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Abstract

The dynamics of pedestrian crowds can involve very different scales. While situations
involving only a few pedestrians are better described by microscopic models, large
crowds can exhibit collective behavior which can be captured by macroscopic equa-
tions. Macroscopic models describe crowds as fluids of pedestrians, where individuals
cannot be distinguished anymore. This fluid is characterized by some local averages of
pedestrian density and velocity. These macroscopic variables are shown to obey con-
servation equations, which can be solved using the method of characteristics. In
contrast with classical fluid equations, the evolution of density and velocity depends on
some target or preferred velocity that can be specific to different pedestrian groups.
We review the advantages and drawbacks of these conservation laws adapted to the
pedestrian case. We also discuss the associated numerical methods, which can be
Eulerian or Lagrangian. Particular attention will be devoted to the link between models
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at microscopic, mesoscopic, and macroscopic scales. Using macroscopic approaches
give access to a whole set of methods developed for this kind of partial differential
equation, including the study of phase transition, or of travelling waves. Eventually,
recent variants that have been proposed in the literature will be outlined.

1. Introduction

A lot of research has been devoted to interactions between a few
individual pedestrians. But there is an increasing interest in under-
standing the global dynamics of crowds, taken as a whole. Indeed, more
and more large scale events occur (concerts, sport, cultural, or religious
events, etc), and there is a need to be able to monitor these large crowds
in order to limit the risk of accidents (Feliciani et al., 2023; Haghani
et al., 2023).

Simulating large crowds is needed for the design of facilities that allow
for fast evacuation, while avoiding high density congestion points.
Simulations can also serve as a basis for real-time control of entry fluxes into
the facility. As soon as the number of pedestrians becomes large, agent-
based simulations are out of reach or too time-consuming. By contrast,
describing the crowd as a fluid allows to diminish a lot the number of
degrees of freedom. Only the density and velocity fields have to be
determined.

We will address in this chapter the so-called macroscopic modelling
approach, which was for a large part inspired by fluid mechanics. After a
presentation of the various families of macroscopic models, we shall discuss
how the various levels of descriptions - micro, meso, macroscopic - can be
related. We shall then present how specific features like granularity, het-
erogeneity or anticipative behavior can be taken into account. Various
numerical methods applicable to macroscopic models will be presented,
before the final discussion.

2. Conservation laws

In the XVIIIth century, Antoine de Lavoisier claimed about matter
that < Rien ne se perd, rien ne se crée, tout se transforme >> (“Nothing is
lost, nothing is created, everything is transformed”). This statement can be
expressed in mathematical form by so-called conservation laws, which
are partial differential equations. Let’s consider a quantity - let’s say R to be
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generic - that is conserved, and let p be its density. Being conserved does
not mean that there is always the same amount of it in the system, but that
we can track any change/input/output of it.

The general form of a conservation law is

0:,p + V.F(p) = source - sink terms (1)

where F(p) is the flux of the quantity Q per surface unit at any point in
space and time, and the right-hand side stands for bulk sources and sinks for
the quantity R.

It becomes more clear why the previous equation expresses the con-
servation of R, when it is integrated on a volume V. It becomes then

Total amount Flux of R Flux of R
% of R - entering V + exiting V
in volume V through boundary through boundary
Total amount Total amount 2)
_ | of R produced of R removed
" | in the bulk of V| in the bulk of V
per unit time per unit time

Indeed the variations of the total amount of R inside volume V are due to
the difference between inputs or outputs of R, either in the bulk or
through the boundaries.

Let us take as an example a pedestrian commercial street. Pedestrians
cannot be spontaneously created, or cannot disappear suddenly through a
magic charm. Their number is thus a conserved quantity. The total
number of pedestrians in the street varies depending on how many
pedestrians enter or exit the street. Pedestrians may enter/exit the street
not only at street ends (corresponding to boundary conditions in the
model), but also in the bulk when they enter or exit shops or restaurants
(sink or source terms in the model).

However for simplicity, in the remaining of the paper, we shall ignore
these bulk source/sink terms which are important in rather specific situa-
tions, in order to concentrate on the dynamics of the crowd itself.

To go further, it is informative to compare crowds with fluids, for
which not only mass but also momentum is conserved, allowing to write
two conservation equations (the so-called Navier-Stokes equations). By
contrast, as pedestrians or cars are in contact with the road, they do not
conserve momentum. Only mass (or rather, agents’ number) is conserved.
We express this through an equation for the density p(x, f), which for the



250 Cecile Appert-Rolland and Alethea B.T. Barbaro

remainder of the chapter represents the density of pedestrians or cars at
point x in space and time t. The density therefore obeys the following
conservation equation

dpx,t)+ V-E[p(x, )] =0 @)

as we ignore sink and source terms.

We have only one Eq. (3) for two unknowns: the density p(x, f) and the
associated flux F. If we are to solve this equation, we need to close it with
another relation.

2.1 First-order models

We will first consider so-called first-order models, where the adaptation in
velocity to the surrounding density is immediate and acceleration is not
explicitly included in the pedestrian model.

2.1.1 Fundamental diagrams

One first solution in order to get a closed form for Eq. (3) is to provide a
relation between F and p. Actually, the way we wrote Eq. (3) was already
assuming that F was a function of p and only p. This assumption is not
completely obvious a priori. It comes mainly from car traffic, where traffic
engineers have measured extensively the so-called fundamental diagram,
namely the F(p) relation (for cars, one can consider that the flow is uni-
dimensional, and thus F is a scalar).

And indeed, some general forms have been inferred from the data.
Fig. 1-left and 1-middle present two examples of fundamental diagrams
(FDs) that are often used in car traffic, the triangular and Greenshield’s ones
(Kithne, 2011). Of course these are idealized relations, but they capture
most important features. In both cases, the flux is quasi-linear at small
density (free flow state), increases up to a maximum called the capacity, and
then decreases with density (congested state) up to complete blockage.
Once Eq. (3) is complemented with such a relation F(p), it has a closed
form that can be solved, as we shall see in Section 2.1.2.

For pedestrians, many geometries of flows can be considered, not
necessarily one-dimensional or uni-directional. It turns out that finding a
universal form for the fundamental diagram is out of reach, as pedestrian
FDs are more situation dependent than for cars. We refer the reader to
Chap. 3 for further discussion. Note also that we have presented the
fundamental diagram under its form F(p) but it can as well be defined in
terms of an average velocity V(p) = F(p)/p.
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Fig. 1 Fundamental diagrams showing flow as a function of density: left and middle
show idealized FDs used in the context of car traffic. The maximal value of the flow is
called capacity. (left) Greenshield; (middle) Triangular; (right) Experimental FD
obtained for pedestrians walking in line. Obtained from the data of Jelic¢ et al. (2012), for
individual measurements.

Here we shall in a first stage focus on one-dimensional unidirectional
fundamental diagrams, as shown on Fig. 1-right. Though we can still
distinguish a free flow and a congested phase, we immediately see a dif-
ference with cars: while the velocity of cars quite rapidly drops to zero,
pedestrians manage to move even at very high density. Indeed they are able
to deform their body and to squeeze through others, at densities that oblige
them to have physical contact with their neighbors. Nevertheless, whatever
the relation between flux and density is, the structure of the equations and
the way to solve them is always the same, as we shall see now.

2.1.2 Mathematical aspects (method of characteristics, shockwave
theory, etc.)

In this section we present how one can solve the system given by Eq. (3) and

the relation F(p), in the case of a one-dimensional one-directional flow:

0p(x, 1) + 0F (p(x, 1)) = 0 4)

In the context of car traffic, this is called the LWR model (Lighthill and
Whitham, 1955), but the same structure is met for one dimensional uni-
directional pedestrian flows.

As a preliminary calculation, let us consider a curve in the spatio-temporal
space defined under a parametric form (X (¢), f). The evolution of p along this
curve is given by the material derivative (also called total derivative)

PEOD _ 50+ o ¥
0 dt

This expression will become identical to the left-hand side of Eq. (4) provided
that we choose X(f) such that

X P ). ©
dt



252 Cecile Appert-Rolland and Alethea B.T. Barbaro

Once integrated from a specific initial or boundary condition, Eq. (6) defines a
curve (X (t), t) (called characteristics). Along this curve, the material derivative of
p 1is zero, as stated in Eq. (4), and thus p is constant all along the curve. From
Equation (6), we see that the characteristics curve has a slope F' (p (x, f)) which,
as it depends only on density, must itself be constant along the curve (X (f), ).
Characteristics are thus straight lines for the LWR equation (4) considered here.

Fig. 2 illustrates how the knowledge of density in the initial state can be
transported along a characteristics (dashed-dotted curves). Characteristics
should not be confused with the trajectories of the agents — cars or
pedestrians — (solid lines in Fig. 2-top), though they may coincide in free
flow if the free velocity is constant.

