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Abstract 

The dynamics of pedestrian crowds can involve very different scales. While situations 
involving only a few pedestrians are better described by microscopic models, large 
crowds can exhibit collective behavior which can be captured by macroscopic equa
tions. Macroscopic models describe crowds as fluids of pedestrians, where individuals 
cannot be distinguished anymore. This fluid is characterized by some local averages of 
pedestrian density and velocity. These macroscopic variables are shown to obey con
servation equations, which can be solved using the method of characteristics. In 
contrast with classical fluid equations, the evolution of density and velocity depends on 
some target or preferred velocity that can be specific to different pedestrian groups. 
We review the advantages and drawbacks of these conservation laws adapted to the 
pedestrian case. We also discuss the associated numerical methods, which can be 
Eulerian or Lagrangian. Particular attention will be devoted to the link between models 
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at microscopic, mesoscopic, and macroscopic scales. Using macroscopic approaches 
give access to a whole set of methods developed for this kind of partial differential 
equation, including the study of phase transition, or of travelling waves. Eventually, 
recent variants that have been proposed in the literature will be outlined.

1. Introduction

A lot of research has been devoted to interactions between a few 
individual pedestrians. But there is an increasing interest in under
standing the global dynamics of crowds, taken as a whole. Indeed, more 
and more large scale events occur (concerts, sport, cultural, or religious 
events, etc), and there is a need to be able to monitor these large crowds 
in order to limit the risk of accidents (Feliciani et al., 2023; Haghani 
et al., 2023).

Simulating large crowds is needed for the design of facilities that allow 
for fast evacuation, while avoiding high density congestion points. 
Simulations can also serve as a basis for real-time control of entry fluxes into 
the facility. As soon as the number of pedestrians becomes large, agent- 
based simulations are out of reach or too time-consuming. By contrast, 
describing the crowd as a fluid allows to diminish a lot the number of 
degrees of freedom. Only the density and velocity fields have to be 
determined.

We will address in this chapter the so-called macroscopic modelling 
approach, which was for a large part inspired by fluid mechanics. After a 
presentation of the various families of macroscopic models, we shall discuss 
how the various levels of descriptions - micro, meso, macroscopic - can be 
related. We shall then present how specific features like granularity, het
erogeneity or anticipative behavior can be taken into account. Various 
numerical methods applicable to macroscopic models will be presented, 
before the final discussion.

2. Conservation laws

In the XVIIIth century, Antoine de Lavoisier claimed about matter 
that ≪ Rien ne se perd, rien ne se crée, tout se transforme ≫ (“Nothing is 
lost, nothing is created, everything is transformed”). This statement can be 
expressed in mathematical form by so-called conservation laws, which 
are partial differential equations. Let’s consider a quantity - let’s say R to be 
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generic - that is conserved, and let ρ be its density. Being conserved does 
not mean that there is always the same amount of it in the system, but that 
we can track any change/input/output of it.

The general form of a conservation law is 

F. ( ) source - sink termst + = (1) 

where F(ρ) is the flux of the quantity Q per surface unit at any point in 
space and time, and the right-hand side stands for bulk sources and sinks for 
the quantity R.

It becomes more clear why the previous equation expresses the con
servation of R, when it is integrated on a volume . It becomes then 
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Indeed the variations of the total amount of R inside volume are due to 
the difference between inputs or outputs of R, either in the bulk or 
through the boundaries.

Let us take as an example a pedestrian commercial street. Pedestrians 
cannot be spontaneously created, or cannot disappear suddenly through a 
magic charm. Their number is thus a conserved quantity. The total 
number of pedestrians in the street varies depending on how many 
pedestrians enter or exit the street. Pedestrians may enter/exit the street 
not only at street ends (corresponding to boundary conditions in the 
model), but also in the bulk when they enter or exit shops or restaurants 
(sink or source terms in the model).

However for simplicity, in the remaining of the paper, we shall ignore 
these bulk source/sink terms which are important in rather specific situa
tions, in order to concentrate on the dynamics of the crowd itself.

To go further, it is informative to compare crowds with fluids, for 
which not only mass but also momentum is conserved, allowing to write 
two conservation equations (the so-called Navier-Stokes equations). By 
contrast, as pedestrians or cars are in contact with the road, they do not 
conserve momentum. Only mass (or rather, agents’ number) is conserved. 
We express this through an equation for the density ρ(x, t), which for the 
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remainder of the chapter represents the density of pedestrians or cars at 
point x in space and time t. The density therefore obeys the following 
conservation equation 

t tx F x( , ) [ ( , )] 0t + = (3) 

as we ignore sink and source terms.
We have only one Eq. (3) for two unknowns: the density ρ(x, t) and the 

associated flux F. If we are to solve this equation, we need to close it with 
another relation.

2.1 First-order models
We will first consider so-called first-order models, where the adaptation in 
velocity to the surrounding density is immediate and acceleration is not 
explicitly included in the pedestrian model.

2.1.1 Fundamental diagrams
One first solution in order to get a closed form for Eq. (3) is to provide a 
relation between F and ρ. Actually, the way we wrote Eq. (3) was already 
assuming that F was a function of ρ and only ρ. This assumption is not 
completely obvious a priori. It comes mainly from car traffic, where traffic 
engineers have measured extensively the so-called fundamental diagram, 
namely the F(ρ) relation (for cars, one can consider that the flow is uni- 
dimensional, and thus F is a scalar).

And indeed, some general forms have been inferred from the data. 
Fig. 1-left and 1-middle present two examples of fundamental diagrams 
(FDs) that are often used in car traffic, the triangular and Greenshield’s ones 
(Kühne, 2011). Of course these are idealized relations, but they capture 
most important features. In both cases, the flux is quasi-linear at small 
density (free flow state), increases up to a maximum called the capacity, and 
then decreases with density (congested state) up to complete blockage. 
Once Eq. (3) is complemented with such a relation F(ρ), it has a closed 
form that can be solved, as we shall see in Section 2.1.2.

For pedestrians, many geometries of flows can be considered, not 
necessarily one-dimensional or uni-directional. It turns out that finding a 
universal form for the fundamental diagram is out of reach, as pedestrian 
FDs are more situation dependent than for cars. We refer the reader to 
Chap. 3 for further discussion. Note also that we have presented the 
fundamental diagram under its form F(ρ) but it can as well be defined in 
terms of an average velocity V(ρ) ≡ F(ρ)/ρ.
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Here we shall in a first stage focus on one-dimensional unidirectional 
fundamental diagrams, as shown on Fig. 1-right. Though we can still 
distinguish a free flow and a congested phase, we immediately see a dif
ference with cars: while the velocity of cars quite rapidly drops to zero, 
pedestrians manage to move even at very high density. Indeed they are able 
to deform their body and to squeeze through others, at densities that oblige 
them to have physical contact with their neighbors. Nevertheless, whatever 
the relation between flux and density is, the structure of the equations and 
the way to solve them is always the same, as we shall see now.

2.1.2 Mathematical aspects (method of characteristics, shockwave 
theory, etc.)

In this section we present how one can solve the system given by Eq. (3) and 
the relation F(ρ), in the case of a one-dimensional one-directional flow: 

x t F x t( , ) ( ( , )) 0t x+ = (4) 

In the context of car traffic, this is called the LWR model (Lighthill and 
Whitham, 1955), but the same structure is met for one dimensional uni
directional pedestrian flows.

As a preliminary calculation, let us consider a curve in the spatio-temporal 
space defined under a parametric form X t t( ( ), ). The evolution of ρ along this 
curve is given by the material derivative (also called total derivative) 

d X t t

dt
x t

dX
dt

x t
( ( ), )

( , ) ( , )t x= + (5) 

This expression will become identical to the left-hand side of Eq. (4) provided 
that we choose X(t) such that 

dX
dt

F x t( ( , )).= (6) 

Capacity

Density ρ

Fl
ow

F

Fig. 1 Fundamental diagrams showing flow as a function of density: left and middle 
show idealized FDs used in the context of car traffic. The maximal value of the flow is 
called capacity. (left) Greenshield; (middle) Triangular; (right) Experimental FD 
obtained for pedestrians walking in line. Obtained from the data of Jelić et al. (2012), for 
individual measurements. 
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Once integrated from a specific initial or boundary condition, Eq. (6) defines a 
curve X t t( ( ), ) (called characteristics). Along this curve, the material derivative of 
ρ is zero, as stated in Eq. (4), and thus ρ is constant all along the curve. From 
Equation (6), we see that the characteristics curve has a slope F x t( ( , )) which, 
as it depends only on density, must itself be constant along the curve X t t( ( ), ). 
Characteristics are thus straight lines for the LWR equation (4) considered here.

Fig. 2 illustrates how the knowledge of density in the initial state can be 
transported along a characteristics (dashed-dotted curves). Characteristics 
should not be confused with the trajectories of the agents – cars or 
pedestrians – (solid lines in Fig. 2-top), though they may coincide in free 
flow if the free velocity is constant.

