental overhead, the strategy of reducing the search space through low-dimensional
parameterisations (e.g., few-frequency dCRAB [59]) and embedding the system directly
into the feedback loop shows considerable promise. Our results indicate that even with
limited evaluation bandwidth, meaningful improvements can be obtained. A key limita-
tion, however, remains the simplicity of the employed FoMs, which fail to fully account
for drifts. Developing more robust and informative FoMs, potentially incorporating to-
mographic or phase-sensitive elements, could significantly improve control fidelity.
The use of more comprehensive fidelity metrics, such as RB, also stands out as an
exciting prospect [60]. While current experimental overheads made RB impractical in
this study, future efforts aimed at optimising experimental throughput could make such
metrics accessible. Compared to simple figures of merit based on, for example, popu-
lation contrast or state fidelity, RB offers a more robust characterisation of average gate
performance and noise resilience, without requiring full tomographic reconstruction.

5.2.3. ADVANCED ERROR CHARACTERISATION

The GST-based analysis presented in this work also opens several promising directions
for improved characterisation and mitigation of gate errors. The presence of coherent
errors suggests that systematic control miscalibrations or persistent Hamiltonian terms
may be contributing to gate infidelity. A detailed error budget that links these terms to
specific physical mechanisms, such as pulse misalignment, crosstalk, or residual cou-
plings, would be a valuable next step.

In addition, the consistent appearance of stochastic contributions, notably in the Y I,
Y Z, and 1 Z channels, is of particular concern. These were especially pronounced in GST
sequences involving the weak 7/2 pulse. If these noise channels stem from experimental
artefacts such as AWG signal distortion, amplifier nonlinearities, or environmental insta-
bilities, identifying their sources could be crucial for achieving gate fidelities exceeding
the 99% threshold common in leading NV centre platforms.

Further insight may also be gained by investigating the system’s control transfer func-
tion, the effective mapping from the programmed waveform to the actual field experi-
enced by the qubit, which can introduce nontrivial distortions even in nominally cali-
brated systems [61]. Incorporating an experimentally determined transfer function into
both open- and closed-loop control schemes could enable more accurate compensation
for such distortions.

Ultimately, bridging the gap between pulse design, experimental implementation,
and gate performance will require a unified framework that combines GST, transfer func-
tion analysis, and control optimisation. Developing such a framework represents a com-
pelling challenge for future work.

5.2.4. TOWARDS FAULT TOLERANCE AND AI-ASSISTED CONTROL

Looking ahead, as the field moves closer to the threshold of fault tolerance, the role
of high-precision quantum control will become increasingly pivotal. Optimal control
theory, grounded in decades of cross-disciplinary development, is poised to contribute
substantially to this frontier. Finally, we note the growing impact of machine learning
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in quantum control. Recently, convolutional neural nets have been used in a closed
feedback loop to tune quantum dots with a 95% success rate [62]. Deep reinforcement
learning has been utilised for superconducting qubits to optimise readout [63] and gate
design [64]. In the context of NV centres, deep learning has been used to detect sur-
rounding nuclear spins [65].

Other work using reinforcement learning [66] and neural networks [67] have demon-
strated similarly encouraging results, and as the capabilities of Al systems expand, they
may become essential tools for real-time pulse design and qubit calibration in increas-
ingly complex quantum devices.
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THEORETICAL BACKGROUND

A.1. UNCERTAINTY COMPARISON

Since both the PL contrast and Bell state fidelity metrics are derived from measured pop-
ulations, it is important to consider how their respective uncertainties compare. Specif-
ically, the parity in each basis is given by

P=2(poo+p11)—1,

op=2-\/03,+0%,.

By contrast, the PL contrast metric involves two directly measured populations:

with uncertainty

PL Contrast = Pe=g|N=0 — Pe=o0|N=1,

opL=1/05+0%.

The final Bell state fidelity is computed by combining the parity measurements in
the three complementary bases:

with associated uncertainty

= 1+ Pxx—Pyy+Pzz
- 4

’

with propagated uncertainty

1
_ 1. /2 2 2
OF= 4\/(TXX+UYY+(TZZ.

If all underlying measurement uncertainties were equal, one would expect a smaller
total uncertainty for the Bell state fidelity (or =~ 1.220) than for the PL contrast (op, =
1.410), since the fidelity averages over three terms. However, in practice the parity mea-
surements involve joint readout of two qubits, which introduces larger uncertainties
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than single-qubit readout. This results in the larger uncertainties typically observed in
the Bell state fidelity.

This increased measurement uncertainty does not reflect a larger uncertainty in the
intrinsic quality of the gate itself, but rather a larger uncertainty in the estimate of that
quality provided by the parity-based metric.




CODE LISTINGS

B.1. CusTOM HELPER FUNCTIONS

This appendix details the custom helper functions used throughout the thesis for analysing
optimal control results.