An important property is that F'(p) = V(p) + pV'(p) < V (p),
meaning that information about the density always propagates more slowly
than individuals. Seen from the point of view of a pedestrian, this means that
information cannot come from their back. This is a good feature as pedes-
trians react mostly to what happens in front. In the congested phase, infor-
mation even propagates backwards, as in the example of Fig. 2-top-right.

In order to understand the behavior of these models, it is helpful to
solve it in a simple situation, namely a Riemann Problem (Haberman,
1998; Toro, 2009; Ketcheson et al., 2020): as illustrated in Fig. 3, the initial
state of the system consists in two constant density regions separated by a
discontinuity. There will be two families of characteristics emitted from
this initial state, with slopes respectively F' (p;) and F' (pg). Depending on
the initial densities, several cases may occur. If F'(p,) > F'(py), as shown
in Fig. 3-Top, the two families of characteristics would cross each other.
This is not possible as density cannot take at the same time the value of the
left and of the right initial density. Instead, a shock is formed, that separates
the two regions. The speed of the shock s simply stems out from mass
conservation

s = F/(/)L) _F/(:OR)
PL — Pr

)

IfF'(p,) < F' (pg), the two families of characteristics would rather separate

from each other, giving rise to a rarefaction wave (see Fig. 3-Bottom).
In general, initial conditions are more complex and give raise to non

straight shock trajectories, as shown for example in Fig. 4. The shock speed
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Fig. 2 Top: sketched spatio-temporal plots in free flow (left) or congested (right)
states. The spatial coordinate is vertical and the time horizontal so that the slope of
the characteristics F’ (p) can be directly taken from the fundamental diagram below.
The characteristics which goes through the position x of the pedestrian at time
t (X(t) = x) is represented with a red dashed-dotted line. Characteristics propagate
downstream (resp. upstream) in free-flow (resp. congested) state. The solid line shows
the trajectory of the individual agents arriving in X(t) = x at time t. Bottom: funda-
mental diagrams and graphical representation of the speed F'(p) of characteristics
(given by the slope of the tangent to the FD - thin dashed red line), and the speed v of
individuals (slope of the thin solid red line). In the free-flow phase (left), the char-
acteristics speed is positive, while in the congested phase (right) it is negative.

however always obeys locally Eq. (7), as mass conservation still holds. More
details on the method of characteristics can be found in many textbooks,
for example in (Haberman, 1998; Toro, 2009; Ketcheson et al., 2020).
In particular, it should be noted that the weak solutions (ie with dis-
continuities) of equation (4) are not unique - as in general for scalar
conservation laws (Evans, 1998). In the case of fluids, one solution can be
selected as the physical one, using the fact that at small scale, the shock is
regularized by viscosity. In the case of pedestrians, it can be discussed
whether such condition still holds. On the one hand, some similar selection
criterion has been derived through micro-macro derivation in the context
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Fig. 3 Left: initial conditions of Riemann problems. Density is constant on both sides
of a discontinuity. Right: corresponding spatio-temporal plots with characteristics.
Top: propagation of a shock between two families of convergent characteristics.
Bottom: rarefaction wave separating two families of divergent characteristics.

of a follow-the-leader model (Francesco et al., 2017). On the other hand,
the possibility to have non-classical shocks — meaning shocks that do not
obey entropic arguments - was sometimes used to provide the model with
new properties (Colombo and Rosini, 2005).

2.1.3 Multi-directional flows
Until now, we considered only one-dimensional one-directional pedes-
trian flows, so that all individuals had the same goal. Actually, pedestrians
with different destinations can share the same space. Let us consider for
example the case of a bi-directional flow in a corridor. In this case, we have
to distinguish two types of pedestrians, going to the left or to the right,
with respectively density p; and p_.

A simple extension of the LWR model to two species consists in
writing two coupled mass conservation equations, one for each of the
pedestrian families

0py (x, 1) + 0uf (., ) = 0
o (x, t) + 0y (o, ,0_,_) 0

Note that now, the flux f(-, -) depends not only on the density of pedes-
trians going in the same direction as the population under consideration

®)
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Fig. 4 Top: initial density profile. Bottom: characteristics (thin -red online- lines) and
the resulting shock (thick -blue online- line).

(the first variable of the function f), but also on the density of oppositely
going ones (the second variable). This flux function can be measured
experimentally, as shown in Fig. 5 in the case of a bi-directional flow in a
ring corridor (Motsch et al., 2018). A fit, here by a second-order
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Fig. 5 Fundamental diagram for a one-dimensional bi-directional flow. Left: experi-
mental data. Right: polynomial fit. The flux is given in pedestrians per second and per
unit of corridor width. From Motsch et al. (2018).

polynomial in p; and p_, provides an analytical expression for f which can
be used to complement Eq. (8).

We have now a full model that can be used for simulations. Let us
compare how it predicts the bulk dynamics, again in the case of the bi-
directional corridor. If we consider the initial and boundary conditions as
given by the experimental observations, it is then possible to use the mac-
roscopic model of Eq. (8) to simulate the behavior of the crowd in the bulk.
A comparison with direct observation shows that the model is indeed able to
reproduce the propagation of dense regions within the crowd (see Fig. 6).

2.1.4 Bi-dimensional models

Until now, we have considered only models in one dimension, which
would be relevant in special settings as corridors. But in general, pedestrians
move in a two dimensional space.

An important model was proposed in 2002 by Hughes (2002). It relies
again on the mass conservation equation (3). Again one can assume that the
speed or flux of the pedestrians at a given point is given by a fundamental
diagram |F| = F(p). But now, not only the modulus but also the direction
of the flow must be specified.

It is reasonable to assume that pedestrians want to minimize their travel
time to some goal they want to reach. The velocity of pedestrians will thus
be assumed to be aligned with the gradient of some potential measuring the
travel time from each location. Note that this travel time may take into
account not only the distance to the goal, but also the possible congestions.
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Fig. 6 Spatio-temporal plot of the density field in a one-dimensional bi-directional
flow. Left: experimental data. Right: simulation results. From Motsch et al. (2018).

We express it according to the formulation proposed in (Xia et al.,
2009; Huang et al., 2009) for which mass conservation (3) is com-
plemented by

F Vo

- =__7 9
|F| Vol ¥

with potential ¢ obtained from the Eikonal equation

Vol = Clp(x, 1), %, 1) (10)
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where C is some local cost per traveled distance. If C =1 everywhere in the
walkable domain, only the distance to the exit will be taken into account.
But the interesting feature of Hughes’ model and derivatives is precisely to
rather take a density dependent function for C (Di Francesco et al., 2011).
Fig. 7 gives an example of such a potential ¢p. We see clearly how the gra-
dient of this potential will be globally oriented towards the exits, while some
local detours may be induced by locally congested areas (Huang et al., 2009).

Hughes’ model poses a lot of mathematical questions (Amadori et al.,
2023). In particular, the flow field obtained from shortest travel times
might be discontinuous. Think of a room with two exits, there will be a
sharp separation between those taking one exit or the other. This poses
mathematical difficulties and some non-classical shocks may arise, which

s
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g 'l"’ () " "' ""'I'Il';a %
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Fig. 7 Example of a potential ¢ at a given time in the case of a platform with an
obstacle in the middle, and 2 exits at location x=100. From Huang et al. (2009).
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have non-local origin (Amadori and Francesco, 2012; Andreianov et al.,
2023). One possible solution is to add some diffusive term to blur these
discontinuities (D1 Francesco et al., 2011; Carlini et al., 2017; Herzog et al.,
2023). On the other hand, when restricted to one dimension, this model
can be reduced to coupled LWR equations as in Eq. (8).

2.1.5 Advantages and limitations of first-order models

In spite of their simplicity, first-order models can describe several features of
traffic, namely congestion formation or dissolution of queues (Goatin, 2023).
They rely however on some assumptions that it is important to be aware of.

First-order models assume that at each instant of time, the flow (or speed)
is exactly the one given by the fundamental diagram, meaning that the speed
immediately adapts to any change in the density. It is known that this is not
true in real systems, for which reaction times or relaxation processes exist.
Besides, this behavior implies an infinite braking and accelerating capacity,
which is also obviously a strong assumption. This immediate adaption is the
reason why first-order models are sometimes called ‘equilibrium models”. A
consequence of this strong hypothesis is that the stop-and-go waves that
form spontaneously in pedestrian flows (Lemercier et al., 2012; Fehrenbach
et al., 2015; Helbing et al., 2007) are not described by first-order models, in
particular by Hughes’s model (Twarogowska et al., 2013).

Another limit (Colombo and Rosini, 2005) is that, as density is con-
served along the characteristics, the maximal density in the system at a
given time cannot be larger than the maximal density in the initial state or
at the boundaries (Maximum Principle). By contrast, in real crowds, some
situations can lead locally to very high densities and cause accidents.