An important property is that F V V V( ) ( ) ( ) ( )= + , 
meaning that information about the density always propagates more slowly 
than individuals. Seen from the point of view of a pedestrian, this means that 
information cannot come from their back. This is a good feature as pedes
trians react mostly to what happens in front. In the congested phase, infor
mation even propagates backwards, as in the example of Fig. 2-top-right.

In order to understand the behavior of these models, it is helpful to 
solve it in a simple situation, namely a Riemann Problem (Haberman, 
1998; Toro, 2009; Ketcheson et al., 2020): as illustrated in Fig. 3, the initial 
state of the system consists in two constant density regions separated by a 
discontinuity. There will be two families of characteristics emitted from 
this initial state, with slopes respectively F ( )L and F ( )R . Depending on 
the initial densities, several cases may occur. If F F( ) ( )L R> , as shown 
in Fig. 3-Top, the two families of characteristics would cross each other. 
This is not possible as density cannot take at the same time the value of the 
left and of the right initial density. Instead, a shock is formed, that separates 
the two regions. The speed of the shock s simply stems out from mass 
conservation 

s
F F( ) ( )L R

L R

= (7) 

If F F( ) ( )L R< , the two families of characteristics would rather separate 
from each other, giving rise to a rarefaction wave (see Fig. 3-Bottom).

In general, initial conditions are more complex and give raise to non 
straight shock trajectories, as shown for example in Fig. 4. The shock speed 
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however always obeys locally Eq. (7), as mass conservation still holds. More 
details on the method of characteristics can be found in many textbooks, 
for example in (Haberman, 1998; Toro, 2009; Ketcheson et al., 2020).

In particular, it should be noted that the weak solutions (ie with dis
continuities) of equation (4) are not unique - as in general for scalar 
conservation laws (Evans, 1998). In the case of fluids, one solution can be 
selected as the physical one, using the fact that at small scale, the shock is 
regularized by viscosity. In the case of pedestrians, it can be discussed 
whether such condition still holds. On the one hand, some similar selection 
criterion has been derived through micro-macro derivation in the context 

Fig. 2 Top: sketched spatio-temporal plots in free flow (left) or congested (right) 
states. The spatial coordinate is vertical and the time horizontal so that the slope of 
the characteristics F ( ) can be directly taken from the fundamental diagram below. 
The characteristics which goes through the position x of the pedestrian at time 
t (X(t) = x) is represented with a red dashed-dotted line. Characteristics propagate 
downstream (resp. upstream) in free-flow (resp. congested) state. The solid line shows 
the trajectory of the individual agents arriving in X(t) = x at time t. Bottom: funda
mental diagrams and graphical representation of the speed F ( ) of characteristics 
(given by the slope of the tangent to the FD - thin dashed red line), and the speed v of 
individuals (slope of the thin solid red line). In the free-flow phase (left), the char
acteristics speed is positive, while in the congested phase (right) it is negative. 
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of a follow-the-leader model (Francesco et al., 2017). On the other hand, 
the possibility to have non-classical shocks – meaning shocks that do not 
obey entropic arguments - was sometimes used to provide the model with 
new properties (Colombo and Rosini, 2005).

2.1.3 Multi-directional flows
Until now, we considered only one-dimensional one-directional pedes
trian flows, so that all individuals had the same goal. Actually, pedestrians 
with different destinations can share the same space. Let us consider for 
example the case of a bi-directional flow in a corridor. In this case, we have 
to distinguish two types of pedestrians, going to the left or to the right, 
with respectively density ρ+ and ρ−.

A simple extension of the LWR model to two species consists in 
writing two coupled mass conservation equations, one for each of the 
pedestrian families 

x t f
x t f

( , ) ( , ) 0
( , ) ( , ) 0

t x

t x

+ =
+ =

+ +

+
(8) 

Note that now, the flux f(⋅, ⋅) depends not only on the density of pedes
trians going in the same direction as the population under consideration 

Fig. 3 Left: initial conditions of Riemann problems. Density is constant on both sides 
of a discontinuity. Right: corresponding spatio-temporal plots with characteristics. 
Top: propagation of a shock between two families of convergent characteristics. 
Bottom: rarefaction wave separating two families of divergent characteristics. 
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(the first variable of the function f ), but also on the density of oppositely 
going ones (the second variable). This flux function can be measured 
experimentally, as shown in Fig. 5 in the case of a bi-directional flow in a 
ring corridor (Motsch et al., 2018). A fit, here by a second-order 

Fig. 4 Top: initial density profile. Bottom: characteristics (thin -red online- lines) and 
the resulting shock (thick -blue online- line).   
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polynomial in ρ+ and ρ−, provides an analytical expression for f which can 
be used to complement Eq. (8).

We have now a full model that can be used for simulations. Let us 
compare how it predicts the bulk dynamics, again in the case of the bi- 
directional corridor. If we consider the initial and boundary conditions as 
given by the experimental observations, it is then possible to use the mac
roscopic model of Eq. (8) to simulate the behavior of the crowd in the bulk. 
A comparison with direct observation shows that the model is indeed able to 
reproduce the propagation of dense regions within the crowd (see Fig. 6).

2.1.4 Bi-dimensional models
Until now, we have considered only models in one dimension, which 
would be relevant in special settings as corridors. But in general, pedestrians 
move in a two dimensional space.

An important model was proposed in 2002 by Hughes (2002). It relies 
again on the mass conservation equation (3). Again one can assume that the 
speed or flux of the pedestrians at a given point is given by a fundamental 
diagram ∣F∣ = F(ρ). But now, not only the modulus but also the direction 
of the flow must be specified.

It is reasonable to assume that pedestrians want to minimize their travel 
time to some goal they want to reach. The velocity of pedestrians will thus 
be assumed to be aligned with the gradient of some potential measuring the 
travel time from each location. Note that this travel time may take into 
account not only the distance to the goal, but also the possible congestions.

Fig. 5 Fundamental diagram for a one-dimensional bi-directional flow. Left: experi
mental data. Right: polynomial fit. The flux is given in pedestrians per second and per 
unit of corridor width. From Motsch et al. (2018). 

256                                                           Cecile Appert-Rolland and Alethea B.T. Barbaro 



We express it according to the formulation proposed in (Xia et al., 
2009; Huang et al., 2009) for which mass conservation (3) is com
plemented by 

F

F
= (9) 

with potential ϕ obtained from the Eikonal equation 

C t tx x( ( , ), , )= (10) 

Fig. 6 Spatio-temporal plot of the density field in a one-dimensional bi-directional 
flow. Left: experimental data. Right: simulation results. From Motsch et al. (2018). 
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where C is some local cost per traveled distance. If C = 1 everywhere in the 
walkable domain, only the distance to the exit will be taken into account. 
But the interesting feature of Hughes’ model and derivatives is precisely to 
rather take a density dependent function for C (Di Francesco et al., 2011). 
Fig. 7 gives an example of such a potential ϕ. We see clearly how the gra
dient of this potential will be globally oriented towards the exits, while some 
local detours may be induced by locally congested areas (Huang et al., 2009).

Hughes’ model poses a lot of mathematical questions (Amadori et al., 
2023). In particular, the flow field obtained from shortest travel times 
might be discontinuous. Think of a room with two exits, there will be a 
sharp separation between those taking one exit or the other. This poses 
mathematical difficulties and some non-classical shocks may arise, which                            

Fig. 7 Example of a potential ϕ at a given time in the case of a platform with an 
obstacle in the middle, and 2 exits at location x = 100. From Huang et al. (2009). 
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have non-local origin (Amadori and Francesco, 2012; Andreianov et al., 
2023). One possible solution is to add some diffusive term to blur these 
discontinuities (Di Francesco et al., 2011; Carlini et al., 2017; Herzog et al., 
2023). On the other hand, when restricted to one dimension, this model 
can be reduced to coupled LWR equations as in Eq. (8).

2.1.5 Advantages and limitations of first-order models
In spite of their simplicity, first-order models can describe several features of 
traffic, namely congestion formation or dissolution of queues (Goatin, 2023). 
They rely however on some assumptions that it is important to be aware of.

First-order models assume that at each instant of time, the flow (or speed) 
is exactly the one given by the fundamental diagram, meaning that the speed 
immediately adapts to any change in the density. It is known that this is not 
true in real systems, for which reaction times or relaxation processes exist. 
Besides, this behavior implies an infinite braking and accelerating capacity, 
which is also obviously a strong assumption. This immediate adaption is the 
reason why first-order models are sometimes called ‘equilibrium models”. A 
consequence of this strong hypothesis is that the stop-and-go waves that 
form spontaneously in pedestrian flows (Lemercier et al., 2012; Fehrenbach 
et al., 2015; Helbing et al., 2007) are not described by first-order models, in 
particular by Hughes’s model (Twarogowska et al., 2013).