° plot_expectation_values(result: qutip.Result, times: numpy.array):
Takes a qutip.Result object and a numpy array of timesteps, and plots the x, y,
and z expectation values for all qubits over time. This visualisation helps assess
the state trajectories during the control sequence.

* plot_bloch_spheres(result: qutip.Result, show_all_states: bool,
show_initial_and_final_states: bool): Visualises the state evolution of
qubits on the Bloch sphere. The show_all_states flag controls whether all inter-
mediate states are plotted, while show_initial_and_final_states highlights
only the initial and final states. This provides an intuitive geometric interpretation
of the qubit dynamics.

* plot_concurrence(result: qutip.Result, times: numpy.array): Com-
putes and plots the concurrence, a measure of bipartite entanglement, as a func-
tion of time. This is particularly useful for evaluating the generation and preserva-
tion of entanglement during gate operations.

° plot_optimised_amps(result: qutip_qoc.Result, show_initial: bool):
Plots the optimised control amplitudes obtained from the optimal control routine.
If show_initial is set to True, the initial guess amplitudes used in the optimisa-
tion are also displayed for comparison.

° plot_fft_of_result(result: qutip_qgoc.Result): Computesand plotsthe
Fourier transform of the optimised control pulses. This analysis provides insight
into the spectral content of the control fields and helps identify whether undesired
frequency components are present.
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B.2. QUOCS OPTIMISATION DICTIONARY

An example of an optimisation dictionary used in this thesis is shown below:

optimization_dictionary = {"optimization_client_name": "
CNOT_BELL_PARITY"}
optimization_dictionary["algorithm_settings"] = {
"algorithm_name": "dCRAB",
"optimization_direction": "maximization",
"super_iteration_number": 5,

"max_eval_total": 30000,
"dsm_settings": {
"general_settings": {
"dsm_algorithm_name": "NelderMead",
"is_adaptive": False
To
"stopping_criteria": {
"xatol": l1le-6,
"fatol": le-6,
"change_based_stop": {
"cbs_funct_evals": 500,
"cbs_change": le-4

¥
}
}
}
pulse_x = {
"pulse_name": "Pulse_O",
"upper_limit": 0.1,
"lower_limit": -0.1,
"bins_number": n_bins,
"amplitude_variation": 0.01,
"time_name": "time_1",
"initial_guess": {
"function_type": "list_function",
"list_function": x_array
Yo
"basis": {
"basis_name": "Fourier",
"basis_vector_number": 3,
"random_super_parameter_distribution": {
"distribution_name": "Uniform",
"lower_limit": 0.01,
"upper_limit": 10.0
}
}
¥
pulse_y = pulse_x.copy()
pulse_y["pulse_name"] = "Pulse_1"
pulse_y["initial_guess"]["list_function"] = y_array
timel = {"time_name": "time_1", "initial_value": n_bins}
optimization_dictionary["pulses"] = [pulse_x, pulse_y]

optimization_dictionary["parameters"] = [




~
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optimization_dictionary["times"] = [timel, timell

Listing B.1: Example of an optimisation dictionary

B.3. PYGSTI

An example of using pyGSTi is shown below:

import pygsti
from pygsti.modelpacks import smqlQ_XYI

# 1) Obtain the ideal "target" Model (a predefined stock model)
mdl_ideal = smqlQ_XYI.target_model ()

# 2) Generate a GST experiment design
edesign = smqlQ_XYI.create_gst_experiment_design (4) # Define max
circuit length

# 3) Create a data-set template
pygsti.io.write_empty_dataset ("MyData.txt", edesign.
all_circuits_needing_data,
"## Columns = 0 count, 1 count")

# STOP! "MyData.txt" now contains placeholders (zeros) for data.
# Replace the zeros with actual experimental data, then continue:

ds = pygsti.io.load_dataset ("MyData.txt") # Load data into a DataSet
object

# Alternatively, simulate experimental data:
# ds = pygsti.data.simulate_data(mdl_ideal, edesign, num_samples=1000)

# 4) Run GST using the modern object-based interface
data = pygsti.protocols.ProtocolData(edesign, ds) # Bundle dataset and
circuits

protocol = pygsti.protocols.StandardGST () # Select the GST
protocol
results = protocol.run(data) # Execute the

protocol

# 5) Generate an HTML report with detailed results

report = pygsti.report.construct_standard_report(results, title="My
Report", verbosity=1)
report.write_html ("myReport", auto_open=True, verbosity=1) #

Optionally write Jupyter notebooks as well

Listing B.2: Example usage of pyGSTi
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Figure C.1: Amplitude sweep results. Top row: full sweep range; bottom row: zoomed-in view. Left: vanilla
(echo-compensated) pulse; centre: no-echo pulse; right: Qutrit (echo-compensated) pulse.
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Figure C.2: FoM value versus function evaluation for various pulse parameterisations. Vertical dotted lines
indicate the start of new super-iterations.
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