Still, these models can be useful for crowd monitoring, as their sim-
plicity allows for real time applications. Besides, they give an easy access to
the physical understanding of various phenomena.

2.2 Second-order models

In second-order models, we acknowledge that pedestrians may not
immediately adapt their speed to the current density, but that this is rather
done through a relaxation process that takes some time. A second equation
for the relaxation of velocity is thus written. Note however that there is no
strong physical law that enforces the form of this equation such as mass
conservation for the density equation.

The first proposal by (Payne, 1971; Whitham, 1974) for such a velocity
equation in the context of car traffic were thus simply inspired by fluid
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mechanics. But it was soon realized that unrealistic effects were obtained,
such as negative velocities, and a paper entitled “Requiem for second-order
fluid approximations of traffic flow” seemed to close this direction of
research (Daganzo, 1995).

Indeed, a molecule arriving in a congested area would bounce back due
to pressure, while a car or pedestrian would just slow down and wait until
the way is cleared. This difterence is due in particular to the fact that
pedestrians or drivers observe the flow not from a fixed point on the side of
the road, but from their own position. In mathematical terms, this can be
expressed by the fact that agents do not react only to the spatial gradient of
density, as a fluid would do, but rather to its material (or total) derivative.
Aw & Rascle were the first ones to understood this point (Aw et al., 2002)
and to propose a model including this material derivative, allowing for the
“Resurrection” of this type of models (Aw and Rascle, 2000). A similar
proposal was made by Zhang (Zhang, 2002). The ARZ model, proposed
in the frame of vehicular traffic and thus one-dimensional, reads

0p + 0x(pv) =0 (11)

ow + vow = —(0; + voy)p (p) + %[V(p) —v] (12)
In the first equation, which expresses the conservation of the number of
agents, the flux F = pv is now expressed in terms of the velocity v which
evolves according to the second equation. The second equation has a form
familiar froms that obtained in fluid mechanics from a combination of mass
and momentum conservation. In traffic, however, conservation of
momentum does not hold, but we keep a similar form with two significant
changes. First the gradient of p(p), sometimes called pressure in analogy with
fluid mechanics, is replaced by a material derivative 9, + vd,, as explained
above. Additionally, the last term of Eq. (12) is a driving force towards the
values prescribed by the fundamental diagram.

Another way to understand the second equation is to consider the
quantity w(x, f) =v(x, f) + p(p(x, ). In this case, equation (12) can be
expressed as

@, + vd)w= ~[V (p) - v].
T

As w is advected with particles, as seen by the use of the material derivative,
it has been interpreted as a desired velocity. Then p(p) can be interpreted as
a velocity offset between the desired and real velocities, expressing how a
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density increase can impede motion. The right-hand side is driving the
velocity towards that dictated by the Fundamental Diagram through a
relaxation process.

Note that though this family of models is called second-order models, the
equations in fact only involve first-order derivatives. As suggested by
(Aw and Rascle, 2000), it would thus be more appropriate to call these two-
equations models.

2.2.1 Method of characteristics

Again this system of equations can be solved using the method of characteristics.
The difference with the approach presented in Section 2.1.2 is that now, as we
have 2 coupled equations to solve, we shall have 2 families of characteristic
curves. Along each of these families, a specific combination of the variables p and
v - the so-called Riemann invariants - will obey a conservation law.

The method of characteristics can thus be seen as a change of variables
that allows to turn a system of two coupled Partial Differential Equations
(PDEs) into Ordinary Differential Equations along the characteristics curves.
The problem becomes in principle more easy to solve under this new form.

For the system (11)—(12) above, the Riemann invariants are v and v + p
(p) (Aw and Rascle, 2000). Each point of the x, ¢ plane can be seen as
the intersection of two characteristics, one of each family, which will
prescribe the value of the Riemann invariants, from which the p and v
values can be recovered.

In this special case, the Riemann invariant v + p(p) is conserved along a
family of curves that propagate with the same speed as individuals. In
mathematical terms, this reads

@ +va)[v+plp)] =0 (13)

The quantity v + p(p) is thus transported unchanged by the pedestrians
themselves, and this is what allows to interpret it as a desired velocity.

An important property is that both families of characteristics propagate
with a speed equal or inferior to the one of pedestrians (Aw and Rascle,
2000). So no information comes from behind. This requirement was not
fulfilled in the original Payne-Whitham model (Payne, 1971; Whitham,
1974) and this is why it had unphysical properties.

2.2.2 Bi-directional flows

Again it is possible to adapt 2nd order models to the case of bi-directional
flows. The number of equations is doubled as now they must be written for
p+ and p_ (Appert-Rolland et al., 2011; Degond et al., 2011). The main
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difficulty is that, while for car traffic all vehicles drive in the same direction,
here pedestrians walking in opposite directions may converge and create
high density regions which, above a certain level, would be unphysical. It is
thus important to enforce some density limitation, for example by adding a
pressure-like term that diverges when density approaches the maximal
threshold (Berthelin et al., 2008; Appert-Rolland et al.,, 2011; Dogbé,
2012). However it is then difficult to fully avoid numerical instabilities.

2.2.3 Second-order models in two dimensions

A second-order model in two dimensions adapted for pedestrians was first
proposed by (Jiang et al., 2010). Mass conservation is complemented by an
equation for the relaxation of the velocity, which is now the two-
dimensional vector v,

0p + 0:(pv) =0 (14)
ov + (v-V)v=-VP(p) + l[V(p) —v] (15)
T

The desired velocity is still computed from an Eikonal equation (see Eq. (10))
as for Hughes’ model.

This model, as some later ones (Twarogowska et al., 2013), is a direct
generalization of the Payne-Whitham model, and as such, it inherited of
its properties, namely that pedestrians do not react only to what happens
in front, but also in the rear, and that pedestrians can walk against the
main flow in some cases (Jiang et al., 2010). Some two-dimensional
extensions of the ARZ model have been proposed (Jiang et al., 2016), but
possibly pedestrians still may react not only to the front but also to the
rear (Jiang et al., 2022).

As in one-dimension, the addition of a diverging pressure when we
approach the maximal density may allow to account for congestion effects
(Aceves-Sanchez et al., 2024; Chaudhuri et al., 2023, 2024a, 2024b). Of
course the numerical solution of two dimensional models is more complex
than in one dimension, and a lot of efforts have been devoted in proposing
appropriate numerical schemes (Jiang et al., 2010; Twarogowska et al.,
2013; Jiang et al., 2022; Aceves-Sanchez et al., 2024). In contrast with first-
order models, second-order models are able to display stop-and-go waves,
as it occurs in real systems (Jiang et al., 2010; Twarogowska et al., 2013).
Figs. 8 and 9 show such waves. The counterpart is that these models easily
lead to instabilities (Appert-Rolland et al., 2011).
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Fig. 8 Simulation of the evacuation of a room with two doors using various models. Top:
density heatmap for the initial condition, with pedestrians uniformly distributed only over
the left half of the room. Bottom (12 figures): density heatmaps at different times t= 30/
40/60 s (left/middle/right columns). Density is measured in pedestrians per square meter.
Each row corresponds to a simulation with a given model. I: first-order Hughes' model
when preferred velocity is following the shortest distance path. Pedestrians then ignore
the second door. II: first-order model Hughes’ model with c(p) = 1/V(p). lll & IV: second-
order model with C(p) = 1/V(p) in the Eikonal equation (10) and P(o) = poo® with py = 0.1
(I or pg =0.005 (IV). Figures from Twarogowska et al. (2013).
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Fig. 9 Velocity field from a 2nd order model simulation for pedestrian flow around an
obstacle. Some stop and go waves are visible. From Jiang et al. (2010).
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3. Links between microscopic, mesoscopic, and
macroscopic models

There are several levels at which we can model pedestrian dynamics
(Duives et al., 2013). Each of these levels offers a different perspective on
the problem of pedestrian dynamics. At the so-called microscopic level, we
can consider pedestrians to be individual particles, moving in space and
interacting with each other and also potentially with the environment. At
the mesoscopic level, we “zoom out” and consider the density of particles in
space at a larger scale, while allowing for a distribution of velocities at the
each point in space. At the macroscopic level, we consider the density of
particles at each point in space, but allow only one velocity at each point.
In the previous section, we have focused on macroscopic models for
pedestrian dynamics. In this section, we will first discuss each level and then
the methods of derivation from one level to the next.

3.1 Several levels of description

3.1.1 The microscopic level

At the microscopic level, we are modelling individual interacting particles
which are moving and interacting spatially. Each particle is considered to
be a pedestrian, and we endow these particles with behavioral rules which
dictate how they move and how they interact with others and with their
environment. These models can be deterministic so that there is no ran-
domness in the movement or interactions, or stochastic so that there is some
random component to these responses. The pedestrian particles can be in
continuous space, so that they can move anywhere on a line or surface, or
they can move on a grid or lattice, so that at each timestep they can only
move, for example, one spatial unit up, down, left, or right.