Another limit (Colombo and Rosini, 2005) is that, as density is con
served along the characteristics, the maximal density in the system at a 
given time cannot be larger than the maximal density in the initial state or 
at the boundaries (Maximum Principle). By contrast, in real crowds, some 
situations can lead locally to very high densities and cause accidents.

Still, these models can be useful for crowd monitoring, as their sim
plicity allows for real time applications. Besides, they give an easy access to 
the physical understanding of various phenomena.

2.2 Second-order models
In second-order models, we acknowledge that pedestrians may not 
immediately adapt their speed to the current density, but that this is rather 
done through a relaxation process that takes some time. A second equation 
for the relaxation of velocity is thus written. Note however that there is no 
strong physical law that enforces the form of this equation such as mass 
conservation for the density equation.

The first proposal by (Payne, 1971; Whitham, 1974) for such a velocity 
equation in the context of car traffic were thus simply inspired by fluid 
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mechanics. But it was soon realized that unrealistic effects were obtained, 
such as negative velocities, and a paper entitled “Requiem for second-order 
fluid approximations of traffic flow” seemed to close this direction of 
research (Daganzo, 1995).

Indeed, a molecule arriving in a congested area would bounce back due 
to pressure, while a car or pedestrian would just slow down and wait until 
the way is cleared. This difference is due in particular to the fact that 
pedestrians or drivers observe the flow not from a fixed point on the side of 
the road, but from their own position. In mathematical terms, this can be 
expressed by the fact that agents do not react only to the spatial gradient of 
density, as a fluid would do, but rather to its material (or total) derivative. 
Aw & Rascle were the first ones to understood this point (Aw et al., 2002) 
and to propose a model including this material derivative, allowing for the 
“Resurrection” of this type of models (Aw and Rascle, 2000). A similar 
proposal was made by Zhang (Zhang, 2002). The ARZ model, proposed 
in the frame of vehicular traffic and thus one-dimensional, reads 

v( ) 0t x+ = (11)  

v v v v p V v( ) ( )
1

[ ( ) ]t x t x+ = + + (12) 

In the first equation, which expresses the conservation of the number of 
agents, the flux F = ρv is now expressed in terms of the velocity v which 
evolves according to the second equation. The second equation has a form 
familiar froms that obtained in fluid mechanics from a combination of mass 
and momentum conservation. In traffic, however, conservation of 
momentum does not hold, but we keep a similar form with two significant 
changes. First the gradient of p(ρ), sometimes called pressure in analogy with 
fluid mechanics, is replaced by a material derivative ∂t + v∂x, as explained 
above. Additionally, the last term of Eq. (12) is a driving force towards the 
values prescribed by the fundamental diagram.

Another way to understand the second equation is to consider the 
quantity w(x, t) = v(x, t) + p(ρ(x, t)). In this case, equation (12) can be 
expressed as 

v w V v( )
1

[ ( ) ].t x+ =

As w is advected with particles, as seen by the use of the material derivative, 
it has been interpreted as a desired velocity. Then p(ρ) can be interpreted as 
a velocity offset between the desired and real velocities, expressing how a 
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density increase can impede motion. The right-hand side is driving the 
velocity towards that dictated by the Fundamental Diagram through a 
relaxation process.

Note that though this family of models is called second-order models, the 
equations in fact only involve first-order derivatives. As suggested by 
(Aw and Rascle, 2000), it would thus be more appropriate to call these two- 
equations models.

2.2.1 Method of characteristics
Again this system of equations can be solved using the method of characteristics. 
The difference with the approach presented in Section 2.1.2 is that now, as we 
have 2 coupled equations to solve, we shall have 2 families of characteristic 
curves. Along each of these families, a specific combination of the variables ρ and 
v - the so-called Riemann invariants - will obey a conservation law.

The method of characteristics can thus be seen as a change of variables 
that allows to turn a system of two coupled Partial Differential Equations 
(PDEs) into Ordinary Differential Equations along the characteristics curves. 
The problem becomes in principle more easy to solve under this new form.

For the system (11)–(12) above, the Riemann invariants are v and v + p 
(ρ) (Aw and Rascle, 2000). Each point of the x, t plane can be seen as 
the intersection of two characteristics, one of each family, which will 
prescribe the value of the Riemann invariants, from which the ρ and v 
values can be recovered.

In this special case, the Riemann invariant v + p(ρ) is conserved along a 
family of curves that propagate with the same speed as individuals. In 
mathematical terms, this reads 

v v p( )[ ( )] 0t x+ + = (13) 

The quantity v + p(ρ) is thus transported unchanged by the pedestrians 
themselves, and this is what allows to interpret it as a desired velocity.

An important property is that both families of characteristics propagate 
with a speed equal or inferior to the one of pedestrians (Aw and Rascle, 
2000). So no information comes from behind. This requirement was not 
fulfilled in the original Payne-Whitham model (Payne, 1971; Whitham, 
1974) and this is why it had unphysical properties.

2.2.2 Bi-directional flows
Again it is possible to adapt 2nd order models to the case of bi-directional 
flows. The number of equations is doubled as now they must be written for 
ρ+ and ρ− (Appert-Rolland et al., 2011; Degond et al., 2011). The main 
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difficulty is that, while for car traffic all vehicles drive in the same direction, 
here pedestrians walking in opposite directions may converge and create 
high density regions which, above a certain level, would be unphysical. It is 
thus important to enforce some density limitation, for example by adding a 
pressure-like term that diverges when density approaches the maximal 
threshold (Berthelin et al., 2008; Appert-Rolland et al., 2011; Dogbé, 
2012). However it is then difficult to fully avoid numerical instabilities.

2.2.3 Second-order models in two dimensions
A second-order model in two dimensions adapted for pedestrians was first 
proposed by (Jiang et al., 2010). Mass conservation is complemented by an 
equation for the relaxation of the velocity, which is now the two- 
dimensional vector v, 

v( ) 0t x+ = (14)  

Pv v v V v( ) ( )
1

[ ( ) ]t + = + (15) 

The desired velocity is still computed from an Eikonal equation (see Eq. (10)) 
as for Hughes’ model.

This model, as some later ones (Twarogowska et al., 2013), is a direct 
generalization of the Payne-Whitham model, and as such, it inherited of 
its properties, namely that pedestrians do not react only to what happens 
in front, but also in the rear, and that pedestrians can walk against the 
main flow in some cases (Jiang et al., 2010). Some two-dimensional 
extensions of the ARZ model have been proposed (Jiang et al., 2016), but 
possibly pedestrians still may react not only to the front but also to the 
rear (Jiang et al., 2022).

As in one-dimension, the addition of a diverging pressure when we 
approach the maximal density may allow to account for congestion effects 
(Aceves-Sánchez et al., 2024; Chaudhuri et al., 2023, 2024a, 2024b). Of 
course the numerical solution of two dimensional models is more complex 
than in one dimension, and a lot of efforts have been devoted in proposing 
appropriate numerical schemes (Jiang et al., 2010; Twarogowska et al., 
2013; Jiang et al., 2022; Aceves-Sánchez et al., 2024). In contrast with first- 
order models, second-order models are able to display stop-and-go waves, 
as it occurs in real systems (Jiang et al., 2010; Twarogowska et al., 2013). 
Figs. 8 and 9 show such waves. The counterpart is that these models easily 
lead to instabilities (Appert-Rolland et al., 2011).
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Fig. 8 Simulation of the evacuation of a room with two doors using various models. Top: 
density heatmap for the initial condition, with pedestrians uniformly distributed only over 
the left half of the room. Bottom (12 figures): density heatmaps at different times t = 30/ 
40/60 s (left/middle/right columns). Density is measured in pedestrians per square meter. 
Each row corresponds to a simulation with a given model. I: first-order Hughes’ model 
when preferred velocity is following the shortest distance path. Pedestrians then ignore 
the second door. II: first-order model Hughes’ model with c(ρ) = 1∕V(ρ). III & IV: second- 
order model with C(ρ) = 1∕V(ρ) in the Eikonal equation (10) and P(ρ) = p0ρ2 with p0 = 0.1 
(III) or p0 = 0.005 (IV). Figures from Twarogowska et al. (2013). 

Fig. 9 Velocity field from a 2nd order model simulation for pedestrian flow around an 
obstacle. Some stop and go waves are visible. From Jiang et al. (2010). 
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3. Links between microscopic, mesoscopic, and 
macroscopic models

There are several levels at which we can model pedestrian dynamics 
(Duives et al., 2013). Each of these levels offers a different perspective on 
the problem of pedestrian dynamics. At the so-called microscopic level, we 
can consider pedestrians to be individual particles, moving in space and 
interacting with each other and also potentially with the environment. At 
the mesoscopic level, we “zoom out” and consider the density of particles in 
space at a larger scale, while allowing for a distribution of velocities at the 
each point in space. At the macroscopic level, we consider the density of 
particles at each point in space, but allow only one velocity at each point. 
In the previous section, we have focused on macroscopic models for 
pedestrian dynamics. In this section, we will first discuss each level and then 
the methods of derivation from one level to the next.