As a side remark, we can note that cellular Automata (CA), a popular
method of modelling which is defined on a lattice, can be considered either
as microscopic or mesoscopic since they sit in many ways between the two
scales. With CAs, we are still able to distinguish the individuals; however,
on the other hand, particles sample from a distribution of velocities when
they choose to move up, down, left, or right, and the behavior on the level
of individual particles can be very crude since the goal is often to have
efficient simulations that will be realistic on large scales. One might
therefore also reasonably identify this as a mesoscopic model. However, for
the present work, we will consider CA models as a part of the microscopic
scale, so that microscopic modelling includes both particle-based models
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and cellular automata such as Floor Field Models (Burstedde et al., 2001;
Kirchner and Schadschneider, 2002; Schadschneider et al., 2003) or
exclusion processes (Schadschneider et al., 2011). We refer the reader to
Chapter 7 for a deeper discussion of microscopic models.

3.1.2 The mesoscopic level

At the mescoscopic level, we can again consider families of pedestrians with
different goals or preferred velocities. Each of these families is modelled by
a density in space but also in velocity. Indeed, not all pedestrians will have
their velocity exactly equal to the desired one or to the average velocity.
Instead, pedestrians will rather have a whole distribution of velocities.
Kinetic models will thus involve density distributions yielding the prob-
ability to find a pedestrian at a given location in space with a given velocity.

More precisely, the probability distribution function f(x, t, v, g) gives the
probability density to find a pedestrian with velocity v in site x at time f, with
target g. This last parameter g is new compared to the probability dis-
tribution functions used for fluids. Indeed, molecules do not have any target
that will bias their motion, they just react to external forces, while pedestrians
usually want to go somewhere. Pedestrians with different targets may share
the same space (a street, a square, etc). They will be considered as different
populations that interact on their way.

As we will detail it more in Section 3.2.3, these distributions obey
Partial Differential Equations generally involving derivatives in time, space,
and velocity (Dogbé, 2012; Hoogendoorn and Bovy, 2000). The pedes-
trians then interact with one another and the environment generally via
spatial convolutions, which calculates the probable movements based on
the state of the system. The canonical example of a PDE of this type is the
Boltzmann Equation (Degond, 2004).

3.1.3 The macroscopic level
At the macroscopic level, we model pedestrians as a density in space. This
again can be considered as the probable density of pedestrians to be found at a
given spatial location, and the governing equations are again Partial Differential
Equations, but now involving derivatives only in time and space. The most
well-known model of this type is, for fluids, the Navier-Stokes Equation.
Though we do not detail it here, there exists also families of models
based on a multiscale perspective, and we refer interested readers to
(Cristiani et al., 2014; Piccoli and Tosin, 2009). We will now see how it is
possible to relate the various scales through micro-macro derivations.
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3.2 Methods of derivation

Because different types of information and different mathematical and sta-
tistical tools are accessible at each of the levels, it is often helpful to be able to
relate the microscopic, mesoscopic, and macroscopic versions of the same
model. In this subsection, we will consider different methods of derivations
from one level to another, depending on the form of the microscopic model.

3.2.1 Starting from a microscopic model on a lattice
General considerations

When a microscopic model is defined on a lattice, the state of the system
usually uses a discrete variable i (or two variables 1,j in two dimensions),
that indicates on which node (or cell) of the lattice the agent is. Typically,
such a variable i ranges from 0 to L where L is the system size.

An ensemble average allows the passage from the discrete occupation
numbers on the lattice to densities, or occupation probabilities. This new
version of the model, sometimes called Lattice Boltzmann Equation, cor-
responds to the kinetic level. It is often preferable to write evolution
equations for lattice models directly at the kinetic level. Indeed, instead of
updating each individual - with the individual fluctuations that it implies -,
we need only to consider the averaged modifications of each state, and these
can easily be quantified using the transition rates.

Going further to mesoscopic and macroscopic scales implies that we
will see the system from a largest distance, and that the discretizations will
not be visible anymore. The new variable that will replace the discrete i is a
continuous space variable x that we can define for example as x = é

Evolution rules usually involve neighboring sites on the lattice. With the
change of variable defined above, the distance between two neighboring sites

jand i+ 11isox = % which becomes arbitrarily small for large L. This allows
us to perform Taylor expansions in the microscopic evolution equations,
from which some derivatives will appear, and result into some PDEs. In two
dimensions, the derivation may be more involved and as an example we refer
the reader to (Burger et al.,, 2011) for a macroscopic derivation from the
microscopic Floor Field Model of (Kirchner and Schadschneider, 2002).
Another example will be given now.

An example of micro-macro derivation: The gang model
Our purpose is not only to give an example of micro-macro derivation but
also to illustrate how this can be useful to gain more insight into the
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dynamics of the system. We take as an example the model introduced in
(Alsenafi and Barbaro, 2018), generalized in (Alsenafi and Barbaro, 2021),
and analyzed in (Barbaro et al., 2021). This lattice-based model is a time-
dependent version of the model for gang territorial development intro-
duced in (Barbaro et al., 2013). In (Alsenafi and Barbaro, 2018), the authors
present and study an agent-based model for territorial development, where
agents from two gangs (A and B) move up, down, left, or right on a
2 dimensional lattice, putting down graffiti of their own gang’s color as
they move and preferentially avoiding lattice sites with the other gang’s
color. The movement probabilities from lattice site (if, j;) are given by

o~Bén(inis.)

B0

My(iy = b, j = j, 1) =
Z(T’j)’w(fhj})

where £ denotes the density of graffiti at a site for gang B, f# is parameter
that symbolizes the strength of the avoidance of graffiti belonging to the

other gang, and (7, J) ~ (i, j;) denotes the neighbors of site (i1, j;). Gang
B’s movement probabilities are defined similarly.

This model could be considered to be a chemo-repellent Cellular
Automaton. An important feature of the model is that the agents interact
only through the graffiti field and not directly, and agents are neither
created nor destroyed. This means that the sites can be occupied by many
agents at once, and the total number of agents of each type is conserved. In
some parameter regimes, the uniform distribution of both gangs is stable,
while in others, the system segregates as seen in Fig. 10. This phase tran-
sition 1s studied numerically at the microscopic level, and a phase transition
is observed.

However, it is unclear how to determine the critical f value. The
authors therefore write their model at the kinetic level, referring the
density and graffiti level as p, and &, for k € {A4, B}, respectively, with the
evolution of p, given by:

pali o t+8) = pylijo )+ Y @ OMG — i ] = 1)
(T))~ ()
—pali ity D MG~ i.j— 0.
@J)~ ()
and the evolution for &, given by:

fz‘l(i’j? t+ 6t) = ‘EA(i’j’ t) - 6’/‘]'5/1(1’ j’ t) + 5typ/1(l7 j’ t)’
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Agent Density Agent Denslty Agent Density Agent Density
10000

Graffiti Territory Graffiti Territory
t=1000

t=0
Fig. 10 Temporal evolution of the agent density lattice (top) and territory dominated
by the gang'’s graffiti (bottom) for a segregated state. Here we have N, = Nz = 100, 000,
with 8=2x 107, A=y =05, 6t =1 and the lattice size is 100 x 100. It is clearly seen that

both the agents and the territory dominated by graffiti segregate over time for these
parameters. Figure and caption are reproduced from Alsenafi and Barbaro (2018).

Here, 1 is a decay rate for the graffiti and y is its deposition rate by the

members of the gang. From this kinetic description, and introducing the

continuous variables x = % and y = ‘zj, the authors then use Taylor

expansion and the discrete Laplacian to formally derive a macroscopic

model consisting of four coupled PDEs:

acfA _ 3
(X Y, )_ypA(x’ Y t) gA(x’ Y, t)

@ B

‘f L6y, 1) = 1P e s 1) = Al . 1)

0 D

pA (X Y, ) = TV[VpA (X, Y t) + Zﬁ(pA(x’ Y t)V§B(x’ Y t))]

"”B (v, y. 1) = 2V [V x, 7. 0) + 2B (o (v, 7, ) VEa (. . 0)].

We refer to (Alsenafi and Barbaro, 2018) for the details.

The authors then are able to analyze the model at the macroscopic level
using a standard linear stability analysis to identify where the uniform
equilibrium loses stability, at

=
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Fig. 11 On the Left: critical 8 against the system mass. Here we have that A=y =0.5,
and for the discrete model we have that 6t =1 and the lattice size is 50 x 50. The red
and blue curves represent the discrete model and the linearized PDE system
respectively. On the right: critical 8 against the ratio Z. Here we have Ny = Nj =
100, 000, and for the discrete model we have that &t =1 and the lattice size is 50 x 50.
The red and blue curves represent the discrete model and the linearized PDE system
respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.) Figure and caption are reproduced from
Alsenafi and Barbaro (2018).

where p, and py denote the average density of gangs A and B over the
lattice, respectively. Fig. 11 shows the numerical results of the phase
transition plotted on the same axes as the f, resulting from the stability
analysis, and it can clearly seen that the critical parameters from the discrete
model agree with the one found by analyzing the macroscopic version of
the model, as long as the system mass, i.e. the number of agents, is suffi-
ciently high (this is to be expected, since the derivation is formal and
therefore assumes sufficient smoothness of the quantities of interest, so the
derivation cannot be expected to hold if the density is not sufficiently
smoothly distributed).

The example from (Alsenafi and Barbaro, 2018) serves to demonstrate
the usefulness of deriving a macroscopic description of the microscopic
particle model. Indeed for many models, more mathematical machinery is
available to analyze a macroscopic description, and this can then offer
insight which is not accessible at the microscopic level.

3.2.2 Starting from an off-lattice microscopic model in one dimension
We now consider a microscopic model in continuous space. A first approach
coming from car traffic (Aw et al., 2002; Tordeux et al., 2018) assumes that
we can order the pedestrians as leaders and followers. This will occur in
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particular in one dimensional lines, as for example in a corridor. Pedestrians
are numbered and we use here the convention that pedestrian i is following
pedestrian i—1. The discrete variable i is now a Lagrangian variable, attached
to the agent or particle itself. Ped-following or Follow-the-Leader models
(Lemercier et al., 2012; Rio et al., 2014; Fehrenbach et al., 2015; Tordeux
et al., 2017) typically express the velocity or acceleration of the follower i as a
function of the distance, speed difference, etc, with the leader i — 1.

With such models, two steps are necessary in order to derive a mac-
roscopic model. We must not only go from a discrete to a continuous
description, but also from a Lagrangian (we follow the agents) to an
Eulerian (we observe the flow at a fixed location) description. The first step
is realized by defining a new Lagrangian variable y = i X 8, where &, can be
for example the minimum distance between two pedestrians. When we
look at the system from a distance, taking formally in the limit 6o — 0, y
becomes a continuous variable. We have in particular that dy = di X §,. The
second step is to relate the infinitesimal variation of the Lagrangian variable
dy to the infinitesimal variation dx of the Eulerian variable, at fixed time.
The link between the two variables is illustrated in Fig. 12. One key point
is to realize that though dx is infinitesimal, it is still large compared to the
distance between vehicles. Besides, the micro-macro derivation is done
under the hypothesis that everything varies slowly in space. Following this
assumption, we have that interspaces are constant within the dx and equal
in particular to Ax;. As a result, we can write that

d
LT (16)
0o Ax;

dx

where the ratio — is the number of pedestrians located within dx, and thus

Xi
tells how much i varies within dx. The minus sign comes from the con-
vention that i is decreasing for increasing x.

Ax;
i+2m i-2
l--- ---l
I dx 1

Fig. 12 Schematic representation of the link between the discrete Lagrangian variable
i and the continuous Eulerian variable x. Agents (red dots) are numbered so that
pedestrian i is following pedestrian i — 1. On a scale dx, interpersonal distances are the
same for all successive pairs of leader-follower (assumption of slow spatial variations)
and we take all of them equal to Ax;.
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A microscopic density can be defined from the individual interspace,
that will allow to make the link with the macroscopic Eulerian density:
do

Ay = A0 =P, 0 (17)

Here the first p; is still the Lagrangian density function, while the second
one is Eulerian. The coefficient §, can be seen as a normalization of the
density such that, for example, p,,.. = 1.

From relations (16)—(17), we get the variation of x when y varies at
fixed time, ie the partial derivative

ox_ 1 (18)

dy p
For more obvious reasons, the variation of x in time for fixed y - ie for
fixed pedestrian number - is the velocity:

a_x
ot

= (19)

Once such relations are obtained, it is possible though somewhat
lengthy to go from the Lagrangian time derivatives and neighbor-to-
neighbor variations in the microscopic ped-following model to the
Eulerian PDEs. We refer the interested reader to (Aw et al., 2002; Tordeux
et al., 2018; Zhang, 2003; Burger et al., 2019) for the full calculation in the
frame of various car or ped-following models.

3.2.3 Starting from an off-lattice microscopic model in two
dimensions

The situation is different when pedestrians evolve in 2 dimensions. It is
then not possible anymore to number them in terms of leader/follower,
and the derivation of the kinetic equations is more tricky.

Ideally, one would like to be able to perform an ensemble average on
the microscopic dynamics, to deduce a partial differential equation for the
evolution of the distribution function for the probability density f(x, f, v, g)
to find a pedestrian with velocity v in site x at time f, with target g.
Though the ensemble average allowing to find the kinetic equation is in
principle similar to the derivation of the Boltzmann equation from
molecular dynamics, pedestrian microscopic models are in general too
complicated for a rigorous derivation.

One possibility is to redefine the microscopic dynamics to simplify it
while keeping the main ingredients. For example we can assume that
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pedestrians only modify the direction of their velocity, while keeping a
constant speed modulus - an assumption that will restrict the use of the
model to low densities (Degond et al., 2013b). Another possibility is to
replace discontinuous changes of the pedestrian velocity by continuous time
evolutions. If, moreover, the rate of change of the velocity can be expressed
for example as the gradient of some function, it will be easier to find an
equivalent formulation at the kinetic level (Degond et al., 2013b, 2013a).
A difficulty that is often encountered is that many models implement a
reaction to the most threatening collision. The quantifier of the collision
threat could be, for example, the time until predicted collision. Then the
model requires finding the maximum or minimum of such quantified col-
lision threats. This max/min operation is easy to perform when a pedestrian
undergoes only a finite number of interactions. However, in contrast, when
considering continuous probability distributions, there is always a more
threatening collision that could occur, maybe with very low probability but
not strictly impossible. A similar problem is met when the pedestrian
dynamics is determined from the minimization of some cost function. One
way to deal with this problem is to replace the max/min function in the
microscopic agent based model by some average, or median, of some dis-
tribution based term in the kinetic model (Degond et al., 2013b, 2013a).
The general form of a kinetic equation for probability density function f

will be
Of + v-Vif + Sf= Lf (20)

where Sf contains all the interactions that modify the distribution, in
general with terms involving derivatives in v, and Lfis some diffusive term
resulting from stochastic forces. Indeed, some noise is often added to the
microscopic dynamics, to account for a wider variety of behavior. It
produces diffusion at the mesoscopic level, and at the macroscopic level, it
will allow to have smoother closures (Degond et al., 2013a).

Once the kinetic equation 1s found, we would like to derive a mac-
roscopic model for the density p(x, t, g) and the velocity U(x, f, g), which
are related to the distributions through

px,t g = ff x, t, v, gdv (21)

px, 6 QUK I g) = f rx, 1, v, g)vdv. (22)
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Both integrals above are taken over all possible values of the velocity,
allowing us to extract a classical density field p in (21) and an average
macroscopic velocity field U in (22). The moment method consists in
multiplying the kinetic equation by polynomials involving increasing
powers of v before integrating (Dogbé, 2012). Unfortunately, the resulting
set of equations is in general not closed, and one need to supplement it by
some closure relation.

To be specific, we see from (21)—(22) that the direct integration of (20)
will provide an equation for p that involves pU. Multiplying (20) by v
before integrating will provide an equation for pU that involves still higher
moments of the velocity. We could find an equation for this higher
moment, but it will always involve a moment of even higher degree. This
is why it is necessary to make an assumption to close this hierarchy of
equations.

Such closure relation can be provided by an ansatz that expresses the
distributions f as a function of the macroscopic variables p and U. Note
however that in general one cannot justify the choice made for this ansatz,
in contrast with the case of fluids (Degond et al., 2013a).

One of the easiest one is the mono-kinetic closure, which assumes that all
particles of the same family have their velocity exactly equal to the average
macroscopic velocity. In mathematical terms, this is expressed by a factor
Oux, 1, g(v) in the distribution (Salam et al., 2021; Degond et al., 2013a,
2013b). But other choises can be made, that allow for some dispersion of
the velocity around the average value (Degond, 2004; Degond et al.,
2013a, 2013b).

While many derivations of continuum models from particle dynamics
are formal, i.e. relying on assumptions about the smoothness of the solu-
tion, etc., there are also some relatively recent results rigorously deriving
kinetic descriptions of particle models. In particular, we refer the interested
reader to (Canizo et al., 2011) for rigorous derivation from (some) particle
systems to kinetic equations.