3.1 Several levels of description
3.1.1 The microscopic level
At the microscopic level, we are modelling individual interacting particles 
which are moving and interacting spatially. Each particle is considered to 
be a pedestrian, and we endow these particles with behavioral rules which 
dictate how they move and how they interact with others and with their 
environment. These models can be deterministic so that there is no ran
domness in the movement or interactions, or stochastic so that there is some 
random component to these responses. The pedestrian particles can be in 
continuous space, so that they can move anywhere on a line or surface, or 
they can move on a grid or lattice, so that at each timestep they can only 
move, for example, one spatial unit up, down, left, or right.

As a side remark, we can note that cellular Automata (CA), a popular 
method of modelling which is defined on a lattice, can be considered either 
as microscopic or mesoscopic since they sit in many ways between the two 
scales. With CAs, we are still able to distinguish the individuals; however, 
on the other hand, particles sample from a distribution of velocities when 
they choose to move up, down, left, or right, and the behavior on the level 
of individual particles can be very crude since the goal is often to have 
efficient simulations that will be realistic on large scales. One might 
therefore also reasonably identify this as a mesoscopic model. However, for 
the present work, we will consider CA models as a part of the microscopic 
scale, so that microscopic modelling includes both particle-based models 
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and cellular automata such as Floor Field Models (Burstedde et al., 2001; 
Kirchner and Schadschneider, 2002; Schadschneider et al., 2003) or 
exclusion processes (Schadschneider et al., 2011). We refer the reader to 
Chapter 7 for a deeper discussion of microscopic models.

3.1.2 The mesoscopic level
At the mescoscopic level, we can again consider families of pedestrians with 
different goals or preferred velocities. Each of these families is modelled by 
a density in space but also in velocity. Indeed, not all pedestrians will have 
their velocity exactly equal to the desired one or to the average velocity. 
Instead, pedestrians will rather have a whole distribution of velocities. 
Kinetic models will thus involve density distributions yielding the prob
ability to find a pedestrian at a given location in space with a given velocity.

More precisely, the probability distribution function f(x, t, v, g) gives the 
probability density to find a pedestrian with velocity v in site x at time t, with 
target g. This last parameter g is new compared to the probability dis
tribution functions used for fluids. Indeed, molecules do not have any target 
that will bias their motion, they just react to external forces, while pedestrians 
usually want to go somewhere. Pedestrians with different targets may share 
the same space (a street, a square, etc). They will be considered as different 
populations that interact on their way.

As we will detail it more in Section 3.2.3, these distributions obey 
Partial Differential Equations generally involving derivatives in time, space, 
and velocity (Dogbé, 2012; Hoogendoorn and Bovy, 2000). The pedes
trians then interact with one another and the environment generally via 
spatial convolutions, which calculates the probable movements based on 
the state of the system. The canonical example of a PDE of this type is the 
Boltzmann Equation (Degond, 2004).

3.1.3 The macroscopic level
At the macroscopic level, we model pedestrians as a density in space. This 
again can be considered as the probable density of pedestrians to be found at a 
given spatial location, and the governing equations are again Partial Differential 
Equations, but now involving derivatives only in time and space. The most 
well-known model of this type is, for fluids, the Navier-Stokes Equation.

Though we do not detail it here, there exists also families of models 
based on a multiscale perspective, and we refer interested readers to 
(Cristiani et al., 2014; Piccoli and Tosin, 2009). We will now see how it is 
possible to relate the various scales through micro-macro derivations.
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3.2 Methods of derivation
Because different types of information and different mathematical and sta
tistical tools are accessible at each of the levels, it is often helpful to be able to 
relate the microscopic, mesoscopic, and macroscopic versions of the same 
model. In this subsection, we will consider different methods of derivations 
from one level to another, depending on the form of the microscopic model.

3.2.1 Starting from a microscopic model on a lattice
General considerations
When a microscopic model is defined on a lattice, the state of the system 
usually uses a discrete variable i (or two variables i,j in two dimensions), 
that indicates on which node (or cell) of the lattice the agent is. Typically, 
such a variable i ranges from 0 to L where L is the system size.

An ensemble average allows the passage from the discrete occupation 
numbers on the lattice to densities, or occupation probabilities. This new 
version of the model, sometimes called Lattice Boltzmann Equation, cor
responds to the kinetic level. It is often preferable to write evolution 
equations for lattice models directly at the kinetic level. Indeed, instead of 
updating each individual - with the individual fluctuations that it implies -, 
we need only to consider the averaged modifications of each state, and these 
can easily be quantified using the transition rates.

Going further to mesoscopic and macroscopic scales implies that we 
will see the system from a largest distance, and that the discretizations will 
not be visible anymore. The new variable that will replace the discrete i is a 
continuous space variable x that we can define for example as x i

L
= .

Evolution rules usually involve neighboring sites on the lattice. With the 
change of variable defined above, the distance between two neighboring sites 

i and i + 1 is x
L
1= which becomes arbitrarily small for large L. This allows 

us to perform Taylor expansions in the microscopic evolution equations, 
from which some derivatives will appear, and result into some PDEs. In two 
dimensions, the derivation may be more involved and as an example we refer 
the reader to (Burger et al., 2011) for a macroscopic derivation from the 
microscopic Floor Field Model of (Kirchner and Schadschneider, 2002). 
Another example will be given now.

An example of micro-macro derivation: The gang model
Our purpose is not only to give an example of micro-macro derivation but 
also to illustrate how this can be useful to gain more insight into the 
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dynamics of the system. We take as an example the model introduced in 
(Alsenafi and Barbaro, 2018), generalized in (Alsenafi and Barbaro, 2021), 
and analyzed in (Barbaro et al., 2021). This lattice-based model is a time- 
dependent version of the model for gang territorial development intro
duced in (Barbaro et al., 2013). In (Alsenafi and Barbaro, 2018), the authors 
present and study an agent-based model for territorial development, where 
agents from two gangs (A and B) move up, down, left, or right on a 
2 dimensional lattice, putting down graffiti of their own gang’s color as 
they move and preferentially avoiding lattice sites with the other gang’s 
color. The movement probabilities from lattice site (i1, j1) are given by 

M i i j j t
e

e
( , , ) ,A

i j t

J i j
J t1 2 1 2

( , , )

(˜, ˜ ) ( , )
(˜, ˜ , )

B

B

2 2

1 1

where ξB denotes the density of graffiti at a site for gang B, β is parameter 
that symbolizes the strength of the avoidance of graffiti belonging to the 

other gang, and J i j(˜, ˜ ) ( , )1 1 denotes the neighbors of site (i1, j1). Gang 
B’s movement probabilities are defined similarly.

This model could be considered to be a chemo-repellent Cellular 
Automaton. An important feature of the model is that the agents interact 
only through the graffiti field and not directly, and agents are neither 
created nor destroyed. This means that the sites can be occupied by many 
agents at once, and the total number of agents of each type is conserved. In 
some parameter regimes, the uniform distribution of both gangs is stable, 
while in others, the system segregates as seen in Fig. 10. This phase tran
sition is studied numerically at the microscopic level, and a phase transition 
is observed.

However, it is unclear how to determine the critical β value. The 
authors therefore write their model at the kinetic level, referring the 
density and graffiti level as ρk and ξk for k ∈ {A, B}, respectively, with the 
evolution of ρk given by: 

i j t t i j t J t M i J j t

i j t M i j J t

( , , ) ( , , ) (˜, ,̃ ) (˜ , ˜ , )

( , , ) ( ˜, ,̃ ).

A A
J i j

A A

A
J i j

A

(˜, ˜ ) ( , )

(˜, ˜ ) ( , )

+ = +

and the evolution for ξk given by: 

i j t t i j t t i j t t i j t( , , ) ( , , ) ( , , ) ( , , ),A A A A+ = +
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Here, λ is a decay rate for the graffiti and γ is its deposition rate by the 
members of the gang. From this kinetic description, and introducing the 

continuous variables x i
L

= and y j

L
= , the authors then use Taylor 

expansion and the discrete Laplacian to formally derive a macroscopic 
model consisting of four coupled PDEs:

l
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n
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We refer to (Alsenafi and Barbaro, 2018) for the details.
The authors then are able to analyze the model at the macroscopic level 

using a standard linear stability analysis to identify where the uniform 
equilibrium loses stability, at 

( )
1

2
,c

A B

=

Fig. 10 Temporal evolution of the agent density lattice (top) and territory dominated 
by the gang’s graffiti (bottom) for a segregated state. Here we have NA = NB = 100, 000, 
with β = 2 × 10−5, λ = γ = 0.5, δt = 1 and the lattice size is 100 × 100. It is clearly seen that 
both the agents and the territory dominated by graffiti segregate over time for these 
parameters. Figure and caption are reproduced from Alsenafi and Barbaro (2018). 
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where A and B denote the average density of gangs A and B over the 
lattice, respectively. Fig. 11 shows the numerical results of the phase 
transition plotted on the same axes as the βc resulting from the stability 
analysis, and it can clearly seen that the critical parameters from the discrete 
model agree with the one found by analyzing the macroscopic version of 
the model, as long as the system mass, i.e. the number of agents, is suffi
ciently high (this is to be expected, since the derivation is formal and 
therefore assumes sufficient smoothness of the quantities of interest, so the 
derivation cannot be expected to hold if the density is not sufficiently 
smoothly distributed).