4. Incorporating specifics of crowd behavior

Though the models we have described so far are able to reproduce
some of the features of crowds dynamics, they are far from capturing the
whole complexity of these. Various attempts have been made in the past
decades to include more of the physics of crowds in the models. Here we
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present some directions of research that allow to take into account the non-
locality of interactions, the heterogeneity of crowds, and their ability to
anticipate.

4.1 Taking granularity into account

In order to illustrate the different behavior of micro and macroscopic
models, let us compare both as done in (Maury et al., 2011) for an eva-
cuation problem (Fig. 13). If we consider a microscopic model (Left), and
its macroscopic counterpart (Right), we find first a very similar behavior:
see in Fig. 13-Top) the same low density regions behind obstacles and high
density accumulations in front of bottlenecks (Maury et al., 2011).

Fig. 13 Evacuation by a door located on the left of an area containing several obstacles.
The crowd is simulated either by a microscopic (left) or macroscopic (right) model, and
is shown at an earlier (top) or later (bottom) stage. From Maury et al. (2011).
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However, looking at longer time evolution reveals a striking difference
(see Fig. 13-Bottom): evacuation is more rapid with the macroscopic
model than with the microscopic one.

Indeed, granularity plays a role at bottlenecks. The transient formation
of arches slows down the exit of pedestrians, a feature which is correctly
captured with the microscopic model, but is ignored by the macroscopic
description. In a macroscopic model, the crowd is considered as a fluid, that
would in particular be able to flow through a narrow exit of a few cen-
timeters - a feature clearly unrealistic. The lack of granularity in macro-
scopic models gave raise to several approaches that aim to correct for this
shortcoming.

4.1.1 Non-local macroscopic models
Granularity gives raise to non-local effects at exits. One way to include
non-locality in macroscopic models is to estimate the flux or velocity not
from a purely local density, but from a non-local density averaged on the
surroundings of x. Namely, the velocity would be combined with a
convolution kernel w,, which allows making an average with different
weights depending on the distance (Colombo et al., 2011).

An example coming from car traffic modelling (Blandin and Goatin,
2016) would be

op(t, x) + 0,

x+
pt, x)V(f ”ﬂ(t, P)wy(y — X)dy)] =0

The convolution kernel w, must be a non-increasing function such that

fon wy (x)dx = 1. We can take for example, w,(x) = 1/ or w,(x) =

2(1 — x/n)/n), where n is a positive parameter that can be freely chosen.
This downstream convolution product models the fact that agents react to
what happens downstream. For crowds, kernels in two dimensions should
be used and it is possible to choose anisotropic kernels in order to account
for a finite vision field (Birger et al., 2020; Goatin et al., 2025; Cristiani
et al., 2015).

For pedestrians, non-locality can also be included in the definition of
the direction of the desired velocity (Colombo and Lécureux-Mercier,
2012; Colombo et al., 2012; Campos et al., 2021; Biirger et al., 2020).
Typically, the direction of the preferred velocity would be written as

vix, 1) =px) + Ilp 1)) (23)
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where u would be a fixed preferred velocity field coming from an Eikonal
equation - in general y would follow the shortest paths -, and 7 would be a
functional of the density field p(f) that depends on the gradient of the
density convoluted with an averaging kernel, so that it is non local. It
makes pedestrians able to turn in order to avoid regions of increasing
density. This provides an easy way to implement walls. If walls are given a
high density, pedestrians will avoid them.

The model can be extended to several species of pedestrians by associating
an equation to each species. When extended to bi-directional flows, such
non-local model can reproduce lane formation (Colombo and Lécureux-
Mercier, 2012; Goatin et al., 2024), a feature which is not possible with
purely local models. Similarly, non-local models can reproduce the stripe
formation at the intersection of perpendicular flows (Goatin et al., 2024).

Another advantage of non-local models 1s that well-posedness is
obtained more easily than for local models, for which hyperbolicity is more
easily lost. Micro-macro derivations can also be performed for non-local
models, see (Chiarello et al., 2020) for an example.

4.1.2 Local and non-local point constraints

Another way to account for granularity is to model directly the flux lim-
itation it induces at bottlenecks. This is useful mainly in one dimensional
systems for which flux limitation does not come from the geometry.
Bottlenecks can be considered as objects that impose locally a constraint on
the flux (Andreianov et al., 2018; Chalons et al., 2013)

S i ) £ Qi (24)

where Q; is the maximal value of the flux at the specific location x; of a
bottleneck.

The constraint is local if Q; depends only on the local density p(x;), and non-
local if Q; is a non-local expression of the density (Santo et al., 2019). Such
constraints can be imposed in the frame of a first-order model (Santo et al., 2019;
Colombo et al., 2010) as well as second-order (Andreianov et al., 2016, 2021).

4.2 Taking heterogeneity into account

It is also possible to consider more than one type of pedestrian, for example
multiple groups each with a preferred destination or velocity (Hartmann
and von Sivers, 2013). This can account for differences such as a variety of
ages, heights, or levels of mobility, traveling with luggage, family groups
traveling together, or as discussed previously, multiple gangs (Alsenafi and
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Barbaro, 2018). In the context of disease propagation, it is necessary to
distinguish infected people from others (Salam et al., 2021).

Though there is still a debate about the role emotions can play in
evacuation processes (Liigering et al., 2023), several models have also
considered the emotions of the pedestrians. For example, (Burstedde et al.,
2001) introduces two moods into their Floor Field model, with diftering
movement dynamics for each: Happy pedestrians move in their preferred
direction while unhappy pedestrians undergo more random movement.
There are update rules for switching pedestrians between happy and
unhappy moods.

Including an emotional variable which undergoes contagion is another
type of model for heterogeneous crowds. The authors in (Bosse et al.,
2011) introduce an agent-based (microscopic) model for fearful crowds
which they call the ASCRIBE model. Each agent is endowed with an
emotion level and the emotion levels of the agents change via interactions
with nearby agents. The authors apply this ASCRIBE model to video of a
stressful situation in a crowd in Amsterdam. The ASCRIBE model is
further studied in (Tsai et al., 2011), where it is found to compare favorably
in two case studies to another agent-based contagion model in the litera-
ture, referred to as the ESCAPES model (Durupinar, 2010). In (Bertozzi
et al., 2015), the authors again begin with the ASCRIBE model, but then
derive mesoscopic and macroscopic descriptions which describe the evo-
lution of the densities including this extra emotional component. The
emotional variable dictates the speed of the particles. Numerical techniques
for this mesoscopic model were developed in (Wang et al., 2017).

It is important to note here that the mesoscopic description is able to
capture a distribution of emotion levels or velocities at a single point in
space, and thus describe a heterogeneous population. When it is important
that there is a mixture of fear levels - or actually a mixture of any type of
characteristics - this distribution cannot be replaced by an average value.
Thus we cannot go to macroscopic level, and we need to keep the
microscopic or kinetic description in the region of mixture. These
mesoscopic descriptions are therefore one way to include heterogeneity at
the level of a continuum model.

4.3 Mean field game models: Taking anticipation into account

When pedestrians compete for space (for example in a congested situation),
they develop some strategy, meaning that they choose a trajectory in order
to optimize their exit time, comfort, etc. They can do this based on the
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current state of the system (optimal control) or they can anticipate that
others will themselves try to anticipate and optimize (game theory). To this
end, before describing mean field games, we will as a first step introduce
optimal control ideas.

4.3.1 Cost and optimal control

One way to model pedestrian dynamics is to assume that they try to
minimize some cost. A first step is to determine which cost is minimized
(Arechavaleta et al., 2008; Chitour et al., 2012). Usually one considers that
the cost is proportional to the distance to walk, but other quantities like the
jerk can also be taken into account. One may give different weights to
longitudinal acceleration and side-stepping (Hoogendoorn and Bovy,
2003), or associate a cost for departing from a physiologically optimal speed
(Guy et al., 2012). Crowds can avoid to form high density regions, or on
the contrary, if the crowd wants to stay in a group, they may minimize the
space occupied by the crowd (Herzog et al., 2023).

Once the cost is defined, its minimization will determine, or at least
influence, the pedestrians dynamics. Cost minimization can be used in the
frame of microscopic models (Hoogendoorn and Bovy, 2003, 2004) or, at an
urban scale, of networks (Alisoltani et al., 2024), though here we are interested
in its use for macroscopic models. Actually we saw already such an example,
given by the Eikonal equation (10) of Section 2.1.4 (Hughes model).

When the cost depends only on static quantities, for example when it
amounts at minimizing the distance to the exit, it is sufficient to solve once
the Eikonal equation at the beginning of the simulation. However when
the cost depends for example on the density, the minimization must be
performed at regular intervals to account for the evolution of the sur-
roundings, including the presence of jammed areas (Hoogendoorn and
Bovy, 2004; Hoogendoorn et al., 2015). In particular in Hughes model,
only the current state of the density field is taken into account. The Eikonal
equation (10) is a kind of static Hamilton-Jacobi equation, for which many
numerical methods have been developped (Twarogowska et al., 2013).

4.3.2 Mean-field games

When several pedestrians want to perform a similar task, such as exiting
through a given exit, they may be in competition for space. Indeed, two
persons cannot be at the same place at the same time. Games are appro-
priate to describe this competitive situation. They assume that pedestrians
can anticipate others’ behavior, and optimize their own strategy (namely
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choosing their walking behavior) in order to minimize their own cost. A
Nash equilibrium is expected to be reached, in which nobody has some
interest to change its strategy. However, when many pedestrians are
involved in the game, it would be too costly to solve the full game
involving all the individuals.

Mean field games (MFG) were proposed by Lasry and Lions (2000) and
Huang et al. (20006) to circumvent this difficulty. The idea is that, instead of
having to consider all the individual interactions, each pedestrian reacts to
the average density that can be expected in all future locations. MFGs can a
priori be written for very general forms of the cost. They were used in
particular for dynamic traffic assignment in transportation networks (Ameli
et al., 2022; Khoshyaran and Lebacque, 2024). The special case where the
velocity - namely the strategy of the pedestrian - appears in the cost as a
quadratic term (Ullmo et al., 2019; Benamou et al., 2017) turned out to be
well suited for pedestrians (Dogbé, 2011; Lachapelle and Wolfram, 2011;
Burger et al., 2014).

Typically, a quadratic MFG gives the coupled evolution of the
pedestrians density p and of the so-called value function u which is the
value of the individual cost after optimization

u(x, t) = inf[E{/T [gVZ — V[ﬂ]]dr + CT(XT)}. (25)

The quadratic MFG can be thus expressed as the following coupled evo-
lution equations

op (%, t) = lV-[p(x, HVu(x, t)] + ?Ap(x, f)
g (26)

du(x, 1) = - [Vu(x, )P = TAu(x, 1) + V[p|(x, 1)

L
2u

The first equation of (26) expresses once more mass conservation, but
now with a diffusion term that comes from microscopic noise. The
velocity in the first term of the right-hand side has been replaced by its
value resulting from the optimization process, namely — LVu. The second
equation is derived using the theory of dynamical programming and we
will not give here the details of this derivation. It is based on the idea that in
order to optimize from a current time f, you do not need to take into
account the past but only the future.
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The boundary conditions necessary to solve the equations (26) involve
the terminal cost ¢(x7) and the initial density field

ux, t=T) = cr(x) 27)
px, 1= 0) = p,(x)

It can be noticed, in particular through the boundary conditions and the
sign in front of the Laplacian terms in (20), that the equation for p is
forward in time, but the equation for u — the so-called Hamilton-Jacobi-
Bellman equation — is backward in time. This forward-backward structure
makes it difficult to solve even numerically, and it can be sometimes useful
to exploit the mapping that exists between system (26) and a system of two
coupled Non-Linear Schrédinger equations (Ullmo et al, 2019;
Bonnemain, 2020; Bonnemain et al., 2020).

MEFGs are able to reproduce typical behavior of crowds as lane for-
mation in bi-directional flows (Lachapelle and Wolfram, 2011), as most
models can do. More interestingly, MFGs were the first method able to
reproduce some experimental results, namely the deformation of a crowd
around a cylindrical intruder (Nicolas et al., 2019; Appert-Rolland et al.,
2020), that require long range anticipation. Indeed in most models,
pedestrians either do not anticipate, or only up to the next collision. In
MFEFGs, the cost implies that pedestrians have a full knowledge of the future
up to time 7T, which can be made as large as we want - up to infinite if
needed. In the case of the aforementioned experiment, it can be assumed
that pedestrians have a sufficient experience of obstacle avoidance to be
able to anticipate not only their own behavior but also the one of others. As
a result, as illustrated in Fig. 14, the MFG is able to reproduce the density
and velocity patterns around the cylinder, while other methods fail
(Bonnemain et al., 2023; Butano et al., 2024Db).

Full anticipation may be a too strong assumption (Cristiani et al., 2015,
2023) and it is possible to add a discount factor @ in the cost of Eq. (25)
to account for the fact that pedestrians have a better knowledge of what
happens closer in time (Hoogendoorn and Bovy, 2003; Dogbé, 2011;
Lachapelle and Wolfram, 2011; Butano et al., 2024a). This allows to
explain why the experimental results can be different when pedestrians face
or present their back to an incoming obstacle (Butano et al., 2024a). Instead
of assuming that agents instantaneously choose the Nash equilibrium, it is
also possible to assume that agents only tend towards this goal (Degond
et al., 2014).
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Fig. 14 Top: Experimental setup for the crossing of a crowd by a cylindrical intruder.
Bottom: comparison of the density field (in ped/m?) obtained by MFG simulation (left)

and reconstructed from the experimental data (right). Top: From Nicolas et al. (2019),
Bottom: From Butano et al. (2024a).

5. Numerical simulation of macroscopic models

In this section, we focus on numerically solving macroscopic
pedestrian models, which is an inherently Eulerian problem. We will
distinguish two main approaches. In the first approach, we keep the
Eulerian variables of density and velocity but discretize the spatial and time
domains. The second approach uses virtual particles, such that the evolu-
tion of these particles dictates the numerical solution of the macroscopic
equation. We will describe several approaches of each type within the
pedestrian dynamics community, and discuss the challenges associated with
each framework.

5.1 Grid-based Eulerian methods

In this framework, the macroscopic models are generally solved using
canonical methods for solving hyperbolic PDEs: Finite Diftference Methods
(FDMs), Finite Element Methods (FEMs), and Finite Volume Methods
(FVMs). With these methods, the challenges are the same as for solving
many problems in PDE: gradients can become very steep, requiring either a
very fine grid or a shock description; numerical viscosity can artificially
smooth shocks for some methods, while oscillations around shocks can be a
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problem for others (LeVeque, 1992), and specific methods have been
developed to handle shocks. Instabilities can also occur near the maximal
density limit, as in (Appert-Rolland et al., 2011). Additionally, loss of mass
induced in numerical methods that do not explicitly enforce mass con-
servation can be of concern, forcing a fine grid in order to approximate the
conservation of mass necessary for these problems. Still, many excellent
numerical schemes for macroscopic pedestrian flows are non-conservative;
for a more thorough discussion, the reader is referred to (Chalons, 2007)
and (Chalons et al., 2013).

The most straightforward way to solve the macroscopic models is with
Finite Difterence Methods. In these methods, both time and space are
discretized, and derivatives are approximated using difference equations. In
one dimension, p, and p; could simply be approximated by

P (Xig1, 1) — p(xiz1, 1))
X, 1) & : - (28)
P i 1)) 2Ax
and
xi’ t - xi’ t
P (.X'l', t/‘) ~ p( »/+1)A p( j) (29)
’ t

for time step At and spatial step Ax. In these methods, more accurate results
are attained by refining the grid, enforcing a smaller spatial discritization
and smaller timesteps. However, this must be done with care, since vio-
lations of the Courant-Friedrichs-Lewy (CFL) condition can lead to loss of
stability for the numerical method, yielding erroneous numerical solutions
(Courant et al., 1928). In explicit time and space discretization schemes, the
CFL condition provides upper bound for the ratio of the spatial step Ax
multiplied by the velocity and the time step Af, ensuring that no mass can
artificially “skip over” a cell of the spatial grid. This condition is necessary
(but not sufficient) to ensure stability of the method. For hyperbolic PDEs
in one dimension, this constraint takes the form:
|v| At

E S Cmax-

In two dimensions, the CFL condition may be expressed as (Toro, 2009)
max;, |v;
At ﬂ < Cmax’
AX,’

where |y is the magnitude of the velocity in the ith direction, but
sometimes other expressions are used, for example using Y,|v;| in place of
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the max. The CFL condition becomes a problem in areas where the
velocity becomes extremely large, since the time step must be made
extremely small in order to compensate. Additionally, first-order finite
difference schemes tend to “smear out” shocks, introducing artificial dif-
fusion, while second-order methods often produce oscillations on one or
both sides of a shock (LeVeque, 2002).

That oscillations tend to occur in places where the derivatives become
steep is particularly problematic in pedestrian dynamics, since the occur-
rence of shocks is a prominent feature in these models. These oscillations
can be addressed by semi-discrete schemes, which first discretize the pro-
blem in space. Time is then still continuous, and the problem reduces to a
system of ODE problems which can be solved using any standard method.
This approach is also called the method of lines (LeVeque, 2002) and can
be used to develop highly accurate numerical schemes which avoid
oscillations around shocks. In particular, Essentially Non Oscillatory
(ENO) and Weighted Essentially Non-Oscillatory (WENO) schemes are
of this type (Harten et al., 1997). In the pedestrian literature, for example
3rd (Goatin et al., 2024, 2025) or 5th (Biirger et al., 2020) order WENO
schemes were used to simulate non-local models, as well as the Hughes
model (Huang et al., 2009), allowing for good accuracy in smooth regions
while being able to handle the discontinuities without oscillations.