The example from (Alsenafi and Barbaro, 2018) serves to demonstrate 
the usefulness of deriving a macroscopic description of the microscopic 
particle model. Indeed for many models, more mathematical machinery is 
available to analyze a macroscopic description, and this can then offer 
insight which is not accessible at the microscopic level.

3.2.2 Starting from an off-lattice microscopic model in one dimension
We now consider a microscopic model in continuous space. A first approach 
coming from car traffic (Aw et al., 2002; Tordeux et al., 2018) assumes that 
we can order the pedestrians as leaders and followers. This will occur in 

Fig. 11 On the Left: critical β against the system mass. Here we have that λ = γ = 0.5, 
and for the discrete model we have that δt = 1 and the lattice size is 50 × 50. The red 
and blue curves represent the discrete model and the linearized PDE system 
respectively. On the right: critical β against the ratio . Here we have NA = NB = 
100, 000, and for the discrete model we have that δt = 1 and the lattice size is 50 × 50. 
The red and blue curves represent the discrete model and the linearized PDE system 
respectively. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) Figure and caption are reproduced from 
Alsenafi and Barbaro (2018). 
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particular in one dimensional lines, as for example in a corridor. Pedestrians 
are numbered and we use here the convention that pedestrian i is following 
pedestrian i−1. The discrete variable i is now a Lagrangian variable, attached 
to the agent or particle itself. Ped-following or Follow-the-Leader models 
(Lemercier et al., 2012; Rio et al., 2014; Fehrenbach et al., 2015; Tordeux 
et al., 2017) typically express the velocity or acceleration of the follower i as a 
function of the distance, speed difference, etc, with the leader i − 1.

With such models, two steps are necessary in order to derive a mac
roscopic model. We must not only go from a discrete to a continuous 
description, but also from a Lagrangian (we follow the agents) to an 
Eulerian (we observe the flow at a fixed location) description. The first step 
is realized by defining a new Lagrangian variable y = i × δ0 where δ0 can be 
for example the minimum distance between two pedestrians. When we 
look at the system from a distance, taking formally in the limit δ0 → 0, y 
becomes a continuous variable. We have in particular that dy = di × δ0. The 
second step is to relate the infinitesimal variation of the Lagrangian variable 
dy to the infinitesimal variation dx of the Eulerian variable, at fixed time. 
The link between the two variables is illustrated in Fig. 12. One key point 
is to realize that though dx is infinitesimal, it is still large compared to the 
distance between vehicles. Besides, the micro-macro derivation is done 
under the hypothesis that everything varies slowly in space. Following this 
assumption, we have that interspaces are constant within the dx and equal 
in particular to Δxi. As a result, we can write that 

dy
di

dx
x

.
i0

= = (16) 

where the ratio dx
xi

is the number of pedestrians located within dx, and thus 

tells how much i varies within dx. The minus sign comes from the con
vention that i is decreasing for increasing x.

Fig. 12 Schematic representation of the link between the discrete Lagrangian variable 
i and the continuous Eulerian variable x. Agents (red dots) are numbered so that 
pedestrian i is following pedestrian i − 1. On a scale dx, interpersonal distances are the 
same for all successive pairs of leader-follower (assumption of slow spatial variations) 
and we take all of them equal to Δxi. 
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A microscopic density can be defined from the individual interspace, 
that will allow to make the link with the macroscopic Eulerian density: 

x
t X t t( ) ( ( ), )

i
i i

0 = = (17) 

Here the first ρi is still the Lagrangian density function, while the second 
one is Eulerian. The coefficient δ0 can be seen as a normalization of the 
density such that, for example, ρmax = 1.

From relations (16)–(17), we get the variation of x when y varies at 
fixed time, ie the partial derivative 

x
y

1= (18) 

For more obvious reasons, the variation of x in time for fixed y - ie for 
fixed pedestrian number - is the velocity: 

x
t

v= (19) 

Once such relations are obtained, it is possible though somewhat 
lengthy to go from the Lagrangian time derivatives and neighbor-to- 
neighbor variations in the microscopic ped-following model to the 
Eulerian PDEs. We refer the interested reader to (Aw et al., 2002; Tordeux 
et al., 2018; Zhang, 2003; Burger et al., 2019) for the full calculation in the 
frame of various car or ped-following models.

3.2.3 Starting from an off-lattice microscopic model in two 
dimensions

The situation is different when pedestrians evolve in 2 dimensions. It is 
then not possible anymore to number them in terms of leader/follower, 
and the derivation of the kinetic equations is more tricky.

Ideally, one would like to be able to perform an ensemble average on 
the microscopic dynamics, to deduce a partial differential equation for the 
evolution of the distribution function for the probability density f(x, t, v, g) 
to find a pedestrian with velocity v in site x at time t, with target g. 
Though the ensemble average allowing to find the kinetic equation is in 
principle similar to the derivation of the Boltzmann equation from 
molecular dynamics, pedestrian microscopic models are in general too 
complicated for a rigorous derivation.

One possibility is to redefine the microscopic dynamics to simplify it 
while keeping the main ingredients. For example we can assume that 
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pedestrians only modify the direction of their velocity, while keeping a 
constant speed modulus - an assumption that will restrict the use of the 
model to low densities (Degond et al., 2013b). Another possibility is to 
replace discontinuous changes of the pedestrian velocity by continuous time 
evolutions. If, moreover, the rate of change of the velocity can be expressed 
for example as the gradient of some function, it will be easier to find an 
equivalent formulation at the kinetic level (Degond et al., 2013b, 2013a).

A difficulty that is often encountered is that many models implement a 
reaction to the most threatening collision. The quantifier of the collision 
threat could be, for example, the time until predicted collision. Then the 
model requires finding the maximum or minimum of such quantified col
lision threats. This max/min operation is easy to perform when a pedestrian 
undergoes only a finite number of interactions. However, in contrast, when 
considering continuous probability distributions, there is always a more 
threatening collision that could occur, maybe with very low probability but 
not strictly impossible. A similar problem is met when the pedestrian 
dynamics is determined from the minimization of some cost function. One 
way to deal with this problem is to replace the max/min function in the 
microscopic agent based model by some average, or median, of some dis
tribution based term in the kinetic model (Degond et al., 2013b, 2013a).

The general form of a kinetic equation for probability density function f 
will be 

f f Sf Lfvt x+ + = (20) 

where Sf contains all the interactions that modify the distribution, in 
general with terms involving derivatives in v, and Lf is some diffusive term 
resulting from stochastic forces. Indeed, some noise is often added to the 
microscopic dynamics, to account for a wider variety of behavior. It 
produces diffusion at the mesoscopic level, and at the macroscopic level, it 
will allow to have smoother closures (Degond et al., 2013a).

Once the kinetic equation is found, we would like to derive a mac
roscopic model for the density ρ(x, t, g) and the velocity U(x, t, g), which 
are related to the distributions through 

t f t dx g x v g v( , , ) ( , , , )= (21)  

t U t f t dx g x g x v g v v( , , ) ( , , ) ( , , , ) .= (22) 
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Both integrals above are taken over all possible values of the velocity, 
allowing us to extract a classical density field ρ in (21) and an average 
macroscopic velocity field U in (22). The moment method consists in 
multiplying the kinetic equation by polynomials involving increasing 
powers of v before integrating (Dogbé, 2012). Unfortunately, the resulting 
set of equations is in general not closed, and one need to supplement it by 
some closure relation.

To be specific, we see from (21)–(22) that the direct integration of (20) 
will provide an equation for ρ that involves ρU. Multiplying (20) by v 
before integrating will provide an equation for ρU that involves still higher 
moments of the velocity. We could find an equation for this higher 
moment, but it will always involve a moment of even higher degree. This 
is why it is necessary to make an assumption to close this hierarchy of 
equations.

Such closure relation can be provided by an ansatz that expresses the 
distributions f as a function of the macroscopic variables ρ and U. Note 
however that in general one cannot justify the choice made for this ansatz, 
in contrast with the case of fluids (Degond et al., 2013a).

One of the easiest one is the mono-kinetic closure, which assumes that all 
particles of the same family have their velocity exactly equal to the average 
macroscopic velocity. In mathematical terms, this is expressed by a factor 
δU(x, t, g)(v) in the distribution (Salam et al., 2021; Degond et al., 2013a, 
2013b). But other choises can be made, that allow for some dispersion of 
the velocity around the average value (Degond, 2004; Degond et al., 
2013a, 2013b).

While many derivations of continuum models from particle dynamics 
are formal, i.e. relying on assumptions about the smoothness of the solu
tion, etc., there are also some relatively recent results rigorously deriving 
kinetic descriptions of particle models. In particular, we refer the interested 
reader to (Canizo et al., 2011) for rigorous derivation from (some) particle 
systems to kinetic equations.

4. Incorporating specifics of crowd behavior

Though the models we have described so far are able to reproduce 
some of the features of crowds dynamics, they are far from capturing the 
whole complexity of these. Various attempts have been made in the past 
decades to include more of the physics of crowds in the models. Here we 
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present some directions of research that allow to take into account the non- 
locality of interactions, the heterogeneity of crowds, and their ability to 
anticipate.

4.1 Taking granularity into account
In order to illustrate the different behavior of micro and macroscopic 
models, let us compare both as done in (Maury et al., 2011) for an eva
cuation problem (Fig. 13). If we consider a microscopic model (Left), and 
its macroscopic counterpart (Right), we find first a very similar behavior: 
see in Fig. 13-Top) the same low density regions behind obstacles and high 
density accumulations in front of bottlenecks (Maury et al., 2011).

Fig. 13 Evacuation by a door located on the left of an area containing several obstacles. 
The crowd is simulated either by a microscopic (left) or macroscopic (right) model, and 
is shown at an earlier (top) or later (bottom) stage. From Maury et al. (2011). 
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However, looking at longer time evolution reveals a striking difference 
(see Fig. 13-Bottom): evacuation is more rapid with the macroscopic 
model than with the microscopic one.

Indeed, granularity plays a role at bottlenecks. The transient formation 
of arches slows down the exit of pedestrians, a feature which is correctly 
captured with the microscopic model, but is ignored by the macroscopic 
description. In a macroscopic model, the crowd is considered as a fluid, that 
would in particular be able to flow through a narrow exit of a few cen
timeters - a feature clearly unrealistic. The lack of granularity in macro
scopic models gave raise to several approaches that aim to correct for this 
shortcoming.

4.1.1 Non-local macroscopic models
Granularity gives raise to non-local effects at exits. One way to include 
non-locality in macroscopic models is to estimate the flux or velocity not 
from a purely local density, but from a non-local density averaged on the 
surroundings of x. Namely, the velocity would be combined with a 
convolution kernel wη, which allows making an average with different 
weights depending on the distance (Colombo et al., 2011).

An example coming from car traffic modelling (Blandin and Goatin, 
2016) would be 
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The convolution kernel wη must be a non-increasing function such that 

w x dx( ) 1
0

= . We can take for example, wη(x) ≡ 1/η or wη(x) = 

2(1 − x/η)/η), where η is a positive parameter that can be freely chosen. 
This downstream convolution product models the fact that agents react to 
what happens downstream. For crowds, kernels in two dimensions should 
be used and it is possible to choose anisotropic kernels in order to account 
for a finite vision field (Bürger et al., 2020; Goatin et al., 2025; Cristiani 
et al., 2015).

For pedestrians, non-locality can also be included in the definition of 
the direction of the desired velocity (Colombo and Lécureux-Mercier, 
2012; Colombo et al., 2012; Campos et al., 2021; Bürger et al., 2020). 
Typically, the direction of the preferred velocity would be written as 

t tx x x( , ) ( ) [ ( )]( )= + (23) 
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where μ would be a fixed preferred velocity field coming from an Eikonal 
equation - in general μ would follow the shortest paths -, and would be a 
functional of the density field ρ(t) that depends on the gradient of the 
density convoluted with an averaging kernel, so that it is non local. It 
makes pedestrians able to turn in order to avoid regions of increasing 
density. This provides an easy way to implement walls. If walls are given a 
high density, pedestrians will avoid them.

The model can be extended to several species of pedestrians by associating 
an equation to each species. When extended to bi-directional flows, such 
non-local model can reproduce lane formation (Colombo and Lécureux- 
Mercier, 2012; Goatin et al., 2024), a feature which is not possible with 
purely local models. Similarly, non-local models can reproduce the stripe 
formation at the intersection of perpendicular flows (Goatin et al., 2024).

Another advantage of non-local models is that well-posedness is 
obtained more easily than for local models, for which hyperbolicity is more 
easily lost. Micro-macro derivations can also be performed for non-local 
models, see (Chiarello et al., 2020) for an example.

4.1.2 Local and non-local point constraints
Another way to account for granularity is to model directly the flux lim
itation it induces at bottlenecks. This is useful mainly in one dimensional 
systems for which flux limitation does not come from the geometry. 
Bottlenecks can be considered as objects that impose locally a constraint on 
the flux (Andreianov et al., 2018; Chalons et al., 2013) 

f t Qx( , )i i (24) 

where Qi is the maximal value of the flux at the specific location xi of a 
bottleneck.

The constraint is local if Qi depends only on the local density ρ(xi), and non- 
local if Qi is a non-local expression of the density (Santo et al., 2019). Such 
constraints can be imposed in the frame of a first-order model (Santo et al., 2019; 
Colombo et al., 2010) as well as second-order (Andreianov et al., 2016, 2021).

4.2 Taking heterogeneity into account
It is also possible to consider more than one type of pedestrian, for example 
multiple groups each with a preferred destination or velocity (Hartmann 
and von Sivers, 2013). This can account for differences such as a variety of 
ages, heights, or levels of mobility, traveling with luggage, family groups 
traveling together, or as discussed previously, multiple gangs (Alsenafi and 
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Barbaro, 2018). In the context of disease propagation, it is necessary to 
distinguish infected people from others (Salam et al., 2021).

Though there is still a debate about the role emotions can play in 
evacuation processes (Lügering et al., 2023), several models have also 
considered the emotions of the pedestrians. For example, (Burstedde et al., 
2001) introduces two moods into their Floor Field model, with differing 
movement dynamics for each: Happy pedestrians move in their preferred 
direction while unhappy pedestrians undergo more random movement. 
There are update rules for switching pedestrians between happy and 
unhappy moods.

Including an emotional variable which undergoes contagion is another 
type of model for heterogeneous crowds. The authors in (Bosse et al., 
2011) introduce an agent-based (microscopic) model for fearful crowds 
which they call the ASCRIBE model. Each agent is endowed with an 
emotion level and the emotion levels of the agents change via interactions 
with nearby agents. The authors apply this ASCRIBE model to video of a 
stressful situation in a crowd in Amsterdam. The ASCRIBE model is 
further studied in (Tsai et al., 2011), where it is found to compare favorably 
in two case studies to another agent-based contagion model in the litera
ture, referred to as the ESCAPES model (Durupınar, 2010). In (Bertozzi 
et al., 2015), the authors again begin with the ASCRIBE model, but then 
derive mesoscopic and macroscopic descriptions which describe the evo
lution of the densities including this extra emotional component. The 
emotional variable dictates the speed of the particles. Numerical techniques 
for this mesoscopic model were developed in (Wang et al., 2017).

It is important to note here that the mesoscopic description is able to 
capture a distribution of emotion levels or velocities at a single point in 
space, and thus describe a heterogeneous population. When it is important 
that there is a mixture of fear levels - or actually a mixture of any type of 
characteristics - this distribution cannot be replaced by an average value. 
Thus we cannot go to macroscopic level, and we need to keep the 
microscopic or kinetic description in the region of mixture. These 
mesoscopic descriptions are therefore one way to include heterogeneity at 
the level of a continuum model.

4.3 Mean field game models: Taking anticipation into account
When pedestrians compete for space (for example in a congested situation), 
they develop some strategy, meaning that they choose a trajectory in order 
to optimize their exit time, comfort, etc. They can do this based on the 
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current state of the system (optimal control) or they can anticipate that 
others will themselves try to anticipate and optimize (game theory). To this 
end, before describing mean field games, we will as a first step introduce 
optimal control ideas.

4.3.1 Cost and optimal control
One way to model pedestrian dynamics is to assume that they try to 
minimize some cost. A first step is to determine which cost is minimized 
(Arechavaleta et al., 2008; Chitour et al., 2012). Usually one considers that 
the cost is proportional to the distance to walk, but other quantities like the 
jerk can also be taken into account. One may give different weights to 
longitudinal acceleration and side-stepping (Hoogendoorn and Bovy, 
2003), or associate a cost for departing from a physiologically optimal speed 
(Guy et al., 2012). Crowds can avoid to form high density regions, or on 
the contrary, if the crowd wants to stay in a group, they may minimize the 
space occupied by the crowd (Herzog et al., 2023).

Once the cost is defined, its minimization will determine, or at least 
influence, the pedestrians dynamics. Cost minimization can be used in the 
frame of microscopic models (Hoogendoorn and Bovy, 2003, 2004) or, at an 
urban scale, of networks (Alisoltani et al., 2024), though here we are interested 
in its use for macroscopic models. Actually we saw already such an example, 
given by the Eikonal equation (10) of Section 2.1.4 (Hughes model).