Finite Volume Methods again discretize space and time, focusing on the
influx and outflux of mass through each surface of a spatial cell. These
methods are conservative, since mass is transferred directly between adjacent
cells. FVMs solve a collection of Riemann problems, addressing the need to
admit shock solutions (LeVeque, 2002), in particular through the so-called
Godunov schemes (Toro, 2009). Because pedestrian models are known to
produce non-smooth solutions (i.e. ones with blowup in the density or the
derivatives of the density, for example in the case of shocks), Finite Volume
Methods are often preferred (Dogbé, 2008).

Another numerical approach is to use Finite Element Methods to solve
the macroscopic model. In broad strokes, FEM divides the spatial domain
into irregular geometrical cells (the elements) that can locally adapt to the
boundaries. On each element, an ODE can be solved in place of the PDE. It
is the relationship among the elements that takes care of the spatial deriva-
tives. Eventually the full solution is constructed by weighting the solution on
each element in order to minimize some global error. One significant
advantage of the FEM is that boundaries and complicated geometries are easy
to address, since they can be naturally included when determining the
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elements. Examples of FEMs used to numerically solve pedestrian models
include the discontinuous Galerkin method which makes use of dis-
continuous piecewise polynomial functions (Xia et al., 2009).

Another technique called a splitting scheme can be employed in
macroscopic pedestrian models that take the following form

0
P LVAF, G)=S.
ot
With this method, the problem is split into two separate problems, solving
0
> _g
ot
for part of each time step, while solving
0
P L VAF, G) =0,
ot

on the rest of the time step. Each of the two problems is solved using the
most appropriate method for problems of that type (Jiang et al., 2010),
leading to an accurate and more efficient numerical method.

Multiscale Eulerian approaches can also be employed in pedestrian
models. For example, the paper by Wang, Short, and Bertozzi on
numerically solving the contagion model (Wang et al., 2017) has several
approaches for solving the model derived in (Bertozzi et al., 2015), which
exhibits shocks. These include multiscale modelling by using the macro-
scopic formulation in regions where characteristics do not cross, while the
kinetic formulation is used in areas where the characteristics are crossing.
Another approach proposed in (Wang et al., 2017) is to use a level set
formulation which allows for a distribution of velocities throughout the
whole domain, similar to the kinetic formulation.

5.2 Particle methods

Particle methods are a different numerical framework which is also widely
used in the pedestrian dynamics literature, see (Salam et al., 2021) for an
example. In particle method approaches, the numerical solution of the
macroscopic equation is a linear combination of Dirac delta functions
(one may consider these to be weighted particles) distributed throughout
the spatial domain. The weights and the positions of the particles evolve
according to the macroscopic equation. An overview of deterministic
particle methods can be found in (Chertock, 2017). Particle method
approaches are useful because they often avoid the problem of numerical
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diftusion. This is a very useful characteristic when working with macro-
scopic pedestrian models, since these can exhibit shocks and other diftu-
sion-sensitive features.

One class of methods, called meshfree Generalized Finite Difference
Methods, uses these particles as a an alternative to the regular grid used in
Finite Difference Methods above. In this cases, the particles are stationary
and are generated in the beginning of a simulation. They are irregularly
spaced and used as stationary set of points at which to solve the macro-
scopic equation, in the spirit of a random irregular mesh. The main
challenge here 1s determining initially the distribution of particles, called a
point cloud. The interested reader is directed to (Suchde et al., 2023) for an
overview on how to generate such point clouds. In (Maity et al., 2024), the
authors numerically simulate several well-studied macroscopic models for
pedestrian dynamics using such a meshfree Generalized Finite Difference
Method with a Godunov-type discretization. They find that this numerical
method captures the particular characteristics of each model.

As an alternative to the Eulerian framework with density and velocity
moving on a grid or set of stationary particles, the evolution of fluid
equations can also follow packets of fluid as they move through space. This
is the Lagrangian Framework. Particle methods such as Smoothed-Particle
Hydrodynamics (SPH) use this Lagrangian framework to numerically
solve macroscopic equations. In SPH, the particles move through space
with the velocity dictated by the macroscopic equation and interact with
one another through an interaction kernel of radius h. This interaction
determines the evolution of the physical quantities associated with each of
the particles (primarily mass). It is possible to change h according to how
dense the particles are in space. SPH is employed in solving macroscopic
pedestrian models, for example in (Yuan et al., 2020). In (Toll et al.,
2021), the authors use a hybrid Lagrangian approach by blending an agent-
based model for pedestrian dynamics with a SPH method in high density
scenarios.

Lagragian particle methods are also used on pedestrian models at both
the microscopic and macroscopic scales in (Etikyala et al., 2014), ranging
from a microscopic interacting particle model paired with the Eikonal
equation to a model consisting of a nonlocal continuum equation. Other
numerical methods for macroscopic pedestrian dynamics use semi-
Lagrangian schemes, where the Lagrangian framework is combined with
the Eulerian one, see, for example, (Carlini et al., 2017) and (Falcone and
Ferretti, 2014).
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As the reader can deduce, both Eulerian and particle-based numerical
methods for macroscopic models of pedestrian dynamics are well-grounded
and important to the field. Eulerian approaches face challenges such as
numerical viscosity, oscillations, and loss of mass. In Eulerian approaches,
these challenges are answered with finer meshes and therefore smaller
timesteps (according to the CFL condition, as described above). It is also
important to bear in mind that Eulerian simulations of macroscopic models
can have many challenges with stability and well-posedness, so it is also
often helpful to move to a particle method for simulations. Particle
methods avoid artificial viscosity, often capturing shocks well, but
encountering problems with particle distribution and computational
complexity. In particle-based methods, more accuracy often requires more
particles and, in some cases, redistribution of these particles, which can lead
to the number of particles becoming prohibitively expensive.

6. Final discussion

Macroscopic models originated by expressing conservation of mass in
a similar way to traffic models. With new features such as nonlocality and
other variations like heterogeneous populations (accessible through mul-
tiple different classes of pedestrians, for example, or through mesoscopic
descriptions), macroscopic models have recently begun to better approx-
imate the specifics of pedestrian dynamics.

While microscopic pedestrian models can closely approximate the
dynamics of individual pedestrians, macroscopic models can be useful in
situations with a high density of pedestrians for understanding the mac-
roscopic or system-level behavior of these large groups. Indeed, macro-
scopic modelling of pedestrians allows for insight into the overall group
dynamics, such as the density waves (Bain and Bartolo, 2019; Gu et al.,
2025), phase separation (Alsenafi and Barbaro, 2018), or pattern formation
(Hoogendoorn et al., 2014; Cividini et al., 2013). These types of behaviors
are most easily understood at the macroscopic level.

When working with macroscopic models, it is important to consider
the physical meaning of all of the included terms. It is not always clear
when adding a term to a macroscopic model, how to translate this back to
understand the physical implications of the choice. A further level of
confidence in a macroscopic model is obtained when it can be derived
from a microscopic one. In this case, the parameters of the microscopic
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model may have a direct significance for the macroscopic model. Still one
must be careful that this does not always imply that macroscopic phe-
nomena correspond to the same calibration, and thorough comparison
with data is needed. One must be aware that, when deriving a macroscopic
model from a microscopic one, several assumptions have to be made from
which the implications are not always fully understood. It is important to
bear this in mind as derivations are undertaken.

On the other hand, if a microscopic model is being used, it can be very
helpful, as in the case of (Alsenafi and Barbaro, 2018), to consider a mac-
roscopic description of the model. While the theoretical analysis of the large
number of differential equations involved in the microscopic models can
become unwieldy, the tools accessible to analyze macroscopic equations are
often well-developed, allowing for better predictions of the outcome from
certain choices of parameter space. This is particularly true when modelling
relies on game theory, when simulation and analysis become intractable in
the case of a large number of agents, unless a mean-field assumption is done.
It is therefore very helpful to consider if a corresponding macroscopic model
can be derived when considering a microscopic model.

An interesting issue that we did not develop in this chapter is about
calibration and validation of macroscopic models. A first level calibration is
through the determination of the fundamental diagram (see Chap. 3),
which as we have seen is at the core of first-order macroscopic models.
Beyond that, macroscopic models could be directly calibrated or validated
at the level of macroscopic phenomena such as wave propagation (Motsch
et al., 2018), deformation of the density field (Butano et al., 2024a), etc.
However, there is a need to go further in this direction and to develop
more quantitative studies. Progress in the direct measurement of density
through deep learning (Vandoni, 2019) could open possibilities for com-
parisons of macroscopic models with measurements in real events.
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