When the cost depends only on static quantities, for example when it 
amounts at minimizing the distance to the exit, it is sufficient to solve once 
the Eikonal equation at the beginning of the simulation. However when 
the cost depends for example on the density, the minimization must be 
performed at regular intervals to account for the evolution of the sur
roundings, including the presence of jammed areas (Hoogendoorn and 
Bovy, 2004; Hoogendoorn et al., 2015). In particular in Hughes model, 
only the current state of the density field is taken into account. The Eikonal 
equation (10) is a kind of static Hamilton-Jacobi equation, for which many 
numerical methods have been developped (Twarogowska et al., 2013).

4.3.2 Mean-field games
When several pedestrians want to perform a similar task, such as exiting 
through a given exit, they may be in competition for space. Indeed, two 
persons cannot be at the same place at the same time. Games are appro
priate to describe this competitive situation. They assume that pedestrians 
can anticipate others’ behavior, and optimize their own strategy (namely 
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choosing their walking behavior) in order to minimize their own cost. A 
Nash equilibrium is expected to be reached, in which nobody has some 
interest to change its strategy. However, when many pedestrians are 
involved in the game, it would be too costly to solve the full game 
involving all the individuals.

Mean field games (MFG) were proposed by Lasry and Lions (2006) and 
Huang et al. (2006) to circumvent this difficulty. The idea is that, instead of 
having to consider all the individual interactions, each pedestrian reacts to 
the average density that can be expected in all future locations. MFGs can a 
priori be written for very general forms of the cost. They were used in 
particular for dynamic traffic assignment in transportation networks (Ameli 
et al., 2022; Khoshyaran and Lebacque, 2024). The special case where the 
velocity - namely the strategy of the pedestrian - appears in the cost as a 
quadratic term (Ullmo et al., 2019; Benamou et al., 2017) turned out to be 
well suited for pedestrians (Dogbé, 2011; Lachapelle and Wolfram, 2011; 
Burger et al., 2014).

Typically, a quadratic MFG gives the coupled evolution of the 
pedestrians density ρ and of the so-called value function u which is the 
value of the individual cost after optimization 
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The quadratic MFG can be thus expressed as the following coupled evo
lution equations 
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The first equation of (26) expresses once more mass conservation, but 
now with a diffusion term that comes from microscopic noise. The 
velocity in the first term of the right-hand side has been replaced by its 
value resulting from the optimization process, namely u1 . The second 
equation is derived using the theory of dynamical programming and we 
will not give here the details of this derivation. It is based on the idea that in 
order to optimize from a current time t, you do not need to take into 
account the past but only the future.
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The boundary conditions necessary to solve the equations (26) involve 
the terminal cost cT(xT) and the initial density field 
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It can be noticed, in particular through the boundary conditions and the 
sign in front of the Laplacian terms in (26), that the equation for ρ is 
forward in time, but the equation for u – the so-called Hamilton-Jacobi- 
Bellman equation – is backward in time. This forward-backward structure 
makes it difficult to solve even numerically, and it can be sometimes useful 
to exploit the mapping that exists between system (26) and a system of two 
coupled Non-Linear Schrödinger equations (Ullmo et al., 2019; 
Bonnemain, 2020; Bonnemain et al., 2020).

MFGs are able to reproduce typical behavior of crowds as lane for
mation in bi-directional flows (Lachapelle and Wolfram, 2011), as most 
models can do. More interestingly, MFGs were the first method able to 
reproduce some experimental results, namely the deformation of a crowd 
around a cylindrical intruder (Nicolas et al., 2019; Appert-Rolland et al., 
2020), that require long range anticipation. Indeed in most models, 
pedestrians either do not anticipate, or only up to the next collision. In 
MFGs, the cost implies that pedestrians have a full knowledge of the future 
up to time T, which can be made as large as we want - up to infinite if 
needed. In the case of the aforementioned experiment, it can be assumed 
that pedestrians have a sufficient experience of obstacle avoidance to be 
able to anticipate not only their own behavior but also the one of others. As 
a result, as illustrated in Fig. 14, the MFG is able to reproduce the density 
and velocity patterns around the cylinder, while other methods fail 
(Bonnemain et al., 2023; Butano et al., 2024b).

Full anticipation may be a too strong assumption (Cristiani et al., 2015, 
2023) and it is possible to add a discount factor eγ(t−τ) in the cost of Eq. (25) 
to account for the fact that pedestrians have a better knowledge of what 
happens closer in time (Hoogendoorn and Bovy, 2003; Dogbé, 2011; 
Lachapelle and Wolfram, 2011; Butano et al., 2024a). This allows to 
explain why the experimental results can be different when pedestrians face 
or present their back to an incoming obstacle (Butano et al., 2024a). Instead 
of assuming that agents instantaneously choose the Nash equilibrium, it is 
also possible to assume that agents only tend towards this goal (Degond 
et al., 2014).
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5. Numerical simulation of macroscopic models

In this section, we focus on numerically solving macroscopic 
pedestrian models, which is an inherently Eulerian problem. We will 
distinguish two main approaches. In the first approach, we keep the 
Eulerian variables of density and velocity but discretize the spatial and time 
domains. The second approach uses virtual particles, such that the evolu
tion of these particles dictates the numerical solution of the macroscopic 
equation. We will describe several approaches of each type within the 
pedestrian dynamics community, and discuss the challenges associated with 
each framework.

5.1 Grid-based Eulerian methods
In this framework, the macroscopic models are generally solved using 
canonical methods for solving hyperbolic PDEs: Finite Difference Methods 
(FDMs), Finite Element Methods (FEMs), and Finite Volume Methods 
(FVMs). With these methods, the challenges are the same as for solving 
many problems in PDE: gradients can become very steep, requiring either a 
very fine grid or a shock description; numerical viscosity can artificially 
smooth shocks for some methods, while oscillations around shocks can be a 

Fig. 14 Top: Experimental setup for the crossing of a crowd by a cylindrical intruder. 
Bottom: comparison of the density field (in ped/m2) obtained by MFG simulation (left) 
and reconstructed from the experimental data (right). Top: From Nicolas et al. (2019), 
Bottom: From Butano et al. (2024a).  
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problem for others (LeVeque, 1992), and specific methods have been 
developed to handle shocks. Instabilities can also occur near the maximal 
density limit, as in (Appert-Rolland et al., 2011). Additionally, loss of mass 
induced in numerical methods that do not explicitly enforce mass con
servation can be of concern, forcing a fine grid in order to approximate the 
conservation of mass necessary for these problems. Still, many excellent 
numerical schemes for macroscopic pedestrian flows are non-conservative; 
for a more thorough discussion, the reader is referred to (Chalons, 2007) 
and (Chalons et al., 2013).

The most straightforward way to solve the macroscopic models is with 
Finite Difference Methods. In these methods, both time and space are 
discretized, and derivatives are approximated using difference equations. In 
one dimension, ρx and ρt could simply be approximated by 
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x t x t
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for time step Δt and spatial step Δx. In these methods, more accurate results 
are attained by refining the grid, enforcing a smaller spatial discritization 
and smaller timesteps. However, this must be done with care, since vio
lations of the Courant-Friedrichs-Lewy (CFL) condition can lead to loss of 
stability for the numerical method, yielding erroneous numerical solutions 
(Courant et al., 1928). In explicit time and space discretization schemes, the 
CFL condition provides upper bound for the ratio of the spatial step Δx 
multiplied by the velocity and the time step Δt, ensuring that no mass can 
artificially “skip over” a cell of the spatial grid. This condition is necessary 
(but not sufficient) to ensure stability of the method. For hyperbolic PDEs 
in one dimension, this constraint takes the form: 

v t
x

C .max

In two dimensions, the CFL condition may be expressed as (Toro, 2009) 
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where ∣vi∣ is the magnitude of the velocity in the ith direction, but 
sometimes other expressions are used, for example using ∑i∣vi∣ in place of 
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the max. The CFL condition becomes a problem in areas where the 
velocity becomes extremely large, since the time step must be made 
extremely small in order to compensate. Additionally, first-order finite 
difference schemes tend to “smear out” shocks, introducing artificial dif
fusion, while second-order methods often produce oscillations on one or 
both sides of a shock (LeVeque, 2002).

That oscillations tend to occur in places where the derivatives become 
steep is particularly problematic in pedestrian dynamics, since the occur
rence of shocks is a prominent feature in these models. These oscillations 
can be addressed by semi-discrete schemes, which first discretize the pro
blem in space. Time is then still continuous, and the problem reduces to a 
system of ODE problems which can be solved using any standard method. 
This approach is also called the method of lines (LeVeque, 2002) and can 
be used to develop highly accurate numerical schemes which avoid 
oscillations around shocks. In particular, Essentially Non Oscillatory 
(ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes are 
of this type (Harten et al., 1997). In the pedestrian literature, for example 
3rd (Goatin et al., 2024, 2025) or 5th (Bürger et al., 2020) order WENO 
schemes were used to simulate non-local models, as well as the Hughes 
model (Huang et al., 2009), allowing for good accuracy in smooth regions 
while being able to handle the discontinuities without oscillations.

Finite Volume Methods again discretize space and time, focusing on the 
influx and outflux of mass through each surface of a spatial cell. These 
methods are conservative, since mass is transferred directly between adjacent 
cells. FVMs solve a collection of Riemann problems, addressing the need to 
admit shock solutions (LeVeque, 2002), in particular through the so-called 
Godunov schemes (Toro, 2009). Because pedestrian models are known to 
produce non-smooth solutions (i.e. ones with blowup in the density or the 
derivatives of the density, for example in the case of shocks), Finite Volume 
Methods are often preferred (Dogbé, 2008).

Another numerical approach is to use Finite Element Methods to solve 
the macroscopic model. In broad strokes, FEM divides the spatial domain 
into irregular geometrical cells (the elements) that can locally adapt to the 
boundaries. On each element, an ODE can be solved in place of the PDE. It 
is the relationship among the elements that takes care of the spatial deriva
tives. Eventually the full solution is constructed by weighting the solution on 
each element in order to minimize some global error. One significant 
advantage of the FEM is that boundaries and complicated geometries are easy 
to address, since they can be naturally included when determining the 
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elements. Examples of FEMs used to numerically solve pedestrian models 
include the discontinuous Galerkin method which makes use of dis
continuous piecewise polynomial functions (Xia et al., 2009).

Another technique called a splitting scheme can be employed in 
macroscopic pedestrian models that take the following form 

t
F G S( , ) .+ =

With this method, the problem is split into two separate problems, solving 

t
S,=

for part of each time step, while solving 

t
F G( , ) 0,+ =

on the rest of the time step. Each of the two problems is solved using the 
most appropriate method for problems of that type (Jiang et al., 2010), 
leading to an accurate and more efficient numerical method.

Multiscale Eulerian approaches can also be employed in pedestrian 
models. For example, the paper by Wang, Short, and Bertozzi on 
numerically solving the contagion model (Wang et al., 2017) has several 
approaches for solving the model derived in (Bertozzi et al., 2015), which 
exhibits shocks. These include multiscale modelling by using the macro
scopic formulation in regions where characteristics do not cross, while the 
kinetic formulation is used in areas where the characteristics are crossing. 
Another approach proposed in (Wang et al., 2017) is to use a level set 
formulation which allows for a distribution of velocities throughout the 
whole domain, similar to the kinetic formulation.

5.2 Particle methods
Particle methods are a different numerical framework which is also widely 
used in the pedestrian dynamics literature, see (Salam et al., 2021) for an 
example. In particle method approaches, the numerical solution of the 
macroscopic equation is a linear combination of Dirac delta functions 
(one may consider these to be weighted particles) distributed throughout 
the spatial domain. The weights and the positions of the particles evolve 
according to the macroscopic equation. An overview of deterministic 
particle methods can be found in (Chertock, 2017). Particle method 
approaches are useful because they often avoid the problem of numerical 
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diffusion. This is a very useful characteristic when working with macro
scopic pedestrian models, since these can exhibit shocks and other diffu
sion-sensitive features.

One class of methods, called meshfree Generalized Finite Difference 
Methods, uses these particles as a an alternative to the regular grid used in 
Finite Difference Methods above. In this cases, the particles are stationary 
and are generated in the beginning of a simulation. They are irregularly 
spaced and used as stationary set of points at which to solve the macro
scopic equation, in the spirit of a random irregular mesh. The main 
challenge here is determining initially the distribution of particles, called a 
point cloud. The interested reader is directed to (Suchde et al., 2023) for an 
overview on how to generate such point clouds. In (Maity et al., 2024), the 
authors numerically simulate several well-studied macroscopic models for 
pedestrian dynamics using such a meshfree Generalized Finite Difference 
Method with a Godunov-type discretization. They find that this numerical 
method captures the particular characteristics of each model.

As an alternative to the Eulerian framework with density and velocity 
moving on a grid or set of stationary particles, the evolution of fluid 
equations can also follow packets of fluid as they move through space. This 
is the Lagrangian Framework. Particle methods such as Smoothed-Particle 
Hydrodynamics (SPH) use this Lagrangian framework to numerically 
solve macroscopic equations. In SPH, the particles move through space 
with the velocity dictated by the macroscopic equation and interact with 
one another through an interaction kernel of radius h. This interaction 
determines the evolution of the physical quantities associated with each of 
the particles (primarily mass). It is possible to change h according to how 
dense the particles are in space. SPH is employed in solving macroscopic 
pedestrian models, for example in (Yuan et al., 2020). In (Toll et al., 
2021), the authors use a hybrid Lagrangian approach by blending an agent- 
based model for pedestrian dynamics with a SPH method in high density 
scenarios.

Lagragian particle methods are also used on pedestrian models at both 
the microscopic and macroscopic scales in (Etikyala et al., 2014), ranging 
from a microscopic interacting particle model paired with the Eikonal 
equation to a model consisting of a nonlocal continuum equation. Other 
numerical methods for macroscopic pedestrian dynamics use semi- 
Lagrangian schemes, where the Lagrangian framework is combined with 
the Eulerian one, see, for example, (Carlini et al., 2017) and (Falcone and 
Ferretti, 2014).
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As the reader can deduce, both Eulerian and particle-based numerical 
methods for macroscopic models of pedestrian dynamics are well-grounded 
and important to the field. Eulerian approaches face challenges such as 
numerical viscosity, oscillations, and loss of mass. In Eulerian approaches, 
these challenges are answered with finer meshes and therefore smaller 
timesteps (according to the CFL condition, as described above). It is also 
important to bear in mind that Eulerian simulations of macroscopic models 
can have many challenges with stability and well-posedness, so it is also 
often helpful to move to a particle method for simulations. Particle 
methods avoid artificial viscosity, often capturing shocks well, but 
encountering problems with particle distribution and computational 
complexity. In particle-based methods, more accuracy often requires more 
particles and, in some cases, redistribution of these particles, which can lead 
to the number of particles becoming prohibitively expensive.

6. Final discussion

Macroscopic models originated by expressing conservation of mass in 
a similar way to traffic models. With new features such as nonlocality and 
other variations like heterogeneous populations (accessible through mul
tiple different classes of pedestrians, for example, or through mesoscopic 
descriptions), macroscopic models have recently begun to better approx
imate the specifics of pedestrian dynamics.

While microscopic pedestrian models can closely approximate the 
dynamics of individual pedestrians, macroscopic models can be useful in 
situations with a high density of pedestrians for understanding the mac
roscopic or system-level behavior of these large groups. Indeed, macro
scopic modelling of pedestrians allows for insight into the overall group 
dynamics, such as the density waves (Bain and Bartolo, 2019; Gu et al., 
2025), phase separation (Alsenafi and Barbaro, 2018), or pattern formation 
(Hoogendoorn et al., 2014; Cividini et al., 2013). These types of behaviors 
are most easily understood at the macroscopic level.

When working with macroscopic models, it is important to consider 
the physical meaning of all of the included terms. It is not always clear 
when adding a term to a macroscopic model, how to translate this back to 
understand the physical implications of the choice. A further level of 
confidence in a macroscopic model is obtained when it can be derived 
from a microscopic one. In this case, the parameters of the microscopic 
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model may have a direct significance for the macroscopic model. Still one 
must be careful that this does not always imply that macroscopic phe
nomena correspond to the same calibration, and thorough comparison 
with data is needed. One must be aware that, when deriving a macroscopic 
model from a microscopic one, several assumptions have to be made from 
which the implications are not always fully understood. It is important to 
bear this in mind as derivations are undertaken.

On the other hand, if a microscopic model is being used, it can be very 
helpful, as in the case of (Alsenafi and Barbaro, 2018), to consider a mac
roscopic description of the model. While the theoretical analysis of the large 
number of differential equations involved in the microscopic models can 
become unwieldy, the tools accessible to analyze macroscopic equations are 
often well-developed, allowing for better predictions of the outcome from 
certain choices of parameter space. This is particularly true when modelling 
relies on game theory, when simulation and analysis become intractable in 
the case of a large number of agents, unless a mean-field assumption is done. 
It is therefore very helpful to consider if a corresponding macroscopic model 
can be derived when considering a microscopic model.

An interesting issue that we did not develop in this chapter is about 
calibration and validation of macroscopic models. A first level calibration is 
through the determination of the fundamental diagram (see Chap. 3), 
which as we have seen is at the core of first-order macroscopic models. 
Beyond that, macroscopic models could be directly calibrated or validated 
at the level of macroscopic phenomena such as wave propagation (Motsch 
et al., 2018), deformation of the density field (Butano et al., 2024a), etc. 
However, there is a need to go further in this direction and to develop 
more quantitative studies. Progress in the direct measurement of density 
through deep learning (Vandoni, 2019) could open possibilities for com
parisons of macroscopic models with measurements in real events.
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